A Ramsey theory of financial distortions

Marco Bassetto
Wei Cui
A Ramsey Theory of Financial Distortions*

Marco Bassetto† and Wei Cui‡

February 22, 2021

Abstract

We study optimal taxation in an economy with financial frictions, in which the government cannot directly redistribute towards the agents in need of liquidity but otherwise has access to a complete set of linear tax instruments. We establish a stark result. Provided this is feasible, optimal policy calls for the government to increase its debt, up to the point at which it provides sufficient liquidity to avoid financial constraints. In this case, capital-income taxes are zero in the long run, and the returns on government debt and capital are equalized. However, if the fiscal space is insufficient, a wedge opens between the rates of return on government debt and capital. In this case, optimal long-run tax policy is driven by a trade-off between the desire to mitigate financial frictions by subsidizing capital and the incentive to exploit the quasi-rents accruing to producers of capital by taxing capital instead. This latter incentive magnifies the wedge between rates of return on government debt and capital. It also makes it optimal to distort downward the interest rate on government debt in periods of high government spending.

JEL classification: E22, E44, E62;

Key words: Financing Constraints; Asset Directed Search; Capital Tax; Low Interest Rates; Optimal Level of Government Debt

*We are indebted to Qingqing Cao, V.V. Chari, Mariacristina De Nardi, Piero Gottardi, Dirk Krueger, Albert Marcet, Morten Ravn, Christopher Sleet, Aleh Tsyvinski, and Sevin Yeltekin for helpful comments, and to Juyoung Young for excellent research assistance. The views expressed herein are ours and do not necessarily reflect those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
†Federal Reserve Bank of Minneapolis. Email: bassetto@nber.org
‡University College London and Centre for Macroeconomics. Email: w.cui@ucl.ac.uk
1 Introduction

How should governments finance expenditures in the least costly way when capital is present? This question has attracted much interest. Judd (1985), Chamley (1986), and a large literature that followed their work have all argued that taxing capital in the long run is a bad idea and also that the interest rate on government debt, which is a perfect substitute for capital, should not be distorted.1 Furthermore, Chari, Christiano, and Kehoe (1994) show there is no basis to distort capital markets to lower interest rates in periods of high government spending.

More recently, a lot of attention has been devoted to the study of financial frictions that generate imperfect substitution between assets. In this paper, we revisit the issue of capital taxation and intertemporal distortions in this context. We uncover a tight connection between the two, which is at work both in the short run and even more so in the eventual long-run limit.

Our starting point is a standard neoclassical growth model, in which the government aims to achieve an exogenous stream of expenditures that is financed with taxes on income from labor and capital and by issuing debt. Our key point of departure is that investment is undertaken by entrepreneurs whose net worth affects their ability to access external sources of finance. In the model, private agents face idiosyncratic investment opportunities, as in Kiyotaki and Moore (2012). Some of them have investment projects, while others do not. When private agents have investment projects, they seek outside financing. But, because of asset liquidity frictions, only part of their claims to future investment or existing capital can be pledged. In contrast, government bonds are fully liquid instead and therefore can better finance any investment opportunity that arises. For this reason, private agents have a precautionary motive to buy them.

We first illustrate the optimal policy in a simple two-period deterministic model in which entrepreneurs finance their investment by selling up to a fixed fraction of their investment, as well as their entire endowment of liquid government debt.2 When entrepreneurs start with scarce liquidity, financial constraints drive a wedge between the rate of return accruing to buyers of capital and that perceived by the constrained entrepreneurs; the constraints reduce the elasticity of the supply of capital to its after-tax rate of return.

In the special case of a perfectly inelastic supply of capital, increasing capital-income taxes has no effect on investment and is simply a way of extracting a rent that entrepreneurs receive on their inframarginal units of investment. However, when financial frictions are such that investment can react to Tobin’s q, a countervailing force emerges: by subsidizing capital, the government can push up the asset price (Tobin’s q) and alleviate underinvestment. Which of these forces dominates is a quantitative

1More recently, Lansing (1999), Bassetto and Benhabib (2006) and Straub and Werning (2020) show examples of economies where the Chamley-Judd result does not apply, and taxes on capital remain high in the limit. The economy that we study does not fall in this category; in the absence of financial frictions, the Chamley-Judd result would apply.

2An alternative, equivalent interpretation is that entrepreneurs borrow and pledge as collateral up to a fraction of their investment and all of their government bonds.
question, except when the government starts with enough assets: when the need to raise distortionary
taxes is zero (or close to it), optimal policy calls for undoing the financial distortions by subsidizing
capital. Conversely, when the government is desperate for funds, its labor-income tax policy may
depress the labor supply so much that investment drops to the point where financial constraints cease
to bind, in which case the Chamley-Judd result reemerges and the optimal capital-income tax is zero.
Positive capital taxation can emerge in an intermediate range in which the government finds it optimal
to exploit the low elasticity of the capital supply to raise funds, as we show in a numerical example.

We then extend the analysis to an infinite-horizon economy and one in which the fraction of
capital that can be sold can itself be endogenously determined from primitive assumptions about the
intermediation technology, and we study the long-run properties of an optimal allocation. A stark
result emerges. If the government is able to issue enough debt to completely eliminate financial
frictions, it will choose to do so and set capital-income taxes to zero in the limit. However, if this
level of debt cannot be sustained by raising enough labor-income tax revenues, then the economy
converges to a steady state with binding financing constraints, a positive capital tax, and an interest
rate on government debt that is lower than the rate of time preference. In this case, government debt
commands a liquidity premium because of the better liquidity service.

As in the two-period economy, when investment is inelastically supplied as constraints bind, the
planner always has an incentive to equalize the returns on government debt and capital by taxing
the latter to the point at which constraints stop binding: this tax raises revenue without introducing
any new distortions. In order to have rate of return differentials, it is important that investment react
to Tobin’s q. The interplay between Tobin’s q and rate of return differentials connects our theory
to the corporate/banking finance view of public finance, in which other policies related to financial
distortions are introduced, such as capital requirements, capital controls, liquidity coverage ratios,
and other instruments that drive a wedge between rates of return of assets in different classes, thereby
lowering the interest rate on government debt.

Finally, we explore quantitatively the economy’s response to a temporary variation in government
spending. We show that it is optimal for the government to design policy so that the interest rate on
government debt is lower in periods of high spending than it would be in the absence of spending
movements, thereby financing part of the additional spending through capital market distortions.

Related Literature. Our paper builds on a large literature that introduced financial frictions in
the form of imperfect asset liquidity. In addition to **Kiyotaki and Moore (2012),** similar economic
environments appear in **Shi (2015), Nezafat and Slavik (2010), Del Negro, Eggertsson, Ferrero, and
Kiyotaki (2017), Ajello (2016), and Bigio (2012),** among many others. In particular, **Cui and Radde
(2016, 2020) and Cui (2016) propose a framework in which asset liquidity is determined by search
frictions and the supply of government debt can affect the participation in asset markets.**

3Recent papers by **Lagos and Rocheteau (2008), Rocheteau (2011), and Cao and Shi (2014) also use search models
to endogenize liquidity and asset prices, but they do not study the individual trade-offs that agents face between asset
frictions exist in many markets, such as those for corporate bonds, IPOs, and acquisitions. They can also capture many aspects of frictional financial markets with endogenous market participation (see, e.g., Vayanos and Wang, 2013; Rocheteau and Weill, 2011), while still keeping the simple structure of the neoclassical growth model. This tractability is crucial because it allows us to use all the insights from a standard Ramsey plan. In particular, we use the “primal approach” (see, e.g., Lucas and Stakey, 1983; Chari and Kehoe, 1999) to show the allocations chosen by a Ramsey planner. While not essential for our results, this asset-search specification carries the benefit of smoothing some of the kinks inherent in the financing constraints, thereby improving tractability and intuition.

The presence of liquidity constraints opens the possibility of government bonds or fiat money circulating to improve efficiency, as in Holmström and Tirole (1998). In this paper, government debt provides liquidity and has a “crowding-in” effect, similar to the one in Woodford (1990). At the same time, the need to raise distortionary taxes limits the government’s ability to flood the market with liquidity so that an optimal supply of public liquidity emerges. Our work complements that of Collard, Dellas, and Angeletos (2020), who study a model where non-state-contingent government bonds also may crowd in private investment. An important difference of our paper is that we allow for capital-income taxes, so that the tax system is complete at the macroeconomic level. This separates the role of interest-rate distortions as a way of indirectly taxing capital (whose production is facilitated by debt due to the financing frictions) from their germane role as a manipulation of relative intertemporal prices. The completeness implies that our results would extend to implementations that use other tax instruments, for example, a consumption tax or an investment credit.

A related recent literature, for example, Bassett and Cui (2018); Blanchard (2019); and Brunnermeier, Merkel, and Sannikov (2020) focuses on government debt dynamics when the interest rate is low. Our paper contributes to this body of work by analyzing optimal policy and highlighting how the government budget constraint affects financing constraints of private agents.

While taxes impinge on all of the intratemporal and intertemporal margins of households’ choices, the timing we assume rules out the possibility of the government’s directly sending differential payments to agents when they need liquidity. In this respect, our paper is different from Itskovich and Moll (2019), who study the mix of labor- and capital-income taxes as a way of redistributing across different actors along the development path of an economy with two classes of agents and financial constraints. Redistribution across different agents also plays the dominant role in Azzimonti and liquidity and prices. This channel gives rise to different degrees of liquidity constraints and risk sharing.

4 Changing the portfolio compositions of the two assets can potentially affect the real economy. More recent papers enriched the basic structure by explicitly introducing financial intermediaries that are subject to independent frictions. See, for example, Gertler and Karadi (2011) and Gertler and Kiyotaki (2010).

5 This feature is in contrast with Aiyagari and McGrattan (1998), in which government debt is a perfect substitute for capital. In their model, government debt relaxes agents’ borrowing constraints but also crowds out capital accumulation.

6 A similar setup is used in Cao (2014) to analyze inflation as a shock absorber in the government budget constraint.

7 Capital appears only in the appendix of Collard, Dellas, and Angeletos (2020). In the paper itself, the untaxed good is the “morning” good, and government debt serves a liquidity role in its consumption, rather than in investment.
Yared (2017, 2019), who consider the optimal supply of public liquidity with lump-sum taxes when agents differ in their income. Their framework also generates an incentive for the government to manipulate debt prices, keeping interest rates low and some agents liquidity constrained. Finally, redistribution also takes center stage in Chien and Wen (2018, 2020), who revisit capital-income taxation and debt in incomplete-markets models à la Bewley. Our paper complements theirs. Although the frictions are substantially different, as capital tends to be overprovided in Bewley models, while it is underprovided in models of financial constraints on capital, a common theme is that the government is pushed to move away from tax smoothing towards increasing debt to relax financial constraints to the extent that this is possible, and it resorts to distorting capital accumulation through taxes only when this avenue is exhausted. In contrast, the specific nature of optimal tax distortions is different in the two settings and has to be tailored to the friction that impinges on capital accumulation. A link between government debt and capital-income taxation emerges also in Gottardi, Kajii, and Nakajima (2015), in which labor income is the result of investment in human capital subject to uninsurable idiosyncratic shocks. Issuing government debt partly backed by capital-income tax revenues is an optimal way of indirectly providing insurance against this risk.

Finally, a different motive for manipulating interest rates is analyzed in Farhi, Golosov, and Tsyvinski (2009), in which this distortion is introduced to alleviate the impossibility of signing exclusive contracts with financial intermediaries in the presence of private information.

The paper has the following structure. The two-period economy in which entrepreneurs can sell a fixed fraction of capital is our focus in Section 2. In Section 3, we posit a more primitive intermediation technology and endogenize the fraction of capital sold, proving that our conclusions are robust to this more tractable environment. Section 4 extends the analysis to an infinite-horizon economy and studies the properties of the limiting allocation. Section 5 provides a quantitative assessment of the theory, and Section 6 concludes.

2 A Simple Two-Period Framework

We start our analysis with a two-period model. Both the provision of public liquidity and private assets’ degree of illiquidity are exogenous in this section. We analyze how liquidity frictions affect the choice of distorting return on capital and interest rates and how this choice depends on the fiscal constraints faced by the government. Throughout the paper, we use lowercase variables for individual choices and uppercase ones for aggregate allocations, except for prices and taxes.

2.1 The Environment

In period 1, a continuum of firms can produce output by using labor using a constant-returns technology, with one unit of labor normalized to produce one unit of output. In period 2, the firms have a
technology \(F(K_1, L_2) \), where \(K_1 \) and \(L_2 \) are capital and labor utilized in period 2. We assume that \(F \) satisfies Inada conditions, so we can neglect corner solutions. Firms hire labor and rent capital in competitive markets at the wage rates \((w_1, w_2)\) and the rental rate \(\tilde{r}_2 \).

The economy is populated by a continuum of families, each of which has a continuum of agents. In period 1, they start with some (exogenous) government debt \(B_0 \). A fraction \(\chi \) of agents from each household are revealed to be entrepreneurs, and the remainder \(1 - \chi \) are workers. Entrepreneurs and workers are separated at the beginning of the period. In total, the entrepreneurs have \(B_0^e \) units of government bonds, whereas workers have \(B_0^w \) units,\(^8\) and we define total per-capita bonds to be

\[
B_0 = B_0^e + B_0^w.
\]

Period 1. Workers supply labor to the firms. Entrepreneurs do not supply labor. Rather, in period 1, they can turn one unit of the firms’ output into one unit of new capital to be used in period 2. This ability will be used only in the first period, since the economy ends after period 2. The amount that each entrepreneur invests is \(k_1^e \), the amount of capital available at the beginning of period 2.

Entrepreneurs cannot sell the capital directly, but they can sell claims to the capital \(k_1^e \) in a frictional competitive market in the amount \(s_1^e \):

\[
s_1^e \leq \phi_1 k_1^e,
\]

where \(\phi_1 \) is asset liquidity. An entrepreneur has internal funds arising from holdings of government debt, which are equal to \(R_1 B_0^e / \chi \), where \(R_1 \) is an exogenous initial return on government debt (included only for symmetry of notation with period 2). The entrepreneur’s budget constraint is

\[
k_1^e \leq R_1 B_0^e / \chi + q_1 s_1^e.
\]

Entrepreneurs can “borrow” only by selling claims to capital at the price \(q_1 \), and at the end of the period, any leftover funds after investment has taken place are brought back to the family. If constraint (2) is binding, entrepreneurs use all of their available funds to undertake new investment.

Workers use some income to buy new claims to capital from entrepreneurs and new government debt \(b_1^w \), and they return the remaining funds to the family. Their period-1 budget constraint is

\[
q_1^w s_1^w + b_1^w \leq R_1 B_0^w / (1 - \chi) + w_1 \ell_1,
\]

where \(s_1^w \geq 0 \) is the end-of-period private claims on capital that they purchase, \(\ell_t \) is their labor supply, and \(q_1^w \) is the price at which claims to capital can be bought.

\(^8\)The per-entrepreneur level of initial bonds is therefore \(B_0^e / \chi \), and the per-worker amount is \(B_0^w / (1 - \chi) \). In multi-period versions, the entrepreneurs’ identity will not be known ex ante and \(B_0^e / \chi = B_0^w / (1 - \chi) \). We separate the two initial conditions in order to study how the problem changes as a function of the entrepreneurs’ initial net worth.
At the end of the first period, entrepreneurs and workers rejoin their family, pool their capital and their leftover funds, pay taxes, and consume. The family’s constraint is

\[c_1 = (1 - \tau^f_1)w_1(1 - \chi) + R_1B_0 - (1 - \chi)b_1^w - (1 - \chi)q_1^w s_1^w - \chi(k_1^e - q_1 s_1^e), \tag{4} \]

where \(c_t \) is the family’s consumption in period \(t \), and \(\tau^f_t \) is the tax rate on labor income.

Claims to capital are subject to an intermediation cost. Intermediaries are competitive, and their cost is \(\eta \) per unit of capital intermediated; therefore, we have

\[q_1^w = \eta + q_1. \tag{5} \]

In period 1, the budget constraint for the government ensures that its revenues from labor-income taxation and new borrowing cover debt repayments as well as any government spending \(G_1 \):

\[G_1 + R_1B_0 = B_1 + \tau^f_1w_1L_1. \tag{6} \]

Period 2. The second and final period is similar to the first, except that no new investment takes place, so entrepreneurs no longer have any role. We can then collapse the two subperiods and write the joint family budget constraint simply as

\[c_2 = (1 - \tau^f_2)w_2(1 - \chi)\ell_2 + [(1 - \tau^k_2)\tilde{r}_2] [\chi(k_1^e - s_1^e) + (1 - \chi)s_1^w] + R_2(1 - \chi)b_1^w, \tag{7} \]

where \(\tau^f_2 \) is the labor-income tax in period 2, \(\tau^k_2 \) is the capital-income tax in period 2, and \(R_2 \) is the return of government bonds between period 1 and period 2.

The government budget constraint is

\[G_2 + R_2B_1 = \tau^k_2\tilde{r}_2K_1 + \tau^f_2w_2L_2, \tag{8} \]

where \(G_2 \) is government spending in the second period. In contrast to period 1, the government is allowed to tax (or subsidize) capital in the second period at a rate \(\tau^k_2 \), and our goal is to study how this power, together with interest rate \(R_2 \), is used in the presence of financial frictions.

The household preferences are represented by

\[\sum_{t=1}^{2} \beta^{t-1} [u(c_t) - v((1 - \chi)\ell_t)], \tag{9} \]

9Note that the individual labor supply is normalized in per-worker terms, while the aggregate labor supply is in per-capita terms. So, an aggregate labor supply \(L_1 \) corresponds to \(L_1/(1 - \chi) \) for each worker. Similar normalizations occur for aggregate capital \(K_1 \), bonds \(B_1 \), and intermediated capital \(S_1 \).
where u and v are strictly increasing and continuously differentiable functions, u is weakly concave, and v is strictly convex.10

2.2 Competitive Equilibrium

Next, we characterize a competitive equilibrium. The household maximizes (9), subject to (1), (2), (4), and (7), taking prices and taxes as given. We note that in any equilibrium in which $q_1 < 1$, there would be no sales of capital.11 With this observation, we can limit our analysis to $q_1 \geq 1$ without loss of generality.12

From the intermediaries’ and firms’ optimality conditions, we obtain (5),

$$w_1 = 1, \quad w_2 = F_L(K_1, L_2), \tag{10}$$

and $\tilde{r}_2 = F_K(K_1, L_2)$.

From the families’ necessary and sufficient first-order conditions, we obtain

- labor supply in period $t = 1, 2$:
 $$(1 - \tau^k_t) w_t u'(C_t) = v'(L_t); \tag{12}$$

- demand for government bonds:
 $$1 = \frac{\beta u'(C_2)}{u'(C_1)} R_2; \tag{13}$$

- demand for claims on capital:
 $$q_1^w \geq \frac{\beta u'(C_2)}{u'(C_1)} (1 - \tau^k_2) \tilde{r}_2; \tag{14}$$
 with equality if $S_1 > 0$;

- investment and supply of claims:
 $$u'(C_1) \leq \beta u'(C_2)(1 - \tau^k_2) \tilde{r}_2, \tag{15}$$
 with equality if $S_1 = 0$; and

10The particular choice of scale for the function v is a pure normalization that is convenient for obtaining simpler expressions when studying the aggregate allocation.

11To see this, consider a family whose entrepreneurs are selling capital. By reducing investment and capital sales one for one, the family can simultaneously relax the constraints (1), (2), and (4). The last budget constraint is necessarily binding, since families would otherwise increase their consumption; hence, the original plan cannot be optimal.

12For any competitive equilibrium in which $q_1 < 1$, there exists a competitive equilibrium with the same allocation and the same prices, except for $q_1 = 1$ and $q_1^w = 1 + \eta$.

7
the financing constraint of an entrepreneur implies
\[q_1 = \max \left\{ 1, \frac{K_1 - R_1 B_0}{\phi_1 K_1} \right\}. \] (16)

In addition, a competitive-equilibrium allocation must satisfy the government budget constraints (6) and (8) and the resource constraints:
\[L_1 = C_1 + K_1 + (q_1^w - q_1) S_1 + G_1, \] (17)
and
\[F(K_1, L_2) = C_2 + G_2. \] (18)

By Walras’s law, the household budget constraints (4) and (7) must be satisfied as an equality by the aggregate allocation (chosen by the representative family). Furthermore, consumption is always strictly positive, and it is always weakly preferable for a household to first use the workers’ resources to fund consumption and cut back on the entrepreneurs’ investment only after these are exhausted. Therefore, equation (3) does not bind in equilibrium: it constrains workers not to invest more than all of their earnings and assets and is slack if something is left for consumption.

Definition. A competitive equilibrium is an allocation \(\{C_t\}_{t=1}^2, \{L_t\}_{t=1}^2, \text{ and } K_1; \) asset prices \(\{q_1^w, q_1\}; \) wage rate \(\{w_t\}_{t=1}^2; \) capital income rate \(\tilde{r}_2; \) and an interest rate \(R_2, \) such that (5), (6), (8), and (10)-(18) are satisfied, given a labor-income tax rate \(\{\tau_\ell\}_{t=1}^2, \) capital-income tax rate \(\tau_k, \) and bond supply \(B_1. \)

In any competitive equilibrium, market clearing implies that \(S_1 \equiv S_1^w = S_1^c, \) where \(S_1 \) is the per-capita level of intermediated capital. If \(q_1 > 1, \) then both the financing constraint and the entrepreneurs’ budget constraint (1) and (2) bind; if \(q_1 = 1, \) (1) is certainly slack and (2) may or may not bind.

2.3 Optimal Policy with Zero Intermediation Costs

We start from the case in which intermediation costs are absent \((\eta = 0). \) The financing constraint is the only departure from a standard neoclassical growth model.

Forming the Policy Problem We study the Ramsey outcome, that is, the best competitive equilibrium that maximizes (9). To do so, we follow the primal approach, deriving a set of necessary and sufficient conditions for an allocation to be part of a competitive equilibrium, without reference to prices and tax rates. These conditions include a restriction that allows us to derive intermediated capital \(S_1 \) given the other variables (equation (19) below), and it is thus convenient to substitute this variable out from the policy problem.

Given any allocation, we can ensure that (10) and (11) hold by setting factor prices \(w_t \) and \(\tilde{r}_t \) to the appropriate marginal product. Similarly, we can ensure that (12) holds with a suitable choice of
τ^t_t for t = 1, 2 and (13) holds for the appropriate choice of R_2. Without loss of generality, we set R_1 = 1.

Next, in order for (1) and (2) to hold and for S_1 to be optimally chosen, we must have

\[S_1 = \begin{cases}
0 & \text{if } K_1 \leq (1 - \phi_1)K^* \\
K_1 - (1 - \phi_1)K^* & \text{if } K_1 \in ((1 - \phi_1)K^*, K^*] \\
\phi_1 K_1 & \text{if } K_1 > K^*,
\end{cases} \] \quad (19)

where K^* is the maximum level of investment that entrepreneurs can finance when q_1 = 1, and (1 - \phi_1)K^* is the maximum that they can finance using internal funds only:

\[K^* := \frac{B_0}{\phi_1}. \]

As a result, τ^2_k can be chosen so that either (14) or (15) hold as an equality, depending on whether S_1 is 0 or positive, with the remaining equation holding as the appropriate inequality. Finally, equation (16) can be used to determine q_1 and (5) to determine q_w^1.

The remaining conditions that characterize a competitive equilibrium are the following:

- the resource constraints (17) and (18); and
- the household budget constraints evaluated at the aggregate allocation, (2), (4), and (7). \(^{13}\)

Substituting prices and tax rates from the first-order conditions, we can aggregate the household budget constraints into the following implementability constraint for period 1 and period 2:

\[\sum_{t=1}^{2} \beta^{t-1} [u'(C_t)C_t - v'(L_t)L_t] = u'(C_1)B_0 + \begin{cases}
0 & \text{if } K_1 \leq K^* \\
\left(\frac{1}{\phi_1} - 1 \right) u'(C_1)(K_1 - K^*) & \text{if } K_1 > K^*,
\end{cases} \] \quad (20)

As usual in Ramsey problems, the implementability constraint represents the cost of the government’s not having access to lump-sum taxation. \(^{14}\)

The implementability constraint has two branches corresponding to the two possible types of equilibria. First, the financing constraint can be slack with the price of capital q_1 = 1. This happens either when the entrepreneurs are sufficiently wealthy to finance all of the investment internally or when they issue claims to capital that fall short of the constraint (1). In this case, our economy behaves as a standard neoclassical growth model. Second, when the financing constraint is binding, a new term

\(^{13}\)The financing constraint (1) holds by construction when (19) holds.

\(^{14}\)We assume here that any lump-sum transfers would be paid to the households after investment has taken place, so that they do not relax the financing constraint (2). In this case, the binding side of the constraint is that the left-hand side must be no smaller than the right-hand side, as is the case in standard Ramsey problems.
appears in (20); this term captures the fact that when financing constraints are binding, entrepreneurs face an intertemporal trade-off different from that faced by workers. When the present-value budget constraint is evaluated at the trade-off faced by workers, who are the unconstrained agents in the family, capital appears as an extra source of revenues. This happens because the entrepreneurs require only one unit of period-1 good to produce one unit of capital, but the price of capital is $q_1 > 1$, and the last term in (20) captures the family’s profits from investment. These profits emerge because entrepreneurial net worth plays the same role as a factor of production: it expands the economy’s ability to produce capital.\footnote{Note that K^*_1 is proportional to entrepreneurial net worth.}

Taxation of capital in the Ramsey outcome is shaped by two countervailing effects.

First, the presence of entrepreneurial net worth as a fixed factor implies that the government has an incentive to tax the associated rents, which can be done through capital-income taxes. To see this transparently, consider a modification of the environment in which the price of capital does not enter in the entrepreneurs’ constraints. Rather, (1) and (2) are replaced by a single collateral constraint that involves only the entrepreneurs’ initial net worth:

$$\theta k^e_1 \leq R_1 B_0^e / \chi,$$

where $\theta > 0$ measures the tightness of the constraint. In this scenario, as long as the financing constraint is binding, investment is fixed by initial conditions and exogenous parameters and is completely unresponsive to taxes. Then, the implementability constraint would change to

$$\sum_{t=1}^2 \beta^{t-1} [u'(C_t) C_t - v'(L_t) L_t] = u'(C_1) B_0 + \begin{cases} 0 & \text{if } \theta K_1 < R_1 B_0^e \\ \left[\beta u'(C_2) \tilde{r}_2 (1 - \tau_k^e) - u'(C_1) \right] K_1 & \text{if } \theta K_1 = R_1 B_0^e. \end{cases}$$

In the presence of a binding financing constraint, taxing capital is equivalent to taxing a pure rent or to having access to a lump-sum tax: it relaxes the implementability constraint and has no further direct effect on the allocation.\footnote{Of course, there would be an indirect beneficial effect on the allocation from the government’s ability to use the extra revenues to reduce distortionary labor-income taxes.} The government would thus optimally make τ_k^e sufficiently high that $\beta u'(C_2) \tilde{r}_2 (1 - \tau_k^e) - u'(C_1) = 0$ and so that (21) is not binding.\footnote{In a competitive equilibrium, household optimality implies that the government cannot drive $\beta u'(C_2) \tilde{r}_2 (1 - \tau_k^e) - u'(C_1) < 0$: once the financing constraint becomes slack, further increases in capital-income taxation would depress incentives to invest in the same way they do in an economy that is not subject to financing constraints.} Compared with a standard neoclassical growth model, financing constraints thus introduce an extra motive to tax capital.

Second, when (more realistically) investment can respond to changes in Tobin’s q, capital-income taxes retain their ability to capture some of the pure profits arising from entrepreneurial net worth. At the same time, they may depress investment, which is already inefficiently low. In this case, it may be optimal to subsidize capital to increase its price and relax the entrepreneurs’ financing constraint.
2.4 A Special Case

In this part, we consider the special case of a Cobb-Douglas production function, \(F(K_{t-1}, L_t) = AK_{t-1}^{\alpha}L_t^{1-\alpha} + (1 - \delta)K_{t-1} \), where \(\alpha \in (0, 1) \) is the capital share and \(\delta \) is the depreciation rate; preferences are given by

\[
u(c_t) - v(\ell_t) = c_t - \frac{\mu \ell_t^{1+\nu}}{1+\nu},\]

where \(\mu > 0 \) and \(\nu > 0 \). These preferences are convenient because they abstract from the usual incentive to distort intertemporal prices and devalue the families’ initial claims, as emphasized by Armenter (2008). Without financing constraints, they imply that the optimal tax on capital income is zero not just in the long run but in every period (except period 1, which in our model has no capital). We can thus focus on intertemporal distortions that arise from financial frictions.

We now derive the first-order necessary conditions if the Ramsey plan is interior. However, it is possible that the plan will be at the kink, which needs to be checked separately. We are particularly interested in studying comparative statics when the financing constraint is binding and Tobin’s \(q \) responds to investment. This will occur when the entrepreneurs’ wealth is sufficiently low relative to the return on capital and the government’s resources are sufficiently scarce relative to its spending.

Let \(\beta_t \lambda_t \) be the Lagrange multiplier on the resource constraint, for \(t = 1 \) and \(t = 2 \), and let \(\Psi_1 \) be the Lagrange multiplier on the implementability constraint. The planner’s first-order conditions for consumption \(C_1 \) and \(C_2 \) are

\[
\begin{align*}
\nu(C_1)(1 + \Psi_1) + \Psi_1 \nu''(C_1)C_1 - \lambda_1 - \Psi_1 \nu''(C_1)B_0 &= \begin{cases}
0 & \text{if } K_1 \leq K^* \\
\Psi_1(1/\phi_1 - 1)\nu''(C_1)(K_1 - K^*) & \text{if } K_1 > K^*;
\end{cases} \\
\nu(C_2)(1 + \Psi_1) + \Psi_1 \nu''(C_2)C_2 - \lambda_2 &= 0.
\end{align*}
\]

The planner’s first-order conditions for labor supply \(L_1 \) and \(L_2 \) are

\[
\begin{align*}
\nu'(L_1)(1 + \Psi_1) + \Psi_1 \nu''(L_1)L_1 &= \lambda_1 A; \\
\nu'(L_2)(1 + \Psi_1) + \Psi_1 \nu''(L_2)L_2 &= \lambda_2 F_L(K_1, L_2).
\end{align*}
\]

The first-order condition for capital \(K_1 \) is

\[
- \lambda_1 + \beta \lambda_2 AF_K(K_1, L_2) \begin{cases}
= 0 & \text{if } K_1 < K^* \\
\in [0, \Psi_1 \nu'(C_1)(1/\phi_1 - 1)] & \text{if } K_1 = K^* \\
= \Psi_1 \nu'(C_1)(1/\phi_1 - 1) & \text{if } K_1 > K^*.
\end{cases}
\]

11
In our special case, the marginal utility of consumption is one. From the planner’s first-order condition for consumption, we have $\lambda_1 = \lambda_2 = 1 + \Psi_1$. The labor supply in period 1 is simply a function of Ψ_1, and we can express the other two first-order conditions for labor supply and capital used in period 2 as follows:

$$\mu L^\nu \frac{1 + \Psi_1 (1 + \nu)}{1 + \Psi_1} = A (1 - \alpha) \left(\frac{K_1}{L_2} \right)^\alpha \Rightarrow L_2 = \left[A \frac{(1 - \alpha)}{\mu} \frac{1 + \Psi_1}{1 + (1 + \nu) \Psi_1} \right]^{\frac{1}{\nu + \nu}} K_1^{\frac{\alpha}{\nu + \nu}}, \quad (27)$$

$$\beta A \alpha (K_1/L_2)^{\alpha-1} = 1 - \beta (1 - \delta) + \begin{cases}
0 & \text{if } K_1 < K^* \\
\frac{\Psi_1 (\phi_1^{-1} - 1)}{1 + \Psi_1} & \text{if } K_1 = K^* \\
\frac{\Psi_1 (\phi_1^{-1} - 1)}{1 + \Psi_1} & \text{if } K_1 > K^*.
\end{cases} \quad (28)$$

Note that consumption C_1 and C_2 can be derived from the resource constraints.

Comparing the planner’s optimality condition for capital (28) with the household optimality conditions (14) and (15) (also using $\bar{r}_2 = A \alpha (K_1/L_2)^{\alpha-1} + 1 - \delta$), we have the following results.

If the allocation is such that the financing constraint is not binding, then capital-income taxes are optimally set to zero, independently of the government budget constraint’s tightness (captured by the multiplier Ψ_1). In this case, we recover the standard result that it is not optimal to tax capital as an intermediate input.\(^{18}\) This case can arise either when entrepreneurs have enough wealth to finance investment internally, in which case the private cost of investment is 1 and the social cost is $1 + \Psi_1$, or when they need to sell part of their capital but not to the point at which q needs to exceed 1. In both cases, the private reward in the second period is $\beta \bar{r}_2$, and the social reward is $\beta \bar{r}_2 (1 + \Psi_1)$. Thus, private and social costs are proportional to each other and capital-income taxes are zero; moreover, in both cases, the trade-off coincides with the marginal rate of transformation coming from technology alone, even taking into account the costs of intermediation.\(^{19}\)

When entrepreneurs are sufficiently poor that the financing constraint binds, we obtain a very different result. In this case, in the absence of capital taxes or subsidies, the private rate of return does not coincide with the marginal rate of transformation. Furthermore, changes in the level of investment have an effect on the price of capital, and a higher price of capital tightens in turn the implementability constraint, forcing the government to raise more distortionary taxes.\(^{20}\) If the government has abundant resources and $\Psi_1 \approx 0$, comparing (28) and (14) (and noting $K_1 > K^*$), we can see that the optimal policy calls for a capital subsidy. By subsidizing capital income in period 2, the government can raise the price of period-1 claims to capital, thereby relaxing the entrepreneurs’ constraints and allowing

\(^{18}\)This result also relies on our assumptions about preferences that rule out distorting intertemporal prices to devalue initial claims or to enhance the present value of taxes on labor. For more general preferences, both of these forces would be in play, as they are in a standard neoclassical growth model, and our effect would appear in addition to those.

\(^{19}\)Positive intermediation costs $\eta > 0$ would not change this result, because both private/social rewards and private/social costs would be multiplied by the same factor $1 + \eta$.

\(^{20}\)The multiplier Ψ can be viewed as the cost to the planner of starting with an extra unit of debt in period 0.
the economy to attain a higher (and more efficient) level of investment. However, as the cost of public funds Ψ_1 increases, the rents that we isolated in the case of a fixed collateral constraint become more important: financing constraints may weaken the link between investment and future capital income, so that capital-income taxes may be less distortionary than they would be in a world of perfect capital markets. For this reason, it eventually becomes ambiguous whether a government strapped for cash would subsidize or tax capital.

By assuming linear preferences, we automatically imposed from equation (13) that $R_2 = 1/\beta$; that is, the government’s choice of taxes or subsidies has no effect on the rate of return on government debt. A further channel at work when preferences are not linear is that a capital-income tax reduces the after-tax return on capital and hence further favors government debt, which is a further beneficial force in the case of a constrained government. This effect appears on the right-hand side of equation (22), and we will analyze it later in the infinite-horizon economy.

The above simplification implies that we can express all equilibrium outcomes in closed form. There are three cases, with the last case having K_1 at the kink K^*. Rather than varying B_0 and finding the implied value of Ψ_1, we find it more intuitive to graph directly the optimal solution treating Ψ_1 as a parameter and then back out the corresponding B_0 from the resulting allocation and prices and the government budget constraint.\footnote{In this experiment, B_0^e is kept fixed, so that B_0 affects the shadow cost of public funds but not the entrepreneurs’ financing constraints; all the residual bonds are allocated to the workers.}

Case 1: when $K_1 \leq K^*$. This case occurs when the financing constraint is slack. The planner’s first-order condition for capital becomes $\beta \tilde{r}_2 = 1$ and the price $q_1^w = q_1 = 1$. This condition and the household’s first-order condition for capital (Equation (14)) imply no taxes on capital: $\tau_k^2 = 0$. From the first-order conditions, we know that $K_1 = K^u_1(\Psi_1)$, where

$$K^u_1(\Psi_1) := \left[\frac{1 + \Psi_1}{1 + (1 + \nu)\Psi_1} \frac{A(1 - \alpha)}{\mu} \right]^\frac{1}{\nu} \left[\frac{1}{A\alpha} \left[\frac{1}{\beta} - (1 - \delta)\right]\right]^{\frac{\alpha + 1}{(\alpha - 1)\nu}}, \tag{29}$$

which is a decreasing function of Ψ_1. A higher Ψ_1 implies higher labor-income taxes, which (given our preferences) reduces the labor supply and discourages investment.

Case 2: when $K_1 > K^*$. We can express labor supply L_2 and capital stock K_1 as functions of Ψ_1. We know that $K_1 = K^e_1(\Psi_1)$, where

$$K^e_1(\Psi_1) := \left[\frac{1 + \Psi_1}{1 + (1 + \nu)\Psi_1} \frac{A(1 - \alpha)}{\mu} \right]^\frac{1}{\nu} \left[\frac{1}{A\alpha} \left[\frac{\phi_1 + \Psi_1}{\phi_1(1 + \Psi_1)\beta} - (1 - \delta)\right]\right]^{\frac{\alpha + 1}{(\alpha - 1)\nu}}, \tag{30}$$

which is also a decreasing function of Ψ_1 after noticing that $\phi_1 \in (0, 1)$ and $\alpha \in (0, 1)$.

Since $(\phi_1 + \Psi_1) / \phi_1 (1 + \Psi_1) > 1$, $K^e_1(\Psi_1) \geq K^u_1(\Psi_1)$, with the inequality being strict for any $\Psi_1 > 0$. It follows that case 1 will occur when $K^e_1(\Psi_1) < K^*$, so that the financing constraint is
slack; case 2 will occur when \(K_c^c(\Psi_1) > K^*\), in which case the financing constraint binds and the level \(K_c^c(\Psi_1) > K^*\) can be financed only because \(q_1 > 1\). When \(K^* \in [K_c^c(\Psi_1), K_u^c(\Psi_1)]\), we obtain the third case below.

Case 3: \(K_1 = K^*\). Labor in period 2 can be still expressed as in (27) by setting \(K_1 = K^*\). At this kink, the incentive for the government to tax or subsidize capital undergoes a jump represented by the two branches of Equation (28). As \(\Psi_1\) increases and the government budget constraint tightens, the tax on labor must increase, discouraging labor supply in period 2. However, because of the kink, the optimal level of capital stays constant for a range of values of \(\Psi_1\), with capital taxation adjusting to ensure that this is the case.

To further characterize the solution, we note that both \(K_u^c(\Psi_1)\) and \(K_c^c(\Psi_1)\) are strictly decreasing in \(\Psi_1\). When \(\Psi_1 = 0\), the government has sufficient wealth at the beginning that the shadow cost of resources in the government budget constraint is zero. In this case, the government can undo the effect of financial constraints by subsidizing the return on capital in the second period, thereby raising the price of capital \(q_1\) to a level that replicates the efficient level of investment in the absence of constraints, which is why \(K_c^c(0) = K_u^c(0)\). In contrast, for any \(\Psi_1 > 0\) (i.e., when the government is forced to raise revenues through distortionary means), if the solution to the Ramsey problem ignoring the financing constraint would violate the constraint itself, we have \(K_u^c(\Psi_1) > K^*\): it is never optimal for the planner to subsidize capital to the point that the constraint is slack from the perspective of the households and that households thus invest \(K_u^c(\Psi_1)\). The properties of \(K_u^c(\Psi_1)\) and \(K_c^c(\Psi_1)\) allow us to describe how the Ramsey allocation changes with \(\Psi_1\), fixing other parameters.

Proposition 1. The Ramsey allocation can be characterized as follows:

- The economy under the planner’s allocation is financially unconstrained, regardless of \(\Psi_1\), if \(K^* \geq K_c^c(0) = K_u^c(0)\).

- If \(K_u^c(0) > K^* > K_u^c(\infty)\), then the economy is financially constrained for small levels of \(\Psi_1\) and capital is given by \(K_1 = K_c^c(\Psi_1)\); the economy is financially unconstrained for large values of \(\Psi_1\) and capital is given by \(K_1 = K_u^c(\Psi_1)\); and there is an intermediate range of values of \(\Psi_1\) for which the Ramsey allocation has capital exactly at the kink.

- If \(K_u^c(\infty) \geq K^* > K_c^c(\infty)\), then the economy is financially constrained for small levels of \(\Psi_1\) and capital is given by \(K_1 = K_c^c(\Psi_1)\), and it is at the kink for higher values of \(\Psi_1\).

- Finally, the economy is always financially constrained for any \(\Psi_1 \geq 0\) and capital is \(K_1 = K_c^c(\Psi_1)\) if \(K_c^c(\infty) \geq K^*\).

A Numerical Example In what follows, we use a numerical example to illustrate the preceding results. We consider parameter combinations that lead to a binding financing constraint and also others that make it slack.
Consider the following parameters: $\beta = 0.96$ (discount factor), $\alpha = 0.33$ (capital share), $\delta = 0.95$ (depreciation rate), $\mu = 1$ (disutility parameter of labor supply), $\nu = 1$ (labor supply elasticity), $A = 1$ (productivity), and $\phi = 0.5$ (asset liquidity). With linear utility in consumption, the Ramsey allocation depends on government spending only through the multiplier Ψ_1, and we thus do not need to explicitly specify it, as explained above.22 We plot $K_1^u(\Psi_1)$ and $K_1^c(\Psi_1)$. As shown before, both are downward sloping, and $K_1^u(0) = K_1^c(0)$. However, the two curves converge to different levels with $K_1^u(\infty) > K_1^c(\infty)$. The critical value $K^* = B_0^c/(1 - \phi_1)$ is a horizontal line whose position depends on the parameter values. As shown by the proposition, four possibilities emerge. The first possibility is trivial: when $K^* > K_1^u(0) = K_1^c(0)$, the economy is always unconstrained. We now show the remaining three scenarios.

- When the liquidity is insufficient, the economy is always constrained. This happens when $K^* \leq K_1^c(\infty)$. Figure 2 illustrates this case for three possible values of K^* equal to 100%, 90% and 80% of the critical threshold $K_1^c(\infty)$. As Ψ_1 goes from zero to infinity, the planner initially implements a capital subsidy (between 80% and 90%), but as the budget tightens, this turns into a capital tax. The capital tax converges to a level in the range of 20%-25% as $\Psi_1 \to \infty$. For this special example, the allocation in terms of capital and labor used in period 2 is independent of the initial level of internal funds in the hands of the entrepreneurs, as long as it remains such that $K^* \leq K_1^c(\infty)$. Taxes and asset prices adjust to exactly offset the effect of tighter financing constraints. The less liquidity is given to entrepreneurs, the more capital is subsidized when Ψ_1 is small, and the less it is taxed for large values of Ψ_1.

22The level of initial debt B_0 that corresponds to a given Ψ_1 is of course different based on the spending process.
Figure 2: Economies with always binding financing constraints.

- When entrepreneurs hold higher values of liquidity, we enter the range illustrated in Figure 3. The pink dashed line shows what happens when the Ramsey solution hits the kink and remains there as $\Psi_1 \to \infty$. As in the previous case, it is optimal to implement subsidies for low values of Ψ_1 and taxes for higher values. The difference is that the capital income tax becomes decreasing once the government hits K^*. When Ψ_1 goes up, the government needs to tax more. In order to keep investment at K^*, the labor-income tax increases and it is necessary to reduce the capital-income taxes.

- When entrepreneurs hold even higher levels of liquidity, (e.g., when $K^* = [K_1^u(0) + K_1^u(\infty)]/2$, represented by the black lines in Figure 3), we get $K_1 = K_1^*$ for intermediate ranges of Ψ_1. When public resources are abundant and Ψ_1 is low, the planner finds it better to choose the allocation in the constrained region, which calls for a capital subsidy. As the government budget tightens, the optimal capital level drops, and the subsidy eventually turns into a tax, until the kink K^* is attained. As Ψ_1 grows, the government keeps increasing labor taxes, but it maintains capital at the kink K^* by lowering capital taxes. For even higher values of Ψ_1, the labor-income tax is so large that the optimal level of capital is below the one at which financing constraints bind. From this point forward, there are no further quasi-rents to be extracted, and the optimal capital-income tax is zero. As the economy becomes unconstrained, q_1 falls to unity.

\[23\] The specific value that we choose to illustrate this case is $K^* = K_1^u(\infty)$.

16
3 Endogenous Asset Liquidity

To study the long-run properties of the Ramsey policy and explore some quantitative implications, we need to extend the model to an infinite horizon. However, before we do so in Section 4, we provide microfoundations that allow for asset liquidity ϕ and the cost of trading to be endogenous. We make this choice for two reasons. First and foremost, doing so gives us tractability in computing numerical examples. In an infinite-horizon economy, the kink in each period at the infinite-horizon equivalent of K^* would lead to a proliferation of kinks in optimal policy in previous periods. The microfoundations upon which we build smooth that kink,24 without affecting the economic intuition developed in the previous section, as we will show below. Moreover, there is a further economic reason to move in this direction. Cui and Radde (2020) have shown that endogenizing asset liquidity is crucial for generating the positive co-movement of ϕ and q, which is empirically supported and crucial for amplifying financial shocks.25

24While a kink remains at the point at which entrepreneurs start accessing external funds, the price of capital smoothly moves from one region to the other, so that no kinks are present in the implementability constraint.

25In a general equilibrium framework like this one, exogenous negative shocks to asset liquidity push up the price q to reflect the scarcity of assets. The key is that the financing constraint is also tied to asset liquidity, so part of q reflects the tightness of the financing constraint. See Shi (2015) for a critique of models relying on exogenous financial shocks. A negative co-movement of ϕ and q can stabilize financial shocks, because ϕq together matters for investment financing.
3.1 Competitive Equilibrium with Search-and-Matching

Following Moen (1997), who studied directed search in labor markets, we assume that intermediaries set up private-claims markets where trade occurs and compete by offering a given cost of trading (measured by the bid/ask spread) and market tightness. The competition among market makers implies that they will offer Pareto-optimal contracts for buyers and sellers. Beyond that, the price will reflect market clearing.

The fraction of claims to capital that entrepreneurs are able to sell, ϕ_1, is directly related to market tightness. We assume that financial intermediaries need to pay a cost $\eta = \eta(\phi_1)$ to intermediate one unit of capital in a market with tightness ϕ_1. We assume that $\eta(0) = \eta'(0) = 0$ and $\eta(\cdot)$ is convex and twice continuously differentiable. Cui and Radde (2020) and Cui (2016) provide complete microfoundations for these assumptions in a world in which intermediation is subject to search frictions that prevent a full match between buyers and sellers of (claims to) capital.

Under these assumptions, for each value of ϕ_1, the competitive financial intermediation sector will set the bid/ask spread according the following revised version of (5):

$$ q^w_1 - q_1 = \eta(\phi_1). \quad (31) $$

The left-hand side of (31) is the revenue for intermediating capital, and the right-hand side is the cost. Hence, given a price q^w_1 paid by workers to acquire one unit of capital, entrepreneurs face a trade-off between asset liquidity ϕ_1 and the price q_1 that they fetch for their sale. The assumption that $\eta(0) = \eta'(0) = 0$ implies that there is no kink at the point in which entrepreneurs stop selling capital. At this point, there are no intermediation costs, and both q_1 and q^w_1 converge smoothly to 1.

Consider an entrepreneur who participates in a market of saleability ϕ_1 in which the price is q_1. Combining the entrepreneurs’ budget and financing constraints, we obtain that the claims to capital that an entrepreneur brings back to the household $k^e_1 - s^e_1$ satisfy

$$ q^r_1 (k^e_1 - s^e_1) \leq R_1 B^e_0 / \chi, \quad (32) $$

where $q^r_1 \equiv \frac{1 - \phi_1 q_1}{1 - \phi_1}$.

We can interpret q^r_1 as the replacement cost of capital. To bring back a claim to one unit of capital to the household, an entrepreneur produces $1/(1 - \phi_1)$ units; this investment is financed by selling claims to $\phi_1/(1 - \phi_1)$ units at a price q_1 and by the initial assets.\(^\text{26}\)

In equilibrium, since all sellers (and all buyers) are identical, only one market will be open. Specifically, in a directed search environment, an entrepreneur chooses the market that will offer her the

\(^{26}\)This equation remains valid even when entrepreneurs do not sell any claims to their new investment. When this occurs, $\phi_1 = 0$ and $q_1 = 1$.

18
lowest value of q^r_1 and also maximizes the amount of claims to capital that she can bring to the household at the end of the period. Market makers will offer contracts only on the Pareto frontier. We index the Pareto frontier by the price q^w_1 at which workers can buy claims to capital. We can then trace it by solving
\[
\min_{(\phi_1, q_1)} q^r_1 = \frac{1 - \phi_1 q_1}{1 - \phi_1}, \quad \text{subj. to } (31).
\]
Substituting the constraint and taking first-order conditions, we obtain
\[
q^w_1 = 1 + \eta(\phi_1) + (1 - \phi_1)\phi_1 \eta'(\phi_1).
\tag{33}
\]
Equation (33) defines an implicit positive relationship between the price workers are willing to pay for a claim to one unit of capital and the entrepreneurs’ search intensity, which maps into the fraction of capital that they sell. When $q^w_1 = 1$, $\phi_1 = 0$ and entrepreneurs retain all of the capital that they produce. As q^w_1 increases above 1, $\phi_1 > 0$ and entrepreneurs sell some of their capital. The specific point on the Pareto frontier between buyers and sellers that corresponds to the open market is determined by market clearing. Under endogenous liquidity constraints, the competitive equilibrium is thus characterized by conditions (10)-(18) plus (31) and (33). Equations (31) and (33) imply $q_1 \geq 1$, so that the relevant term in the maximum in equation (16) is always the second one.

Proposition 2. In a competitive equilibrium, either the financing constraint is slack, in which case $\phi_1 = 0$ and $q_1 = q^w_1 = 1$, or $\phi_1 > 0$.

Proof. See Appendix C.

Appendix A derives the necessary first-order conditions for a Ramsey outcome and studies their implications. As in the case of exogenous trading costs, optimal capital taxation in the presence of financing constraints is driven by a trade-off between the desire to subsidize investment, the desire to alleviate its underprovision, and the benefit of taxing the rents accruing to entrepreneurs in the face of binding financing constraints. To show this transparently, we return to the special case of preferences and technology from Section 2.4, while introducing endogenous intermediation costs.

To illustrate how the solution changes, we consider again the special case of Section 2.4. It has the same parameter values, except that now
\[
\eta(\phi) = \omega_0 \phi^{\omega_1}.
\]
Figure 4 shows the economy with $\omega_0 = 0.2$ and $\omega_1 = 2$.\footnote{We have experimented with different sets of values for ω_0 and ω_1, and the qualitative results shown below are robust. An increase of ω_0 leads to higher capital taxes, while an increase of ω_1 does the opposite. Intuitively, an increase of ω_1 makes the intermediation cost more elastic to the quantity to be sold, which calls for smaller taxes; the planner should reduce intervention. Financial frictions and the quasi-rents accruing to entrepreneurs are increased by ω_0.} We set the initial level of debt to an intermediate level, so that the optimal plan features both constrained and unconstrained regions, depending
on the government budget constraint’s tightness. When $\Psi_1 = 0$, as in Section 2, it is optimal to subsidize capital and overcome its underprovision. As Ψ_1 increases from zero and government finances become tighter, the subsidy turns into a tax, but the capital tax eventually vanishes when Ψ_1 becomes large enough, as q_1 approaches 1 and the rents accruing to the entrepreneurs vanish. Therefore, we have a hump-shaped pattern, a smoothed outcome of the economy with exogenous asset liquidity.

4 The Infinite-Horizon Economy

We now extend the model and analyze the Ramsey policy with an infinite horizon.

4.1 The Setup

We adopt the same notation as previous sections. The household’s utility in (9) is now

$$
\sum_{t=0}^{\infty} \beta^t [u(c_t) - v((1 - \chi)\ell_t)] .
$$

(34)

Production of general consumption goods in each period occurs according to a constant-returns-to-scale technology $A_tF(K_{t-1}, L_t)$ employing capital and labor, and capital depreciates at the rate δ. The government again has an exogenous stream of spending G_t for any $t \geq 0$.

All households start with some initially given claims to capital K_{-1} and bonds B_{-1}.\(^\text{28}\) In our

\(^{28}\)Every period, existing claims to capital are also reduced according to the capital depreciation rate.
two-period economy, we distinguished between the bonds issued by the government and those held by entrepreneurs, so that we could independently discuss the consequences of tightening government finances (by increasing B_0) and loosening financing constraints (by increasing B_0^e). Now, in each period, each member of a household has an i.i.d. chance χ of being an entrepreneur and a $1-\chi$ chance of being a worker. This opportunity is realized after the household has allocated bonds, so that $b^e_t = b^e_{t-1}$ at the individual family level.\footnote{In aggregate terms, entrepreneurs will thus have χB_t units of government debt.} Similarly, each member of a household will start period t with k_{t-1} units of claims to capital. An entrepreneur can finance new investment by selling her government bonds as well as claims to capital; we treat existing and new capital symmetrically, with both subject to intermediation costs. We thus have

$$k^e_t \leq R_t b_{t-1} + q_t s^e_t \text{ and } s^e_t = \phi_t [k^e_t + (1-\delta)k_{t-1}].$$

These two constraints can be combined as

$$(1-\phi_t q_t)k^e_t \leq R_t b_{t-1} + \phi_t q_t (1-\delta)k_{t-1}. \quad (35)$$

The household budget constraint (using r_t as the rate of return on capital gross of depreciation) is

$$c_t + (1-\chi)b^w_t + (1-\chi)q^w_t s^w_t + \chi (k^e_t - q_t s^e_t) = (1-\tau^e_t)w_t(1-\chi)\ell_t + R_t b_{t-1} + (1-\tau^k_t)r_t k_{t-1}. \quad (36)$$

The asset positions evolve according to

$$b_t = (1-\chi)b^w_t \text{ and } k_t = (1-\delta)k_{t-1} + (1-\chi)s^w_t - \chi s^e_t + \chi k^e_t.$$

As was the case before, only workers accumulate government bonds. A household’s claims to capital at the beginning of period $t+1$ (which are k_t) include claims to undepreciated capital from the previous period, which are $(1-\delta)k_{t-1}$, new purchases from workers $(1-\chi)s^w_t$, and physical investment by entrepreneurs χk^e_t net of claims sold χs^e_t.\footnote{In a symmetric equilibrium, $(1-\chi)s^w_t = S^w_t$, $\chi s^e_t = S^e_t$, and market clearing requires $S^w_t = S^e_t$. Capital evolves according to $K_t = (1-\delta)K_{t-1} + K^e_t$, where K^e_t is the aggregate investment undertaken by entrepreneurs.} For convenience, we will work with the following budget constraint, which uses the budget constraint above and the evolution of assets so that b_t and k_t show up on the left-hand side:

$$c_t + b_t + q^w_t k_t = (1-\tau^e_t)w_t(1-\chi)\ell_t + R_t b_{t-1} + (1-\tau^k_t)r_t k_{t-1}$$

$$+ [q^w_t - \chi \phi_t (q^w_t - q_t)] (1-\delta)k_{t-1} + [q^w_t - 1 - \phi_t (q^w_t - q_t)] \chi k^e_t. \quad (36)$$

The intermediation of private claims follows directed search implemented by financial intermedi-
aries with free entry:
\[q_t^w - q_t = \eta(\phi_t). \]

\section*{4.2 Competitive Equilibrium}

A typical household maximizes (34), subject to the financing constraint (35) and the budget constraint (36). The wage rate and the rental rate are the marginal products of labor and capital

\[w_t = A_t F_L(K_{t-1}, L_t); \]
\[r_t = A_t F_K(K_{t-1}, L_t). \]

For asset intermediation, we can immediately extend the result from (33) in the two-period model to any arbitrary period \(t \):

\[q_t = 1 + (1 - \phi_t) \phi_t \eta'(\phi_t). \]

In equilibrium, the aggregate quantities are the same as individual quantities, because all households are identical; that is, \(K_t = k_t \), \(B_t = b_t \), \(L_t = (1 - \chi) \ell_t \), and \(C_t = c_t \). Additionally, the total assets being intermediated are

\[S_t = (1 - \chi) s_t^w = \chi s_t^e = \phi_t [K_t - (1 - \delta) K_{t-1}] + \phi_t \chi (1 - \delta) K_{t-1}; \]

entrepreneurs sell a fraction \(\phi_t \) of new investment and of their holdings of previous undepreciated capital. After we use (41), the goods market clearing condition is thus

\[C_t + G_t + [1 + \phi_t \eta(\phi_t)] K_t = A_t F(K_{t-1}, L_t) + [1 + (1 - \chi) \phi_t \eta(\phi_t)] (1 - \delta) K_{t-1}, \]

where \(G_t \) is the exogenous stream of government expenditures.

Given our assumption of a representative household, the aggregate allocation must satisfy the individual households’ optimality conditions. The first-order condition for labor is

\[(1 - \tau_t^L) w_t u'(C_t) = u'(L_t), \]

for any \(t \geq 0 \). Let \(\beta^t u'(C_t) \chi \rho_t \) be the Lagrange multiplier attached to the financing constraint (35), where the scaling \(u'(c_t) \chi \) simplifies the derivation in the following. We determine \(\rho_t \) from the first-

\footnote{To be specific, an entrepreneur maximizes the amount of claims brought to the household, which is \((1 - \phi_t) [k_t^e + (1 - \delta) k_{t-1}] \) because a fraction \(\phi_t \) of \(k_t^e + (1 - \delta) k_{t-1} \) is sold. The entrepreneur’s financing constraint can be rewritten as

\[\frac{1 - \phi_t q_t}{1 - \phi_t} (1 - \phi_t) [k_t^e + (1 - \delta) k_{t-1}] \leq R_t b_{t-1} + (1 - \delta) k_{t-1}, \]

so that the entrepreneur will again minimize \(q_t^w = (1 - \phi_t q_t)/(1 - \phi_t) \) to achieve her goal.}
order condition for \(k_t^e \)

\[
q^w_t - 1 - \phi_t(q^w_t - q_t) = \rho_t(1 - \phi_t q_t) \rightarrow \rho_t = \frac{q_t - 1 + (1 - \phi_t)\eta(\phi_t)}{1 - \phi_t q_t} = \frac{\phi_t \eta'(\phi_t) + \eta(\phi_t)}{1 - \phi_t^2 \eta'(\phi_t)},
\]

(44)

for any \(t \geq 0 \). The liquidity service provided by government debt is reflected by \(\rho_t \). It is only positive when entrepreneurs’ financing constraints are binding.

The household first-order condition for government bonds \(b_t \) implies

\[
1 = \frac{\beta u'(C_{t+1})}{u'(C_t)} R_{t+1} (1 + \chi \rho_{t+1}).
\]

(45)

The term \(\chi \rho_{t+1} \) in equation (45) represents the liquidity services that government bonds offer to the entrepreneurs, arising from the fact that bonds can be liquidated with no intermediation costs by the fraction \(\chi \) of household members who turn out to be entrepreneurs in any given period. This liquidity service pushes down the interest rate \(R_{t+1} \) and gives rise to the corresponding liquidity premium.

The first-order condition for capital \(k_t \) implies

\[
q^w_t = \frac{\beta u'(C_{t+1})}{u'(C_t)} \left\{ (1 - \tau_{t+1}^k) r_{t+1} + (1 - \delta) q^w_{t+1} + \chi (1 - \delta) \phi_{t+1} \left[q_{t+1}(1 + \rho_{t+1}) - q^w_{t+1} \right] \right\}.
\]

(46)

The cost for a worker to acquire one unit of (claims to) capital is represented by \(q^w_t \).\(^{32}\) In the next period, the household receives a payoff \((1 - \tau_{t+1}^k) r_{t+1} + (1 - \delta) q^w_{t+1}\) from the investment. In addition, the fraction \(\chi \phi_{t+1} \) of undepreciated capital that entrepreneurs will sell to finance further investment has an extra liquidity value captured by \(q_{t+1}(1 + \rho_{t+1}) - q^w_{t+1} \), the difference between the price at which entrepreneurs sell their capital, adjusted for the shadow value of liquidity, and the price at which workers can buy the capital back.

Definition. A competitive equilibrium is an allocation \(\{C_t, L_t, K_t, K^e_t, \phi_t\}_{t=0}^{\infty} \), a sequence of asset market prices \(\{q^w_t, q_t, r_t, R_t\}_{t=0}^{\infty} \), wage rates \(\{w_t\}_{t=0}^{\infty} \), government policies \(\{G_t, B_t, \tau_t^e, \tau_t^k\}_{t=0}^{\infty} \), shadow values of liquidity \(\{\rho_t\}_{t=0}^{\infty} \), and an exogenous sequence of productivity \(\{A_t\}_{t=0}^{\infty} \) such that (35)-(40) and (42)-(46) are satisfied and capital evolves according to \(K_t = (1 - \delta) K_{t-1} + K^e_t \).

4.3 The Ramsey Outcome

To find the best equilibrium in a frictionless economy, it is possible to write a planner problem that collapses all the constraints into feasibility (equation (42)) and a single present-value implementability condition. The presence of financing constraints implies that we cannot collapse the implementability

\(^{32}\)When \(q^w_t = 1 \), an individual household is indifferent between whether to purchase an extra unit in the market or to increase its own entrepreneurs’ investment. Hence, \(q^w_t \) remains the correct shadow cost of acquiring an extra unit of capital. This is true, even though in the aggregate, we must have \(\phi_t = 0 \); hence, no trade in capital claims takes place.
constraints into a single present-value condition; rather, we have a sequence of them. To simplify notation, from this point forward, we will write \(\eta_t, q_t^w, q_t, \) and \(\rho_t \) to denote the functions of \(\phi_t \) that are defined by \(\eta(\phi_t) \) and equations (37), (40), and (44). We also define
\[
d_t := 1 - q_t^w + \phi_t \eta_t - \chi \rho_t q_t,
\]
which is also a function of \(\phi_t \) alone.

Using the household budget constraint and the first-order conditions, we can write the implementability constraint at \(t \geq 1 \) as
\[
\begin{align*}
 u'(C_t)C_t - v'(L_t)L_t + u'(C_t)B_t + u'(C_t)(1 + \phi_t \eta_t)K_t \\
 = u'(C_{t-1}) \frac{B_{t-1}}{\beta(1 + \chi \rho_t)} + u'(C_{t-1})q_{t-1}^w K_{t-1} + u'(C_t) d_t (1 - \delta) K_{t-1}.
\end{align*}
\]
(47)
The implementability constraint at \(t = 0 \) is
\[
\begin{align*}
 u'(C_0)C_0 - v'(L_0)L_0 + u'(C_0)B_0 + u'(C_0)(1 + \phi_0 \eta_0)K_0 \\
 = u'(C_0) R_0 B_{-1} + u'(C_0)(1 - \tau_0^k) A_0 F_K(K_{-1}, L_0) K_{-1} + u'(C_0) [1 + (1 - \chi) \phi_0 \eta_0] (1 - \delta) K_{-1},
\end{align*}
\]
(48)
with \(B_{-1}, K_{-1}, R_0, \) and \(\tau_0^k \) exogenously given. We follow the tradition of exogenously limiting capital-income taxation in period 0, since this would otherwise be a lump-sum tax. Using the individual entrepreneur’s financing constraint (35) and the first-order condition for bonds, we obtain that a competitive equilibrium satisfies the following condition in the aggregate for any period \(t > 0 \):
\[
(1 - \phi_t q_t) [K_t - (1 - \delta) K_{t-1}] \leq \chi \left[\frac{u'(C_{t-1})}{\beta u'(C_t) (1 + \chi \rho_t)} B_{t-1} + \phi_t q_t (1 - \delta) K_{t-1} \right].
\]
(49)
In period 0, the financing constraint is
\[
(1 - \phi_0 q_0) [K_0 - (1 - \delta) K_{-1}] \leq \chi \left[R_0 B_{-1} + \phi_0 q_0 (1 - \delta) K_{-1} \right].
\]
(50)
Therefore, the planner maximizes the household utility (34) subject to the sequence of resource constraints represented by (42), the implementability constraints (47) and (48), and the financing constraints (49) and (50). The planner chooses the allocation \(\{C_t, L_t, K_t, B_t, \phi_t\}_{t=0}^\infty \), which consists of consumption, labor hours, capital stock, government bonds, and asset liquidity. We can back out the taxes and prices from the allocation and the other necessary conditions for a competitive equilibrium.

\[\text{In computing an optimum, we will take into account that in a competitive equilibrium, these variables are functions of } \phi_t \text{ and of no other variable that enters into the planner’s maximization problem.}\]
4.4 Long-Run Public Liquidity Provision, Capital Tax, and Interest Rates

Let $\beta_t \Psi_t$ and $\beta_t \gamma_t (C_t)$ be the Lagrange multipliers attached to implementability constraints and the financing constraints. Appendix B contains the derivation of the planner’s first-order conditions. The planner’s first-order condition for bonds is

$$\Psi_t - \frac{\Psi_{t+1}}{1 + \chi \rho_{t+1}} + \frac{\chi \gamma_{t+1}}{1 + \chi \rho_{t+1}} = 0 \implies \Psi_{t+1} = (1 + \chi \rho_{t+1}) \Psi_t + \chi \gamma_{t+1}.$$

An additional unit of debt issuance relaxes the current government budget (or implementability constraint) measured by Ψ_t. Without frictions, this would be exactly offset by a tighter budget constraint in period $t + 1$, leading to $\Psi_t = \Psi_{t+1}$. This is what happens if the financing constraint is slack in period $t + 1$. If the financing constraint is instead binding, two forces lead to $\Psi_t < \Psi_{t+1}$. First, since bonds can be liquidated without incurring intermediation costs, households are willing to hold them at a lower interest rate, which accounts for the term $1 + \chi \rho_{t+1}$, as in equation (45). Second, the additional liquidity provided by the increased supply of bonds directly relaxes the financing constraint of the entrepreneurs in period $t + 1$, which justifies the term $\chi \gamma_{t+1}$.

When the financing constraint is slack, $\Psi_t = \Psi_{t+1}$ corresponds to the standard tax-smoothing principle. In contrast, with $\Psi_{t+1} < \Psi_t$, the tightness of government budget is increasing over time. We thus obtain the following result.

Proposition 3. Assume that the economy converges to a steady state with finite allocations (finite C, K, L, and B, given finite G and A). There are two possibilities:

- The government issues enough debt to fully relax the financing constraints in the limit. In this case, Ψ_t converges to a constant; in the limit, capital-income taxes are zero and the interest rate on government debt is $1/\beta$.

- Ψ_t grows without bounds, and the economy converges to a dynamic equivalent of the top of the Laffer curve. In this case, the interest rate on government debt is lower than $1/\beta$ in the limit. In addition, if either utility is quasi-linear or the shadow cost of relaxing the financing constraint is sufficiently low in the limit, then the limiting tax rate on capital is strictly positive, $\lim_{t \to \infty} \tau^k_t > 0$, and the interest rate on government debt is lower than $1/\beta$ in the limit.

The first case applies if the government finds it feasible to flood the economy with public liquidity and it is optimal to do so. The second case occurs if the amount of debt that fully relaxes financing constraints exceeds the fiscal capacity. For the infinite-horizon economy, we cannot obtain analytical expressions even with quasi-linear utility. Moreover, for general preferences, local comparative statics may not apply if the solution “jumps” in the presence of nonconvexities. Nonetheless, when such jumps do not occur, Proposition 3 provides a generalization of the observation in Figure 2: as we
gradually move from the region in which the financing constraint is slack to that in which it is binding, taxes on capital become unambiguously positive.\(^{34}\)

5 Quantitative Analysis

5.1 Parameterization

We assume that preferences are given by

\[
\sum_{t=0}^{\infty} \beta^t \left[\frac{c^{1-\sigma} - 1}{1 - \sigma} - \mu \ell^\nu \right]
\]

and that the technology is \(AF(K, L) = AK^\alpha L^{1-\alpha}\). We set capital share \(\alpha = 1/3\), and \(A\) is normalized to 1. We will discuss \(\sigma\) and set it separately in the following subsections.

We choose \(\delta = 0.097\) and \(\beta = 0.97\) so that investment and capital are 25\% of and 2.6 times output, respectively. These are in line with standard parameters for a yearly calibration for a macroeconomic model. We set \(\nu = 2/3\), which is in line with macroeconomic labor supply elasticity, and \(\mu\) is chosen so that labor supply is 1/3 units of time in the steady state (this is just a normalization). Government spending is pinned down by targeting 20\% \(G/Y\), based on US post-war data.

Finally, \(\chi = 0.16\) corresponds to the fraction of firms adjusting capital stock each year;\(^{35}\) we again set \(\eta(\phi) = \omega_0 \phi^{\omega_1}\), where \(\omega_1 = 2\), which results from a matching function where the elasticity of matches to buy orders and saleable assets is the same and it is costly to process the buy orders, as shown in Cui and Radde (2020). Lastly, \(\omega_0 = 0.45\) is picked so that the liquidity premium of government debt is about 1\%\(^{36}\) at the time of the fiscal shock experiment to be discussed later.

5.2 Comparative Statics in the Long Run

In our main calibration pursued in the next subsection, we use a standard value of \(\sigma = 1\), with which the steady state is always unconstrained. No matter how high public debt needs to be to satiate the demand for liquidity, the government is able to sustain it by a suitable choice of taxes. This is a standard result: when the intertemporal elasticity of substitution is low, households in each period are so desperate to consume that the government is able to extract even the entire GDP in taxes. For our

\(^{34}\)There are several parameters that can be adjusted for this comparative statics exercise. The most natural one is a proportional shift in the cost of the intermediation technology.

\(^{35}\)This parameter is discussed in Shi (2015) and Cui and Radde (2020), who rely in turn on the empirical estimates in Doms and Dunne (1998) and Cooper, Haltiwanger, and Power (1999).

\(^{36}\)A popular measure of the government debt liquidity premium is the difference between yields on AAA corporate bonds and those on government bonds with similar maturity. From 1984 to 2018, the difference is about 1\%. See Cui and Radde (2020), Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017), and Krishnamurthy and Vissing-Jorgensen (2012).
transition experiments, this is not an issue, since the constraint can be binding even as the economy converges to the eventual unconstrained steady state itself. In this subsection, we are interested in studying comparative statics of the constrained steady state itself to better illustrate the economic forces at work. To this end, we choose $\sigma = 0.2$ so that the economy features a dynamic Laffer curve.

Our first comparative-statics exercise analyzes the effect of changing government spending and is illustrated in Table 1. When the economy converges to a steady state with a binding implementability constraint, the Lagrange multiplier on the implementability constraint Ψ_t grows at a constant rate in the limit, as shown in Appendix C. We pick values of G such that it grows at 1% a year, 2% a year, or 3% a year (recall that it is constant in the limit for the baseline economy).

Table 1: Steady state of the Ramsey allocation for different government expenditures

<table>
<thead>
<tr>
<th>Ψ_t/Ψ_{t-1}</th>
<th>G/Y (%)</th>
<th>Capital K (%)</th>
<th>Capital tax τ^k (%)</th>
<th>Labor tax τ^l (%)</th>
<th>Interest rate(%)</th>
<th>Debt-to-output B/Y (%)</th>
<th>Asset liquidity ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>30.15</td>
<td>100.00</td>
<td>0.00</td>
<td>52.00</td>
<td>3.09</td>
<td>151.70</td>
<td>0.00</td>
</tr>
<tr>
<td>1.01</td>
<td>33.67</td>
<td>90.90</td>
<td>10.00</td>
<td>51.10</td>
<td>2.12</td>
<td>66.31</td>
<td>0.21</td>
</tr>
<tr>
<td>1.02</td>
<td>34.66</td>
<td>86.32</td>
<td>15.73</td>
<td>50.36</td>
<td>1.20</td>
<td>32.93</td>
<td>0.29</td>
</tr>
<tr>
<td>1.03</td>
<td>34.85</td>
<td>84.52</td>
<td>19.52</td>
<td>49.72</td>
<td>0.23</td>
<td>6.71</td>
<td>0.36</td>
</tr>
</tbody>
</table>

As G increases, the maximum sustainable level of debt in the steady state decreases. The government is forced to cut back on public liquidity. With smaller amounts of public liquidity, entrepreneurs increasingly rely on financial intermediaries to sell some of their capital and fund their investment; the fraction ϕ of capital that is intermediated increases. From our theoretical results, we know that it is ambiguous whether capital-income taxes become positive or negative. In this numerical example, the incentive to tax quasi-rents dominates and capital income is taxed, while the tax on labor income drops somewhat. Government debt commands a liquidity premium, and its interest rate drops as it becomes scarcer as G increases.

Next, we explore the role of financial intermediation costs. Specifically, we increase ω_0 in three steps of 10% each (Table 2). At the baseline steady state, this would be irrelevant, since no intermediation takes place. We thus use government spending from the second column of Table 1.\(^{37}\)

The interest rate falls from 2.12% to 1.55% when financial frictions are tighter, since agents have more incentive to hold liquid government debt. Perhaps surprisingly, when intermediation is more costly it is used more, relative to government debt in the limit. The reason is that the fiscal capacity of the economy contracts (e.g., the capital stock falls about 5.5% when ω_0 increases by 30%), so the government is less able to issue debt. As a substitute for the inability to relax financing constraints by

\(^{37}\)We experimented with different values and the results are qualitatively robust.
providing public debt, the government increases the capital-income tax instead.

Table 2: Steady state of the Ramsey allocation for different financial frictions

<table>
<thead>
<tr>
<th></th>
<th>ω_0</th>
<th>$1.1\omega_0$</th>
<th>$1.2\omega_0$</th>
<th>$1.3\omega_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/Y (%)</td>
<td>33.67</td>
<td>33.87</td>
<td>34.09</td>
<td>34.36</td>
</tr>
<tr>
<td>Capital K (%)</td>
<td>100.00</td>
<td>98.38</td>
<td>96.56</td>
<td>94.43</td>
</tr>
<tr>
<td>Capital tax τ_k (%)</td>
<td>10.00</td>
<td>11.78</td>
<td>13.83</td>
<td>16.27</td>
</tr>
<tr>
<td>Labor tax τ_l (%)</td>
<td>51.10</td>
<td>50.93</td>
<td>50.73</td>
<td>50.46</td>
</tr>
<tr>
<td>Interest rate(%)</td>
<td>2.12</td>
<td>1.97</td>
<td>1.79</td>
<td>1.55</td>
</tr>
<tr>
<td>Debt-to-output B/Y (%)</td>
<td>66.31</td>
<td>63.58</td>
<td>60.12</td>
<td>55.25</td>
</tr>
<tr>
<td>Asset liquidity ϕ</td>
<td>0.21</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

5.3 Calibration and Transition Dynamics

For our main experiments, we take a more standard value of $\sigma = 1$. Qualitatively, the results are similar with a lower σ, but our goal here is to provide a more plausible calibration that allows us to evaluate the correct magnitude of the forces at work. With the above parameters, the unconstrained steady state features a debt-to-output ratio of 151.7%, a 0% capital tax, and a 36.9% labor tax. While in this case the long-run steady state has a slack financing constraint and interest rates equal to $1/\beta$, this does not need to happen during the transition.\(^{38}\)

We start the economy at the steady-state levels of debt and capital. We impose an upper bound on initial capital-income tax rate, which is set to zero.\(^{39}\) While the Ramsey plan eventually converges back to these values, in the short run the government has an incentive to deviate, run a surplus, and tax capital (from period 1); the financing constraint is binding along the transition. Figure 5 displays the Ramsey plan when government spending is constant (red dashed lines) and compares it to the evolution of an economy without financial frictions (i.e., $\omega_0 = 0$) but that otherwise has the same parameters and initial conditions.

In the economy without financial frictions, taxes on capital are positive only in period 1 (they would be positive in period 0 as well, if we allowed that); Proposition 3 in Chari, Christiano, and Kehoe (1994) proves this for a class of preferences that includes ours. The large fiscal surplus in period 1 is used to permanently withdraw government debt, and the economy settles to a permanently lower level of debt, which is almost zero in our numerical simulation.\(^{40}\)

\(^{38}\)We use the platform AMPL and the solver KNITRO to compute the transition path, assuming that for a large enough period T', the economy converges to the (unconstrained) steady state.

\(^{39}\)Our comparative-dynamics results are not sensitive to these choices.

\(^{40}\)In period 0, the government runs a large deficit. In an attempt to limit the consequences of the coming large capital tax, the government subsidizes labor as a way of subsidizing initial investment.
Figure 5: Transition dynamics with constant government spending

Note: allocation variables are plotted as percentages of steady-state levels in the economy with financial frictions.

In the early periods, optimal policy under financial constraints is qualitatively similar to the economy without frictions, but quantitatively very different. While the dominant factor early on is still the desire to enact a surprise tax on initial capital to the extent possible, this is tempered by the fact that government debt will be needed for liquidity purposes in the future. Government debt in period 1 drops to 65% (instead of 0) of the steady-state level. As a consequence, the surplus that the government runs in period 1 is much smaller, and so is the capital tax that generates the surplus (227% compared to 343% in the frictionless economy).

Going forward, new investment is constrained by the smaller availability of government bonds, which reduces the interest rate on government debt and further benefits government finances. In our quantitative example, the race between the desire to tax quasi-rents arising from the financing frictions and the benefits of subsidizing further investment is won by the former, and the government optimally continues to tax capital substantially. Eventually, the economy reverts to the original steady state: as we discussed in Section 4.4, there is an incentive to move away from tax smoothing and slowly reaccumulate debt to provide the private sector with greater liquidity. This process stops when the liquidity constraint is fully relaxed, which happens (by our assumptions) at the initial steady state.
with 151.7% debt-to-output ratio.

The presence of financial frictions has large implications not only for the optimal policy but for the allocation as well. In the absence of financial frictions, investment collapses in period 0 in anticipation of the large capital-income tax that will occur in period 1, and it jumps above steady state from period 1 onwards. Eventually, capital settles at a higher steady-state value because of the smaller tax distortions needed when government debt is lower. In contrast, the investment recovery is hampered by financial frictions, and investment is persistently below the steady-state level when financing constraints are present. This gives agents greater incentives to invest earlier on, before government debt is lowered; these incentives are supplemented by the capital-income tax, which does not jump as high in period 1, and by the period-0 labor subsidy, which is comparable in magnitude with and without financial frictions. The resulting path for capital is much smoother, reflecting the lower elasticity of supply of capital, coupled with the policies that are tailored to this lower elasticity.

5.4 How to Finance Government Spending Surges

We now compare the baseline transition dynamics, in which government spending stays constant, with another path, in which exogenous government spending is increased by 10% between periods 10 and periods 19. We choose to have an anticipated movement as our main experiment because the initial periods of a Ramsey plan are very special.\(^{41}\) For simplicity, we refer to the time-varying path as the effect of a “spending shock,” but both economies are deterministic.\(^{42}\)

Recall that the intermediation technology is parameterized as \(\omega_0 = 0.45\). When the government spending rises at period 10, this number generates that the government debt has a liquidity premium of 1% and the interest rate is 2.09%. Figure 6 shows the consequences of this time-varying path in the presence and absence of financial frictions. We represent these consequences as the difference between the optimal path when it is known at time 0 that spending will change and what would otherwise be optimal (which is the path of Figure 5). In this way, we isolate the effects of the shock from those of the transition.

In anticipation of the jump in spending, investment ramps up at the expense of consumption. However, the extent to which this is the case is more than twice as large for the economy without financial frictions: financing constraints limit the entrepreneurs’ ability to produce new capital, reducing the capital supply elasticity. This raises Tobin’s q and in turn spurs the entrepreneurs to rely more on (costly) financial intermediation, as the increase in \(\phi\) attests. Once the shock hits, the comparison flips: investment falls further when financial frictions are not present, cushioning the drop in private consumption, whereas the increased debt that arises from government deficits alleviates financial

\(^{41}\)The case in which high spending starts in period 0 is available upon request. The economics are similar, but now the forces that lead to initial taxation confound those that lead to capital-market distortions in the longer run.

\(^{42}\)This is commonly referred to as an “MIT shock.” Notice, however, that the surprise is at time 0, not at the time at which spending jumps.
frictions when they are present and thus limits the drop in investment.

On the policy front, in anticipation of the additional spending needs, the government reduces its debt more in the baseline case without shocks; with financial shocks, the debt reduction is limited, since retiring further government debt would drain even more liquidity from the market and force entrepreneurs to spend additional resources in intermediation. Similar to the real allocation, this reduction is also reversed in the periods of the shock, when bigger deficits are run by the government when financial frictions are not present. For the preferences that we assumed, capital-income taxes without financial frictions are unaffected by the presence of the shock. In contrast, when financing constraints are present, capital-income taxes are desirable because financing constraints make the capital supply less elastic for the same reasons as in Section 2.

The timing of taxes is particularly striking. The government modestly increases capital-income taxes in the periods leading to the spending jump, reserving the punch for the last two periods of high investment (in which they are 3.8% and 2% higher, respectively), when credit constraints are tight-
est. Note that the bunching of capital-income taxes is because a tax in period t affects the rewards from investing in many periods beforehand. This is less true for labor-income taxes, whose direct effect is to distort an intratemporal margin. Capital-income taxes remain elevated for the duration of the shock. Interest rates are also quite different in the two economies. Without financial frictions, interest rates’ movements in response to the shock are minor and do not account for much of the evolution of government debt. In contrast, when financial frictions are present, the optimal policy distorts capital accumulation and leads to significantly lower rates on government debt for the duration of the shock (65 basis points below steady state at the onset of the shock). Along with the direct effect of revenues from capital-income taxes, this indirect price effect finances a significant fraction of the spending shock, and debt increases much less than in the frictionless case.

While the shock has a permanent effect in the absence of financial frictions, a feature associated with optimal policy in a standard model, our economy reverts to the initial (unique) steady state. This convergence happens because the spending shock is not so big as to lead to permanently higher debt; rather, the initial drop in debt that we observe in Figure 5 is more than the extra debt needed to pay for the temporary increase in G.

From this experiment, we conclude that financial constraints provide a justification for policies of financial repression during periods of public budget stress: our optimal solution features both positive capital-income taxes and low interest rates on public debt in periods of high spending.

6 Conclusion

Within the context of a Ramsey model of capital taxation, we identified a force that operates as in Sargent and Wallace (1982) and pushes the government to increase its indebtedness to mitigate frictions in private asset markets. We also showed that when it is impossible to completely undo those frictions in the long run, it is optimal to tax capital, even though its provision is already inefficiently low. This happens because the frictions that prevent efficient investment also alter the elasticity of the supply of capital. In this paper, we considered an economy with no aggregate risk, in which no force countervails the upward drift in government debt. In a stochastic economy with non-contingent debt, Aiyagari, Marcet, Sargent, and Seppälä (2002) identify an opposite force, which induces the government to accumulate assets for self-insurance. In our next step, we plan to study how capital-income taxes and government debt are optimally chosen when both of these forces are present.

43The difference between the capital-income tax with and without shocks is actually greatest in period 9 (when capital supply elasticity is the lowest), affecting the Euler equation between periods 8 and 9, rather than in period 10. Because of the countervailing forces that we previously identified, the optimal capital-income tax is quantitatively affected by movements in the interest rates. Compared with the interest rate between periods 8 and 9, the interest rate between periods 9 and 10 jumps down even in the absence of taxes, since households anticipate lower consumption when government spending ramps up in period 10. A symmetrical effect is in play at the end of the shock period.
References

Combining equations (16) and (33), we obtain

\[(1 - \phi_1) \left[1 - \phi_1^2 \eta'(')\right] K_1 \equiv x(\phi_1) K_1 \leq R_1 B_0'.\]

(51)

We have \(x(0) = 1, x'(\phi) < 0\) for \(\phi \in [0, \hat{\phi}]\), and \(x(\hat{\phi}) = 0\). This equation links \(K_1\) and \(\phi_1\) and replaces equation (19) in the previous section, along with \(S_1 = \phi_1 K_1\). When \(K_1 < R_1 B_0'\), the constraint is slack, entrepreneurs finance investment only through internal funds, and \(\phi_1 = 0\).

Substituting prices and taxes from the first-order conditions, we can aggregate the household budget constraints into the following implementability constraint:

\[\sum_{t=1}^{2} \beta^{t-1} [u'(C_t)C_t - v'(L_t)L_t] = u'(C_1)R_1 B_0 + u'(C_1) [(q_1^w - 1)K_1 - (q_1^w - q_1) \phi_1 K_1]\]

\[= u'(C_1)R_1 B_0 + u'(C_1)K_1 (1 - \phi_1) [\eta(\phi_1) + \phi_1 \eta'(\phi_1)].\]

(52)

Let us define \(z(\phi_1) \equiv (1 - \phi_1) [\eta(\phi_1) + \phi_1 \eta'(\phi_1)].\) Notice that \(z(0) = z'(0) = 0\).

Equations (51) and (52) generate two regions in which competitive equilibria can be found, depending on whether \(K_1 \leq R_1 B_0'\) or \(K_1 > R_1 B_0'\). These regions have the same interpretation that applied in the case of exogenous constraints: when investment is small or bond holdings are large, the economy behaves as in the standard neoclassical growth model, whereas an extra term appears when the financing constraint is binding and a wedge appears between the after-tax rate of return on capital and the intertemporal marginal rate of substitution of the households.\(^{44}\) The only difference is that the implementability constraint (20) features a kink at \(K^*\), while in the case of endogenous liquidity constraints, equations (51) and (52) imply a smooth transition of \(\phi_1\) and \(K_1\) at \(K_1 = R_1 B_0'\): the unit cost of accessing external funds converges to zero when intermediated funds become zero. This greatly simplifies the numerical analysis.

The planner maximizes the household utility (9), subject to the resources constraints (17) and (18) (with \(S_1 = \phi_1 K_1\) as the amount of transaction of claims); the implementability constraint (52); and the equilibrium relationship between \(\phi_1\) and \(K_1\), equation (51). Let \(\beta^{-1} \lambda_t\) be the Lagrange multiplier on the resource constraint for period \(t = 1, 2\) and \(\Psi_1\) be the Lagrange multiplier on the implementability constraint (as before), and let \(\gamma_1 u'(C_1)\) be the Lagrange multiplier on equation (51). Thanks to the smoothness of function \(\eta(.)\), we do not need to impose the constraint \(\phi_1 \geq 0\).

The planner’s first-order conditions for consumption \(C_1\) and \(C_2\) are

\[u'(C_1) (1 + \Psi_1) + \Psi_1 u''(C_1) C_1 - \lambda_1 = \Psi_1 u''(C_1) K_1 z(\phi_1);\]

\[u'(C_2) (1 + \Psi_1) + \Psi_1 u''(C_2) C_2 - \lambda_2 = 0.\]

The first-order conditions for labor supply \(L_1\) and \(L_2\) are

\[v'(L_1) (1 + \Psi_1) + \Psi_1 v''(L_1) L_1 = \lambda_1;\]

\[v'(L_2) (1 + \Psi_1) + \Psi_1 v''(L_2) L_2 = \lambda_2 F_L(K_1, L_2).\]

The first-order condition for asset liquidity \(\phi_1\) is

\[- \lambda_1 [1 + \phi_1 \eta(\phi_1)] + \beta \lambda_2 F_K(K_1, L_2) = u'(C_1) [\Psi_1 z(\phi_1) + \gamma_1 x(\phi_1)].\]

(53)

\(^{44}\) Mathematically, note that when \(K_1 \leq R_1 B_0'\), \(\eta(\phi_1) = \phi_1 = 0\).****
The first-order condition for capital K_1 is

$$\lambda_1 [\eta(\phi_1) + \phi_1^\prime(\phi_1)] + u'(C_1) [\Psi_1 z' + \gamma_1 x'(\phi_1)] = 0. \quad (54)$$

Notice that $\phi_1 = 0$ if and only if $\gamma_1 = 0$: this happens when the financing constraint is slack.

B The Infinite-Horizon Planner’s Problem

Let $\beta^t \lambda_t$ be the Lagrange multiplier on constraint (42), Ψ_0 be the Lagrange multiplier on constraint (48), $\beta^t \Psi_t$ the Lagrange multiplier on (47), $u'(C_0) \gamma_0$ on (50), and $\beta_t u'(C_t) \gamma_t$ on (49). For brevity, $\eta_t, (q_t^\mu)^\prime, q_t^\prime, \rho_t^\prime,$ and d_t^\prime denote the derivatives of each (previously defined) function with respect to ϕ_t. The necessary first-order conditions for a Ramsey outcome are the following:

- **consumption in period 0:**

 $$(1 + \Psi_0) u'(C_0) + \Psi_0 u''(C_0) [C_0 + B_0 + (1 + \phi_0 \eta_0) K_0]$$

 $$- \Psi_0 u''(C_0) [R_0 B_{t-1} + [(1 - \tau_0^k) A_0 F K (K_{t-1}, L_0) + (1 + (1 - \delta) \phi_0 \eta_0)] K_{t-1}]$$

 $$+ \gamma_0 u''(C_0) [\chi (R_0 B_{t-1} + \phi_0 q_0 (1 - \delta) K_{t-1}) - (1 - \phi_0 q_0) (K_0 - (1 - \delta) K_{t-1})] = 0$$

 $$\lambda_0 = - \gamma_1 u''(C_0) \frac{\chi B_0}{\beta (1 + \chi \rho_1)}; \quad (55)$$

- **consumption in period $t \geq 1$:**

 $$(1 + \Psi_t) u'(C_t) + \Psi_t u''(C_t) [B_t + (1 + \phi_t \eta_t) K_t]$$

 $$- \Psi_t u''(C_t) [1 - (1 - \chi) \phi_t q_t] \delta_{t-1} (1 - \delta) K_{t-1}$$

 $$+ \gamma_t u''(C_t) [1 - (1 - \chi) \phi_t q_t] (1 - \delta) K_{t-1} - (1 - \phi_t q_t) K_t - \lambda_t$$

 $$= - \gamma_{t+1} u''(C_t) \frac{\chi B_{t+1}}{1 + \chi \rho_{t+1}} + \Psi_{t+1} u''(C_t) \left(q_t^u K_t + \frac{B_t}{1 + \chi \rho_{t+1}} \right); \quad (55)$$

- **leisure in period 0:**

 $$v'(L_0) (1 + \Psi_0) + \Psi_0 u''(L_0) L_0 = \lambda_0 A_0 F L (K_{t-1}, L_0) - \Psi_0 u'(C_0) (1 - \tau_0^k) A_0 F K L (K_{t-1}, L_0) K_{t-1};$$

- **leisure in period $t \geq 1$:**

 $$v'(L_t) (1 + \Psi_t) + \Psi_t v''(L_t) L_t = \lambda_t A_t F L (K_{t-1}, L_t); \quad (56)$$

- **liquidity in period 0:**

 $$[\Psi_0 u'(C_0) - \lambda_0] (\eta_0 + \phi_0 \eta_0^\prime) + \gamma_0 (q_0 + \phi_0 q_0^\prime) = 0;$$

- **liquidity in period $t \geq 1$:**

 $$\Psi_t u'(C_t) K_t (\eta_t + \phi_t \eta_t^\prime) - \gamma_t u'(C_{t-1}) \frac{\chi B_{t-1}}{\beta (1 + \chi \rho_t^\prime)^2} + \gamma_t u'(C_t) [K_t - (1 - \chi) (1 - \delta) K_{t-1}] (q_t + \phi_t q_t^\prime)$$

 $$+ \lambda_t [(1 - \chi) (1 - \delta) K_{t-1} - K_t] (\eta_t + \phi_t \eta_t^\prime) + \Psi_t u'(C_{t-1}) \frac{\chi B_{t-1} \rho_t^\prime}{\beta (1 + \chi \rho_t^\prime)^2} - \Psi_t u'(C_t) (1 - \delta) K_{t-1} d_t^\prime$$

 $$= \Psi_{t+1} u'(C_t) K_t (q_t^u)^\prime; \quad (57)$$
• capital in period $t \geq 0$:
\[
\phi_t (1 + \phi_t \eta_t) - \Psi_t \phi_t (1 + \phi_t \eta_t) + \gamma_t u'(C_t) (1 - \phi_t q_t) \\
= \beta \phi_{t+1} [A_{t+1} F_K(K_t, L_{t+1}) + [1 + (1 - \chi) \phi_{t+1} \eta_{t+1}] (1 - \delta)] - \Psi_{t+1} \phi_{t+1} u'(C_t) q_{t+1}^\nu \\
- \beta \phi_{t+1} u'(C_{t+1}) d_{t+1} (1 - \delta) + \beta \gamma_{t+1} u'(C_{t+1}) [1 - (1 - \chi) \phi_{t+1} q_{t+1}] (1 - \delta);
\]

• bond choice for $t \geq 0$:
\[
\Psi_t = \frac{\Psi_{t+1}}{1 + \chi \rho_{t+1}} - \frac{\chi \gamma_{t+1}}{1 + \chi \rho_{t+1}} \rightarrow \Psi_{t+1} = (1 + \chi \rho_{t+1}) \Psi_t + \chi \gamma_{t+1}.
\]

\section{C Proofs}

\subsection*{Proof to Proposition 2}
If $\eta'(1) > 1$, equations (31), (32), and (33) imply that there exists a unique value $\hat{\phi}$ such that $q_1 \hat{\phi} = \hat{\phi}[1 + (1 - \hat{\phi}) \eta'(\hat{\phi})] = 1$. For $\phi_1 \geq \hat{\phi}$, entrepreneurs would have an arbitrage opportunity: by producing an extra unit of capital at a unit cost in terms of the period-1 consumption good, they could sell a fraction ϕ_1 and receive a payment $q_1 \phi_1 \geq 1$, while retaining the extra $1 - \phi_1$ units of capital. In this case, a competitive equilibrium will necessarily have $\phi_1 < \hat{\phi}$.

If $\eta'(1) \leq 1$, the same equations imply $q_1 \phi_1$ remains below 1 even as $\phi_1 \rightarrow 1$; by continuity, we can define $\hat{\phi} = 1$, since $\lim_{\phi_1 \rightarrow 1} q_1 \phi_1 = 1$. In this case, note that $\phi_1 > 0$ implies that the financial constraint is binding, so that $K_1 = R_1 B_0^e/(1 - q_1 \phi_1)$. As $\phi_1 \rightarrow 1$, the amount of capital that entrepreneurs optimally produce diverges to infinity. This would violate the feasibility constraint (and workers would not find it optimal to buy claims to such a large amount of capital), proving that in this case too any competitive equilibrium will feature $\phi_1 < \hat{\phi} = 1$.

\subsection*{Proof to Proposition 3}
We denote steady-state allocations by a bar over each variable. From the first-order conditions for bonds, equation (59), we know that Ψ_t is weakly increasing. Moreover, it is constant if and only if $\rho_{t+1} = 0$ and $\gamma_{t+1} = 0$, which happens iff the financing constraint is slack. If the Ramsey allocation converges to a constant, we then have two possibilities.

Case 1: Ψ_t converges to a finite constant $\bar{\Psi} > 0$.\footnote{If $\Psi_t = 0$ at any time t, it is straightforward to show that it must be the case that $\Psi_t = 0$ in all periods and that the Ramsey solution attains the first best. In this case, capital is subsidized if the financing constraint is binding, as we discussed in the context of the two-period example.} In this case, the Lagrange multiplier of the financing constraint converges to zero in the limit, and so does the financial-market trading in (claims to) capital; that is, $\phi_t \rightarrow 0$. The limiting first-order conditions look like those of a standard neoclassical growth model. In particular, the limit of the planner’s first-order condition with respect to capital becomes
\[
\beta [\bar{\Psi} F_K(\bar{K}, \bar{L}) + 1 - \delta] = 1,
\]
which coincides with the first-order condition for capital of the households with $\tau_k^h = \bar{\tau}^k = 0$.\footnote{That λ_t converges to a constant follows from the first-order conditions with respect to consumption or labor.} With $\bar{\rho} = 0$, the households’ first-order condition for bonds evaluated at steady state implies that $\bar{\rho} = 1/\beta$.

Case 2: Ψ_t diverges to infinity. In this case, we use equations (56) and (59) to substitute for λ_t and γ_t in equations (55), (57), and (58). If the Ramsey allocation converges to a steady state, these three equations in the limit turn into
linear second-order difference equations in Ψ_t. These equations are generically distinct. In order for the system to have a solution, the five variables $(\bar{C}, \bar{L}, \bar{K}, \tilde{B}, \tilde{\phi})$ must be such that equations (42), (47), and (49) (the resources, implementability, and financing constraints, respectively) are satisfied in the steady state and the three difference equations share at least one root. This gives us five (nonlinear) conditions to solve for the five variables. In addition, Ψ_{t+1}/Ψ_t must converge to a constant ζ.\footnote{Expressing the second-order difference equations as two-equation systems of first-order difference equations for the vector (Ψ_{t+1}, Ψ_t), the constant ζ corresponds to the ratio Ψ_{t+1}/Ψ_t in the eigenvector associated with the common eigenvalue across the three systems. Note that this eigenvalue must be real; if the systems had complex eigenvalues, matching eigenvalues would imply two additional constraints, giving us seven conditions for five variables and implying that generically there would be no solution.}

Also, for the first-order conditions to be optimal, Ψ_t cannot grow at rate larger than $1/\beta$ (the transversality condition); that is, $\zeta < \beta^{-1}$. The economy can be captured by finite levels of $K, B, C, \phi, \zeta, \tilde{\gamma} := \lim_{t \to \infty} \gamma_t/\Psi_t$, and $\tilde{\lambda} := \lim_{t \to \infty} \lambda_t/\Psi_t$. We can thus write the limiting conditions that hold in steady state as follows:

- the financing constraint:
 $$\frac{\lambda B}{\beta(1 + \chi \rho)} + \left[1 - (1 - \chi)\phi q \right] (1 - \delta) - (1 - \phi q) \right] K = 0; \quad (60)$$

- the implementability condition:
 $$C - \frac{u'(L)}{u'(C)} L + B + (1 + \phi \eta) K = \frac{B}{\beta(1 + \chi \rho)} + \frac{q_w}{\beta} K + d(1 - \delta)K; \quad (61)$$

- the FOC for consumption:
 $$\frac{u'(C)}{u''(C)} + C + B + (1 + \phi \eta) K + \tilde{\gamma} \left[1 - (1 - \chi)\phi q \right] (1 - \delta) - (1 - \phi q) \right] K$$
 $$= d(1 - \delta)K + \tilde{\lambda} \frac{1}{u''(C)} - \tilde{\gamma} \zeta \frac{\lambda B}{1 + \chi \rho} + \zeta \left(q_w K + \frac{B}{1 + \chi \rho} \right),$$
 and after we use the financing constraint,
 $$\frac{u'(C)}{u''(C)} + C + B + (1 + \phi \eta) K - \tilde{\gamma} \frac{\lambda B}{1 + \chi \rho} \frac{1 - \beta \zeta}{\beta} = d(1 - \delta)K + \tilde{\lambda} \frac{1}{u''(C)} + \zeta \left(q_w K + \frac{B}{1 + \chi \rho} \right); \quad (62)$$

- the FOC for capital:
 $$\tilde{\lambda} (1 + \phi \eta) - u'(C) (1 + \phi \eta - \zeta q_w) + \tilde{\gamma} u'(C) (1 - \phi q)$$
 $$= \beta \tilde{\lambda} \zeta \left[AF_K(K, L) + [1 + (1 - \chi)\phi q \right] (1 - \delta) \right] - \beta u'(C) d(1 - \delta)\zeta + \beta \tilde{\gamma} u'(C) [1 - (1 - \chi)\phi q \right] (1 - \delta); \quad (63)$$

- the FOC for bonds:
 $$(1 - \chi \tilde{\gamma}) \zeta = 1 + \chi \rho.$$

In such a steady state, the entrepreneurs’ financing constraint binds, so that $\phi > 0$ and $\rho > 0$. This means that the interest rate $R = \frac{1}{\beta(1 + \chi \rho)} < \frac{1}{\beta}$. We are also ready to show that capital tax $x^k > 0$, which can be seen from comparing the
planner’s first-order condition for capital in (63) and the household’s first-order condition for capital (46):

\[
\beta [F_K(K, L) + [1 + (1 - \chi)\phi q] (1 - \delta)] = \frac{u'(C)}{\lambda} - q^w + \frac{\tilde{\gamma}}{\lambda} u'(C)(1 - \phi q) + \left[1 - \frac{u'(C)}{\lambda}\right] \frac{1 + \phi q}{\zeta} \\
+ \frac{\beta u'(C)}{\lambda} (1 - \delta) - \frac{\tilde{\gamma}}{\lambda} u'(C) [1 - (1 - \chi)\phi q] (1 - \delta);
\]

\[
\beta [(1 - \tau^k) F_K(K, L) + (q^w - \chi \phi q + \chi \rho \phi q) (1 - \delta)] = q^w.
\]

Taking the difference of the two and using the relationship \(d_t = d(\phi_t) = 1 + \phi_t \eta_t - q^w - \chi \rho_t \eta_t\), we obtain

\[
\tau^k \beta F_K(K, L) = \left[\frac{u'(C)}{\lambda} - 1\right] \left[q^w - \frac{1 + \phi q}{\zeta} + \beta (1 - \delta) d\right] + \frac{\tilde{\gamma}}{\lambda} u'(C) \left[1 - \frac{\phi q}{\zeta} - \beta (1 - \delta) [1 - (1 - \chi)\phi q]\right]. \quad (64)
\]

The transversality condition requires \(\zeta < 1/\beta\). Moreover, (60) implies that

\[
[1 - \phi q - (1 - \delta) [1 - (1 - \chi)\phi q]] = \chi RB/K > 0.
\]

Using these facts, we have

\[
\frac{\tilde{\gamma}}{\lambda} u'(C) \left[\frac{1 - \phi q}{\zeta} - \beta (1 - \delta) [1 - (1 - \chi)\phi q]\right] > \frac{\tilde{\gamma}}{\lambda} u'(C) [(1 - \phi q) - (1 - \delta) [1 - (1 - \chi)\phi q]] > 0.
\]

Consider next the first term in equation (64). The planner’s FOC for consumption (62) can be rearranged as

\[
\frac{u'(C)}{\lambda} - 1 = \frac{u'(C)}{\lambda} \left[d(1 - \delta) K + \zeta \left(q^w K + \frac{B}{1 + \chi \rho}\right) - C - B - (1 + \phi q) K + \frac{\tilde{\gamma}}{\lambda} \frac{\chi B}{1 + \chi \rho} \frac{1 - \beta \zeta}{\beta}\right]. \quad (65)
\]

If the utility function is quasi-linear, \(u'(C) = 1, u''(C) = 0\), and, in the limit, \(\tilde{\lambda} = 1\), according to (65). Equation (64) then implies that \(\tau^k > 0\). Alternatively, the implementability condition (61), along with \(\zeta < 1/\beta\), implies

\[
d(1 - \delta) K + \zeta \left(q^w K + \frac{B}{1 + \chi \rho}\right) - C - B - (1 + \phi q) K < -\frac{u'(L)}{u'(C)} L.
\]

Substituting this equation into (65), we obtain

\[
\frac{u'(C)}{\lambda} - 1 > \frac{u''(C)}{\lambda} \left[-\frac{u'(L)}{u'(C)} L + \tilde{\gamma} \frac{\chi B}{1 + \chi \rho} \frac{1 - \beta \zeta}{\beta}\right]. \quad (66)
\]

In a neighborhood of the point at which the financing constraint just starts to bind when debt is at the top of the dynamic Laffer curve (that is, as \(\Psi_t \to \infty\)), we have that \(\tilde{\gamma}\) is arbitrarily close to zero. Hence, in such a neighborhood, we have

\[
\frac{u'(C)}{\lambda} - 1 > 0.
\]

Using the fact that \(\zeta \in (1, 1/\beta)\) and \(\rho = (q^w - 1 - \phi q) / (1 - \phi q)\), we get

\[
q^w - \frac{1 + \phi q}{\zeta} + \beta (1 - \delta) d > \frac{q^w}{\zeta} - \frac{1 + \phi q}{\zeta} - \beta (1 - \delta) d > \beta \rho [1 - \phi q - (1 - \delta) [1 - (1 - \chi)\phi q]] > 0, \quad (68)
\]

where the last inequality was proven earlier. Substituting (67) and (68) into (64), we complete the proof that \(\tau^k > 0\). \(\Box\)