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Abstract

This paper provides a constructive argument for identification of nonparametric

panel data models with measurement error in a continuous explanatory variable.

The approach point identifies all structural elements of the model using only ob-

servations of the outcome and the mismeasured explanatory variable; no further

external variables such as instruments are required. In the case of two time peri-

ods, restricting either the structural or the measurement error to be independent

over time allows past explanatory variables or outcomes to serve as instruments.

Time periods have to be linked through serial dependence in the latent explana-

tory variable, but the transition process is left nonparametric. The paper discusses

the general identification result in the context of a nonlinear panel data regression

model with additively separable fixed effects. It provides a nonparametric plug-in

estimator, derives its uniform rate of convergence, and presents simulation evidence

for good performance in finite samples.
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1 Introduction

A vast amount of empirical work in economics, especially in microeconomics, recognizes

the possible presence of measurement error (ME) in relevant data sets and that failure to

account for it may result in misleading estimates and inference.1 These concerns deserve

particular attention in panel data models. Economists view panel data as very appealing

because they offer opportunities to flexibly deal with unobserved, individual-specific het-

erogeneity in economic behavior. In one form or another, panel data estimators combine

variables from different time periods to remove (“difference out”) those individual-specific

components, typically resulting in transformed variables with amplified ME relative to the

original variables. In this sense, ME poses an even more severe challenge to panel data

models than to cross-sectional ones.

This paper shows the possibly nonlinear relationship between an individual’s outcome

and unobserved true explanatory variable can be recovered from only observed variables

within the panel model (i.e. outcomes and mismeasured covariates). Specifically, consider

the nonlinear regression model with additively separable fixed effects,

Yit = m(X∗it) + αi + εit, (1)

which in the subsequent discussion, serves as the leading example to which the new ap-

proach can be applied. The dependent variable Yit denotes an individual i’s outcome in

time period t, αi an individual-specific fixed effect, which may arbitrarily depend on a

continuous regressor X∗it, and εit the regression error, also referred to as the structural

error. Instead of the true explanatory variable X∗it, only the mismeasured variable Xit

is observed. The ME ηit := Xit − X∗it is assumed classical in the sense that it does not

depend on the true regressor, but nonclassical features like temporal dependence in the

ME are allowed. The structural relationship between Yit and X∗it, in (1) represented by

the unknown function m(x∗), is the object of interest. The identification approach in

this paper provides explicit formulae (in terms of observable variables) for m(x∗), for

the distribution of the ME, and for the distribution of the true regressor jointly over all

time periods. The identification result does not require any observed variables other than

outcomes and observed regressors for two or four time periods, depending on whether

additive fixed effects are present. The idea consists of taking past observed regressors or

past outcomes as instrumental variables. Consequently, the main identifying assumptions

resemble those of standard linear instrumental variable models: (i) outcomes are deter-

mined by the true, not the mismeasured, covariates; (ii) different time periods are linked

1See the excellent handbook chapter by Bound, Brown, and Mathiowetz (2001).
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through serial dependence in the true covariates (relevance condition); and (iii) past mis-

measured covariates or past outcomes do not determine present outcomes, conditional

on present, true covariates (exclusion restriction). Depending on whether covariates or

outcomes are used as instruments, I show that the exclusion restriction requires either the

structural error or the ME to be independent over time, respectively. The constructive

nature of the approach suggests nonparametric estimation of all model components by

simply substituting nonparametric estimators into the population formulae and choosing

values for smoothing parameters. The resulting estimator can be computed based only

on basic operations such as matrix multiplication, matrix inversion, and discrete Fourier

transforms, which are carried out efficiently on modern computers, and does not require

any optimization routines.

As an example in which the methods developed in this paper may lead to interesting

new conclusions, consider the relationship between investment and Tobin’s q in Lucas and

Prescott (1971)-type investment models. The firm’s profit maximization problem leads

to first-order conditions of the form

Iit
Kit

= m(q∗it) + αi + εit,

where Iit denotes investment and Kit capital stock of firm i at time t. The unobserved

regressor q∗it, also called the shadow value of capital or marginal q, is the Lagrange multi-

plier for the evolution equation of the capital stock. The ratio of book to market value of

the firm’s capital stock, qit, also called average q, is a popular proxy for q∗it. To estimate

the model, empirical work typically imposes one or both of the following two assumptions:

(i) firms face a quadratic adjustment cost function and (ii) unobserved marginal q is equal

to observed average q. Assumption (i) leads to a linear function m, but has no economic

foundation and has been argued to be likely too strong (Barnett and Sakellaris (1998)).

Assumption (ii) eliminates the measurement error problem but imposes strong conditions

on the economic framework (Hayashi (1982)) and have also been argued to be unrealis-

tic (Erickson and Whited (2000), Almeida, Campello, and Galvao (2010), Erickson and

Whited (2012)). Since ME and nonlinearities can manifest themselves in similar ways

(Chesher (1991)), the ability to analyze the investment model without imposing either of

(i) and (ii) is important. In the investment literature, accounting for ME while allowing

for the presence of nonlinearities in m is a challenge because of the lack of external in-

struments. However, large firm-level panel data sets are readily available and therefore

render the approach taken in this paper immediately applicable. The author is pursuing

a thorough study in this direction in a separate paper.

Other examples are the estimation of Engel functions from household panel data (Aas-
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ness, Biørn, and Skjerpen (1993)), the estimation of production functions (Olley and Pakes

(1996)), studies of returns to research and development performed in private firms (Hall,

Jaffe, and Trajtenberg (2005)), and analyzing the technology of skill formation (Cunha,

Heckman, and Schennach (2010)). Since the first draft, the identification argument of this

paper has also been used and extended for the study of nonlinearities in the dynamics of

household income (Arellano (2014); Arellano, Blundell, and Bonhomme (2014)).

Existing work on the treatment of ME in panel data models is scarce and exclusively2

focuses on linear specifications. In the well-known approach by Griliches and Hausman

(1986), the linearity facilitates the derivation of explicit formulae for the biases of the

first difference and the within estimator. In both bias expressions, the variance of the ME

is the only unknown, so, from the two different estimators, one can substitute out the

unknown variance and calculate a ME-robust estimator. Clearly, such an approach cannot

be expected to carry through to nonlinear models. More recent approaches such as Holtz-

Eakin, Newey, and Rosen (1988), Biørn (2000), Buonaccorsi, Demidenko, and Tosteson

(2000), Wansbeek (2001), Xiao, Shao, and Palta (2008), Galvao Jr. and Montes-Rojas

(2009), Shao, Xiao, and Xu (2011), and Komunjer and Ng (2011) similarly rely heavily

on a linear specification and cannot identify or estimate nonlinear models such as (1).

The ME literature for nonlinear cross-sectional models is extensive. Most identification

arguments assume the availability of instruments, repeated measurements, or auxiliary

data. Chen, Hong, and Nekipelov (2011) and Schennach (2013) review this stream of the

literature and provide numerous references. The existing instrumental variable approaches

require the instrument to predict the true covariate in a certain sense, whereas the true

value predicts the mismeasured covariate.3 This asymmetry between assumptions on the

mismeasured and the instrumental variable conflicts with the structure of conventional

panel data models such as (1) when mismeasured covariates or outcomes are the only

candidates for instruments. Looking for suitable instruments excluded from the panel

model is not a solution either because the motivation for using panel data oftentimes

lies in the desire to deal with endogeneity when external variation, for instance in the

form of instruments, is unavailable. Repeated measurements or auxiliary data for panel

data sets are difficult, if not impossible, to acquire4, so that approaches based on their

availability appear to be of little use for panel models as well. In conclusion, the existing

2Part of the statistic literature has approached the problem by assuming the ME is classical and its

distribution known (see Carroll, Ruppert, Stefanski, and Crainiceanu (2006) and references therein). In

this special case, which is unrealistic in most economic applications, identification is straightforward.
3Hu and Schennach (2008) is an exception; see the discussion below.
4Card (1996) describes an interesting and fortunate exception, but he considers misclassification of a

binary regressor, whereas this paper is concerned with continuous covariates.
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approaches for nonlinear cross-sectional models with ME either impose assumptions on

instruments incompatible with panel data models such as (1) or require auxiliary data

that is typically not available. In contrast, the present paper provides conditions for

identification based only on observations from within the panel. A separate stream of the

literature combines independence assumptions with information in higher-order moments

of observed variables; see Schennach and Hu (2013) and the many references therein.

Hu and Schennach (2008) make an interesting theoretical contribution by providing

a powerful operator diagonalization result that can be used to identify a large class of

models with latent variables. The cost of their generality are high-level assumptions and

an identification argument that is not constructive. Furthermore, in regression models,

their assumptions rule out homoskedastic errors with a regression function that is equal

at two points. On the contrary, the new approach of this paper is constructive, leads to

assumptions that are easily interpretable in a panel data context, and allows the treatment

of time dependence in the ME. In general, neither their approach nor mine nests the other.

The present paper also relates to the statistical literature on ill-posed inverse prob-

lems that has gained recent interest in the econometrics community, for example, Newey

and Powell (2003), Hall and Horowitz (2005), Horowitz and Lee (2007), Blundell, Chen,

and Kristensen (2007), Carrasco, Florens, and Renault (2007), Horowitz (2009), Darolles,

Fan, Florens, and Renault (2011), Horowitz (2011), and Chetverikov and Wilhelm (2015).

Part of the identification argument of this paper consists of solving two ill-posed inverse

problems similar to those arising in nonparametric instrumental variable models consid-

ered in these papers. My approach implements Blundell, Chen, and Kristensen (2007)’s

series estimator as an input to a second-stage estimator of the actual quantity of interest.

Porter (1996), Henderson, Carroll, and Li (2008), Evdokimov (2010), Qian and Wang

(2012), Lee (2014), and Fève and Florens (2014) discuss nonparametric identification and

estimation of panel data models without ME, but their models are otherwise similar to

the leading example in this paper, namely, nonparametric panel data regressions with

additively separable fixed effects such as (1).

2 Identification

2.1 A General Instrumental Variable Identification Result

Consider a panel data model with an individual’s outcome Yt, which can be discrete or

continuous, and a continuous explanatory variable X∗t . Both variables are indexed by the

time period t, but for the remainder of the paper, I omit the individual’s subscript i. The
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relationship between these two variables, subsequently referred to as the structural rela-

tionship, is the object of interest in this paper. Assume the researcher does not observe

X∗t directly, but only a mismeasured version of it, denoted by Xt. The difference between

the two, ηt := Xt−X∗t , is referred to as ME. Standard approaches such as nonparametric

regression or nonparametric instrumental variables regression cannot recover features of

the structural relationship because the independent variable is unobserved. In this sec-

tion, I provide assumptions restricting the joint distribution of (Yt, X
∗
t , Xt) so that, in

the population, the structural relationship can be uniquely determined from observable

quantities. Although the paper’s motivation is to treat ME in panel data models, the ap-

proach to identification uses past observed variables in a general way so other instruments

can replace these variables. Therefore, the identification result may be of more general

interest, even in cross-sectional models; see Remark 2 below.

For now suppose only two time periods are available and no individual-specific effects

or any other perfectly measured covariates are present. I discuss such extensions in

the next subsection. Denote by Y (X, X∗ and η) the vectors (matrices) stacking the

corresponding variables for individual time periods.5

Assumption ID 1. The distributions of X, X∗, and η admit densities fX , fX∗, and fη

with respect to Lebesgue measure on Rp and have support equal to Rp.

The first assumption restricts the latent and observed independent variables to be

continuously distributed with infinite support.6 The outcome, however, is allowed to be

discrete or continuous.

Assumption ID 2. (i) η ⊥ X∗ and Eη = 0 and (ii) the characteristic function of η is

nonzero everywhere.

The first part of Assumption ID 2 specifies that the ME is independent of the true

value and has mean zero. This assumption is strong, but standard in the ME literature

dealing with continuous mismeasured variables. While it would be possible to allow for

some dependence between the ME and the true value, imposing independence leads to

identifying assumptions that are easy to interpret in the context of a panel structure, a

constructive identification argument, and, thus, simple nonparametric plugin estimators

for all components of the model. Notice that the ME is “non-classical” in the sense

5By a slight abuse of notation, when the dimension of the covariates is larger than one, I may refer to

the distribution of the random matrices X, X∗, or η, which should be interpreted as the distribution of

the random vectors vec(X), vec(X∗), or vec(η), respectively.
6Relaxing the assumption of unbounded support along the lines of Carrasco and Florens (2011) appears

possible.
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that part (i) of the assumption does not restrict the temporal dependence of the ME.

The second part of Assumption ID 2 is common in the deconvolution literature; see

Carroll, Ruppert, Stefanski, and Crainiceanu (2006), Fan (1991), Fan and Truong (1993),

Li and Vuong (1998) and Schennach (2004a, 2007). It excludes, for example, uniform and

triangular distributions, but most other standard distributions such as the Normal, t, χ2,

gamma, and double exponential satisfy the requirement.

Assumption ID 3. (i) There exist B <∞ and β ∈ Rp
+ such that

sup
y2∈Y2

∣∣∣∣ ∂p

∂x∗2
(1) · · · ∂x∗2(p)

FY2|X∗
2
(y2|x∗2)

∣∣∣∣ ≤ B

p∏
k=1

(
1 +

∣∣∣x∗2(k)
∣∣∣)−3−βk

for all x∗2 = (x∗2
(1), . . . , x∗2

(p))′ ∈ Rp, where | · | denotes the Euclidean norm; (ii) fη is

bounded.

In economic models, Assumption ID 3 is a relatively weak assumption on the con-

ditional cdf of Y2 given X∗2 as the conditioning argument becomes large. It rules out

rather pathological cases in which the cdf oscillates too much as |x∗2| → ∞. The condition

guarantees that after appropriate centering, the Fourier transform of the conditional cdf

is an ordinary function even though the conditional cdf is not absolutely integrable in its

conditioning argument; see Schennach (2008).

Definition 1. Let the notation x(k) refer to the k-th element of a vector x. For some

space Ḡ ⊆ L2(fX∗
2
) that contains FY2|X∗

2
(y2|·) for every y2 ∈ Y2, define the set of functions

G := G1 ∪ G2 with

G1 :=
{
h ∈ Ḡ : 0 ≤ h(x) ≤ 1 ∀x ∈ Rp

}
,

G2 :=
{
h ∈ Ḡ : ∃k ∈ {1, . . . , p}, h̄ ∈ G1 : h(x) = x(k)h̄(x) ∀x ∈ Rp

}
.

The set G contains two types of functions: the first component, G1, is the set of func-

tions bounded between zero and one, and the second, G2, contains the bounded functions

from G1 multiplied by a component of its argument.

Assumption ID 4. The conditional distribution of X∗2 given X∗1 is G-complete.

G-completeness of the distribution of X∗2 given X∗1 means that, for all functions h in G,

E[h(X∗2 )|X∗1 ] = 0 almost surely implies h(X∗2 ) = 0 almost surely. If X∗t is independent over

time then past or future covariates and outcomes do not contain any information about

the latent variable in the present period, and the identification argument breaks down.

Assumption ID 4 rules this case out. The completeness condition can be interpreted as a
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nonparametric analogue of the standard rank condition in linear models. For example, if

the transition process satisfies X∗2 = βX∗1 + U with E[UX∗1 ] = 0 then the rank condition

is E[X∗1X
∗
2 ]β = 0 ⇒ β = 0. However, G-completeness can accommodate much more

general nonlinear specifications.

G-completeness is a weaker restriction on the distribution of X∗2 | X∗1 the smaller the

set G is. In the related literature, G typically consists of all integrable functions or of

all bounded functions, amounting to the familiar notions of completeness or bounded

completeness, respectively. The type of functions h ∈ Ḡ for which we need completeness

are potential candidates h(·) for the desired conditional cumulative distribution func-

tion (cdf) FYt|X∗
t
(yt|·). Economic theory often implies restrictions on FYt|X∗

t
(yt|·) such as

smoothness, monotonicity, or continuity. Ḡ can then be taken as the space of functions

satisfying those restrictions. One basic requirement all functions in Ḡ must satisfy is As-

sumption ID 3(i). If FYt|X∗
t

is strictly monotone in its conditioning argument (e.g., because

of a strictly monotone regression function) then one may require all functions in Ḡ to be

asymmetric around zero. In this case, G2-completeness is implied by G1-completeness, and

thus G-completeness becomes weaker than bounded completeness. In the absence of such

additional restrictions on Ḡ, however, G-completeness is slightly stronger than bounded

completeness and weaker than completeness for all functions bounded by polynomials

(called P-completeness; D’Haultfœuille (2011)). Completeness conditions have become

popular in the recent econometrics literature, and more primitive sufficient conditions are

known; see Newey and Powell (2003), D’Haultfœuille (2011), Hu and Shiu (2011), and

Andrews (2011). For instance, consider the transition process X∗2 = h(X∗1 ) + U with

U ⊥ X∗1 . Under regularity assumptions, a characteristic function of U that has infinitely

many derivatives and is nonzero then implies bounded completeness of X∗2 | X∗1 ; see

D’Haultfœuille (2011). With these restrictions on the innovations, popular time series

models such as ARMA processes or ARCH errors yield completeness. Because com-

pleteness, P-completeness (D’Haultfœuille (2011)), and L2(fX∗
2
)-completeness (Andrews

(2011)) each implies G-completeness, sufficient conditions for any of the former are also

sufficient for the latter.

While in other contexts completeness conditions may appear to be high-level condi-

tions that are difficult to interpret and verify, I would argue that Assumption ID 4 is

reasonable in many economic applications. Intuitively, completeness requires a strong

relationship between X∗2 and X∗1 which does not appear problematic in the context of

the examples mentioned in the introduction because their latent regressors (determinants

of investment decisions, cognitive and noncognitive ability etc.) are highly persistent.

Furthermore, Markov models for the latent explanatory variables in those models are
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common (see the references in the introduction) and allow for direct use of the low-level

sufficient conditions for Assumption ID 4 as discussed in the previous paragraph. Finally,

notice that beyond the nonparametric rank condition, the latent transition process is left

completely unspecified. In particular, no functional form assumptions are made.

The next set of assumptions called IVX describes the restrictions necessary for X1 to

be a valid instrument for identification of FY2|X∗
2
. Similar assumptions called IVY that

can replace IVX to make the outcome variable a valid instrument are given below.

Definition 2. Let the observable transition operator DX : L2(fX2) → L2(fX1) be defined

as

DXh := E[h(X2)|X1 = ·], h ∈ L2(fX2).

Assumption IVX 1. For any fixed y2 ∈ Y2, the Fourier transform of [D−1
X FY2|X1(y2|·)](·)

is nonzero on a dense subset of Rp.

This assumption rules out cases in which the Fourier transform of the quantityD−1
X FY2|X1

vanishes over an interval, but allows for (potentially infinitely many) isolated zeros.

D−1
X FY2|X1 being a polynomial seems to be the only non-trivial example violating the

assumption, but the proof of the identification result below shows D−1
X FY2|X1 convolved

with the ME distribution is bounded, so the polynomial case is unlikely. Appendix A

gives sufficient conditions for this assumption. Notice the assumption is stated in terms

of observables only and so, in principle, could be tested.

Assumption IVX 2. (i) (Y2, X2) ⊥ (X∗1 , X1) | X∗2 , (ii) Y2 ⊥ X2 | (X∗2 , X
∗
1 , X1) and

(iii) X∗2 ⊥ X1 | X∗1 .

The first part of Assumption IVX 2 says past observed and latent regressors should not

contain any more information about the present outcome and covariate than the present

true regressor already does. This condition rules out time dependence in the ME.7 An ex-

tension of these exclusion restrictions to additional, perfectly measured regressors allows

dynamic models with past outcomes as additional regressors as well as for feedback from

past outcomes to the independent variable. The regression error Yt | X∗t is allowed to be

serially dependent as well as conditionally heteroskedastic: they can depend on contem-

poraneous regressors but not on past ones. Part (ii) requires the ME to be independent of

the structural error Yt | X∗t , a strengthening of the standard uncorrelatedness assumption

in linear panel models with ME. The third exclusion restriction is a redundancy condition

7A second identification argument presented below uses the outcome as an instrument and accommo-

dates time series dependence in the ME.
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that assumes past mismeasured covariates do not contain more information about true

covariates than past true covariates. In the next subsection, I discuss these conditional

independence assumptions in the context of a nonparametric panel data regression model.

With Assumptions ID and IVX, stating the first of two identification results is possi-

ble.8

Theorem 1. Under Assumptions ID and IVX, the conditional cdf of Y2 given X∗2 , FY2|X∗
2
,

is identified. If, in addition, the distribution of the ME ηt is the same for all t then the

distribution of η, Fη, the transition law FX∗
2 |X∗

1
, and the distribution of X∗, FX∗, are

identified as well.

The theorem shows the structural relationship between the outcome and the latent

independent variable as characterized by the conditional cdf FY2|X∗
2

is identified. In some

sense, this distribution embodies all characteristics of the structural model. In discrete

choice models, for example, it determines choice probabilities and may be of direct interest.

In other settings, the distribution may not be relevant by itself, but I subsequently show

how regression functions and marginal effects can be computed from this conditional cdf.

Remark 1. Part (i) of Theorem 1 identifies only the structural relationship in the second

time period. Obviously, if the relationship is stationary over time, the argument identifies

it for all time periods. If, on the other hand, FYt|X∗
t

varies with t, the argument requires

T time periods to identify T − 1 structural relationships.

Remark 2. As can be seen in the subsequent sketch of the proof, the identification argu-

ment uses only X1 from the past period but does not involve Y1. Therefore, Theorem 1

also presents a constructive identification result for cross-sectional models of the follow-

ing form. Let Y denote an individual’s outcome, X∗ a latent covariate, and suppose one

observes X and Z with

X = X∗ + ηX , X∗ ⊥ ηX ,

Z = Z∗ + ηZ , Z∗ ⊥ ηZ .

Here Z is a noisy observation of an (unobserved) instrumental variable Z∗, which is

assumed to depend on X∗. Identification of such a model appears to be a new result

8Intuitively, identification of a function here means it possesses a unique representation in terms of

observed variables or quantities that can be constructed from observables. For more formal definitions of

identification, see Koopmans and Reiersol (1950), Roehrig (1988), and the handbook chapters by Matzkin

(1994, 2007).
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relative to the existing constructive identification arguments. The latter either require

asymmetry between how X and Z relate to X∗,

X = X∗ + ηX , X∗ ⊥ ηX ,

X∗ = Z + ηZ , Z ⊥ ηZ ,
(2)

(Schennach (2007)), or that X and Z are repeated measurements of the exact same vari-

able,

X = X∗ + ηX , X∗ ⊥ ηX ,

Z = X∗ + ηZ , X∗ ⊥ ηZ ,
(3)

(Hausman, Newey, Ichimura, and Powell (1991), Li and Vuong (1998), Schennach (2004a,

2008), and Cunha, Heckman, and Schennach (2010)). Model (2) requires the instrument

Z to predict X∗ in the sense that X∗ fluctuates around the value of Z. For example, Z

may be an aggregate measure of the variable X∗. If the second measurement Z is taken at

a different point in time or in a different environment than X, one may question whether

they really measure the same underlying quantity X∗. The approach of this paper allows

for such changes and accommodates instruments Z, which measure a variable related to

the variable of interest, but not necessarily the same. Consequently, the requirements an

instrument must satisfy are weaker than in existing approaches based on (2) and (3).

Remark 3. The same argument as in the proof of Theorem 1 can also be used to directly

identify E[Yt|X∗t = ·], provided the conditional expectation function is bounded by polyno-

mials. Unlike for FYt|X∗
t
(y|·), however, the argument would require dealing with generalized

functions so that nonparametric estimation and inference becomes considerably more dif-

ficult.

Remark 4. In the recent econometrics literature, Kotlarski’s lemma (Kotlarski (1967))

has gained some popularity for identifying nonparametric panel data as well as ME models.

In a panel data model of the form Yt = m(Xt, α) + εt, but without ME, Evdokimov (2010)

views the outcomes in two different periods as repeated measurements of m(Xt, α) given

the regressor Xt does not change over those two periods. This approach cannot be expected

to work in the present setup because conditioning on the observed regressors to be equal

over time does not imply the latent regressors are constant over time as well. Kotlarski’s

lemma identifies cross-sectional models with ME and repeated measurements X1 = X∗+η1

and X2 = X∗ + η2, say, because they assume X1 and X2 are measurements of the same

underlying latent variable X∗; see the references in Remark 2. This approach is applicable

to panel data models only in the special case when X∗t follows a random walk. Theorem 1,

on the other hand, allows for general nonparametric transition processes.
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The formal proof of Theorem 1 is given in Appendix B.1. The following discussion pro-

vides an overview of the argument. For simplicity, consider the case of univariate covari-

ates X∗t . First, I introduce the following short-hand notation: the contamination operator

Ch := E[h(X2)|X∗2 = ·], the reverse contamination operator Crevh := E[h(X∗1 )|X1 = ·],
and the latent transition operator T h := E[h(X∗2 )|X∗1 = ·]. The following graph illus-

trates the relationship between the random variables in the model and the operators just

introduced:

X2

DX
��

C // X∗2

T
��

Y2

X1 X∗1
Crevoo Y1

.

For example, in the case of C, functions of X2 are mapped to functions of X∗2 . With

this notation at hand and under appropriate conditional independence assumptions, one

can write the observable quantities dY (x1) := FY2|X1(y2|x1) and dY X(x1) := E[X21{Y2 ≤
y2}|X1] as

dY (x1) =

∫∫
FY2|X∗

2
(y2|x∗2)fX∗

2 |X∗
1
(x∗2|x∗1)fX∗

1 |X1(x
∗
1|x1)dx∗2dx

∗
1

and

dY X(x1) =

∫∫
x∗2FY2|X∗

2
(y2|x∗2)fX∗

2 |X∗
1
(x∗2|x∗1)fX∗

1 |X1(x
∗
1|x1)dx∗2dx

∗
1.

With F̃Y2|X∗
2
(y2|x∗2) := x∗2FY2|X∗

2
(y2|x∗2) and the operator notation just introduced, these

two equations can be rewritten as

dY = CrevT FY2|X∗
2
, (4)

dY X = CrevT F̃Y2|X∗
2
, (5)

where the operator CrevT is applied with respect to x∗2, keeping y2 as a fixed parameter.

Next, the figure above suggests the observable transition in the covariates (represented

by DX) consists of three intermediate transitions: (i) reversing the contamination from

X1 to X∗1 , (ii) performing the latent transition from X∗1 to X∗2 , and (iii) contaminating

X∗2 with ME to get X2. In terms of operators, we thus have the identity DX = CrevT C.
Solving for CrevT and substituting the expression into (4) and (5) yields

CD−1
X dY = FY2|X∗

2
,

CD−1
X dY X = F̃Y2|X∗

2
.
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Rewrite this system of equations in the form of convolution equations

CsY = FY2|X∗
2
, (6)

CsY X = F̃Y2|X∗
2
, (7)

in which the functions sY and sY X solve the two integral equations

dY (x1) = E[sY (X2)|X1 = x1], (8)

dY X(x1) = E[sY X(X2)|X1 = x1]. (9)

Notice (6) and (7) differ from the usual convolution equations encountered in related

work: convolving the observed functions sY and sY X with the distribution of the ME

produces the unobserved function we want to identify. Typically, the roles of observed

and unobserved quantities are reversed (e.g. Schennach (2004a,b, 2007, 2008)).

Since the two equations (8) and (9) involve only observable quantities, sY and sY X

are identified. The G-completeness condition is required to show these two functions

are in fact the unique solutions to (8) and (9), respectively. Finally, taking Fourier

transforms of both convolution equations (6) and (7) yields two algebraic equations with

two unknown functions, the characteristic function of the ME and the Fourier transform

of the conditional cdf. The formal argument is more involved because one cannot simply

take Fourier transforms of conditional cdfs (as functions of their conditioning argument).

The system can then be solved and results in explicit expressions as summarized in the

following corollary.

Corollary 1. Let F denote the Fourier transform operator, i :=
√
−1, Γ a smooth path

connecting 0 and ζ in Rp, and let ∇zf denote the gradient vector of a function f with

respect to z. Then, under Assumptions ID and IVX,

FY2|X∗
2
(y2|x∗2) =

1

2π

∫
φ(ζ)σY (ζ)e−iζx

∗
2dζ + cY (y2),

where

φ(ζ) := exp

{∫ ζ

0

iσY X(z)−∇zσY (z)

σY (z)
· dΓ(z)

}
,

the Fourier transforms σY (ζ) := [FD−1
X dY ](ζ) and σY X(ζ) := [FD−1

X dY X ](ζ), the ob-

servable conditional expectations dY (x1) := FY2|X1(y2|x1) and dY X(x1) := E[X21{Y2 ≤
y2}|X1 = x1], and finally the centering constants

cY (y2) := lim
R1→∞

lim
R2→∞

∫
R1≤|x2|≤R2

FY2|X2(y2|x2)dx2∫
R1≤|x2|≤R2

dx2

.
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I now turn to a variant of the above identification argument that gives assumptions

such that a past outcome can replace the past mismeasured covariate as the instrument.

Definition 3. For 1 ≤ r < s ≤ T , introduce the notation Yr:s := (Yr, . . . , Ys)
′. Define the

observable transition operator DY : L2(fXT )→ L2(fY1:T−1
) as

DY h := E[h(XT )|Y1:T−1 = ·], h ∈ L2(fXT ).

Also, let M : L2(fY1:T−1
)→ L2(fX∗

T−1
) be the latent model operator defined as

Mh := E[h(Y1:T−1)|X∗T−1 = ·], h ∈ L2(fY1:T−1
).

In the second identification result below, the vector Y1:T−1 contains all the past out-

comes and serves as the instrument vector for recovering the structural relationship in

period T . Because outcomes are scalar and identification requires at least as many in-

struments as mismeasured covariates, the number of observed time periods must exceed

the dimension of the mismeasured covariate by at least one (T ≥ p+ 1).

The following two assumptions replace the similar counterparts, Assumptions IVX 1

and 2.

Assumption IVY 1. For any fixed yT ∈ YT , the Fourier transform of the function

[D−1
Y FYT |Y1:T−1

(yT |·)](·) is nonzero on a dense subset of Rp.

Assumption IVY 2. Suppose (i) (YT , XT ) ⊥ (X∗T−1, Y1:T−1) | X∗T , (ii) YT ⊥ XT |
(X∗T , X

∗
T−1, Y1:T−1), and (iii) X∗T ⊥ Y1:T−1 | X∗T−1.

Notice Assumption IVY 2(i) requires the structural error Yt | X∗t to be independent

over time. By parts (ii) and (iii), past outcomes must be excluded from the outcome

equation and from the latent transition process.

Assumption IVY 3. (i) Yt = m(X∗t ) + εt with εt ⊥ X∗t for all t; (ii) m2(X∗t ) and

εt have a density with respect to Lebesgue measure on R and support on whole R; (iii)

fX∗ is bounded and there is a constant C ∈ R such that fX∗(x∗) ≤ C(1 + |x∗|2)−1 for all

x∗ ∈ RTp; (iv) The characteristic function of εt is infinitely often differentiable almost

everywhere and nonzero on R.

The independence assumption and additive separability in part (i) are strong restric-

tions, representing the cost of unrestricted time series dependence in the ME and of the

constructive approach taken in this paper. The assumption restricts the structural re-

lationship in a way that ensures outcomes contain enough information about the latent
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explanatory variables. Because the latent explanatory variables are continuous random

variables with support on Rp, part (ii) ensures that the instruments (the past outcomes)

have the same support. The remaining two parts are similar to assumptions made above

and satisfied by most standard distributions.

With Assumptions ID and IVY, the next theorem summarizes the identification result

based on outcomes as instruments.

Theorem 2. Suppose T = p+1, and Assumptions ID and IVY hold. Then the conditional

cdf of YT given X∗T , FYT |X∗
T

, is identified. If, in addition, the distribution of the ME ηt is

the same for t ∈ {T − 1, T}, then the distribution of ηT−1:T , FηT−1:T
, the transition law

FX∗
T |X

∗
T−1

, and the distribution of X∗T−1:T , FX∗
T−1:T

are identified as well.

Remarks similar to those stated after Theorem 1 apply here as well. The proof of the

theorem is similar in spirit to the one of Theorem 1. One difference, however, is worth

pointing out. The discussion relies on adjoint operators, so I have to be explicit about

the inner products associated with the various weighted L2-spaces. For any density f

occurring in this paper, equip the space L2(f) with the usual inner product 〈h1, h2〉 :=∫
h1(u)h2(u)f(u)du when h1, h2 ∈ L2(f). With a slight abuse of notation, I denote all

inner products and the induced norms in the different L2-spaces by the same symbols,

〈·, ·〉 and ‖ · ‖. Which space they refer to should be clear from the context. Consider the

univariate case p = 1 and, analogously to the conditional expectation operators defined

above, let C now be the contamination operator in the T -th period andM∗ the adjoint of

M. The following figure illustrates the relationships between the relevant operators and

random variables:

X2
C // X∗2

T
��

Y2

X1 X∗1
M∗

// Y1

.

Using the definitions from Corollary 2 and F̃YT |X∗
T
(yT |x∗T ) := x∗TFYT |X∗

T
(yT |x∗T ), consider

the two integral equations

d◦Y =M∗T FYT |X∗
T
, (10)

d◦Y X =M∗T F̃YT |X∗
T
, (11)

which follow from similar arguments as those that led to equations (4) and (5). As-

sumption IVY 3 guarantees the observable transition from Y1 to X2, represented by
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DY = M∗T C, is invertible and can be used to substitute out the unobserved transition

T in (10) and (11):

CD−1
Y d◦Y = FYT |X∗

T
,

CD−1
Y d◦Y X = F̃YT |X∗

T
.

(12)

With these two equations, the remainder of the proof closely follows that of Theorem 1.

The illustrating figures above suggest a certain symmetry between Xt and Yt in the sense

that one can view both as measurements of the underlying latent variable X∗t . Notice,

however, the two identification arguments based on covariates or outcomes as instruments

are not symmetric at all. The reason for the asymmetry lies in the different strategies

to extract information about the latent transition T from observable transitions. Even

though it is reasonable to assume a simple convolution relationship between observed

and latent covariates, Xt = X∗t + ηt, we want to allow for structural relationships more

general than that. Identification based on past covariates as instruments can use the

observed transition from X1 to X2 for backing out the unobserved transition, but when

the instruments are past outcomes, the observed transition from Y1 to Y2 would not lead to

a solvable convolution problem such as (12). Instead, the present identification argument

is based on the transition from Y1 to X2, exploiting the convolution relationship between

X∗2 and X2, and leads to the desired form (12).

Analogously to Corollary 1, the following corollary provides the expression of the

conditional cdf FYT |X∗
T
(yT |x∗T ) in terms of observables.

Corollary 2. Let F denote the Fourier transform operator, i :=
√
−1, Γ a smooth path

connecting 0 and ζ in Rp, and let ∇zf denote the gradient vector of a function f with

respect to z. Then, under the assumptions of Theorem 2,

FYT |X∗
T
(yT |x∗T ) =

1

2π

∫
φ(ζ)σ◦Y (ζ)e−iζx

∗
1dζ + c◦Y (yT ),

where

φ(ζ) := exp

{∫ ζ

0

iσ◦Y X(z)−∇zσ
◦
Y (z)

σ◦Y (z)
· dΓ(z)

}
,

the Fourier transforms σ◦Y (ζ) := [FD−1
Y d◦Y ](ζ) and σ◦Y X(ζ) := [FD−1

Y d◦Y X ](ζ), the condi-

tional expectations d◦Y (y1:T−1) := FYT |Y1:T−1
(yT |y1:T−1) and d◦Y X(y1:T−1) := E[XT1{YT ≤

yT}|Y1:T−1 = y1:T−1], and finally the centering constants

c◦Y (yT ) := lim
R1→∞

lim
R2→∞

∫
R1≤|xT |≤R2

FYT |XT (yT |xT )dxT∫
R1≤|xT |≤R2

dxT
.
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2.2 Nonparametric Panel Data Regression with Fixed Effects

In this subsection, I apply the instrumental variable identification approach from the

previous subsection to a nonparametric panel data regression model with fixed effects

and ME. Specifically, consider

Ỹt = m(X̃∗t ) + α + εt

X̃t = X̃∗t + η̃t
(13)

with individual-specific heterogeneity α and T = 4 time periods. The dependence between

α and X̃∗t is left completely unrestricted. Porter (1996) and Henderson, Carroll, and Li

(2008), for example, study such a model without ME. Defining ∆Ỹ4 := Ỹ4 − Ỹ3 (and

similarly for other variables), and

Y2 := ∆Ỹ4 X∗2 := (X̃∗3 , X̃
∗
4 ) X2 := (X̃3, X̃4) η2 := (η̃3, η̃4)

Y1 := ∆Ỹ2 X∗1 := (X̃∗1 , X̃
∗
2 ) X1 := (X̃1, X̃2) η1 := (η̃1, η̃2)

then allows application of Theorem 1 or Theorem 2 to (Y,X,X∗, η), resulting in identifi-

cation of F∆Ỹt|X̃∗
t ,X̃

∗
t−1

. In the remainder of this subsection, I discuss lower-level sufficient

conditions for the hypotheses of the two theorems, using the particular structure imposed

in (13). I also show how knowledge of F∆Ỹt|X̃∗
t ,X̃

∗
t−1

identifies m and marginal effects.

For the case with past covariates as outcomes, consider the following two assumptions

on the dependence between the variables in the model.

Assumption REG 1. (i) εt ⊥ {X̃∗s}s<t | X̃∗t and εt ⊥ {X̃∗s}s<t | (X̃∗t , εt−1), (ii) ε ⊥ η̃ |
X̃∗, and (iii) η̃t ⊥ η̃s for all s 6= t.

Part (i) of this assumption allows for contemporaneous heterogeneity in the regression

error εt, so it could be of the form εt = σ(X̃∗t )ut with ut independent of all other variables

in the model. Serial dependence in the regression error is permitted as well, but part (iii)

rules out serial dependence in the ME. The remainder of the assumption requires the ME

and the regression error to be independent, just as in the linear model with ME (Griliches

and Hausman (1986)).

Assumption REG 2. E[εt|X̃∗t , X̃∗s ] = 0 for s ∈ {t− 1, t+ 1}.

The following lemma shows these assumptions are sufficient for Assumption IVX 1(i)

and (ii), and the conditional mean function m is identified.

Lemma 1. Under Assumptions ID, 1, 2(iii), and REG 1-2, m is identified up to an

additive constant. If, in addition, the distribution of the ME ηt is the same for all t then
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the distribution of η̃, Fη̃, the transition law FX∗
2 |X∗

1
, and the distribution of X̃∗, FX̃∗, are

identified as well.

Remark 5. Just as in the linear panel model with fixed effects, additive time-invariant

effects are not identified. They could be identified, of course, under the additional assump-

tion that m passes through some known point or that Eα = 0.

Remark 6. In a semiparametric specification of the form m(x̃∗; θ), a finite-dimensional

parameter θ is identified directly from F∆Ỹ4|X̃∗
4 ,X̃

∗
3
(∆y|x̃∗4, x̃∗3; θ), given standard maximum

likelihood assumptions. In this case, it suffices to identify σY (ζ) for only a finite number

of values ζ, so one could weaken the requirement that the Fourier transform of D−1
X FY2|X1

is nonzero almost everywhere.

Remark 7. One can allow for serial dependence in the ME when there are more than

four time periods. As in the linear model (Griliches and Hausman (1986)), regressors

sufficiently far in the past are valid instruments as long as the ME is serially independent

beyond some finite lag. Specifically, suppose the ME follows a moving average process of

order q, MA(q), and that T ≥ 4 + 2q. Then, for t ≥ 2q + 4, the regressors X̃t−2q−2 and

X̃t−2q−3 can be used as instruments to identify the structural relationship in periods t and

t− 1.

Remark 8. Identification in the presence of additional, perfectly measured regressors

simply requires conditioning all operations on those variables.

Because of E[εt|X̃∗t , X̃∗s ] = 0, the function m is directly identified from m(x∗2) =

const. +
∫

∆y dF∆Ỹ4|X̃∗
4 ,X̃

∗
3
(∆y|x̃∗2, 0) with F∆Ỹ4|X̃∗

4 ,X̃
∗
3

as defined in Corollary 1. Alterna-

tively, assume Q∆εt|X̃∗
t ,X̃

∗
t−1

(τ |x̃∗t , x̃∗t−1), the τ -th conditional quantile of the difference in

the structural errors given the latent regressors, is equal to zero9. Then

F∆Ỹt|X̃∗
t ,X̃

∗
t−1

(q +m(x̃∗t )−m(x̃∗t−1)|x̃∗t , x̃∗t−1) = F∆εt|X̃∗
t ,X̃

∗
t−1

(q|x̃∗t , x̃∗t−1) = τ

if q = Q∆εt|X̃∗
t ,X̃

∗
t−1

(τ |x̃∗t , x̃∗t−1) = 0. Therefore, the difference in the regression function at

different time points is identified by the conditional quantile

m(x̃∗t )−m(x̃∗t−1) = Q∆Ỹt|X̃∗
t ,X̃

∗
t−1

(τ |x̃∗t , x̃∗t−1).

Also, under the stronger assumption that ε is independent of the latent regressor, we have

m(x̃∗t )−m(x̃∗t−1) = q − F−1
∆εt

(
F∆Ỹt|X̃∗

t ,X̃
∗
t−1

(q|x̃∗t , x̃∗t−1)
)
,

9For instance, the difference between two i.i.d. errors ε1, ε2 is symmetric and thus the median of the

difference is equal to zero. In general, however, a conditional quantile being zero is difficult to characterize;

see also Khan, Ponomareva, and Tamer (2011).
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where F∆εt(q) is identified by F∆Ỹt|X̃∗
t ,X̃

∗
t−1

(q|c, c) for some constant c ∈ R. The difference

m(x̃∗t )−m(x̃∗t−1) directly identifies the effect of a discrete change in the latent regressors

on the outcome. Alternatively, marginal changes ∂m(x̃∗t )/∂x̃
∗
t are identified as soon as m

itself is identified.

The following result provides conditions under which the model (13) is identified when

using past outcomes as instruments.

Assumption REG 3. (i) εt ⊥ {X̃∗s}s<t | X̃∗t and εt ⊥ {X̃∗s}s<t | (X̃∗t , εt−1), (ii) ε ⊥ η̃ |
X̃∗, and (iii) εt ⊥ εs | X̃∗ for all s 6= t.

Lemma 2. Suppose T = 2(p+ 1) and Assumptions ID, IVY 1, 2(iii), 3, and REG 2 and

3 hold. Then m is identified up to an additive constant. If, in addition, the distribution

of the ME ηt is the same for t ∈ {T − 1, T} then the distribution of η̃T−1:T , Fη̃T−1:T
, the

transition law FX∗
T |X

∗
T−1

, and the distribution of X̃∗T−1:T , FX̃∗
T−1:T

, are identified as well.

Discussion The comparative advantages of the two identification strategies, using co-

variates or outcomes as instruments, lie in the strategies’ ability to handle serial depen-

dence in the structural error or in the ME. Temporal dependence in the structural error

may be important for a variety of well-known reasons such as omitted variables, omitted

individual-specific effects, or misspecified dynamics. On the other hand, in some applica-

tions, serial dependence in the ME could be considered an important deviation from the

classical ME assumptions. For example, suppose the ME is of the form ηt = β+νt, where

β is an individual-specific effect, persistent over time, and νt an i.i.d. error. In survey

data, β could be interpreted as an individual’s ability to answer a question correctly, which

may be correlated with other characteristics of the subject, for example, language skills

or the person’s ability to recall past events. Serial dependence in the ME could also arise

from economic theory directly, for instance, as in Erickson and Whited (2000), or due to

manager fixed effects as in Bertrand and Schoar (2003). A third possibility occurs when

the researcher observes mismeasured flow variables, but the true explanatory variable in

the model represents the corresponding stock variable, so the ME in a certain period

consists of the sum of past ME’s and, thus, exhibits serial correlation by construction.

Finally, Bound and Krueger (1991) find serially correlated ME in a validation study of

earnings data.

The exclusion restrictions for the different instruments (Assumptions REG 1 and

REG 3) are analogous to each other, but the approach based on outcomes as instruments

requires an additional restrictions on the structural relationship that are not present when

using covariates as instruments. The additional assumption (Assumption IVY 3) imposes

distributional assumptions and additive separability on the structural error.
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In conclusion, given a particular application, the choice of instrument should be guided

by the relative importance of serial dependence in the structural error and the ME, and

whether the aforementioned distributional restrictions on the structural error are reason-

able.

3 Estimation

The identification arguments in the previous section are constructive and suggest a non-

parametric plug-in estimator for regression functions and all unobserved distributions.

This section describes the estimation procedure with past covariates as instruments and,

to reduce the notational burden, considers only panel data models with univariate regres-

sors. However, estimation based on outcomes as instruments can be carried out analo-

gously, and multivariate extensions are straightforward. Following the introduction of the

estimator, I present its uniform convergence rate and conditions for uniform consistency.

3.1 Construction of the Estimator

Suppose we observe an i.i.d. sample {(yi,1, xi,1, yi,2, xi,2)}ni=1 of (Y1, X1, Y2, X2). I suggest

an estimator of FY2|X∗
2
(y2|x∗2) based on the following procedure:

Step 1: Construct regularized series estimators ŝY and ŝY X of the solutions to the two

ill-posed inverse problems D̂XsY = d̂Y and D̂XsY X = d̂Y X , respectively.

Step 2: Take Fourier transforms of ŝY and ŝY X , resulting in estimators σ̂Y and σ̂Y X .

Step 3: Combine σ̂Y and ŝY X to an estimate φ̂ of φ using the formula from the identifi-

cation argument. Substituting φ̂ and σ̂Y into the expression for FY2|X∗
2

then yields

an estimator F̂Y2|X∗
2
.

Estimation of regression models requires an additional step:

Step 4: Compute either the conditional mean or conditional quantile function of F̂Y2|X∗
2

as an estimator of the regression function m.

I proceed by describing the four steps in more detail and formally define the estimators

for the subsequent derivation of asymptotic properties.
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Step 1: Inverting the Observed Transition Operator The first step of the esti-

mation procedure requires solving finite sample counterparts of the two ill-posed inverse

problems, DXsY = dY and DXsY X = dY X . Consider the first equation, which, by the

definition of the observed transition operator DX , is equivalent to

E[sY (X2)|X1 = x1] = dY (x1).

Estimating the solution sY to this equation poses an inherently difficult statistical prob-

lem. It is further complicated by the fact that the density fX2|X1 and the function dY are

not known and need to be estimated as well. Theorem 1 guarantees the existence of a

unique solution sY to the population problem, but it is not a continuous functional of dY .

The discontinuity is implied by the underlying function space being infinite dimensional.

As an important consequence, direct application of D−1
X may blow up small estimation

errors in d̂Y , leading to inconsistent estimates of sY .

The following nonparametric estimator of sY sufficiently regularizes the problem and

facilitates consistent estimation.

Definition 4. Let ui := F (xi,1) be the transformed realization of the first-period explana-

tory variable with F : R → [0, 1] a continuous, strictly increasing function. Let λ[0,1]

denote Lebesgue measure on [0, 1]. For bases {bj(u)}j≥1 and {pj(u)}j≥1 of L2(λ[0,1]) and

L2(fX2), respectively, define BJn(u) := (b1(u), . . . , bJn(u))′ and B := (BJn(u1), . . . , BJn(un)),

PKn(x2) := (p1(x2), . . . , pKn(x2))′ and P := (PKn(x1,2), . . . , PKn(xn,2)). For some fixed

y2, let ΥY := (1{y1,2 ≤ y2}, . . . ,1{yn,2 ≤ y2})′, ΥY X := (x1,21{y1,2 ≤ y2}, . . . , xn,21{yn,2 ≤
y2})′, let I be the Kn × Kn identity matrix, and A− the generalized inverse of a matrix

A. Then define the series estimators ŝY and ŝY X of sY and sY X as

ŝY (x2) := PKn(x2)′β̂Y ,

ŝY X(x2) := PKn(x2)′β̂Y X ,

with the series coefficients

β̂Y :=
(
P′B(B′B)−1B′P + αnI

)−
P′B(B′B)−1B′ΥY , (14)

β̂Y X :=
(
P′B(B′B)−1B′P + αnI

)−
P′B(B′B)−1B′ΥY X . (15)

The estimators are similar to the series estimator in Hall and Horowitz (2005) and

Blundell, Chen, and Kristensen (2007). It takes the form of the two-stage least-squares

estimator of the regression of ΥY and ΥY X onto B using P as an instrument, except the

penalty term αnI in the denominator10. The parameter αn is required to vanish as the

10Blundell, Chen, and Kristensen (2007) recommend to add the penalization term αnI because it may

improve the finite sample performance of the resulting estimator. However, for consistency, this term is

not necessary because the ill-posed inverse problem is regularized by truncating the bases {bj} and {pj}.
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sample size grows, leading to no penalization in the limit. In principle, it would be possible

to derive the restrictions on sY and sY X implied by the constraint that FY2|X∗
2
∈ Ḡ. As

in Blundell, Chen, and Kristensen (2007), those restrictions could then be imposed by

changing the penalty term αnI accordingly, but I do not pursue this approach here because

the regularization by αnI worked well in the simulations. The conditioning variable X1

is transformed to U := F (X1) with support equal to [0, 1] to facilitate the use of existing

uniform convergence results for series estimators. F could be chosen as some cdf, for

instance. Given smoothing parameters αn, Kn, and Jn, the computation of ŝY and ŝY X

requires only matrix multiplication and inversion. In most applications with scalar or

bivariate mismeasured covariates, the dimensions of matrices to be inverted (Kn × Kn

and Jn × Jn) tend to be small, leading to simple implementation.

Step 2: Computing Fourier Transforms In this step, I describe how to compute the

Fourier transforms σ̂Y and σ̂Y X , estimating σY and σY X . These estimators are Fourier

transforms of the regularized inverses computed in the previous step. The subsequent

asymptotic theory requires these estimated functions converge uniformly over R, which I

achieve by trimming their tails as follows.

Definition 5. For some trimming parameter x̄n > 0 and y2 ∈ Y2, define the lim-

its c+
Y (y2) := limx2→∞ FY2|X2(y2|x2), c−Y (y2) := limx2→−∞ FY2|X2(y2|x2), and cY (y2) :=

(c+
Y (y2) + c−Y (y2))/2. Then,

šY (x2) := ŝY (x2)1{|x2| ≤ x̄n} − c−Y (y2)1{x2 < −x̄n}+ c+
Y (y2)1{x2 > x̄n},

šY X(x2) := ŝY X(x2)1{|x2| ≤ x̄n} − x2c
−
Y (y2)1{x2 < −x̄n}+ x2c

+
Y (y2)1{x2 > x̄n},

šxY (x2) := ix2šY (x2).

The trimming parameter x̄n is required to diverge to ∞ with the sample size, leading

to no trimming in the limit. On the interval [−x̄n, x̄n], the estimators marked by a hacek

are equal to the corresponding estimators with a circumflex, but their tails are set to the

limits of the estimators with a circumflex. In many economic models, the conditional cdf

FY2|X∗
2
(y2|x∗2) is known to converge to zero or one as the conditioning variable diverges

to −∞ or ∞, so, by Lemma 4(i), the centering constant becomes cY (y2) ≡ 1/2 with

c+
Y (y2) ≡ 1 and c−Y (y2) ≡ 0. In the regression example, this case occurs whenever the

regression function diverges to +∞ and −∞ as x∗2 → ∞ and x∗2 → −∞, respectively.

Subsequently, I assume c+
Y and c−Y are known, but the limiting constants are equivalent

to the limits of the observed conditional cdf FY2|X2 , so they could also be estimated.

I define the desired estimators of the Fourier transforms, σ̂Y and σ̂Y X , as the Fourier

transforms of šY and šY X . Since multiplication by ix2 corresponds to differentiation in
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the Fourier domain, one can estimate the derivative ∇ζσY by the Fourier transform of

šxY .

Definition 6. For any ζ ∈ R, define the Fourier transforms σ̂Y (ζ) :=
∫
šY (x2)eiζx2dx2,

σ̂Y X(ζ) :=
∫
šY X(x2)eiζx2dx2, and σ̂xY (ζ) :=

∫
šxY (x2)eiζx2dx2.

Most modern statistical software packages provide an implementation of the Fast

Fourier Transform algorithm, which can perform this step efficiently. In practice, one

would compute šY (x2), šY X(x2), and šxY (x2) for, say, K := 2k̄, k̄ ∈ N, values of x2 in

the convex hull of the data {x1,2, . . . , xn,2}. After stacking those values for each of the

estimators, the resulting vectors can be fed into the Fast Fourier Transform algorithm,

yielding output vectors of the same length K. These output vectors are the estimates

σ̂Y (ζ), σ̂Y X(ζ), and σ̂xY (ζ) at K corresponding points ζ in the frequency domain.11

Step 3: Inverting Fourier Transforms The third step involves estimating the char-

acteristic function of the ME and taking inverse Fourier transforms to get an estimator

of the desired conditional cdf FYt|X∗
t
.

Definition 7. For x∗2 ∈ R, y2 ∈ Y2, and a trimming parameter ζ̄n > 0, define

F̌Y2|X∗
2
(y2|x∗2) := max

{
min

{
F̂Y2|X∗

2
(y2|x∗2), 1

}
, 0
}

with

F̂Y2|X∗
2
(y2|x∗2) =

1

2π

∫
|ζ|≤ζ̄n

φ̂(ζ)σ̂Y (ζ)e−iζ·x
∗
2dζ + cY (y2) (16)

and

φ̂(ζ) := exp

{∫ ζ

0

iσ̂Y X(z)− σ̂xY (z)

σ̂Y (z)
dz

}
. (17)

Consistent estimation of FY2|X∗
2

requires ζ̄n →∞ as the sample size grows, leading to

no trimming in the limit. This additional trimming in (16) is common in deconvolution

problems and necessary because the tails of Fourier transforms are difficult to estimate

and need to be cut off to gain uniform consistency. Since, in finite samples, F̂Y2|X∗
2
(y2|x∗2)

can take values outside of [0, 1], I define the version F̌Y2|X∗
2
(y2|x∗2), which is constraint to

the unit interval.

11Due to the many different conventions for computing Fourier transforms, one must pay close attention

to the requirements of a particular implementation of the Fast Fourier Transform algorithm. For example,

can standardize a discrete Fourier transform in a variety of ways, and some algorithms require the input

function be sampled only at locations on the positive real line.
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Step 4: Computing Regression Functions In regression models, a fourth step is

required to compute the regression function from F̌Y2|X∗
2
(y2|·). As discussed in section 2.2,

either the conditional mean or the conditional quantile of the regression error being zero

facilitates the estimation of the regression function from the conditional expectation or

conditional quantile of the outcome variable.

Definition 8. For some value x̃∗2 ∈ R, y2 ∈ Y2, and τ ∈ (0, 1), define the estimator of

the regression function m(x̃∗2) as either

m̂(x̃∗2) :=

∫
Y2

y dF̌Y2|X∗
2
(y|x̃∗2) (18)

or

m̂(x̃∗2) := min
y2∈Y2

{
F̌Y2|X∗

2
(y2|x̃∗2) ≥ τ

}
. (19)

In finite samples, the integration in (18) has to be performed numerically. One

possibility, given a fixed value for x̃∗2, is to sample random variables from F̌Y2|X∗
2
(y|x̃∗2)

and then compute their mean. Alternatively, integration by parts leads to the formula∫ y
y
y dF̌Y2|X∗

2
(y|x̃∗2) = y−

∫ y
y
F̌Y2|X∗

2
(y|x̃∗2)dy, which is valid as long as y and y are finite. In

practice, one can select these lower and upper integration bounds as the minimum and

maximum values of outcomes observed in the sample and then perform a standard nu-

merical integration step to compute
∫ y
y
F̌Y2|X∗

2
(y|x̃∗2)dy. Both approaches approximate the

quantity in (18) but only incur a numerical error, which can be kept as small as desired,

independently of the sample size.

For a given x̃∗2, the quantile in (19) is estimated by computing F̌Y2|X∗
2
(y2|x̃∗2) over a grid

of y2 values, ordering the estimates, and keeping the smallest value that is larger than τ .

Remark 9. Notice the two estimators of m do not depend on the particular values for

y2 and τ . While deriving optimal choices is beyond the scope of this paper, some recom-

mendations can be given. Since extremal quantiles and the tails of cdf ’s are difficult to

estimate, y2 and τ should neither be too small nor too large, but perhaps somewhere near

the center of the unconditional distribution of Y2. Also, one may want to compute the

estimator m̂ for various values of y2 or τ and then take the average.

Remark 10. If m or FY2|X∗
2
(y2|·) is known to be monotone, one can estimate either of

them for various values x̃∗2 and then simply sort the estimates in ascending or descending

order. The resulting estimator performs well in finite samples as shown in Chernozhukov,

Fernández-Val, and Galichon (2010). In addition, imposing monotonicity directly on

the estimators of sY and sY X may significantly improve their finite sample properties
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(Chetverikov and Wilhelm (2015)). In simple examples such as joint normal distribution

of (Y, η,X∗) and linearity of m, one can easily find regularity conditions under which

sY is monotone, but in general it appears difficult to establish whether sY satisfies shape

restrictions or not. In practice, one may want to use Chetverikov and Wilhelm (2015)’s

test for monotonicity of sY and impose it if the test fails to reject.

3.2 Uniform Convergence Rates

In this section, I derive uniform convergence rates of the estimators F̌Y2|X∗
2

and m̂. These

rates differ depending on the tail behavior and smoothness of various model components.

As before, I focus on the univariate case.

Assumption C 1. Let {(yi,1, xi,1, yi,2, xi,2)}ni=1 be an i.i.d. sample of (Y1, X1, Y2, X2) with

p = 1. The transformation F : R → [0, 1] in Definition 4 is such that U = F (X1)

possesses a density that is bounded away from zero over its support [0, 1].

Choosing the function F approximately equal to the empirical cdf of X1 leads to

a transformed random variable U that is close to uniformly distributed over [0, 1] and

therefore possesses a density bounded away from zero.

Deriving explicit convergence rates for nonparametric estimators typically requires

assuming certain quantities involved, such as densities, regression functions, or character-

istic functions, belong to some regularity space with known tail behavior or smoothness.

First, consider the ill-posed inverse problems of solving

E[sY (X2)|X1 = x1] = dY (x1) and E[sY X(X2)|X1 = x1] = dY X(x1) (20)

for sY and sY X .

Definition 9. Denote by Ddf the d-th elementwise derivative of a scalar- or vector-valued

function f . Let Hn be the space of functions h ∈ L2(fX2) such that there exists Π ∈ RKn

with h = PKn ′Π and
∑s

k=1 ‖Dkh‖2 < c for some finite c ∈ R, s ∈ N. Then define

τn := sup
h∈Hn: h6=0

‖h‖
‖(D∗XDX)1/2h‖

.

The quantity τn is the sieve measure of ill-posedness introduced by Blundell, Chen, and

Kristensen (2007). For a given sequence of approximating spaces {Hn}, also called sieve,

it measures how severely ill-posed the equations in (20) are: a polynomial or exponential

divergence rate of τn classifies the problem as mildly or severely ill-posed, respectively.
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The intuition for this distinction is analogous to the finite-dimensional case in which ap-

plying the operator DX becomes multiplication by a matrix. Inverting this matrix is

difficult when its eigenvalues are close to zero. In the infinite-dimensional case, however,

the operator DX possesses an infinite number of eigenvalues whose closeness to zero is

measured in terms of how fast their ordered sequence converges to zero. The fast (expo-

nential) rate occurs, for example, when X1 and X2 are jointly Gaussian, leading to severe

ill-posedness.

Assumption C 2. (a) The smallest eigenvalues of E[BJn(F (X1))BJn(F (X1))′] and

E[PKn(X2)PKn(X2)′], respectively, are bounded away from zero uniformly in Jn, Kn; (b)

there is a sequence {ω0,n} in R such that supu∈[0,1] |BJn(u)| ≤ ω0,n; (c) pj(x) are bounded

uniformly over j and have ρs > 1/2 square-integrable derivatives; (d) for any functions

hp ∈ L2(fX2) and hb ∈ L2(λ[0,1]) with l square-integrable derivatives there are Πp and Πb

such that ‖hp − PKn ′Πp‖ = O(K−ln ) and ‖hb − BJn ′Πb‖ = O(J−ln ) as Jn, Kn → ∞; (e)

dY , dY X and E[h(X2)|X1 = ·] have ρd > 1/2 square-integrable derivatives for all h ∈ Hn,

and each of sY , sY X , and sxY has at least ρs ≥ 2 derivatives; (f) for k ∈ {Y, Y X}, there

is a function hk ∈ Hn so that τ 2
n ‖DX(sk − hk)‖2 ≤ const · ‖sk − hk‖2.

The various parts of this assumption are standard in the literature on series estima-

tion; see Newey (1997), for example. Part (a) bounds the second moment matrix of the

approximating functions away from singularity. Part (b) bounds the individual series

terms, which, by the compact support of U = F (X1), is not restrictive. The third con-

dition assumes the uniform approximation of the target function by a truncated series

expansion incurs an error that vanishes at rate O(K−ρn ). Assumption C 2(f) is taken

from Blundell, Chen, and Kristensen (2007) and requires that, for some hk ∈ Hn, DXhk
approximates DXsk at least as well as hk approximates sk (after standardizing by τ 2

n).

The latter approximation incurs an error that vanishes at the rate given in part (d).

Assumption C 3. For some a > ρs, where ρs is defined in Assumption C 2(e), E[|η2|2a] <
∞ and E[|X∗2 |2a|X∗1 = x∗1] <∞ ∀x∗1 ∈ R.

Definition 10. Given the sequences x̄n → ∞ and ζ̄n → ∞, define the bounds σn :=

infy2∈Y2 inf |ζ|≤ζ̄n |γ(ζ, y2)/φ(ζ)| and r̄n := sup|ζ|≤ζ̄n |∂ log φ(ζ)/∂ζ|. Let

Tn := (r̄nTY,n + T∆,n)σ−1
n ζ̄2

n + Tγ,n

be a trail-trimming bound with

T∆,n := max
k=0,2

max
j=0,1

max
d=1,2
{T d,j,kY,n , T d,j=0,k

Y X,n },

TY,n := max
d=0,1

max
k=0,1

T d,j=0,k
Y,n ,
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and for L ∈ {Y, Y X}, d, j, k ∈ {0, 1, 2},

T d,j,kL,n := sup
y2∈Y2

ζ̄kn

∫
|x2|>x̄n

|x2|j
∣∣∇dŝL(x2, y2)−∇dsL(x2, y2)

∣∣ dx2,

Tγ,n := sup
y2∈Y2

∫
|ζ|>ζ̄n

|γ(ζ, y2)|dζ.

Further, define a bound on the density fX2 by f
n

:= inf |x2|≤x̄n fX2(x2), δn := K−ρsn +

τn
√
Kn/n, and ωd,n := supu∈[0,1] |DdBJn(u)|.

Assuming the existence of upper and lower bounds of Fourier transforms and densities

is standard in the literature on deconvolution (e.g., Fan (1991), Fan and Truong (1993), Li

and Vuong (1998), and Schennach (2004b)) and nonparametric regression (e.g., Andrews

(1995)). The bound ωd,n depends only on the particular basis chosen. For splines, ωd,n =

J
1/2+d
n , whereas for orthogonal polynomials, ωd,n = J1+2d

n .

Assumption C 4. As n → ∞, let the parameter sequences Kn → ∞, Jn → ∞, x̄n →
∞, ζ̄n → ∞, αn → 0 satisfy Jn/n → 0, limn→∞(Jn/Kn) = c > 1, ω2

0,nKn/n → 0,

r̄nδnω1,n/(f
1/2

n
ζ̄nσn)→ 0, and r̄nTY,n/σn → 0.

Assumption C 4 states rate conditions on the various trimming and smoothing se-

quences of the nonparametric estimator. Corollaries 3 and 4 below imply these conditions

are mutually compatible.

With Assumption C at hand, stating the general form of the uniform convergence rate

in terms of the parameter sequences just defined is possible.

Theorem 3. Let X̄ be some compact subset of R. Under Assumptions ID, IDX, and C,

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣ = Op

(
ω2,nx̄n + r̄nω1,nζ̄n

f 1/2

n
σn

δn + Tn

)
.

This expression of the convergence rate provides useful information about when the

estimator performs well. First of all, δn := K−ρsn + τn
√
Kn/n is the well-known conver-

gence rate of nonparametric instrumental variable estimators arising from the estimation

of sY and sY X . Chen and Reiß (2011) and Johannes, Van Bellegem, and Vanhems (2011)

provide conditions under which this rate is minimax optimal in the nonparametric in-

strumental variable context. Second, due to the division by f 1/2

n
, the estimator converges

slowly if the density of X2 has thin tails. Intuitively, more variation in X2 improves the

precision of the estimator. Third, the formula for the characteristic function of the ME,

equation (17), suggests estimation errors may be large when the Fourier transform σ̂Y (ζ)
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in the denominator is close to zero. Because σY (ζ) = γ(ζ)/φ(ζ), the Fourier transform

σY (ζ) is close to zero whenever γ(ζ), the Fourier transform of FY2|X∗
2
(y2|·), is small rela-

tive to φ(ζ), the characteristic function of the ME. Therefore, thicker tails in the Fourier

transform of FY2|X∗
2
(y2|·) and a ME characteristic function with thin tails result in a faster

convergence rate. Theorem 3 reflects this fact in the division by σn. On the other hand,

if the characteristic function of the ME decays too quickly, the ill-posed inverse problems

may be severely ill-posed, leading to slow convergence rates δn. In conclusion, the new

estimator is expected to perform well, if (i) the ME’s characteristic function has moder-

ately thin tails, (ii) the Fourier transform of the conditional cdf FY2|X∗
2

has thick tails, and

(iii) the density of X2 has thick tails.

The smoothness of a function determines how thick the tails of its Fourier trans-

form are. The more derivatives the function possesses, the faster the tails of its Fourier

transform vanish. To derive explicit rates of convergence in terms of the sample size,

the literature on nonparametric estimation typically categorizes functions into different

smoothness classes.

Definition 11. For a function f(x) and a label f , let the expression f(x) ≥ (≤)S(f, x)

mean there exist constants Cf , γf ∈ R, and αf , βf ≥ 0 such that γfβf ≥ 0 and f(x) ≥ (≤
)Cf (1 + |x|)γf exp{−αf |x|βf} for all x in the domain of f .

This definition conveniently groups the two common smoothness classes, ordinary

smooth and super-smooth functions, into one expression, simplifying the exposition of

the explicit rates below. If, for instance, βf = αf = 0, the function f is ordinary smooth;

otherwise it is super-smooth.12

Assumption S. Suppose |∂ log φ(ζ)/∂ζ| ≤ S(r, ζ), supy2∈Y2
|γ(ζ, y2)/φ(ζ)| ≤ S(g, ζ),

fX2(x2) ≥ S(fX , x2), and supy2∈Y2
|∂sY (x2, y2)/∂x2| ≥ S(s, x2).

This assumption assigns smoothness parameters α, β, and γ to the various quantities

whose smoothness is to be classified. Different combinations of values for these parameters

generate different convergence rates in terms of the sample size, as summarized in the

following two corollaries.

Corollary 3 (Mildly Ill-posed Case). Let X̄ be some compact subset of R. Suppose B(Jn) is

a spline basis, τn = O(Kω
n ), αfX = βfX = 0 and αr = βr = 0. Let Kn = O(n1/[2(ρs+ω)+1]).

Then, under Assumptions ID, IDX, C, and S, we have

12See Fan (1991) for formal definitions.
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(i) βg > 0 and βs > 0. Suppose γr − βg + 3 < 0 and set ζ̄n = O((log n)1/βg). If

αs > αg and ρs/[2(ρs + ω) + 1] > αg, set x̄n = O((log n)1/βs). If κ̄ := 2αg/γfX −
2ρs/[2γfX (ρs + ω) + γfX ] > 0, set x̄n = O(nκ) with 0 < κ < κ̄. In either case,

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣ = Op

(
(log n)(γr−βg+3)/βg

)
= op(1).

(ii) βg > 0 and βs = 0. Suppose γr − βg + 3 < 0 and γs < −3. Let ζ̄n = O((log n)1/βg)

and x̄n = O(nκ) with κ > −αg/(γs + 3). Then the convergence rate is the same as

in (i).

(iii) βg = 0 and βs > 0. Suppose γr < −3, let ζ̄n = O(n−m/(γg+1)) and x̄n = O((log n)1/βs)

with m := min{αs, ρs/[2(ρs + ω) + 1]}. Then

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣ = Op

(
β̄(n)n−m(γr+3)/(γg+1)

)
= op(1)

with

β̄(n) :=

{
(log n)−γfX /(2βs), αs ≥ ρs/[2(ρs + ω) + 1]

(log n)(γs−2βs+3)/βs , o.w.
.

(iv) βg = 0 and βs = 0. Suppose γr, γs < −3 and let ζ̄n = O(n$) and x̄n = O(nς) with

ς := ρs/[(2(ρs + ω) + 1)(−γfX/2− (γs + 3))] and $ := ς(γs + 3)/(1 + γg). Then

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣ = Op

(
n$(γr+3)

)
= op(1).

Corollary 4 (Severely Ill-posed Case). Let X̄ be some compact subset of R. Suppose B(Jn)

is a spline basis, τn = O(exp{Kn}), ρd = ∞, and αfX = βfX = 0. Let Kn = O(log n).

Then under Assumptions ID, IDX, C, and S, we have

(i) βg > 0 and βs > 0. Set ζ̄n = O((log log n)1/βr) and x̄n = O((log log n)1/βfX ). Then

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣
= Op

(
β̄1(n)(log n)−αr+αfX /2−ρs + β̄2(n)(log n)−αr−αs + β̄3(n)(log n)−αr

)
= op(1)

with

β̄1(n) := (log log n)(2+γr−γg)/βr−γfX /(2βfX ) exp{αg(log log n)βg/βr},
β̄2(n) := (log log n)(2+γr−γg)/βr+(γs−2βs+3)/βfX exp{αg(log log n)βg/βr},
β̄3(n) := (log log n)(γr−βg+3)/βr .

29



(ii) βg > 0 and βs = 0. Set ζ̄n = O((log log n)1/βr) and x̄n = O((log log n)1/βfX ). Then

the convergence rate is the same as in (i) except βs = αs = 0, and it is op(1) if

αr > αg, βr > 0.

(iii) βg = 0 and βs > 0. Suppose γr < −3, βs ≥ βfX and αfX/2 +$(2 +γr−γg)−ρs < 0

with $ := −αs/(1 + γg). Let ζ̄n = O((log n)$) and x̄n = O((log log n)1/βs). Then

we have

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣
= Op

(
β̄1(n)(log n)$(2+γr−γg)−ρs + β̄2(n)(log n)$(γr+3)

)
= op(1)

with

β̄1(n) := (log log n)−γfX /(2βs)eαfX (log logn)
βfX

/βs/2,

β̄2(n) := (log log n)max{(γs−2βs+3)/βs,0}.

(iv) βg = 0 and βs = 0. Suppose αr, βr > 0. Then let ζ̄n = O((log log n)1/βr) and

x̄n = O((log log log n)1/βfX ) to get

sup
y2∈Y2

sup
x∗2∈X̄

∣∣F̌Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣ = Op

(
β̄(n)(log n)−αr

)
= op(1)

with

β̄(n) := (log log n)(γr+3)/βr + (log log n)(2+γr−γg)/βr(log log log n)(γs+3)/βfX .

If the problems in (20) are severely ill-posed then the inversion of DX is inherently

difficult and leads to slow, logarithmic convergence rates when estimating the solutions to

the corresponding ill-posed inverse problem. The logarithmic rates given in Corollary 4

reflect this well-known fact. Notice, however, that such slow rates occur also when the

Fourier transform γ of the conditional cdf FY2|X∗
2

decays rapidly relative to the character-

istic function of the ME (Corollary 3(i),(ii)). To prevent the denominator from blowing

up the estimation error, the estimator requires a lot of trimming in the sense that ζ̄n

has to increase slowly. This trimming cuts off large parts of the integrand’s tails, creates

large biases, and leads to a slow overall convergence rate. In the remaining scenarios, the

convergence rate is of polynomial order.

The next theorem establishes the convergence rates of the regression function estima-

tors m̂ as in Definition 8. Because the discussion in this section is restricted to univariate
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mismeasured regressors, the following convergence rate only covers the model without

fixed effects. However, the extension to accommodate fixed effects is straightforward as

it only requires the analogous result for two dimensions, so that estimation can be based

on differences.

Theorem 4. Let X̄ be some compact subset of R and Ỹt = m(X̃∗t )+εt for t = 1, 2. Suppose

either E[εt|X̃∗t ] = 0, defining m̂ as in (18), or Qεt|X̃∗
t
(τ |x̃∗t ) = 0 for some τ ∈ (0, 1),

defining m̂ as in (19). Assume the distribution of Y2 | X̃∗t = x̃∗t has compact support for

all values x̃∗t . If any of the assumptions in the different cases of Corollaries 3 or 4 are

satisfied then

sup
x̃∗2∈X̄
|m̂(x̃∗2)−m(x̃∗2)| = Op(βm(n)),

where βm(n) denotes the convergence rate of F̌Y2|X∗
2

defined in the relevant subcase of

Corollary 3 or 4.

4 Simulations

This section studies the finite sample performance of the proposed estimator m̂. I consider

a nonlinear panel data regression without individual-specific heterogeneity,

Yt = m(X∗t ) + εt, t = 1, 2,

Xt = X∗t + ηt,

with the regression function m(x∗) := Φ(x∗)− 1/2 and Φ(·) the standard normal cdf. All

variables are scalar. The latent true explanatory variables are generated by X∗1 ∼ N(0, 1)

and X∗2 = 0.8X∗1 + 0.7N(0, 1). The ME ηt is i.i.d. N(0, σ2
η) with ση ∈ {0.5, 1.5}, which

correspond to the two scenarios called weak ME (ση = 0.5) and strong ME (ση = 1.5).

The structural error is independent over time and drawn from N(0, 1). The simulation

results are based on 1, 000 Monte Carlo samples of length n = 200.

For the new ME-robust estimator, the simulation setup presents a worst-case scenario

in the following sense. The choice of distributions implies (X1, X2) are jointly normal,

resulting in severely ill-posed inverse problems. In addition, the conditional cdf FYt|X∗
t
(yt|·)

is super-smooth because the regression function and the density of the regression error

have infinitely many derivatives. As shown in the previous section, this scenario leads to

slow, logarithmic convergence rates.

The ill-posed inverse problem is regularized with αn ∈ {0.001, 0.01, 0.1}. The series

estimator is based on a quadratic polynomial basis in x2. For x1, I consider polynomial
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bases of orders {3, 5, 7}, cubic spline and cubic B-spline bases with {5, 10, 15} knots. The

function m is estimated on a grid of 128 equidistant x-values on [−2, 2], which means that

all discrete Fourier transforms involved are calculated at 128 values in the corresponding

range in the frequency domain. The estimator m̂ is computed as the conditional mean of

F̌Y2|X∗
2
, approximating the integral in (18) over a grid of 100 equidistant y-values between

the 5% and the 95% quantile of all Y -draws pooled together. Other combinations of

the various simulation parameters have been considered but did not have any qualitative

effect on the results presented below.

Tables 1 and 2 summarize the performance of the new ME-robust estimator suggested

in the previous section, compared with that of the standard Nadaraya-Watson estimator,

which ignores the ME. The table reports the absolute value of bias, standard deviation,

and root mean squared error, each averaged over the Monte Carlo samples and over the

grid of 128 x-values. Figure 1 shows the estimated regression functions together with the

range spanning two pointwise empirical standard deviations of the estimators.13

As mentioned in the previous section, the series estimator of the solution to the ill-

posed inverse problems takes the form of a standard instrumental variable estimator for

which the vectors of basis functions in x1 and x2 play the roles of the instruments and of

the endogenous variables, respectively. To assess the reliability of this estimator, Table 3

reports the Cragg-Donald statistic of testing for weak instruments, which is a multivariate

extension of the test based on the first-stage F-statistic; see Cragg and Donald (1993) and

Stock and Yogo (2005) for details of the procedure.14 The test is valid when the model

is correctly specified, which, in the present context, requires the population model be

expressed in terms of the finite basis vectors in B and P. In general, the finite-dimensional

case can, of course, only approximate the truth. The table also lists the critical values

for 5%-level tests of 10% two-stage least-squares bias and 15% two-stage least-squares

size distortion. The Cragg-Donald test rejects weak identification for large values of the

test statistic. Rejection occurs for the polynomial basis, whereas the results based on the

(B-)spline basis appear less reliable.

In terms of bias, standard deviation, and root mean squared error, the results demon-

strate similar performance of the new ME-robust and the standard Nadaraya-Watson

estimator when ME is weak. In particular, the choices of tuning parameters (αn, Kn, Jn)

have almost no impact on the resulting estimates. However, when the ME has a large

13Notice the asymptotic distribution of the ME-robust estimator is not available, so the displayed

measure of variability has to be interpreted with care.
14In practice, one would want to test completeness or some notion of weak completeness directly, but

such a test may exist only in very special situations; see Canay, Santos, and Shaikh (2013).
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variance, the Nadaraya-Watson estimator is strongly biased, whereas the bias of the ME-

robust estimator barely changes relative to the weak ME scenario. This result is expected

and confirms the theoretical finding that in the presence of ME, the ME-robust estima-

tor is consistent, whereas the Nadaraya-Watson estimator is not. The variability of the

ME-robust estimator is higher than (in the case of strong ME) or comparable to (in the

case of weak ME) that of the Nadaraya-Watson estimator. This finding is not surprising

either: just as in the case of linear regression with an endogenous regressor, the OLS

estimator tends to have a smaller asymptotic variance than two-stage least squares, but

the former is centered around the wrong quantity, whereas the latter is not. Similarly,

here the Nadaraya-Watson estimator is biased and less variable, but only the ME-robust

estimator consistently estimates the correct object. This simulation experiment confirms

the theoretical findings from the previous sections in that the new estimator is indeed

robust to ME and significantly reduces bias.

5 Conclusions

The paper presents a constructive identification argument for nonlinear panel data regres-

sions with measurement error and fixed effects. The identifying assumptions are easy to

interpret in the panel data context and resemble the standard conditions for identification

of linear instrumental variable models. They inform the applied researcher about which

types of panel data models are identified in the presence of measurement error, and what

type of variation in the data is required to secure identification. I show that, under regu-

larity conditions, if only outcomes and mismeasured regressors are observed, the model is

identified if either the measurement error or the regression error is serially independent.
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A Sufficient Condition for Assumption IVX 1

Lemma 3. Suppose Assumption ID 2(ii) holds, that X∗2 = g(X∗1 ) +U with U ⊥ X∗1 , that

the characteristic function of U is nonzero on a dense subset of Rp and that FY2|X1(y2|·)
satisfies Assumption ID 3 with the obvious modifications. Then Assumption IVX 1 holds.

Proof The proof is straightforward. (i) FC−1F−1 is equal to multiplication by the

inverse of the characteristic function of the ME (see also proof of Theorem 1) which is

nonzero. (ii) Similarly, FC−1
revF−1 is equivalent to multiplication by a nonzero function.

(iii) By the assumption of the lemma, T is also a convolution operator whose kernel has

a finite Fourier transform (the characteristic function of U). Therefore, FT −1F−1 is also

equal to a multiplication operator whose multiplicator is nonzero over whole Rp. (iv) By

Lemma 4(ii), FFY2|X1 is nonzero as well.

In conclusion, (i) – (iv) above imply

FD−1
X FY2|X1 = FC−1F−1FT −1F−1FC−1

revF−1FFY2|X1

is nonzero on a dense subset of Rp. Q.E.D.

B Proofs

Constants in this section are denoted by C, C ′, C ′′, and so on, but the same symbol

in different instances does not necessarily refer to the same value. Also, let λ denote

Lebesgue measure on Rp and denote by L1(λ) the space of functions that are absolutely

integrable. For two sequences {an} and {bn} in R, an � bn means that the sequence an/bn

is bounded away from 0 and ∞ uniformly over n

B.1 Identification

Lemma 4. Under Assumption ID 2(i), 3 and Assumption IVX 2(i), the following holds:

(i) limxt→±∞ FYt|Xt(yt|xt) = limx∗t→±∞ FYt|X∗
t
(yt|x∗t ).

(ii) The function g as defined in the proof of Theorem 1 is not in L1(λ), but its Fourier

transform γ is an ordinary function: γ(ζ) = [Fgo](ζ)−2cY (y2)/(iζ) for ζ ∈ Rp \{0}
and where go is a function in L1(λ).
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(iii) The function g̃ as defined in the proof of Theorem 1 is not in L1(λ), but its Fourier

transform is an ordinary function: [F g̃](ζ) = [F g̃o](ζ) − (c+
Y (y2) − c−Y (y2))/|ζ|2 for

ζ ∈ Rp \ {0} and where g̃o is a function in L1(λ).

Proof Parts (i) and (ii) follow directly from Lemma 1 in Schennach (2008). A modifica-

tion of that derivation proves part (iii) as follows. For simplicity of exposition, consider

the univariate case p = 1. Define the function

H(x∗2) := c−Y (y2)1{x∗2 ≤ 0}+ c+
Y (y2)1{x∗2 > 0}

and note ∫ 0

−∞

∣∣x∗2 (FY2|X∗
2
(y2|x∗2)−H(x∗2)

)∣∣ dx∗2
=

∫ 0

−∞
|x∗2|

∣∣∣∣c−Y (y2) +

∫ x∗2

−∞

∂FY2|X∗
2
(y2|u)

∂x∗2
du− c−Y (y2)

∣∣∣∣ dx∗2
≤
∫ 0

−∞
|x∗2|

∫ x∗2

−∞

∣∣∣∣∂FY2|X∗
2
(y2|u)

∂x∗2

∣∣∣∣ dudx∗2
≤
∫ 0

−∞
|x∗2|

∫ x∗2

−∞
B(1 + |u|)−3−βdudx∗2

≤ B′
∫ 0

−∞
|x∗2|(1 + |x∗2|)−2−βdx∗2

≤ B′
∫ 0

−∞
|x∗2|(1 + |x∗2|)−2−βdx∗2 +B′

∫ 0

−∞
(1 + |x∗2|)−2−βdx∗2

−B′
∫ 0

−∞
(1 + |x∗2|)−2−βdx∗2

≤ B′
∫ 0

−∞
(1 + |x∗2|)−1−βdx∗2 −B′

∫ 0

−∞
(1 + |x∗2|)−2−βdx∗2 <∞.

Similarly, one can show the same integral from 0 to ∞ is finite. Then, defining g̃o(x
∗
2) :=

x∗2
(
FY2|X∗

2
(y2|x∗2)−H(x∗2)

)
, we have that

∫
|g̃o(x∗2)|dx∗2 < ∞. Furthermore, g̃(x∗2) :=

x∗2(FY2|X∗
2
(y2|x∗2)− cY (y2)) can be decomposed as

g̃(x∗2) = x∗2
(
FY2|X∗

2
(y2|x∗2)−H(x∗2)

)
+ x∗2 (H(x∗2)− cY (y2))

= g̃o(x
∗
2) + x∗2

(
c−Y (y2)1{x∗2 ≤ 0}+ c+

Y (y2)1{x∗2 > 0} − cY (y2)
)

= g̃o(x
∗
2) + x∗2

(
c−Y (y2)

2
[21{x∗2 ≤ 0} − 1] +

c+
Y (y2)

2
[21{x∗2 > 0} − 1]

)
= g̃o(x

∗
2) + x∗2

(
−c
−
Y (y2)

2
[21{x∗2 > 0} − 1] +

c+
Y (y2)

2
[21{x∗2 > 0} − 1]

)
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= g̃o(x
∗
2) + x∗2

c+
Y (y2)− c−Y (y2)

2
sgn(x∗2)

= g̃o(x
∗
2) + (cY (y2)− c−Y (y2)) |x∗2|.

where the first term is absolutely integrable as shown above, and (cY (y2)− c−Y (y2))|x∗2| is

not but possesses the Fourier transform ζ 7→ −2(cY (y2) − c−Y (y2))/|ζ|2. The case p > 1

follows from a similar argument. Q.E.D.

Lemma 5. Under Assumptions ID 1 and 2, C : L2(fX2)→ L2(fX∗
2
) and Crev : L2(fX∗

1
)→

L2(fX1) are injective. Furthermore, DX is injective on C−1(G) and DXC−1h = CrevT h
holds for all h ∈ G.

Proof The injectivity of C and Crev is straightforward to prove. See, for example, Propo-

sition 8 of Carrasco and Florens (2011). By similar reasoning, the adjoint operator C∗ of

C is injective as well. Since C is injective, it possesses an inverse over its range. Since

its adjoint C∗ is injective as well and R(C) = N(C∗)⊥ = L2(fX∗
2
), where R(·) and N(·)

denote the range and null space of an operator, the range of C is dense in L2(fX∗
2
) and

DXC−1 = CrevT holds over whole L2(fX∗
2
). Therefore, DXC−1 = CrevT holds over G in

particular. By Assumption 4, T is invertible over G and thus DX is invertible over C−1(G),

which concludes the proof of the lemma. Q.E.D.

Proof of Theorem 1 First, notice that by Assumption IVX 2(i) and (ii),

dY (x1) := E[1{Y2 ≤ y2}|X1 = x1]

=

∫∫
FY2|X∗

2 ,X
∗
1 ,X1(y2|x∗2, x∗1, x1)fX∗

2 ,X
∗
1 |X1(x

∗
2, x
∗
1|x1)dx∗2dx

∗
1

=

∫∫
FY2|X∗

2
(y2|x∗2)fX∗

2 |X∗
1
(x∗2|x∗1)fX∗

1 |X1(x
∗
1|x1)dx∗2dx

∗
1 (21)

and

dY X(x1) := E[X21{Y2 ≤ y2}|X1 = x1]

=

∫
E[X21{Y2 ≤ y2}|X∗2 = x∗2]fX∗

2 |X1(x
∗
2|x1)dx∗2

=

∫
E[X2|X∗2 = x∗2]FY2|X∗

2
(y2|x∗2)fX∗

2 |X1(x
∗
2|x1)dx∗2

=

∫∫
x∗2FY2|X∗

2
(y2|x∗2)fX∗

2 |X∗
1
(x∗2|x∗1)fX∗

1 |X1(x
∗
1|x1)dx∗2dx

∗
1. (22)
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Letting F̃Y2|X∗
2
(y2|x∗2) := x∗2FY2|X∗

2
(y2|x∗2) and with the operators introduced in the main

text, these two equations can be rewritten as

dY = CrevT FY2|X∗
2
, (23)

dY X = CrevT F̃Y2|X∗
2
. (24)

Here, as well as in the remainder of the identification argument, I suppress the depen-

dence of various functions on y2 as this value is fixed throughout. Next, notice that by

Assumption IVX 2, we have

f(x2|x1) =

∫∫
fX2|X∗

2
(x2|x∗2)fX∗

2 |X∗
1
(x∗2|x∗1)fX∗

1 |X1(x
∗
1|x1)dx∗2dx

∗
1

which can also be written as the operator identity DX = CrevT C, i.e. DXh = CrevT Ch for

h ∈ L2(fX2). By Lemma 5, C is invertible so that substituting the expression for DX into

(23) and (24) yields

dY = DXC−1FY2|X∗
2
, (25)

dY X = DXC−1F̃Y2|X∗
2
. (26)

By Lemma 5, DXC−1h = CrevT h for any h ∈ G, a space of functions on which T and thus

DX are injective. Therefore, we have

CD−1
X dY = FY2|X∗

2
, (27)

CD−1
X dY X = F̃Y2|X∗

2
. (28)

Next, I show a unique solution FY2|X∗
2

to these two equations exists. Let sY (x2) :=

[D−1
X dY ](x2) − cY (y2) and sY X(x2) := [D−1

X dY X ](x2) − x2cY (y2) and define the centered

counterparts of FY2|X∗
2
(y2|x∗2) and F̃Y2|X∗

2
(y2|x∗2) as g(x∗2) := FY2|X∗

2
(y2|x∗2) − cY (y2) and

g̃(x∗2) := F̃Y2|X∗
2
(y2|x∗2)− x∗2cY (y2). The function cY centers the various functions involved

such that by Lemma 4, g and g̃ possess Fourier transforms that are ordinary functions.

Formally, if the covariates are scalars (p = 1), define cY (y2) := (c+
Y (y2) + c−Y (y2))/2 with

c+
Y (y2) := lim

x2→∞
FY2|X2(y2|x2),

c−Y (y2) := lim
x2→−∞

FY2|X2(y2|x2).

If p > 1, cY can be selected as

cY (y2) := lim
R1→∞

lim
R2→∞

∫
R1≤|x|≤R2

FYt|Xt(yt|x)dx∫
R1≤|x|≤R2

dx
.
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Subtracting the centering constants and using E[X2|X∗2 = x∗2] = x∗2, (27) and (28) are

equivalent to

CsY = g, (29)

CsY X = g̃. (30)

Next, let F denote the Fourier transform operator [Fh](ζ) :=
∫
h(x)eiζ·xdx, ζ ∈ Rp. It is

well-known that F diagonalizes convolution operators15 such as C; that is, FCF−1 = ∆φ

with the multiplication operator [∆φh](ζ) := φ(ζ)h(ζ) and φ the characteristic function

of −η2. Therefore, FCsY = FCF−1FsY = φσY and, similarly, FCsY X = φσY X , where

σY and σY X are the Fourier transforms of sY and sY X . Therefore, applying F to both

(29) and (30) yields

φ(ζ)σY (ζ) = γ(ζ), ζ 6= 0, (31)

φ(ζ)σY X(ζ) = −i∇γ(ζ), ζ 6= 0. (32)

The last equality holds because multiplication by ix∗2 corresponds to taking derivatives

in the Fourier domain. The equations are valid for all ζ 6= 0 because, by Lemma 4, the

Fourier transform γ and its partial derivatives have poles at the origin but are ordinary

functions everywhere else. Now, differentiate (31) with respect to ζ, substitute in (32),

and divide by φ (which is allowed by Assumption ID 2(ii)) to get

∇ζφ(ζ)

φ(ζ)
σY (ζ) +∇ζσY (ζ) =

∇ζγ(ζ)

φ(ζ)
= iσY X(ζ), ζ 6= 0

or the following set of partial differential equations in φ:

∇ζφ(ζ)

φ(ζ)
=

iσY X(ζ)−∇ζσY (ζ)

σY (ζ)
, ζ 6= 0.

This equation holds for all ζ ∈ {ζ 6= 0 : σY (ζ) 6= 0}, but since the left-hand side is an

ordinary continuous function on whole Rp and by Assumption IVX 1, one can uniquely

extend the quotient on the right to Rp by a continuous limiting process. Subsequently, let

σ := (iσY X −∇ζσY )/σY denote this extension. Solving the partial differential equations

with the initial condition φ(0) = 1 yields

φ(ζ) = exp

{∫ ζ

0

σ(z) · dΓ(z)

}
,

15See, for example, section 3 of Carroll, Rooij, and Ruymgaart (1991).
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where the integral is a path integral along some smooth path Γ that connects 0 and ζ in

Rp. Then, by equation (31), g is identified as the inverse Fourier transform

g(x∗2) =
1

2π

∫
φ(ζ)σY (ζ)e−iζ·x

∗
2dζ

and FY2|X∗
2
(y2|x∗2) = g(x∗2) + cY (y2).

The marginal distribution of the ME η2 is identified from the inverse Fourier transform

of the characteristic function φ. Knowledge of the marginal ME distribution in the second

period implies identification of the contamination operator C. If the distribution of the ME

is stationary, then Crev can be calculated from C, yielding an expression of the transition

law T via T = C−1
revDXC−1. Therefore, the distribution of X∗2 given X∗1 is known. From the

characteristic function E[eiζ·X
∗
1 ] = E[eiζ·X1 ]/E[eiζ·η1 ], we then get the marginal distribution

of X∗1 , which, together with the transition law, identifies the joint distribution of X∗ as

well as that of η (from E[eiζ·η] = E[eiζ·X
∗
]/E[eiζ·X

∗
]). Q.E.D.

Proof of Corollary 1 The corollary follows from the proof of Theorem 1. Q.E.D.

Proof of Theorem 2 To simplify the exposition, suppose p = 2 and T = 3. The

argument for larger dimensions p and T = p + 1 works analogously; if T > p + 1,

identification of FYT |X∗
T

can be based only on the last p + 1 periods. Consider the two

equations

d◦Y (y1:2) := E[1{Y3 ≤ y3}|Y1:2 = y1:2]

=

∫∫
FY3|X∗

3 ,X
∗
2 ,Y1:2

(y3|x∗3, x∗2, y1:2)fX∗
3 |X∗

2 ,Y1:2
(x∗3|x∗2, y1:2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗3dx

∗
2

=

∫∫
FY3|X∗

3
(y3|x∗3)fX∗

3 |X∗
2
(x∗3|x∗2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗3dx

∗
2 (33)

and

d◦Y X(y1:2) := E[X31{Y3 ≤ y3}|Y1:2 = y1:2]

=

∫∫
x∗3FY3|X∗

3
(y3|x∗3)fX∗

3 |X∗
2
(x∗3|x∗2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗3dx

∗
2, (34)

which hold by Assumption IVY 2. Letting F̃Y3|X∗
3
(y3|x∗3) := x∗3FY3|X∗

3
(y3|x∗3) and with the

operators introduced in the main text, these two equations are equivalent to

d◦Y =M∗T FY3|X∗
3
, (35)

d◦Y X =M∗T F̃Y3|X∗
3
, (36)
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keeping y3 ∈ R fixed and implicit for the remainder of the proof. Similarly,

fX3|Y1:2(x3|y1:2)

=

∫∫
fX3|X∗

3 ,X
∗
2 ,Y1:2

(x3|x∗3, x∗2, y1:2)fX∗
3 |X∗

2 ,Y1:2
(x∗3|x∗2, y1:2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗3dx

∗
2

=

∫∫
fX3|X∗

3
(x3|x∗3)fX∗

3 |X∗
2
(x∗3|x∗2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗3dx

∗
2, (37)

which is equivalent to DY = M∗T C. Next, we need to show that DY is invertible on

C−1(G). As in the proof of Theorem 1, C is a convolution operator whose kernel has a

nonzero Fourier transform and therefore is invertible. T is invertible by Assumption ID 4.

Therefore, it remains to show M∗ is invertible on its range. To that end, denote by B
the set of all bounded functions from Rp to Rp and notice, by Assumption IVY 3(iii), T
maps G into B. Therefore, we only need to show bounded completeness of the conditional

distribution of X∗2 |(Y1, Y2). Let h ∈ B and consider∫
h(x∗2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗2 =

∫∫
h(x∗2)fX∗

1 ,X
∗
2 |Y1:2(x

∗
1, x
∗
2|y1:2)dx∗1dx

∗
2

=

∫∫
h(x∗2)

fX∗
1 ,X

∗
2
(x∗1, x

∗
2)

fY1:2(y1:2)
fY1|X∗

1
(y1|x∗1)fY2|X∗

2
(y2|x∗2)dx∗1dx

∗
2

=

∫∫
h(x∗2)

fX∗
1 ,X

∗
2
(x∗1, x

∗
2)

fY1:2(y1:2)
fε1(y1 − g(x∗1))fε2(y2 − g(x∗2))dx∗1dx

∗
2.

Define h̃(u1, u2) := h(m−1(u2))fX∗
1 ,X

∗
2
(m−1(u1),m−1(u2)). By the previous equation and

Assumption IVY 3(ii), setting
∫
h(x∗2)fX∗

2 |Y1:2(x
∗
2|y1:2)dx∗2 to zero is equivalent to setting∫∫

h̃(u1, u2)
fε1(y1 − u1)fε2(y2 − u2)

fY1:2(y1:2)
du1du2

=
1

fY1:2(y1:2)

∫ (∫
h̃(u1, u2)fε1(y1 − u1)du1

)
fε2(y2 − u2)du2 (38)

to zero. By Assumption IVY 3(ii), fY1:2(y1:2) 6= 0 for all y1:2 ∈ R2. By Assump-

tions IVY 3(i), (ii), and (iv), the integrals with respect to fε1(y1 − u1) and fε2(y2 − u2)

are convolutions with nonzero Fourier transform of their respective kernels. Further-

more,
∫
h̃(u1, u2)fε1(y1 − u1)du1 is a bounded function in u2, and so (38) implies that∫

h̃(u1,m(X∗2 ))fε1(y1−u1)du1 = 0 a.s. whenever E[h(X∗2 )|Y1:2] = 0 a.s.. Similarly, for any

u2 ∈ Rp, h̃(·, u2) = 0 whenever
∫
h̃(u1, u2)fε1(· − u1)du1 = 0. By Assumption IVY 3(ii),

fX∗ is positive everywhere so, in conclusion, we have E[h(X∗2 )|Y1:2] = 0 a.s. implies

h(X∗2 ) = 0 a.s., the desired completeness result.
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Having established invertibility of DY , use the relationship DY = M∗T C to rewrite

(35) and (36) as

CD−1
Y d◦Y = FY3|X∗

3
,

CD−1
Y d◦Y X = F̃Y3|X∗

3
,

and the remainder of the proof closely follows that of Theorem 1. Q.E.D.

Proof of Corollary 2 The corollary follows from the proof of Theorem 2. Q.E.D.

Proof of Lemma 1 To simplify the exposition, I subsequently drop the arguments of

conditional densities that should be obvious from the context.

First, by Assumption REG 1(i) and (ii), (ε3, ε4) ⊥ (η̃1, η̃2) | X̃∗ and (ε3, ε4) ⊥ (X̃∗1 , X̃
∗
2 ) |

(X̃∗3 , X̃
∗
4 ). These two independence conditions imply fε3,ε4|X̃∗,η̃1,η̃2

= fε3,ε4|X̃∗ = fε3,ε4|X̃∗
3 ,X̃

∗
4

and thus f∆ε4|X̃∗,η̃1,η̃2
= f∆ε4|X̃∗

3 ,X̃
∗
4
. Therefore,

fY2|X∗
2 ,X

∗
1 ,X1 = f∆Ỹ4|X̃∗,X̃2,X̃1

= f∆ε4|X̃∗,X̃2,X̃1
= f∆ε4|X̃∗,η̃2,η̃1

= f∆ε4|X̃∗
3 ,X̃

∗
4

= f∆Ỹ4|X̃∗
3 ,X̃

∗
4

= fY2|X∗
2
. (39)

Second, Assumption ID 2(i) and Assumption REG 1(iii) imply the weaker statements

(η̃3, η̃4) ⊥ (η̃1, η̃2) | X̃∗ and (η̃3, η̃4) ⊥ (X̃∗1 , X̃
∗
2 ) | (X̃∗3 , X̃

∗
4 ) so that fη̃3,η̃4|X̃∗,η̃1,η̃2

=

fη̃3,η̃4|X̃∗ = fη̃3,η̃4|X̃∗
3 ,X̃

∗
4
. Therefore,

fX2|X∗
2 ,X

∗
1 ,X1 = fX̃3,X̃4|X̃∗,X̃2,X̃1

= fη̃3,η̃4|X̃∗,X̃2,X̃1
= fη̃3,η̃4|X̃∗,η̃2,η̃1

= fη̃3,η̃4|X̃∗
3 ,X̃

∗
4

= fX̃3,X̃4|X̃∗
3 ,X̃

∗
4

= fX2|X∗
2
. (40)

Third, by Assumption REG 1(ii),

fY2|X∗
2 ,X

∗
1 ,X2,X1 = f∆Ỹ4|X̃∗,X̃ = f∆ε4|X̃∗,η̃ = f∆ε4|X̃∗,η̃1,η̃2

= f∆Y4|X̃∗,X̃1,X̃2
= fY2|X∗

2 ,X
∗
1 ,X1 (41)

Now, (41) implies Assumption IVX 2(ii), which in turn means (39) and (40) together imply

Assumption IVX 2(i). Therefore, Theorem 1 can be applied to identify the conditional

cdf F∆Ỹ4|X̃∗
4 ,X̃

∗
3
. Because of Assumption REG 2,

E[∆Ỹ4|X̃∗4 = x̃∗4, X̃
∗
3 = 0] = m(x̃∗4)−m(0) + E[ε4|X̃∗4 = x̃∗4, X̃

∗
3 = 0]

− E[ε3|X̃∗4 = x̃∗4, X̃
∗
3 = 0]

= m(x̃∗4)−m(0)− E[ε3|X̃∗3 = 0],
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so the regression function m can be written as

m(x̃∗4) = const.+

∫
∆y dF∆Ỹ4|X̃∗

4 ,X̃
∗
3
(∆y|x̃∗4, 0)

and the statement of the lemma follows. Q.E.D.

Proof of Lemma 2 Analogous to the proof of Lemma 1. Q.E.D.

B.2 Consistency and Convergence Rates

Proof of Theorem 3 The derivation of the convergence rate proceeds in roughly four

steps: (i) bound ‖ŝY − sY ‖ and similar estimation errors of the other s-functions; (ii)

use step (i) to bound ‖σ̂Y − σY ‖ and similar estimation errors for the other σ-functions;

(iii) use step (ii) to bound ‖σ̂∆/σ̂Y − σ∆/σY ‖, where σ∆ (σ̂∆) is (an estimator of) the

difference in two of the σ-functions; (iv) use the previous steps to get the desired bound

on the estimation error in F̌Yt|X∗
t
.

Step (i) By Theorem 2 of Blundell, Chen, and Kristensen (2007), we have ‖ŝY − sY ‖ =

Op(δn) and ‖ŝY X−sY X‖ = Op(δn) with δn := Kρs
n +τn

√
Kn/n. These rates hold pointwise

for a fixed y2 that is kept implicit in the notation. Similarly, the derivatives can be

estimated at the rates ‖∇dŝY −∇dsY ‖ = Op(ωd,nδn) and ‖∇dŝY X−∇dsY X‖ = Op(ωd,nδn),

for d = 1, 2, which follows from going through Blundell, Chen, and Kristensen (2007)’s

proof and applying Newey (1997)’s Theorem 1 with d = 1, 2 instead of d = 0.

Step (ii) Consider the estimation error of the Fourier transform σ̂Y and decompose it

as follows:

sup
|ζ|≤ζ̄n

|iζσ̂Y (ζ)− iζσY (ζ)| ≤ sup
|ζ|≤ζ̄n

|iζσ̂Y (ζ)− iζ[F ŝY ](ζ)|+ sup
|ζ|≤ζ̄n

|iζ[F ŝY ](ζ)− iζσY (ζ)| .
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Consider each of the two terms separately. First,

sup
|ζ|≤ζ̄n

|iζσ̂Y (ζ)− iζ[F ŝY ](ζ)| = sup
|ζ|≤ζ̄n

∣∣∣∣iζ ∫ [šY (x2)− ŝY (x2)] eiζx2dx2

∣∣∣∣
= sup
|ζ|≤ζ̄n

∣∣∣∣iζ ∫
|x2|>x̄n

[šY (x2)− ŝY (x2)] eiζx2dx2

∣∣∣∣
≤ sup
|ζ|≤ζ̄n

∣∣∣∣iζ ∫
|x2|>x̄n

[šY (x2)− sY (x2)] eiζx2dx2

∣∣∣∣+ sup
|ζ|≤ζ̄n

∣∣∣∣iζ ∫
|x2|>x̄n

[ŝY (x2)− sY (x2)] eiζx2dx2

∣∣∣∣
≤ ζ̄n

∫
|x2|>x̄n

|šY (x2)− sY (x2)| dx2 + sup
|ζ|≤ζ̄n

∣∣∣∣∫ [∇ŝY (x2)−∇sY (x2)] eiζx2dx2

∣∣∣∣
≤
∫
|∇ŝY (x2)−∇sY (x2)| dx2 +O(T d=0,j=0,k=1

Y,n )

≤
∫
|x2|≤x̄n

|∇ŝY (x2)−∇sY (x2)| dx2 +

∫
|x2|>x̄n

|∇ŝY (x2)−∇sY (x2)| dx2 +O(T d=0,j=0,k=1
Y,n )

≤
[

1

inf |x2|≤x̄n |fX2(x2)|

∫
|x2|≤x̄n

|∇ŝY (x2)−∇sY (x2)|2 fX2(x2)dx2

]1/2

+O(T d=0,j=0,k=1
Y,n + T d=1,j=0,k=0

Y,n )

= f−1/2

n
‖∇ŝY −∇sY ‖+O(T d=0,j=0,k=1

Y,n + T d=1,j=0,k=0
Y,n )

= Op(f
−1/2

n
δnω1,n) +O(T d=0,j=0,k=1

Y,n + T d=1,j=0,k=0
Y,n ).

Similarly, the second term is bounded by

sup
|ζ|≤ζ̄n

|iζ[F ŝY ](ζ)− iζσY (ζ)| = sup
|ζ|≤ζ̄n

∣∣∣∣∫ [∇ŝY (x2)−∇sY (x2)] eiζx2dx2

∣∣∣∣
= Op(f

−1/2

n
δnω1,n) +O(T d=0,j=0,k=1

Y,n + T d=1,j=0,k=0
Y,n )

so that, in conclusion, letting TY,n := T 0,0,1
Y,n + T 1,0,0

Y,n ,

εn := sup
|ζ|≤ζ̄n

|σ̂Y (ζ)− σY (ζ)| = Op(f
−1/2

n
δnω1,nζ̄

−1
n ) +O(TY,n). (42)

The next estimation error to bound is that of the numerator in the expression of φ(ζ).

To that end, let σ∆(ζ) := iσY X(ζ)−∇σY (ζ) and σ̂∆(ζ) := iσ̂Y X(ζ)−∇σ̂Y (ζ). Consider

sup
|ζ|≤ζ̄n

∣∣ζ2σ̂∆(ζ)− ζ2σ∆(ζ)
∣∣ = sup

|ζ|≤ζ̄n

∣∣ζ2σ̂∆(ζ)− ζ2[F ŝ∆](ζ)
∣∣+ sup

|ζ|≤ζ̄n

∣∣ζ2[F ŝ∆](ζ)− ζ2σ∆(ζ)
∣∣ ,
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where ŝ∆(x2) := šY X(x2)− ix2šY (x2). The first term can be bounded as follows:

sup
|ζ|≤ζ̄n

∣∣ζ2σ̂∆(ζ)− ζ2[F ŝ∆](ζ)
∣∣

= sup
|ζ|≤ζ̄n

∣∣∣∣ζ2

∫
[išY X(x2)− ix2šY (x2)− (iŝY X(x2)− ix2ŝY (x2))] eiζx2dx2

∣∣∣∣
= sup
|ζ|≤ζ̄n

∣∣∣∣ζ2

∫
|x2|>x̄n

[išY X(x2)− ix2šY (x2)− (iŝY X(x2)− ix2ŝY (x2))] eiζx2dx2

∣∣∣∣
≤ sup
|ζ|≤ζ̄n

∣∣∣∣ζ2

∫
|x2|>x̄n

[išY X(x2)− ix2šY (x2)− (isY X(x2)− ix2sY (x2))] eiζx2dx2

∣∣∣∣
+ sup
|ζ|≤ζ̄n

∣∣∣∣ζ2

∫
|x2|>x̄n

[iŝY X(x2)− ix2ŝY (x2)− (isY X(x2)− ix2sY (x2))] eiζx2dx2

∣∣∣∣
≤ ζ̄2

n

∫
|x2|>x̄n

|šY X(x2)− sY X(x2)| dx2 + ζ̄2
n

∫
|x2|>x̄n

|x2| |šY (x2)− sY (x2)| dx2

+ sup
|ζ|≤ζ̄n

∣∣∣∣∫ [∇2ŝY X(x2)−∇2sY X(x2)
]
eiζx2dx2

∣∣∣∣
+ sup
|ζ|≤ζ̄n

∣∣∣∣∫ [2∇ŝY (x2)− 2∇sY (x2)] eiζx2dx2

∣∣∣∣
+ sup
|ζ|≤ζ̄n

∣∣∣∣∫ [x2∇2ŝY (x2)− x2∇2sY (x2)
]
eiζx2dx2

∣∣∣∣ .
The two terms in the third-to-last line are O(T d=0,j=0,k=2

Y X,n + T d=0,j=1,k=2
Y,n ) by definition.

Splitting the three terms in the last two lines into integrals over {|x2| ≤ x̄n} and over

{|x2| > x̄n} yields

sup
|ζ|≤ζ̄n

∣∣∣∣∫ [∇2ŝY X(x2)−∇2sY X(x2)
]
eiζx2dx2

∣∣∣∣
≤ f−1/2

n
‖∇2ŝY X −∇2sY X‖+O(T d=2,j=0,k=0

Y X,n )

sup
|ζ|≤ζ̄n

∣∣∣∣∫ [2∇ŝY (x2)− 2∇sY (x2)] eiζx2dx2

∣∣∣∣ ≤ 2f−1/2

n
‖∇ŝY −∇sY ‖+O(T d=1,j=0,k=0

Y,n )

sup
|ζ|≤ζ̄n

∣∣∣∣∫ [x2∇2ŝY (x2)− x2∇2sY (x2)
]
eiζx2dx2

∣∣∣∣
≤ f−1/2

n
x̄n‖∇2ŝY −∇2sY ‖+O(T d=2,j=1,k=0

Y,n ),
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so, by collecting terms,

sup
|ζ|≤ζ̄n

∣∣ζ2σ̂∆(ζ)− ζ2[F ŝ∆](ζ)
∣∣

= Op(f
−1/2

n
(ω2,n + ω1,n + ω2,nx̄n)δn)

+O(T d=0,j=0,k=2
Y X,n + T d=0,j=1,k=2

Y,n + T d=2,j=0,k=0
Y X,n + T d=1,j=0,k=0

Y,n + T d=2,j=1,k=0
Y,n )

= Op(f
−1/2

n
ω2,nx̄nδn) +O(T d=0,j=0,k=2

Y X,n + T d=0,j=1,k=2
Y,n )

+O(T d=2,j=0,k=0
Y X,n + T d=1,j=0,k=0

Y,n + T d=2,j=1,k=0
Y,n ).

Similarly,

sup
|ζ|≤ζ̄n

∣∣ζ2[F ŝ∆](ζ)− ζ2σ∆(ζ)
∣∣

= Op(f
−1/2

n
ω2,nx̄nδn) +O(T d=2,j=0,k=0

Y X,n + T d=1,j=0,k=0
Y,n + T d=2,j=1,k=0

Y,n )

and, thus, letting T∆,n := T 0,1,2
Y,n + T 2,1,0

Y,n + T 1,0,0
Y,n + T 0,0,2

Y X,n + T 2,0,0
Y X,n, we have

sup
|ζ|≤ζ̄n

|σ̂∆(ζ)− σ∆(ζ)| = Op(f
−1/2

n
ω2,nx̄nδnζ̄

−2
n ) +O(T∆,n). (43)

Step (iii) By Assumption C 4 and r̄−1
n = Op(1), we have f−1/2

n
δnω1,nζ̄

−1σ−1
n → 0 and

TY,nσ
−1
n → 0. Therefore, Lemma 3 of Schennach (2008) can be applied, and, together

with (42) and (43), yields

µ̄n := sup
|ζ|≤ζ̄n

∣∣∣∣ σ̂∆(ζ)

σ̂Y (ζ)
− σ∆(ζ)

σY (ζ)

∣∣∣∣
= Op

({
sup
|ζ|≤ζ̄n

|σ̂∆(ζ)− σ∆(ζ)|

}
σ−1
n

)
+Op

(
r̄n

{
sup
|ζ|≤ζ̄n

|σ̂Y (ζ)− σY (ζ)|

}
σ−1
n

)
= Op

({
f−1/2

n
ω2,nx̄nδnζ̄

−2
n + T∆,n

}
σ−1
n

)
+Op

(
r̄n

{
f−1/2

n
δnω1,nζ̄

−1
n + TY,n

}
σ−1
n

)
= Op

(
f−1/2

n

{
ω2,nx̄nδnζ̄

−2
n + r̄nδnω1,nζ̄

−1
n

}
σ−1
n

)
+Op

(
(r̄nTY,n + T∆,n)σ−1

n

)
.

The last two equations use the convergence rates from step (ii).

Step (iv) This step is inspired in part by the proof of Theorem 2 in Schennach (2008).

Decompose the estimation error into three parts:

2π
∣∣∣F̂Y2|X∗

2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣∣
=

∣∣∣∣∫
|ζ|≤ζ̄n

σ̂Y (ζ, y2)φ̂(ζ, y2)e−iζ·x
∗
2dζ −

∫
σY (ζ, y2)φ(ζ, y2)e−iζ·x

∗
2dζ

∣∣∣∣
≤ R1 +R2 +R3,
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where

R1 :=

∣∣∣∣∫
|ζ|≤ζ̄n

σ̂Y (ζ, y2)
[
φ̂(ζ, y2)− φ(ζ, y2)

]
e−iζ·x

∗
2dζ

∣∣∣∣
R2 :=

∣∣∣∣∫
|ζ|≤ζ̄n

[σ̂Y (ζ, y2)− σY (ζ, y2)]φ(ζ, y2)e−iζ·x
∗
2dζ

∣∣∣∣
R3 :=

∣∣∣∣∫
|ζ|>ζ̄n

σY (ζ, y2)φ(ζ, y2)e−iζ·x
∗
2dζ

∣∣∣∣ .
First, notice σY (ζ, y2) = γ(ζ, y2)/φ(ζ) diverges not only at the origin, but potentially

also as |ζ| → ±∞ when φ vanishes faster than γ. For this reason, I split up the first

remainder R1 further into R1a and R1b, which, respectively, bound the error for small |ζ|
around the origin and for those up to ζ̄n. Formally, fix some constant ζ0 ∈ (0, ζ̄n) and

write R1 ≤ R1a +R1b with

R1a :=

∣∣∣∣∫
|ζ|≤ζ0

σ̂Y (ζ, y2)
[
φ̂(ζ, y2)− φ(ζ, y2)

]
e−iζ·x

∗
2dζ

∣∣∣∣ ,
R1b :=

∣∣∣∣∫
ζ0<|ζ|≤ζ̄n

σ̂Y (ζ, y2)
[
φ̂(ζ, y2)− φ(ζ, y2)

]
e−iζ·x

∗
2dζ

∣∣∣∣ ,
Consider the first remainder. On the interval (0, ζ0), Lemma 4(ii) bounds |σY (ζ, y2)| from

above by σ̄max{|ζ|−1, 1} for some constant σ̄. Using this fact, we have

R1a =

∣∣∣∣∫
|ζ|≤ζ0

σ̂Y (ζ, y2)

[
exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz

}
− exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}]
e−iζ·x

∗
2dζ

∣∣∣∣
≤
∫
|ζ|≤ζ0

|σ̂Y (ζ, y2)|
∣∣∣∣exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz

}
− exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}∣∣∣∣ dζ
=

∫
|ζ|≤ζ0

|σY (ζ, y2) + εn|
∣∣∣∣exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}∣∣∣∣×
×
∣∣∣∣exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz −

∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}
− 1

∣∣∣∣ dζ
= C

∫
|ζ|≤ζ0

|σY (ζ, y2) + εn|
∣∣∣∣exp

{∫ ζ

0

(
σ̂∆(z, y2)

σ̂Y (z)
− σ∆(z, y2)

σY (z)

)
dz

}
− 1

∣∣∣∣ dζ,
where εn = Op(f

−1/2

n
δnω1,nζ̄

−1
n ) + O(TY,n), which occurs from the use of the rate in (42).

Step (iii) gives a bound for the difference of ratios such that

R1a ≤ C

∫
|ζ|≤ζ0

(
σ̄max{|ζ|−1, 1}+ εn

) ∣∣eµ̄nζ − 1
∣∣ dζ

≤ C

∫
|ζ|≤ζ0

(
σ̄max{|ζ|−1, 1}+ εn

)
|µ̄nζ| dζ
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≤ C

∫
|ζ|≤ζ0

(σ̄max{1, |ζ|}+ |ζ|εn) µ̄ndζ

≤ 2C (σ̄max{1, ζ0}+ ζ0εn) ζ0µ̄n

= Op(εnµ̄n + µ̄n),

where the second inequality uses the series expansion of the exponential function. The

remainder R1b is treated in a similar way:

R1b =

∣∣∣∣∫
ζ0<|ζ|≤ζ̄n

σ̂Y (ζ, y2)

[
exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz

}
− exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}]
e−iζ·x

∗
2dζ

∣∣∣∣
≤
∫
ζ0<|ζ|≤ζ̄n

|σ̂Y (ζ, y2)|
∣∣∣∣exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz

}
− exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}∣∣∣∣ dζ
=

∫
ζ0<|ζ|≤ζ̄n

|σY (ζ, y2) + εn|
∣∣∣∣exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}∣∣∣∣×
×
∣∣∣∣exp

{∫ ζ

0

σ̂∆(z, y2)

σ̂Y (z)
dz −

∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}
− 1

∣∣∣∣ dζ
=

∫
ζ0<|ζ|≤ζ̄n

|σY (ζ, y2) + εn| |φ(ζ)|
∣∣∣∣exp

{∫ ζ

0

(
σ̂∆(z, y2)

σ̂Y (z)
− σ∆(z, y2)

σY (z)

)
dz

}
− 1

∣∣∣∣ dζ
≤

(
O(1) + εn sup

ζ0<|ζ|≤ζ̄n
|φ(ζ)|

)
×

×
∫
ζ0<|ζ|≤ζ̄n

∣∣∣∣exp

{∫ ζ

0

(
σ̂∆(z, y2)

σ̂Y (z)
− σ∆(z, y2)

σY (z)

)
dz

}
− 1

∣∣∣∣ dζ
≤

(
O(1) + εn sup

ζ0<|ζ|≤ζ̄n
|φ(ζ)|

) ∫
ζ0<|ζ|≤ζ̄n

|µ̄nζ|dζ

≤

(
O(1) + εn sup

ζ0<|ζ|≤ζ̄n
|φ(ζ)|

)
2µ̄n

(
ζ̄2
n + C ′′

)
≤ C ′′′µ̄nζ̄

2
n + 2εnµ̄nζ̄

2
n + C(4)µ̄n + C(5)εnµ̄n,

where the third inequality uses step (iii) as before. The second remainder can be bounded

as follows:

R2 =

∣∣∣∣∫
|ζ|≤ζ̄n

[σ̂Y (ζ, y2)− σY (ζ, y2)] exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}
e−iζ·x

∗
2dζ

∣∣∣∣
≤
∫
|ζ|≤ζ̄n

∣∣∣∣[σ̂Y (ζ, y2)− σY (ζ, y2)] exp

{∫ ζ

0

σ∆(z, y2)

σY (z)
dz

}∣∣∣∣ dζ
≤

[
sup
|ζ|≤ζ̄n

φ(ζ)

]∫
|ζ|≤ζ̄n

|σ̂Y (ζ, y2)− σY (ζ, y2)| dζ
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≤ 2ζ̄nεn,

where the last inequality follows from step (ii). Finally, the last term R3 represents a

tail-trimming error:

R3 =

∣∣∣∣∫
|ζ|>ζ̄n

γ(ζ, y2)e−iζ·x
∗
2dζ

∣∣∣∣ ≤ ∫
|ζ|>ζ̄n

|γ(ζ, y2)|dζ = O(Tγ,n).

Now, combine the three remainders to get

2π sup
x∗2∈R

∣∣∣F̂Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣∣
= Op

(
µ̄n + εnµ̄n + µ̄nζ̄

2
n + εnµ̄nζ̄

2
n + µ̄n + εnµ̄n

)
+Op

(
ζ̄nεn

)
+O(Tγ,n)

= Op

(
µ̄nζ̄

2
n + ζ̄nεn

)
+O(Tγ,n).

The first equality holds for the following reason. The conditions r̄nδnω1,n/(f
1/2

n
ζ̄nσn)→ 0

and r̄nTY,n/σn → 0 in Assumption C 4 imply µ̄n → 0. In addition, r̄−1
n = O(1) and

σn = O(1), so δnω1,n/(f
1/2

n
ζ̄n) → 0 and TY,n → 0, leading to εn → 0. Next, substituting

in the rates of µ̄n and εn yields

2π sup
x∗2∈R

∣∣∣F̂Y2|X∗
2
(y2|x∗2)− FY2|X∗

2
(y2|x∗2)

∣∣∣
= Op

(
ζ̄2
n

[
f−1/2

n

{
ω2,nx̄nδnζ̄

−2
n + r̄nδnω1,nζ̄

−1
n

}
σ−1
n + (r̄nTY,n + T∆,n)σ−1

n

])
+Op

(
ζ̄n

[
f−1/2

n
δnω1,nζ̄

−1
n + TY,n

])
+O(Tγ,n)

= Op

(
f−1/2

n

{
ω2,nx̄nδn + r̄nδnω1,nζ̄n

}
σ−1
n + Tn

)
, (44)

which gives the convergence rate pointwise in y2. The expression in (44) is also an

upper bound on the convergence rate of the constraint estimator F̌Y2|X∗
2
(y2|x∗2). Since

F̌Y2|X∗
2
(y2|x∗2) takes values only in [0, 1], the convergence rate holds, in fact, uniformly over

y2 ∈ Y2. This conclusion follows by essentially the same argument as the proof of the

Glivenko-Cantelli Theorem; see Theorem 19.1 of van der Vaart (1998), for example. This

completes the proof. Q.E.D.

Proof of Corollary 3 First, I establish the order of the tail-trimming term Tn. To that

end, let γn := supy2∈Y |γ(ζ̄n, y2)| and sn := supy2∈Y |∇sY (x̄n, y2)|.
Consider the term TY,n. Analogously to the proof of Lemma 1 in Schennach (2008),

we have limx2→−∞ sY (x2, y2) = c−Y (y2). Therefore, using the definition of ŝY (x2, y2) when
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x2 < −x̄n and the Fundamental Theorem of Calculus, one can write∫ −x̄n
−∞

|x2|j
∣∣−c−Y (y2)− sY (x2, y2)

∣∣ dx2 =

∫ −x̄n
−∞

|x2|j
∣∣∣∣−∫ x2

−∞

∂sY (u, y2)

∂x2

du

∣∣∣∣ dx2

≤ Cs

∫ −x̄n
−∞

|x2|j
∫ x2

−∞
(1 + |u|)γs exp

{
−αs|u|βs

}
dudx2

= Cs

∫ ∞
x̄n

xj2

∫ ∞
x2

(1 + u)γs exp
{
−αsuβs

}
dudx2

= Cs

∫ ∞
x̄n

xj2(1 + x2)γs−βs+1 exp
{
−αsxβs2

}
dx2

= O
(
(1 + x̄n)γs−2βs+2+j exp

{
−αsx̄βsn

})
= O

(
x̄−2βs+2+j
n sn

)
(45)

by Assumption R 3.2 and repeated application of Lemma 4.2 in Li and Vuong (1998). In

the same fashion, one can show that
∫∞
x̄n
|x2|j|c+

Y (y2)− sY (x2, y2)|dx2 = O(x̄−2βs+2+j
n sn) as

well. Therefore, T 0,j,1
Y,n = O(ζ̄nx̄

−2βs+2+j
n sn) and we have

TY,n = O(T 0,j=0,1
Y,n ) = O(ζ̄nx̄

−2βs+2
n sn).

Next, consider the second component, T∆,n. Observe∫ −x̄n
−∞

∣∣x2c
−
Y (y2)− sY X(x2, y2)

∣∣ dx2 =

∫ −x̄n
−∞

|x2|
∣∣∣∣c−Y (y2)− sY X(x2, y2)

x2

∣∣∣∣ dx2

�
∫ −x̄n
−∞

|x2|
∣∣c−Y (y2)− sY (x2, y2)

∣∣ dx2 (46)

= O
(
x̄−2βs+3
n sn

)
, (47)

where the last equality uses (45). The asymptotic equality in (46) can be justified as

follows. From the two equations (27) and (28), we have that

E[sY X(X2, y2)|X∗2 = x∗2] = x∗2E[sY (X2, y2)|X∗2 = x∗2] = E[X2sY (X2, y2)|X∗2 = x∗2]

for all y2 ∈ Y2. Since C is injective, the distribution of X2 given X∗2 is complete; that

is, E[sY X(X2, y2)−X2sY (X2, y2)|X∗2 = x∗2] = 0 implies sY X(X2, y2) = X2sY (X2, y2) PX2-

almost surely.

Similarly as in (47), we also have∫ −x̄n
−∞

∣∣x2c
−
Y (y2)− sY X(x2, y2)

∣∣ dx2 = O
(
x̄−2βs+4
n sn

)
. (48)

By similar reasoning as for the remainder TY,n, it is easy to see that T∆,n = O(T 0,1,2
Y,n +

T 0,0,2
Y X,n). Therefore, (48) and
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Next, using again Lemma 4.2 in Li and Vuong (1998), it is easy to see the third

component of Tn,
∫
|ζ|>ζ̄n |γ(ζ, y2)|dζ, is of order O(ζ̄

−βg+1
n γn). In conclusion, we have

Tn = O(x̄−2βs+3
n sn + ζ̄

−βg+1
n γn).

Now consider

βn := ζ̄2
nr̄n

[
f−1/2

n
δn + x̄−2βs+3

n sn + ζ̄−βg+1
n γn

]
σ−1
n

= O

(
ζ̄2+γr−γg
n eαg ζ̄

βg
n x̄
−γfX /2
n eαfX x̄

βfX
n /2δn + ζ̄2+γr−γg

n eαg ζ̄
βg
n x̄γs−2βs+3

n e−αsx̄
βs
n

+ζ̄2+γr−γg
n eαg ζ̄

βg
n ζ̄γg−βg+1

n e−αg ζ̄
βg
n

)
= O(ζ̄2+γr−γg

n x̄
−γfX /2
n eαg ζ̄

βg
n +αfX x̄

βfX
n /2δn + ζ̄2+γr−γg

n x̄γs−2βs+3
n eαg ζ̄

βg
n −αsx̄βsn + ζ̄γr−βg+3

n ).

(49)

To balance the bias and variance terms inK−ρsn +Kω
n

√
Kn/n, we selectKn = O(n1/[2(ρs+ω)+1])

and get δn = O(n−ρs/[2(ρs+ω)+1]).

The remainder of the proof consists in merely substituting in the given expressions

for x̄n and ζ̄n, and checking that the rates are op(1) under the stated assumptions on the

various parameters. Q.E.D.

Proof of Corollary 4 In the severely ill-posed case, we select Kn = log(n) to balance

the bias and variance terms in δn = K−ρsn +exp{Kn}
√
Kn/n. Similarly as in the derivation

of (49),

βn = O(ζ̄2+γr−γg
n x̄

−γfX /2
n e−αr ζ̄

βr
n +αg ζ̄

βg
n +αfX x̄

βfX
n /2δn

+ ζ̄2+γr−γg
n x̄γs−2βs+3

n e−αr ζ̄
βr
n +αg ζ̄

βg
n −αsx̄βsn + ζ̄γr−βg+3

n e−αr ζ̄
βr
n ). (50)

As in the proof of the previous corollary, the remainder of this proof consists of merely

substituting in the given expressions for x̄n and ζ̄n, and checking that the rates are op(1)

under the stated assumptions on the various parameters. Q.E.D.

Proof of Theorem 4 For the quantile estimation case, see the proof of Theorem 3.1

in Ould-Säıd, Yahia, and Necir (2009). If the conditional mean restriction holds, then

integration by parts and the fact that the rates in Corollaries 3 or 4 are uniform over Y2

yield the desired result. Q.E.D.
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weak ME (ση = 0.5)

αn = 0.001 αn = 0.01 αn = 0.1

basis (x1) bias SD RMSE bias SD RMSE bias SD RMSE

poly Kn = 3 0.054 0.140 0.158 0.054 0.140 0.158 0.066 0.140 0.162

Kn = 5 0.066 0.140 0.162 0.066 0.140 0.162 0.067 0.139 0.162

Kn = 7 0.067 0.137 0.160 0.067 0.137 0.160 0.067 0.137 0.160

spline Ln = 5 0.066 0.141 0.163 0.066 0.141 0.163 0.067 0.140 0.163

Ln = 10 0.068 0.140 0.162 0.068 0.140 0.162 0.068 0.140 0.163

Ln = 15 0.068 0.140 0.162 0.068 0.139 0.162 0.068 0.140 0.163

B-spline Ln = 5 0.071 0.136 0.160 0.071 0.136 0.161 0.072 0.137 0.162

Ln = 10 0.078 0.134 0.162 0.078 0.134 0.163 0.078 0.134 0.163

Ln = 15 0.079 0.139 0.168 0.079 0.139 0.168 0.080 0.138 0.168

NW 0.070 0.125 0.147

Table 1: For different combinations of the basis in x1 and the regularization parameter αn, the table

shows average bias, standard deviation (SD) and root mean squared error (RMSE) of the new ME-robust

estimator as well as of the Nadaraya-Watson (NW) estimator which ignores the ME.
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strong ME (ση = 1.5)

αn = 0.001 αn = 0.01 αn = 0.1

basis (x1) bias SD RMSE bias SD RMSE bias SD RMSE

poly Kn = 3 0.052 0.328 0.334 0.054 0.326 0.332 0.073 0.313 0.322

Kn = 5 0.051 0.243 0.250 0.051 0.242 0.250 0.057 0.238 0.248

Kn = 7 0.053 0.251 0.258 0.053 0.251 0.258 0.059 0.246 0.256

spline Ln = 5 0.052 0.233 0.242 0.053 0.232 0.242 0.057 0.230 0.241

Ln = 10 0.049 0.221 0.231 0.049 0.221 0.232 0.053 0.219 0.231

Ln = 15 0.049 0.221 0.231 0.049 0.221 0.231 0.053 0.219 0.231

B-spline Ln = 5 0.051 0.217 0.229 0.052 0.217 0.229 0.055 0.216 0.230

Ln = 10 0.065 0.197 0.217 0.065 0.197 0.218 0.068 0.196 0.218

Ln = 15 0.075 0.192 0.218 0.075 0.192 0.218 0.077 0.192 0.219

NW 0.171 0.110 0.207

Table 2: For different combinations of the basis in x1 and the regularization parameter αn, the table

shows average bias, standard deviation (SD) and root mean squared error (RMSE) of the new ME-robust

estimator as well as of the Nadaraya-Watson (NW) estimator which ignores the ME.
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Figure 1: The figure shows the true regression function (red squares), the ME-robust estimator (αn = 0.01,

polynomial bases with Kn = 5; blue circles) with two empirical standard deviations (shaded area), and

the Nadaraya-Watson estimator (black stars) with two empirical standard deviations (dashed line).
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Cragg-Donald statistic

basis (x1) weak ME strong ME CV bias CV size

poly Kn = 3 20.722 33.580 – 8.18

Kn = 5 15.213 27.515 8.78 11.22

Kn = 7 11.312 21.982 9.92 13.34

spline Ln = 5 10.318 21.788 10.43 15.24

Ln = 10 6.444 13.671 10.89 19.72

Ln = 15 4.779 10.140 11.02 24.09

B-spline Ln = 5 10.135 21.472 10.43 15.24

Ln = 10 6.444 13.671 10.89 19.72

Ln = 15 4.779 10.140 11.02 24.09

Table 3: Cragg-Donald statistic for testing the null of weak instruments; large values lead to rejection.

Critical values (CV) for 5%-tests of 10% TSLS bias and 15% TSLS size distortion are provided in the

last two columns.
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