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1 Introduction

A standard practice to estimate the parameters in dynamic panel data models is
to take first differences to eliminate the correlated individual specific effects, and
estimate the differenced model by Generalised Method of Moments (GMM) us-
ing appropriately lagged level variables as instruments. As the information of the
instruments for the differenced model decreases as the series become more per-
sistent, Arellano and Bover (1995) and Blundell and Bond (1997) have proposed
use of a system GMM estimator that combines the differenced equation with the

level equation. The instruments for the level equation are lagged differences of
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the variables, which are valid when these differences are uncorrelated with the
individual effects. Blundell and Bond (1997) show that the system estimator
has superior properties in terms of small sample bias and RMSE, especially for
persistent series.

The GMM estimator is a two-step estimator. In the first step, an initial
positive semidefinite weight matrix is used to obtain consistent estimates of the
parameters. Given these consistent estimates, a weight matrix can be constructed
that is consistent for the efficient weight matrix, and this weight matrix is used
for the asymptotically efficient two-step estimates. It is well known, see e.g.
Arellano and Bond (1991), that the two-step estimated standard errors have a
small sample downward bias in this dynamic panel data setting, and one-step
estimates with robust standard errors are often preferred. Although an efficient
weight matrix for the differenced model with errors that are homoscedastic and
that are not serially correlated is easily derived, this is not the case for the system
estimator, combining differences and levels information.

It is common practice to use the inverse of the moment matrix of the instru-
ments as an initial weight matrix. In this paper the potential efficiency loss will
be considered in a model with homogeneous and non-serially correlated errors.
To do this, upper bounds for the efficiency loss will be calculated as derived by
Liu and Neudecker (1997) based on the Kantorovich Inequality (KI). These upper
bounds indicate that the efficiency loss could potentially be quite severe. When
the variance of the individual unobserved heterogeneity is small, efficiency can
be gained by using a weight matrix that is optimal under the assumption that
the variance of the unobserved heterogeneity is equal to zero.

In section 2, an AR(1) dynamic panel data model is considered and a descrip-
tion of the system GMM estimator is given. In section 3 the upper bounds of
the efficiency loss are calculated for 3 and 4 time periods respectively. Section 4

concludes.



2 Model and System GMM Estimator

Consider the AR(1) panel data specification
Yit = QoYit—1 + 1 + €i (1)

fore=1,...,N, t=2,..,T, with N large, and T fixed. The error terms follow

the error components structure in which

E(Uz) =0 ; E(f‘?it) =0,
33 - 33 -

2 2 . 2 _ 2
E €, =0, ; E n =o,

E(nieiw) =0 5 E(eyeis) =0, t 6 s.

The y;; series are assumed stationary with an infinite time horizon and therefore

the series can alternatively be written as

i o
+ O‘(]Jgit—j- (2)
Jj=0

yitzl "

The OLS and within groups estimators of ag in model (1) are biased and
inconsistent. A consistent estimator for «q is the system GMM estimator, as
proposed by Arellano and Bover (1995) and Blundell and Bond (1997), utilising
the following (T + 1) (T i 2) /2 moment conditions?

E[(Ayi i 00Ayi—1) Yit—2, - ¥a)] = 0 (3)

E[(yzt iaoyit—l)Ayit—l] = 0, (4)

for t = 3,...,7. Moment conditions (3) are for the model in first differences,
utilising appropriately lagged levels information as instruments, whereas condi-
tions (4) are for the model in levels, utilising lagged differences as instruments.

As Blundell and Bond (1997) show, the system estimator is considerably more

LU nder hancsaadsstid ty there are additicnal manent aanditias ave bk o improe et--
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efficient than the traditional GMM estimator utilising the moment conditions of

the differenced model only.

Define
2
ya 0 O 0 0 0 0 0
0 wvir Yo 0 0 0 0 0
0O 0 O 0 0 0 0 0
a0 0 0 Yi1 Yir—2 0 0 0
o 0O 0 O 0 0 Ayio 0 0
0O 0 O 0 0 0 Ay;s 0
0O 0 O 0 0 0 0
0 0 0 0 0 0 Ayr 1

0

0

3
Ayz3 i OéoAyw
Aym i OéoAyz:a l

Ayir i OéoAsz 1
Yi3s 1 XoYi2
Yia 1 XYi3

V; = U; (Oéo) =

Yir & XoYiT—1

and
fi (Od(]) = Z@//Uz
Moment conditions (3) and (4) imply that E (f; (ag)) = 0. The GMM estimator?

d for ap minimises
#/ " #

X X
—  file) W = fi(a) ,

i=1 i=1

with respect to a; where Wy is a positive semidefinite weight matrix which
satisfies plimy_,,. Wy = W, with W a positive definite matrix. Regularity con-
ditions are in place such that limy_,o % Pﬁ\;l fi(a) =E(f(«)) and ﬁfl () !
N (0,V). Let F (o) = E(0f; (o) /Oa) and Fy ~ F (), then pﬁ(@ iap) hasa
limiting normal distribution, pN (®jay)! N0, Vi), where

Viv = (FAW Fy) " FSWOW Fy (E\W Fy) ™" (5)

2SeeH amsan ((982),0 gk (993)-H ere, the same notatian as inl iu and |l eudeder (997)
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3 Efficiency Comparisons

As is clear from the expression of the asymptotic variance matrix Vi, (5), the
efficiency of the GMM estimator is affected by the choice of the weight matrix
Wy. An optimal choice is a weight matrix for which W = ¥~1. The asymptotic
variance matrix is then given by (FO’\IfleO)_l. For any other W the GMM

estimator is less efficient as
= -
FNR, - (BWE) " EIWUW ER (FIWE,) ™.
In panel data models the efficient estimator is obtained in a two-step pro-
cedure. The one-step GMM estimator @ is obtained using an arbitrary weight
matrix Wpyy. Let € = v; (@). The efficient two-step estimator is then based on

the weight matrix

' 4

1 X )
Whag = N ZeeZ; ; plim Wy = UL,

i=1

Although the efficient estimator is easily obtained, there is a serious problem
associated with it as the estimated standard errors of the two-step estimator
can be biased downwards quite severely for moderate sample sizes N, as has
been documented by Arellano and Bond (1991) and Blundell and Bond (1997),
who performed Monte Carlo simulations with sample sizes N = 200. Therefore,
inference based on the two-step estimator can be very unreliable. In contrast,
the one-step estimated standard errors based on the asymptotic variance matrix
(5), using Wy as an estimate for ¥ and substituting @ for ag, are found to be
much less biased, and inference, like Wald tests, much more reliable. In practice
therefore, one can often only rely on inference based on the less efficient one-step
estimator.

For the GMM estimator that only utilises the moment conditions (3) for the

3

=) / -1 ,
differenced model, an optimal weight matrix is + ~, D;HD; , where D; is

the left upper block of Z; and H is a (T j 2) square matrix which has 2’s on the
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main diagonal, -1’s on the first subdiagonals and zeros elsewhere. Setting Wy =
3 -
P
1

/ -1 . . .
~ N D;HD; results therefore in an efficient one-step estimator. For the

system GMM estimator such an efficient one-step weight rgatrix is not known,
and in practice one uses as an initial weight matrix Wy, = % P fil AYA _1. To
assess the potential loss in efficiency from using this initial weight matrix, the
following expression for the upper bound of the efficiency loss has been derived
by Liu and Neudecker (1997, p.350) on the basis of the Kantorovich Inequality
(KI):

_ IR O VIR W e e
(ESWE) ™ EWOWEFy (FiW Fy) " - % iR (6)
p

where A\; _ ... _ A, are the eigenvalues of the matrix WIV.

For T = 3, there is one overidentifying moment condition, as the system

estimator utilises the following two moment conditions
E(Ayis i oAyin)yal = 0
E [(yl?) i 04%‘2) Ayﬁ] = 0’

and W is given by

#
.1 X y3 (A5i3)2 Yin Ay (m; + €i3) Aeis
v plim — 9 9
1 YDy (i + €i3) Aegs (Ayi2)” (n; + €i3)
) 207 ilioo,
= 0O - _ 2 opto?
i(lia)o, 295
where
o2 — 03] I o? '
Yo(Liae) lia?
Further,
_ -
W, = plim— ZZ

= plim—
Nz*l 0 (Ayﬂ)
#_
0
0 Qﬁa



and the matrix G = VIV is given by

" #
G 202 i(l ia%)0;/2
ilia)o? 03—1—072] ’

Figure 1 presents the plot of the function b = (Ag1 + )\Gp)z /4Ag1AGp, Where
the A\g’s are the eigenvalues of G, for various values of oy and 0727 /o2. When
0727 = 02, by is constant for different values of a and equal to 4/3, indicating
that the asymptotic variance of the one-step estimator could potentially be 33%
larger than the efficient estimator. When o7 /02 < 1, bg; is declining with a,
whereas it is increasing with ay when 03] / cr? > 1. The value of by increases with

o7/o? when o7 /02 > 1.
[Figure 1 about here]

When 7' = 4, there are 4 overidentifying moment conditions, and the matrices

U and W; are given by

2
205 ia§ il i(l i204) 05 f:—ga?]
i, 207, 26 ﬁz ilia)d
U = g2 id 225 2052 i21}% i(lio)o,
= (1 = o2 = o2 Ty toe -1l-a
i(lia)o] e it 295 132402721
ooy ilia)d i(liaoy ifgo; 2
2 3
620 0 0 0
0 02 6 0 0
W, =80 & o2 0 0 %
o2
00 0 2% 0
00 0 0 2%
where
2 0?
6= i )
%y 1 1+«

Figure 2 presents the efficiency bounds for the one-step system estimator
when T = 4. The values for bx; are larger than for the T" = 3 case. When
07/02 = 1, brr is no longer constant for different values of ag, and takes values

around 3, indicating that the asymptotic variance of the one-step estimator could
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be 3 times the variance of the efficient estimator. Again, bx; increases with o7 /o2

when 02 /02 > 1, and bk reaches the value 6 when o7 /02 = 2.5.%

[Figure 2 about here]

3.1 An Optimal Weight Matrix when ¢?=0

An optimal weight matrix for the system GMM estimator when af] = 0 is given

by ~

A r_
1 X '
WN,U%ZO = N . ZZAZZ 5
where " 4
H C
A= C" I
with H as defined above, I, is the identity matrix of order (T j 2), and
2 3
1 0 0
il 1 0 0
C = 0 §1 1 0

0O 0 0 .. 1
3LP

-1
Using this weight matrix instead of Wy1 = % N, Z/Z; may improve on

2

efficiency when o

is small. Figures 3 and 4 display the values for bx; when
Wi o2=0 18 used in the one-step estimator, for 7" = 3 and T" = 4 respectively.
Indeed, for small values of 0,2] the potential loss in efficiency is seen to be smaller

than when Wy, is used. However, when 0727 /o? is large, the potential efficiency

loss gets larger for Wi ,o2=0, which is what one would expect.
[Figures 3 and 4 about here]

One way to detect whether use of W 52=0 could be beneficial, without actually

calculating the variances of the components, is to calculate the efficiency bounds

3T hevalle of h« g inaessss With T as the numbear of mament rsstrictias inaressss - For
eanpkewenT =6 and¥%2=%2 =1, h«, is approdimately 14 .



bi for the efficiency difference between the one-step and two-step estimators,
i.e. calculate by, from eigenvalues of the matrices WNQWN,U%ZO, and WaosWha.
If the former are closer to 1 than the latter, this is an indication that there could

be an efficiency gain from using WNJ%:() instead of Wy.

4 Discussion

Upper bounds for the efficiency loss of the one-step system GMM estimator for a
dynamic AR(1) panel data model as compared to the efficient two-step estimator,

show that the efficiency loss could be quite severe when the weight matrix Wy, =
> a

P -1
% N Z!Z; is used, especially when T' gets large. When the variance of the

2

;> 1s small, an efficiency gain can be made by

unobserved individual effects, o
using a weight matrix that is optimal under the assumption that 0727 = 0.

The upper bounds were shown to be quite large, for example when 7' = 4,
Wy = =+ Pﬁil Z!Z; ~ and o7/o2 = 2.5, the ratio of the asymptotic variance
of the inefficient estimator to that of the efficient estimator can be as large as
6 for high values of . In Monte Carlo studies however, such large differences
of the variances are not found, using normal and non-normal data generating
processes. This could mean that the KI upper bounds, bx;, are too large to be
informative for these cases. When the bg; are close to one, there is evidence of
an efficient one-step estimator. The opposite statement for large bx; may not
be true. Further research is needed to assess whether the by are informative to
rank different one-step estimators on the basis of their relative KI -values.

In empirical settings, one can easily compute bx from the eigenvalues of the

matrix WyoWiy1, where Wy is the two-step efficient weight matrix.
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