Downloads
This paper builds on Bonhomme (2012) to develop a method to systematically construct moment conditions for dynamic panel data logit models with fixed effects. After introducing the moment conditions obtained in this way, we explore their implications for identification and estimation of the model parameters that are common to all individuals, and we find that those common model parameters are estimable at root-n rate for many more dynamic panel logit models than has been appreciated by the existing literature. In the case where the model contains one lagged variable, the moment conditions in Kitazawa (2013, 2016) are transformations of a subset of ours. A GMM estimator that is based on the moment conditions is shown to perform well in Monte Carlo simulations and in an empirical illustration to labor force participation.
Authors

Research Associate University College London and University of Oxford
Martin is an IFS Research Associate, a Fellow of the Nuffield College and a Professor in the Department of Economics at the University of Oxford.

Bo E. Honoré
Working Paper details
- DOI
- 10.1920/wp.cem.2020.3820
- Publisher
- The IFS
Suggested citation
Honoré, B and Weidner, M. (2020). Moment Conditions for Dynamic Panel Logit Models with Fixed Effects. London: The IFS. Available at: https://ifs.org.uk/publications/moment-conditions-dynamic-panel-logit-models-fixed-effects (accessed: 10 February 2025).
More from IFS
Understand this issue

Gender norms, violence and adolescent girls’ trajectories: Evidence from India
24 October 2022

Do tariffs work?
We discuss the economic consequences of tariffs, why governments use them, and whether they actually achieve their intended goals.
23 January 2025

What is this government’s ‘theory of growth’? Nobody knows
"Shifting the performance of an entire economy requires a long-term, consistent and persistent direction." Paul Johnson writes for the Times.
20 January 2025
Policy analysis

IFS Deputy Director Carl Emmerson appointed to the UK Statistics Authority Methodological Assurance Review Panel
14 April 2023

ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models
We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Compu- tation which build likelihoods based on limited information.
12 August 2014

Living standards, poverty and inequality in the UK: 2024
25 July 2024
Academic research

Prediction sets and conformal inference with censored outcomes
This paper provides estimation methods of such prediction sets given observed conditioning covariates when 𝑌 is censored or measured in intervals.
21 January 2025

Individual welfare analysis: Random quasilinear utility, independence and confidence bounds
We introduce a novel framework for individual-level welfare analysis.
13 December 2024

Inference for parameters identified by conditional moment restrictions using a generalized Bierens maximum statistic
Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection.
13 December 2024