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Abstract: We examine the effect on inequality of increasing one income, and show

that for two wide classes of indices a benchmark income level or position exists,

dividing upper from lower incomes, such that if a lower income is raised, inequality

falls, and if an upper income is raised, inequality rises. We provide a condition on the

inequality orderings implicit in two inequality indices under which the one has a

lower benchmark than the other for all unequal income distributions. We go on to

examine the effect on the same indices of simultaneously increasing one income and

decreasing another higher up the distribution, deriving results which quantify the

extent of the �bucket leak� which can be tolerated without negating the beneficial

inequality effect of the transfer. Our results have implications for the inequality

impacts of different income growth patterns, and of redistributive programmes (leaky

or not), which are briefly discussed.
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EXECUTIVE SUMMARY

In this paper we first examine the effect on inequality of increasing one income in a distribution.

It is clear that if we increase the lowest income, inequality falls, and if we increase the highest income,

it goes up, but the effect of increasing an intermediate income has not been studied before. We show

that for two wide classes of inequality indices, which include virtually all of the familiar ones, a

�benchmark� income level or position exists, dividing upper from lower incomes, such that if a lower

income is raised, inequality falls, and if an upper income is raised, inequality rises.

A condition between two inequality orderings, represented by indices, then emerges which, if

satisfied, ensures that the one index has an always lower benchmark than the other, whatever the income

distribution to which both are applied. This condition evinces a Rawlsian-type measure which is new;

we call it the �lower tail concern� of an inequality ordering. 

We go on to examine the effect on the same indices of simultaneously increasing one income and

decreasing another higher up the distribution, deriving results which quantify the extent of the �bucket

leak� which can be tolerated without negating the beneficial inequality effect of the transfer. Our results

generalize considerably a finding of Seidl (2001) for the Gini coefficient, according to which a leak of

more than 100% can be tolerated in some situations (i.e. money taken from both individuals), and in

others the leak may even be negative - the recipient could receive more than the donor gives up -

somebody can be adding water to the bucket. Seidl terms this the �leaky bucket paradox�. Our analytics

enable the maximum permitted leak to be quantified for every inequality index belonging to our two

general classes, and provide a means to understand the so-called �paradox�.

The paper concludes with a brief discussion of implications and insights stemming from the

analysis. The effect on aggregate inequality of different income growth patterns is considered, as is that

of inefficient  redistributive programmes. Finally, we show that the situations can be precisely

quantified in which, counterintuitively, money transfers from better-off to worse-off and needier

households exacerbate, rather than ameliorate, inequality in living standards.
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1. Introduction

In an unequal two-person society, the effect on inequality of increasing one of the two incomes

is clear: inequality falls if we increase the lower income of the two, and rises if we increase the upper

income. With more than two people, the effect on inequality of increasing one income is very much less

clear, and has not, to our knowledge, been studied closely. We obtain a range of definitive results here,

showing that the insight from the two-person society carries over in essence to inequality indices, if not

to the Lorenz configuration. Namely, if a low income is raised, inequality falls, and if a high income

is raised, inequality rises; and there is a specific income level, or position in the distribution, determined

by the particular inequality index one is using, which divides these effects. We shall call this the

�benchmark� income or position in what follows.

A condition between two inequality orderings, represented by indices, emerges which, if satisfied,

ensures that the one index has an always lower benchmark than the other, whatever the income

distribution to which both are applied. We believe this condition to be new; it evinces a Rawlsian-type

measure which we call the �lower tail concern� of an inequality ordering. 

 We go on to examine the so-called �leaky bucket paradox�, as articulated by Seidl (2001),

according to which the effect on the Gini coefficient of simultaneously increasing one income and

decreasing another higher up the distribution is potentially bizarre. We already know, of course, that

a pure rich-to-poor transfer must reduce inequality for any Lorenz �consistent inequality index, but, as

Seidl�s analysis suggests, the extent of the �leak� which might be tolerated, having taken $1 from a

person, and before giving the proceeds to another person further down the distribution, without negating

the beneficial inequality effect of the transfer, could be surprising.  Our analytics enable us to study this

�leaky bucket� issue closely and in considerable generality. For any inequality index, if a transfer is

made from someone above the benchmark to someone below, inequality falls as a result of the first part

of this transfer; and again as a result of the second part; a leak of more than 100% could be tolerated

in such a case (i.e. money taken from both). If the donor and recipient are both on the same side of the

benchmark, there is a range of possibilities. The intuitively agreeable case, a leak of between 0% and

100%, can arise and the percentage can be quantified. However it is also possible in this case to find

that the leak can exceed the amount taken away, and in some circumstances the leak may even be

negative - the recipient could receive more than the donor gives up - somebody can be adding water to

the bucket. This is the �leaky bucket paradox� of Seidl,  and it extends into a general proposition.  We

believe that this result is both interesting and important.

Our findings in this regard are quite distinct from the leaky bucket findings of authors such as

Atkinson (1980), Jenkins (1991) and Duclos (2000) in the welfare context, in which, following Okun
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(1975, pp. 91-95), the maximum leak before a welfare loss is experienced is quantified;1 not least, such

a leak cannot be negative, nor exceed 100%.

It is worth emphasizing here that our focus is upon inequality per se, and not inequality as an

ingredient of a social welfare. The linkage between inequality and growth is, of course, much studied.

Linkages between income inequality and aspects of health are also being investigated (Contoyannis and

Forster, 1999; Deaton and Paxson, 2001) as well as between inequality, polarization and social

exclusion (Wolfson, 1994; Duclos, 1998). Our results will be of interest in all of these scenarios.

The structure of the paper is as follows. In Section 2, we lay out the notation and preliminaries

in terms of which the analysis will proceed. In Section 3, we comment briefly upon the implications for

the Lorenz curve of increasing one income, and this provides a pointer to effects on some inequality

indices. We establish a central result here: a benchmark income or position exists for any Lorenz-

consistent inequality index. In Section 4, we examine the nature and properties of the benchmark for

two wide classes of inequality indices, deriving explicit results for many familiar indices,2 and a general

insight that relates the benchmark to the lower tail concern of the underlying inequality ordering. In

Section 5, we examine the leaky bucket issue in some depth. Section 6 concludes.

2. Notation and Preliminaries

Let the population size be N > 2. Income distributions X = (x1 , x2 , �, xi ,�, xN ) will be assumed

throughout to be unequal and non-decreasingly ordered, X ∈  Ω1 = {X ∈  ℜ N
++  : x1 ≤ x2 ≤ �≤ xi ≤ �≤ xN

& x1 < xN}, with mean µ(X) ∑=
i

ix
N
1 . For technical convenience we have disallowed zero incomes

and will sometimes restrict attention to the subsets Ω2 = {X ∈  ℜ N
++ : x1 < x2 ≤�≤ xi ≤ �≤ xN } and Ω3

= {X ∈  ℜ N
++ : x1 < x2 <�< xi <�< xN} ⊂  Ω2 ⊂  Ω1 . For X ∈  Ω1, let δ(X)=min{xi+1 - xi : xi ≠ xi+1} > 0 be

the smallest gap between two adjacent, non-identical incomes, and for 1 ≤ i ≤ N and 0 < δ < δ(X) denote

by X i
δ the vector obtained from X by adding δ to the income of person i. In general, X i

δ = (x1 , x2 , � xi-1

, xi + δ, xi+1 ,�, xN ) ∈  Ω1, but if xi = xi+1 = x then X i
δ ∉  Ω1, whereas its rearrangement (x1 , x2 , � , x ,

x + δ, xi+2 �, xN ), in which the ranks of persons i and i+1 are reversed, does belong to Ω1 (and has the

same Lorenz curve as X
i
δ ).3

                                                
1 We shall return to the cited findings later; they concern welfare functions based on the Atkinson index and extended Gini coefficient.
2  One class includes rank-independent indices such as the coefficient of variation, mean logarithmic deviation, generalized entropy index
and Atkinson index; the other, rank-dependent (or positional) indices such as the Gini and extended Gini coefficients.
3 In this notation, (X

j
α )

j
β = X

j
βα+ for all j such that xj  ≠ xj+1  and for α and β suitably restricted, whilst if j > i, (X

j
δ− )

i
δ = (X

i
δ )

j
δ−
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For a Schur-convex  inequality index I: ℜ N
++ → ℜ  and distribution X ∈  Ω1, and for 1 ≤ i ≤ N and

0 < δ < δ(X), we shall denote by ∆I(xi, δ) the change in inequality caused by increasing the income of

individual i by the amount δ: ∆I(xi, δ) = I(X
i
δ ) - I(X).

3. General Results

The effect on the Lorenz curve for X ∈  Ω1 of increasing one income, xi, depends on which income

this is. If the smallest income x1 is unique, i.e. x1 < x2 (so that X ∈  Ω2 ), and if x1 is increased slightly,

the Lorenz curve shifts upwards (just consider the effect on income shares), whilst if xN is increased,

the Lorenz curve shifts downwards (for all X ∈  Ω1, and by similar reasoning). For 1 < i < N, and also

for i = 1 when X∈  Ω1\ Ω2 (i.e when x1 = x2 ≠ 0), the new Lorenz curve intersects the old one once, from

below (again, just consider the income shares).4

What can we conclude about the effect on inequality indices of raising one income xi by an

amount δ, where 0 < δ < δ(X)? Clearly, if X ∈  Ω2 then ∆I(x1 , δ) < 0 for all Lorenz-consistent inequality

indices I; and ∆I(xN , δ) > 0 for all X ∈  Ω1. For 1 < i < N, and also for i = 1 when X ∈  Ω1 \ Ω2, we can

learn something from results of Shorrocks and Foster (1987) and Zoli (2002) concerning single Lorenz

intersections: if xi  is such that ∆CV(xi , δ) > 0, where CV is the coefficient of variation, then ∆I(xi , δ)

> 0 for all transfer-sensitive relative inequality indices I, whilst if it is such ∆G(xi , δ) > 0, where G is

the Gini coefficient, then ∆I(xi , δ) > 0 for all relative inequality indices I satisfying the positional

transfer-sensitivity principle.5 We return to these findings in the next section.

The results for the lowest and highest incomes are in fact enough to establish the existence of a

benchmark income, dividing positive from negative inequality effects for any Lorenz-consistent

inequality index I. It is straightforward that for all X, and for all i and j with i < j, X i
δ = ((X

i
δ ) j

δ ) j
δ− =

((X
j
δ ) i

δ ) j
δ− , in other words that X i

δ is obtained from X j
δ by a progressive transfer of δ from j to i. Hence

for any Lorenz-consistent inequality index I, we have I(X
i
δ ) < I(X

j
δ ), whence ∆I(xi, δ) < ∆I(xj, δ), ∀  i,

j = (1, 2, �, N) with i < j. Since we already know that, for X ∈  Ω2, ∆I(x1 , δ) <0 and ∆I(xN , δ) >0,

necessarily ∃  k < N such that ∆I(xi , δ) ≤ 0 ⇔ xi ≤ xk. That is, we establish the existence of a

�benchmark� income value x* in the distribution, dividing positive from negative inequality effects:

                                                                                                                                                                 
is the distribution obtained from X  by making a progressive transfer of δ from individual j to individual i.
4  If zero incomes were admitted, then the effect of increasing x1 when x1 = x2 = 0 would be to shift the Lorenz curve upwards.
5 The transfer sensitive inequality indices are those which adhere to the Principle of Diminishing Transfers of Kolm (1976).  For more
on the Positional Principle of Transfer Sensitivity, also known as the Positional Principle of Diminishing Transfers, see Mehran (1976)
and Chateauneuf et al. (2002).
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Theorem 1

Given any Lorenz consistent inequality index I(.), income distribution X ∈  Ω2 and number δ  such

that 0 < δ < δ(X), there exists a benchmark income level x* such that ∆I(xk , δ) ≤ 0 ⇔ xk ≤ x*.

For a very large population (N →∞), δ(X)=min{xi+1 - xi : xi ≠ xi+1} of course becomes

infinitesimal, in which case (assuming continuity of I(.)), the benchmark income level x* is uniquely

determined. For example, as we shall see, for the coefficient of variation CV(.), x* = µ(X).[1+CV(X)2]

and for the Theil index T(.), x* = µ(X).eT(X). In Figure 1, we graph the inequality effect ∆I(xi, δ) for

given X and δ against the value of person i�s income (the one being increased) in the case of the

coefficient of variation, for which this function is linear.6

                          ∆CV(x, δ)

                                    x1  x2                                                                   x*                         xN

Figure 1: inequality effect of raising person i’s income by a small amount δ for the
coefficient of variation, as a function of his/her income level x.

4. Further analysis for two general classes of indices

Some inequality indices depend on income shares alone, and others depend on income shares and

ranks. We might call such indices rank-independent and rank-dependent respectively, or non-positional

and positional. Among the positional indices are the Gini coefficient and the extended Gini coefficients

of Donaldson and Weymark (1980), Weymark (1981) and Yitzhaki (1983). These are members of the

general class of �linear measures� identified by Mehran (1976). Most of the familiar non-positional

                                                
6  See on. In the case of a generic Lorenz-consistent inequality index, the graph will have curvature, its shape depending on transfer
sensitivity and the distribution x in question. Joan Esteban has suggested an intuition for the upward slope in this graph.  Regard X i

δ as

the composition of X and a vector ιιιι , which has zeros in all places but the ith and δ in place i. If the covariance between X and ιιιι  is
positive/negative, the impact of ιιιι  on inequality is likely to be positive/negative (Shorrocks, 1982). Moreover, for any unequal X , the
higher is i, the greater is that covariance (for it equals (xi - µ)/N). Hence the upward slope in the graph is suggested.
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indices are related in one way or another to the generalized entropy family, shown by Bourguignon

(1979), Cowell (1980) and Shorrocks (1980) to be the unique additively decomposable indices. The

mean logarithmic deviation and Theil index belong to the generalized entropy class, and the coefficient

of variation and Atkinson index are monotonic transformations of indices in this class. We analyze

indices of the two types separately here, using suitable general forms and then proceeding to specific

indices afterwards. As we shall see, Theorem 1 extends from Ω2 to Ω1 for the non-positional indices,

whilst for the positional ones, the benchmark can be expressed as a position (rank) rather than an

income level when X ∈  Ω3.

4.1 The non-positional indices of relative inequality for the class ΩΩΩΩ1

Many non-positional indices, including all the ones we have cited, can either be written in the

form:

(1) J(X) = [1/N]Σi u(xi /µ(X))

where u: ℜ ++ → ℜ  is a twice-differentiable function such that u" does not change sign, or are monotonic

transformations of something in this form. Let I(X) be such an inequality index; suppose that:

(2) I(X) = h(J(X))

for all X ∈  Ω1 where h: ℜ  → ℜ  is differentiable and such that h' does not change sign.

This form encompasses most of the familiar non-positional indices. For the mean logarithmic

deviation D, set u(z) = -ln(z ) and h(J) = J. The Theil index T is given by u(z) = z ln(z) and h(J) = J.

(Both of these require normalized incomes z to be non-zero, which is true for X ∈  Ω1). The generalized

entropy class comprises indices E(c), c ∈  ℜ , of which E(0) = D, E(1) = T and E(c), c ≠ 0,1 obtains when

u(z) = zc and h(J) = (J-1)/[c(c-1)]. For the coefficient of variation CV, set u(z) = (z-1)2 and h(J) = J1/2.

For the Atkinson index A(e), where e > 0 is the inequality aversion parameter, set u(z) = z1-e and h(J)

= 1 - J1/(1-e) when e ≠1 and set u(z) = ln (z) and h(J) = 1 � eJ when e = 1. The coefficient of variation and

Atkinson index for 0 < e ≠1 are monotonic transformations of generalized entropy indices: CV =

√[2E(2)] and A(e) = 1 - [1 � e(1-e)E(1-e)]1/(1-e).

We may use the calculus to identify the benchmark income level x*. First, differentiate in (1) with

respect to the income being increased, let this be xk to distinguish it from the generic xi :

(3) ∂J/∂xk =
















−+





−



∑

≠
2

k
k2

i

ki
i Nµ

x
µ
1)µ(xu'

Nµ
x)µ(xu'

N
1

(in this, we have written µ for µ(X)). Now differentiate in (2), substitute from (3) and rearrange:

(4) ∂Ι/∂xk = [h'(J)/Nµ]{u'(xk /µ) - [1/N]Σi (xi /µ) u'(xi /µ)}
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For the transfer principle to hold, if lx > xj then ∂I/∂ lx  > ∂I/∂xj , that is:

(5) lx > xj ⇒  [h'(J)]{u'( lx  /µ) - u'(xj /µ)} > 0

whence if h'(J) > 0, u' must be monotone increasing, and if h'(J) < 0, u' must be monotone decreasing

(recall that u″ does not change sign). Now let zi = xi/µ be normalized income and define z* by:

(6) u′(z*) = [1/N].∑ziu′(zi)

From (4)-(5), z* determines the benchmark income level, dividing negative from positive inequality

effects when the relevant income is increased:

Theorem 2

Let I be a non-positional inequality index defined as in (1)-(2) and let X ∈  Ω1. Then ∂I/∂xk >< 0

⇔ xk /µ  >< z*  where z* is defined as in (6)

It is now straightforward to obtain the benchmark income level for each of the familiar indices

we have shown to be members of this non-positional class. For the mean logarithmic deviation D, for

example, for which u(z) = -ln(z) and u′(z) = -1/z, we have from (6) that z* = 1; whilst for the Theil

index T, for which u(z) = zln(z) and u′(z) = 1 + ln(z), we have from (6) that 1 + ln(z*) = 1 + T, or z*

= eT. For the other indices we have enumerated, the calculations go similarly.  The results are these:

Corollary

For the mean logarithmic deviation D, Theil index T, generalized entropy indices E(c), c ≠ 0,1,

coefficient of variation CV and Atkinson index A(e), e > 0, and for all X ∈  Ω1 , the inequality effect of

a small increase in income xk depends on the value of xk relative to the mean, as follows:

(a) ∂D/∂xk >< 0 ⇔ xk /µ  >< zD = 1

(b) ∂Τ/∂xk >< 0 ⇔ xk /µ  >< zT = Te

(c) ∂E(c)/∂xk >< 0 ⇔ xk /µ  >< zE(c) = [1 + c(c-1)E(c)]1/(c-1)     (c ≠ 0,1)

(d) ∂CV/∂xk >< 0 ⇔ xk /µ  >< zCV =1+CV 2

(e) ∂A(e)/∂xk >< 0 ⇔ xk /µ  >< zA(e) = [1 - A(e)](e-1)/e  (e ≠ 1)

(f) ∂A(1) /∂xk >< 0 ⇔ xk /µ  >< zA(1) = 1

There are some equivalences within this set of results. For example, using E(2) = (1/2)CV 2, we

see that zE(2) = [1 + 2E(2)] = zCV. This is as it ought to be, since the two indices are monotonically
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related. It can also be shown that 
0→c

lim zE(c) = 1 = zD = zA(1) , 
1→c

lim zE(c) = Te  = zT and zA(e) = zE(1-e) for e

≠ 1. Let us examine the benchmark zE(c) for the generalized entropy family more closely. Define mc

= ∑
=

N

1i

c
iz

N
1 and Mc = { mc} 1/c  as the moment of order c and mean of order c respectively in the

distribution of the z�s. Then zE(c) = { Mc} c/(c-1) for c ≠ 0,1. The properties of Mc as a function of c, for a

given distribution, are well-known in the statistical literature7, and can be used to derive properties of

the benchmark. In particular, for any given income distribution X, zE(c) is continuous and increasing in

c, and ranges in value from the minimum income relative to the mean, z1, to the maximum, zN: that is,

zE(c) → z1 as c → -∞ and zE(c) → zN  as c→ +∞. A particular consequence is that, for each person k in an

income distribution X ∈  Ω1 there exists a unique c ∈  ℜ  such that zE(c) = xk /µ : each person can be

considered to be at the benchmark position for exactly one generalized entropy index. Figure 2, obtained

by simulation, shows graphs of Mc and zE(c) against c for the income distribution ($200, $500, $800,

$1100, $2400).

income relative
to the mean

      
  

Figure 2:  the generalized entropy benchmark as a function of the parameter c
   for the income distribution ($200, $500, $800, $1100, $2400)

We can now return to the finding in Section 3 concerning the coefficient of variation and transfer-

                                                
7 For a proof of the properties of the mean of order c, see for example Hardy et al. (1934, chapter 1).

 1 c  0
   z1

z N

1

z E(c) 
M c

zCV

 zT

 2
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sensitive inequality indices. We saw there that for X ∈  Ω1 and for any k such that ∂CV/∂xk > 0, an

increase in xk necessarily raises inequality for every transfer-sensitive index I. That is, from part (d) of

the Corollary, if xk /µ > zCV = 1 + CV2 then ∂I/∂xk > 0. Therefore zCV is an upper bound for the

benchmarks z* in the class of transfer-sensitive inequality indices.8

The function u and income distribution X together determine the benchmark income level x* for

indices in our non-positional class according to equation (6) (and for Ω1 rather than the restricted Ω2

of Theorem 1; ties, as in Ω1 \ Ω2, are immaterial for the non-positional indices)9. Notice that the

function u alone defines the inequality ordering induced by I, and determines the benchmark, whereas

the function h is also needed for the definition of I.

Further insight into the relationship between the inequality ordering and benchmark income level

can be gained with a simple transformation. Let  πi = zi /N, which is person i�s income share, 1 !"i

!"N, and note that ∑πi = 1. Now set U(z) = u´(z) where u is the function in (1) determining the

inequality ordering. From (6), the benchmark income relative to the mean satisfies this equation:

(7) U(z*) = ∑ πiU(zi) = E[U(Z)]

where Z is a risky prospect in which the return is zi with probability πi, 1 !"i ! N. That is, z* = x*/µ

is the certainty equivalent of Z for the �utility function� U, in the sense of Pratt (1964). An extension

of the Pratt theorem confirms the following result, linking the (relative) risk aversion of U, which, in

terms of the function u defining the inequality ordering, takes the form

(8) Pu(z) = -zu″′ (z)/u″(z),

with the position of the benchmark:10

Theorem 3

Let I and Î be inequality indices defined as in (1)-(2) by, respectively, h and u and �h  and  û,

where Pu (z) > Pû (z)  ∀ z. Then for all unequal income distributions X ∈  Ω1, the benchmark income for

I is less than that for Î :  x* < �x * . 

                                                
8  This result is consistent with our Corollary. A(e) is transfer-sensitive for all e, and E(c) is transfer sensitive for c < 2, and the
benchmarks for these indices all exceed zCV : c < 2 ⇒  zCV > zE(c) = zA(1-c)  (as Figure 2 shows).
9 Notice that for the coefficient of variation, ∆CV(xi, δ) ≈ δ.∂CV/∂xi is linear in xi because, in (4), u�(z) = 2(z-1) in case I = CV. This
accounts for the shape of the graph in Figure 1.
10  For a direct proof, just follow similar steps to those in Lambert�s (2001, theorem 4.1) proof of the Pratt theorem. Namely,  define Û
by Û(z) = û´(z), and let  the �inequality aversion� measures for the �utilities� U and Û be qÛ(z) = -zÛ″(z)/Û´(z) and qU(z) = -zU″ (z)/U´(z),
 so that PÛ(z) = qÛ(z) and similarly for U. By assumption û″ = Û' and u″ = U' do not change sign. Define a function ø by Û(z) = ø[U(z)]
#z, so that ø' < 0 if and only if U' and Û' have opposite signs. Then qÛ(z) = qU(z) - zø$[U(z)]U'(z)/ø'[U(z)]. Assuming qÛ(z) < qU(z)
#z, as in the theorem, ø$"< 0 if  Û' < 0 and ø$"> 0 if Û' > 0.  Now apply Jensen�s inequality: Û( �x */µ) = E[Û(Z)] = E[ø(U(Z))]
< ø(E[U(Z)]} = ø[U(x*/µ)] = Û(x*/µ) if Û´ < 0 and Û( �x */µ) = E[Û(Z)] = E[ø(U(Z))] > ø(E[U(Z)]} = ø[U(x*/µ)] = Û(x*/µ) if Û´ > 0.
In either case, x* < �x * , as the theorem claims.
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The higher is the measure Pu(z) ∀ z, the more confined is the lower-tail region [0,x*] in which an

increase in a person�s income is regarded as an inequality improvement, whatever the income

distribution. In a clear sense, then, an inequality ordering with a higher Pu-measure is �more

Rawlsian�.11 Rather than introduce a cumbersome word, �Rawlsianity�, for the measure Pu(z) as a

characteristic of the inequality ordering of which I is a cardinal representation, we shall call it the �lower

tail concern� of the ordering in what follows.12

All the specific indices we have been considering in fact have constant lower tail concern. This

is because they all represent inequality orderings implicit in generalized entropy indices, for which u(z)

= zc whence PE(c)(z) = 2-c, ∀ z. It follows from Theorem 3 that the benchmark income for E(c) is an

increasing function of c whatever the income distribution X, as evidenced in Figure 3 for a specific

income distribution. It can be checked directly, by inspecting the relevant u-functions, that for the mean

logarithmic deviation, PD(z) = 2, ∀ z; for the Theil index, PT(z) = 1, ∀ z; for the coefficient of variation,

PCV(z) = 0, ∀ z; and for the Atkinson index, PA(e)(z) = e+1, ∀ z. The configuration of benchmarks for any

two of the inequality indices we have catalogued can thus be ascertained, whatever the income

distribution, by a simple comparison of scalar magnitudes.  Notice that the inequality orderings with

(constant) negative lower tail concern are precisely those represented by the generalized entropy indices

E(c) for c > 2. This ties in with a remark of Shorrocks (1980, p. 623), that the indices E(c), c > 2 �show

little concern for equalization, except possibly among the very rich�. In fact, within the general class

of non-positional indices satisfying (1)-(2), the sub-class having positive lower tail concern are precisely

those which satisfy Kolm�s (1976) Principle of Diminishing Transfers.13

4.2 The positional indices of relative inequality for the class ΩΩΩΩ3

Here we shall consider inequality indices in which people�s incomes are weighted according to

their positions in the distribution. Specifically, let M(X) take the form

(9) M(X) = [1/N]. ∑i w(i)xi /µ

                                                
11 Since its introduction in 1971, Rawls� difference principle has overwhelmingly been interpreted as expressing concern (in either
inequality or welfare terms) solely with the fortunes of the worst-off individual (or set of individuals if there is equality at the very
bottom). Yet Rawls himself clearly referred to �the least advantaged segment� (ibid, p. 98, italics added), this segment being demarcated
 either  by a relative income, or by the average income of those occupying one of the less-fortunate social roles.
12 There is a formal link with Kimball�s (1990) concept of �prudence� in the uncertainty context. We refrain from calling Pu(z) 
�downside inequality aversion�, as this would be inconsistent with Modica and Scarsini�s (2002) measure in the uncertainty context of
downside risk aversion, which, in absolute form, is -u″′ (z)/u′(z). We also refrained from calling Pu(z) �downside-mindedness�, however
apt, as this concept belongs to Wilthien (1999).
13 It is readily verified, using a similar argument to the one given just after  (5), that if h′(J) > 0 then I satisfies Kolm�s principle if and
only if u″ > 0 and u″′  < 0, and that if h′(J) < 0 then I satisfies Kolm�s principle if and only if u″ < 0 and u″′  > 0. Hence Kolm�s principle
corresponds precisely to an everywhere positive lower tail concern. 
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for X ∈  Ω3, where w: ℜ  → ℜ  is such that ∑i w(i) = 0 and w(i+1) > w(i) for i = 1,2,... N-1.

This specification covers the Gini coefficient G, for which wG(i) = (2i � N � 1)/N, the extended

Gini coefficient G(ν), ν > 1, of Weymark (1981), Donaldson and Weymark (1980, 1983) and Yitzhaki

(1983), for which wG(ν)(i) = N.{[(N-i)/N]ν - [(N-i+1)/N]ν}+ 1 (the case ν = 2 being that of the ordinary

Gini coefficient),14 and the illfare-ranked S-Gini coefficient S(β), 0 ≤ β < 1, of Donaldson and Weymark

(1980), for which wS(β)(i) = 1 � N.{[i/N]β - [(i-1)/N]β }.

Going slightly further, we shall assume that in (9), the function w: ℜ  → ℜ  is strictly increasing

and twice differentiable. Setting ω(p) = w(Np), so that ω : [0,1] → ℜ  ascribes weights by rank, (9)

becomes:

(9a) M(X) = [1/N]. ∑i ω(pi)xi /µ

in which the rank of income xi  is written as pi = i/N,  so that ω(pi) = w(i). This version of (9) exactly

describes the class of so-called �linear inequality measures� identified by Mehran (1976) and further

studied by Weymark (1981) and Yaari (1988).15  

For X ∈  Ω3, this index is differentiable in each xi.16 Differentiating in (9), we have

(10) ∂M/∂xk = [w(k) � M]/[Nµ] >< 0 ⇔  w(k) >< M

We know that ∂M/∂xN > 0 from Theorem 1. Hence w(N) > M; and since ∑i w(i) = 0 by assumption, and

w is increasing, we must have w(1) < 0. Then by continuity and monotonicity, there exists a unique real

number k* such that w(k*) = M. Of course, k* is unlikely to be an integer. We have established the

existence of a benchmark position for indices in the positional class:

                                                
14 For more on the extended Gini coefficient, see Lambert (2001, chapter 5).  Note that w G(ν)(i+1) � w G(ν)(i) = N{[(N-i+1)/N]ν + [(N-i-
1)/N]ν  - 2[(N-i)/N]ν } which can be written as 2N[E(Yν) � (E(Y))ν] where Y is a random variable with realizations (N-i+1)/N and (N-i-
1)/N each with probability ½. This is strictly positive because Yν is a convex function of Y for ν > 1. Similarly, by a slight abuse of
notation, we have ∂[wG(ν)(i+1) � wG(ν)(i)]/∂i = -2ν[E(Yν-1) � (E(Y))ν-1], which is negative for ν > 2, zero for ν = 2 and positive for ν <
2. G(ν) thus satisfies the strong version of the Positional Principle of Transfer Sensitivity only for ν > 2. See on.
15  In the case of a continuous income distribution function F(x),  the Mehran index becomes  MF =  ∫0∞ xω(F(x))f(x)dx/µ  where ∫01 w(p)dp
= 0 (see Lambert, 2001, for more on this). In this setting, the rank-weighting functions for the Gini, extended Gini and S-Gini are ωG(p)
= 2p-1, ωG(ν)(p) = 1 - ν(1-p) ν-1 and ωS(β)(p) = 1 - βpβ-1 respectively. These correspond to the discrete weighting functions wG(i), wG(ν)(i)
and  wS(β)(i) cited above, making the identification p = i/N and regarding 1/N as an infinitesimal. Chateauneuf et al. (2002) characterize
the class of Yaari (1988) indices by a form as in (9) but with w(i) = 1 + N{f((N-i)/N) � f((N-i+1)/N)} for some function f: [0,1] → [0,1]
for which f(0)=0, f(1) = 1 and f′(t) > 0 ∀ t ∈  (0,1). For the extended Gini,we have fG(ν)(t) = tν and for the illfare ranked S-Gini, fS(β)(t) =
1 � (1-t)β. Writing ω(p) = 1 � f ′(1-p), the functions ωG(p), ωG(ν)(p) and  ωS(β)(p) emerge, along with the general form in (9a). Notice that
if we extend the functional forms defining G(ν) and S(β) to all non-zero parameter values, then -G(ν) belongs to our positional class for
ν < 1 and -S(β) belongs to it for β > 1. A new inequality index outlined in Wang and Tsui (2000) takes the form J(c) = sign (c-1)[G(c)
- S(c)], 0 < c ≠ 1, and hence belongs to our class too. Another class of �generalized Gini� indices due to Aaberge (2001),  in which the
weights depend on Lorenz curve values L(p) rather than positions p, does not fall within the scope of our general form in (9)-(9a). See
also Chakravarty (1988).
16 The form in (9) can be extended to Ω1, with the loss of differentiability, if the weights when xi = xi+1 are made the same for persons
i and i+1, and equal to [w(i) + w(i+1)]/2 . Without this change, a small amount taken from person i and given to person i+1 would
increase inequality, whereas the same amount taken from person i+1 and given to person i would reduce it � yet the final income
distribution would be the same in both cases.
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Theorem 4

Let M be a positional inequality index defined for X ∈  Ω3 as in (9), with w: ℜ  → ℜ   continuous

and strictly monotone increasing. Then ∂M/∂xk 
>

< 0 ⇔  k >< k* where k* = w-1(M).

For the Gini coefficient, we have kG* = [N(1+G)+1]/2 > N/2, whence the benchmark is above

the median (and by more, the more unequal is the distribution). Defining ∆G(xk, δ) =G(X
k
δ ) � G(X),

with 0 < δ < δ(X) as earlier, we find that ∆G(xk, δ) = 2 a kδ a
N b δ b

+
−

+
 
  

 where a = ∑i ixi and b = Nµ =

∑i xi . Thus kG* = a/b can be interpreted as the income weighted average position in the distribution.

Note in particular that ∆G(xk, δ) is linear in k and independent of the income value xk. See Figure 3,

a Gini version of Figure 1, which shows position rather than income horizontally.

                             ∆G(xk,δ)

                                             1   2                    ��                            kG*         ��          N            k

Figure 3: benchmark position for the Gini coefficient

For the extended Gini coefficient G(ν), the benchmark position kG(ν)* is the solution to the

equation wν(k) = G(ν), or [(N-k+1)/N]ν - [(N-k)/N]ν = [1 - G(ν)]/N, which is difficult to obtain

explicitly. However, an approximation to kG(ν)* can be obtained quite easily. Define a function g(s)  =

sν, so that s* = (N-kG(ν)*)/N is the solution of [1 - G(ν)]/N = g(s + 1/N) � g(s). For large N, g(s + 1/N)

� g(s) ≈ νsν-1/N, whence s* ≈ {[1 - G(ν)]/ν}1/(ν-1) i.e. kG(ν)* ≈ N[1 � {[1 - G(ν)]/ν}1/(ν-1)]. In the case ν

= 2, this approximation becomes kG(2)* ≈ N[1 +G]/2, whilst the true value, kG*, is [N(1+G)+1]/2 which

is higher by ½. Hence the approximate benchmark is at most one position too high in this case. For the
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illfare-ranked S-Gini, by similar reasoning kS(β)* ≈ N{[1 - S(β)]/β}1/(β-1)].17

We saw in Section 3 that for X ∈  Ω1 and for any k for which 1 < k < N and ∂G/∂xk > 0, an

increase in xk necessarily raises inequality for inequality indices satisfying the Positional Principle of

Transfer Sensitivity. That is, if  k > kG* = [N(1+G)+1]/2, then ∂M/∂xk > 0 for all such indices M.

Therefore kG* is an upper bound for the benchmarks k*  in the class of inequality indices satisfying the

Positional Principle of Transfer Sensitivity. In particular, kG* ≥ kG(ν)* for all ν > 2 (recall footnote 14).

A link between the lower tail concern of the inequality ordering represented by a positional

inequality index M and the location of the benchmark k* obtains, just as it did for the non-positional

class in Theorem 3. Again setting πi = zi /N as person i�s income share, and treating it as a probability,

and now using version (9a) of the definition of M, we have from (10) that the benchmark position k*

satisfies this equation:

(11) ω (p*) = ∑ πi ω(pi) = E[ω(K)]

where p* = k*/N and  K is a risky prospect in which the return is pi with probability πi, 1 !i ! N. That

is, k*/N is the certainty equivalent of K for ω, in the sense of Pratt (1964). Now defining

(12) Qω(p) = -pω″(p)/ω′(p)

as the lower tail concern measure, we have the following result, paralleling Theorem 3:

Theorem 5

Let M and �M be positional inequality indices defined for X ∈  Ω3 as in (9a) by,  respectively, ω

 and �ω , where Qω(p) > �Qω (p) ∀ p. Then for all unequal income distributions X ∈  Ω3, the benchmark

position is lower for M than for �M :  k* <  �k * . 

For the positional indices, lower tail concern Qω(p) is measured in terms of rank p (rather than

relative income z), and is given by the concavity of the weighting function ω.  The higher is the measure

Qω(p) ∀ p, the more confined is the set of lower tail positions 1 ≤ k < k* in which an increase in a

person�s income is regarded as an inequality improvement. If the population size N is large, the illfare-

ranked S-Gini has constant (and positive) lower tail concern: QS(β)(p) = 2-β ∀ p (see footnote 15). If we

had defined Qω(p) slightly differently, as Qω*(p) = -(1-p)ω″(p)/ω′(p), which would have no effect on

the validity of the theorem, then it would be the extended Gini that had constant lower tail concern:

QG(ν)*(p) = ν-2. This makes evident a link between our tail concern measure and the Positional

                                                
17   Pendakur (1998), addressing a slighly different question, identifies a unique threshold position (percentile) for the S-Gini, such that
a lump-sum transfer from all agents but one, to that one, either raises or lowers inequality depending on whether the recipient is above
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Principle of Transfer Sensitivity, since only the extended Ginis with  ν > 2 (i.e. those with positive

lower tail concern) satisfy this Principle. In fact, within the general class of indices satisfying (9)-(9a),

the sub-class having positive lower tail concern are precisely those which satisfy this Principle.18

5. The Leaky Bucket

We now address the leaky bucket issue. Suppose that, in an unequal distribution X, a small

amount δ is taken from individual l and an amount qδ is given to individual j who is lower down the

distribution (j < l ). The effect on any differentiable inequality index I is readily obtained using the total

differential:

(13) dΙ  = [q∂Ι/∂xj - ∂Ι/∂ lx ].δ

for an infinitesimally small δ. If X ∈  Ω1 then xj ≤ lx , whilst if X ∈  Ω3 (or if l  = 2 and X ∈  Ω2) then xj

< lx . As before, we can deal with the general case of X ∈  Ω1 for the non-positional indices, but will

restrict attention to X ∈  Ω3 and 0 < δ < δ(X) for the positional ones. In both cases, the index is then

differentiable. The value q0 for which dI = 0 reveals the information we seek about the permitted

leakiness of the bucket for a non-adverse inequality effect:

 (14) q0 =
jxI(.)

xI(.)
∂∂
∂∂ l

The  intuitively agreeable scenario, that the size of the leak would not erase completely the amount of

income to be received by the poor, corresponds to 0 < q0 < 1, whilst the other two cases, already

identified by Seidl (2001) in the case of the Gini coefficient and termed �paradoxical�, that the leak

could exceed 100% or even be negative, correspond to q0 < 0 and q0 >1 respectively. As we shall see,

it is possible to predict the circumstances in which each of these three cases occurs for all inequality

indices in our two classes.

5.1 The non-positional indices of relative inequality

For an inequality index I defined as in (1)-(2), we obtain

(15) q0 = )µ*x(u'µ)(xu'
)µ*x(u'µ)(xu'

−
−

j

l

                                                                                                                                                                 
or below the threshold position. See footnote 12, ibid.
18 The general positional index M as defined in equations (9)-(9a) satisfies the strong version of the Positional Principle of Transfer
Sensitivity when the positive difference w(i+1) - w(i) is strictly decreasing in i, or ω″ (p) < 0 ∀ p ∈  (0,1). See Mehran (1976, p. 808) and
Chateauneuf et al. (2002, theorem 9) for more on this. Yaari�s (1988) �equality-mindedness� measure for the positional indices, which
in our notation is = -ω′(p)/[1-ω(p)], and in the alternative notation of footnote 15 is �f ″(1-p)/f ′(1-p), is based upon a leaky bucket
experiment: see on.
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from (14) using (4) and (6). Since u' is monotonic, it follows19  that the magnitude of the permitted leak

(which is 1-q0) depends crucially upon which side of the benchmark the donor and recipient lie:

Theorem 6

Let I be a non-positional inequality index defined as in (1) - (2). The fraction q0 of a small amount

δ taken from individual l  which must reach individual j (where j < l ) for inequality neutrality depends

upon the incomes of l  and j relative to the benchmark income x* as follows:

(i)  x* > lx  > x j   ⇒  0 < q0 < 1

(ii) lx  > x* > x j   ⇒   q0 < 0

(iii) lx  > x j > x*  ⇒   q0 > 1

The magnitude of the effect on inequality, of a leaky transfer from l  to j, depends on whether q
>

< q0 , of course, as well as on the values zj = xj /µ,  zl  = lx /µ and z* = x*/µ: for any non-positional

index in our class, inequality increases or decreases according to the inefficiency level and the relative

incomes of the individuals affected. Case (i), in which 0 < q0 < 1, is the one typically envisaged, and,

our analytics reveal, it can occur only when both the donor and recipient are below the benchmark. In

all other configurations of donor and recipient, the permitted leakage will either exceed the amount

taken away (q0 < 0), so that the �recipient� may lose too, or be negative, so that the recipient may

receive more than the donor gives up (q0 > 1) with no adverse effect on inequality.

One can readily obtain the value of q0 for any particular index using (15) and the appropriate

function u(.). For the mean logarithmic deviation D, qD = 
1

1

j

z 1

z 1

−

−

−

−
l ; for the Theil index T, qT =

j

ln z - T

ln z - T
l ;

for the generalized entropy index E(c), c ≠ 0,1, qE(c) =
c-1 c-1

E(c)

c-1 c-1
j E(c)

z z

z z

−

−
l ; for the coefficient of variation CV,

qCV = CV

CV

z

z j

z

z

−

−
l ; for the Atkinson index A(e), qA(e) = 

e e
A(e)

e e
j A(e)

z

z

z

z

− −

− −

−

−
l = qE(1-e) for 0 < e ≠1 and qA(1) = qD.

In Table 1, we illustrate how the benchmark income level x* and maximum permitted rate of

leakage 1 – q0 vary with inequality aversion e for the Atkinson index A(e), using the income distribution

($200, $500, $800, $1100, $2400) again and choosingl= 4 and j = 2. When $1 is taken from the person

with $1100 and an amount $q is given to the person with $500, the leak $(1-q) can be as big as the value

1 – q0 = 1 � qA(e) shown in the table before an inequality effect judged to be adverse would occur. As is

clear, all three cases 0 < q0 < 1, q0 < 0 and q0 > 1 of Theorem 6 arise, for different ranges of inequality

                                                
19  It is a general property that if a function g(.) is strictly monotonic, either increasing or decreasing, and if d = [g(a)-g(b)]/[g(c)-g(b)],
where a > c, then d < 0 if a > b > c, d > 1 if a > c > b, and 0 < d < 1 if b > a > c.
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aversion  e. In each such range  the maximum permitted rate of leakage increases with e.

Figure 4 shows the maximum permitted rate of leakage 1-qE(c) for the class of generalized entropy

indices E(c) as a function of the parameter c, for this same income distribution, using the scenario l =

4 and j = 2 of Table 1 and three others each involving the richest and/or poorest person in the transfer.

The results for the Atkinson index A(e) for 0< e ≠1 occur for c < 1 (recall that qE(1-e) = qA(e)). Panel 1 of

Figure 4 thus replicates and extends the maximum leak values given in Table 1. It is clear from panels

3 and 4, however, that it is not always the case for the Atkinson index that the maximum permitted leak

increases with inequality aversion.

e A(e) x* 1 � qA(e)
Theorem 6,

case:
0.1 0.0272 1282.1811 0.8436
0.2 0.0546 1251.5924 0.8701
0.3 0.0819 1220.6203 0.8967
0.4 0.1092 1189.3367 0.9234
0.5 0.1363 1157.8210 0.9503

0.6 0.1632 1126.1599 0.9774

(i)

x* > x4 > x2 

⇒   0 < q0 < 1

0.8 0.2162 1062.7796 1.0328
1 0.2673 1000.0000 1.0909

1.2 0.3160 938.6666 1.1535
1.4 0.3617 879.6041 1.2230
1.6 0.4041 823.5476 1.3033
1.8 0.4428 771.0817 1.4001
2 0.4778 722.6008 1.5222

2.2 0.5092 678.2984 1.6849
2.4 0.5370 638.1840 1.9160
2.6 0.5615 602.1179 2.2737
2.8 0.5831 569.8547 2.9028
3 0.6020 541.0856 4.2955

3.2 0.6186 515.4730 9.8986

(ii)

x4 > x* > x2

⇒   q0 < 0

3.5 0.6398 482.2325 -6.9382
4 0.6673 438.0625 -1.3731
5 0.7032 378.4391 -0.3241
6 0.7247 341.3486 -0.1117
7 0.7387 316.5664 -0.0423

10 0.7608 275.9386 -0.0026
20 0.7823 234.9238 -0.0000

(iii)

x4 > x2 > x* 

⇒   q0 > 1

             
              Table 1: The benchmark income level x* and maximum permitted rate of leakage 1-qA(e) 

as a function of inequality aversion for the income distribution ($200, $500,
$800, $1100, $2400) when l = 4 and j = 2.

 When the richest person is the donor, in this example the  maximum leak decreases with e in

some or all ranges. A fortiori, there can be no clear general relationship between the lower tail concern
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of an inequality ordering, as measured by Pu(z), and the maximum leak 1 – q0: an intuition that a more

lower tail concerned inequality ordering would countenance bigger leaks, though tempting, must be

wrong.

Our findings in Table 1 and Figure 4 may be set alongside those of Atkinson (1980, p. 42) and

Jenkins (1991, pp. 28-9), which relate to the maximum tolerable leak for an Atkinson index before a

welfare loss is experienced (rather than, as here, before inequality is exacerbated). Because the

efficiency aspect gets taken into account in welfare, measured  in these studies as µ[1 � A(e)], it is clear

that very big leaks could not be tolerated; Atkinson and Jenkins found maximum permitted leaks in the

range 33%-75% for their particular numerical scenarios.
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Figure 4:   Maximum permitted leakage rate 1-qE(c)  for the generalized entropy index E(c) as a function of c, for the scenario in Table 1 and three other scenarios        
 involving the richest and/or the poorest person in the transfer.

Panel 1: l = 4  and  j = 2                                                                                         Panel 2: l = 3  and  j = 1

       x4 > x2 > x*
                                                                       x* > x4 > x2                                                                   x3 > x* > x1                                          x* > x3 > x1

                                           x4>x*>x2

 Panel 3: l = 5  and  j = 2                                                                                         Panel 4: l = 5  and  j = 1

         x5 > x2 > x*                                                                                                                                                             x5 > x* > x1

                                                                       x5 > x* > x
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5.2    The positional indices of relative inequality

If X ∈  Ω3 and if 0 < δ < δ(X) then the resultant income distribution after the transfer, which is

(X
l
δ− ) j

qδ+ , also belongs to Ω3. Thus the form given in (9) for a positional index M(.) applies.

Substituting from (10) into (14), the value of q0 for the index M is:

(16) q0 =
( )
( )

w M
w j M

−
−

l

Now recall from Theorem 4 that the benchmark position for M is k* = w-1(M). Hence

(17) q0 =
( ) ( *)
( ) ( *)

w w k
w j w k

−
−

l

(compare this with (15), which expresses q0 in a similar form for the non-positional indices). The

following results are immediate, given that w(.) is strictly increasing:

Theorem 7

Let M be a positional inequality index defined for X ∈  Ω3 as in (9), with w: ℜ  → ℜ   continuous

and strictly monotone increasing. The fraction q0 of a small amount 0 < δ < δ(X) taken from individual

lwhich must reach individual j (where j < l ) for inequality neutrality depends upon the positions of

l  and j relative to the benchmark position k* as follows:

(i)     k* > l  > j ⇒   0 < q0 < 1

(ii) l  > k* > j  ⇒   q0 < 0

(iii)   l  > j > k*  ⇒    q0 > 1

The case 0 < q0 < 1 occurs only when both the donor and recipient are positioned below the

benchmark k*. In all other configurations, the permitted leakage will either exceed the amount taken

away (q0 < 0), so that the �recipient� may lose too, or be negative, so that the recipient may receive

more than the donor gives up (q0 > 1) with no adverse effect on inequality. These results are analogous

to the ones in Theorem 6 for the non-positional indices, in which the benchmark income level forms the

divide; for the positional indices, it is the benchmark position which takes this role.

In the case of the Gini coefficient, for which w(i) = (2i � N � 1)/N, q0 = (l - kG*)/(j – kG*) where

kG* = [N(1+G)+1]/2. Seidl (2001) obtained essentially this result by other means. The expression for

q0  for the extended Gini coefficient G(ν), ν > 1, which is more complex, obtains by substituting wG(ν)(i)

= N{[(N-i)/N]ν - [(N-i+1)/N]ν} + 1 and M = G(ν) in (12). Noting that for large N, wG(ν)(i) ≈ [1 � ν.{(N-
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i)/N}ν-1]/N, so that q0 can be approximated from (13) as q0 ≈ [(N-kG(ν)* )ν-1 � (N-l)ν-1]/[(N-kG(ν)* )ν-1

� (N-j)ν-1], it follows from the further approximation kG(ν)*  ≈ N[1 � {[1 - G(ν)]/ν}1/(ν-1)] already noted

that q0 ≈
1

1

1 ( ) (1 )

1 ( ) (1 )

v

l

v

j

G v v p

G v v p

−

−

− − −

− − −
 where pj and pl are the ranks of j and l respectively. Analogously, for the

illfare-ranked S-Gini, q0  ≈
1

-1

1 ( )

1 (
l

j

S p

S p

β

β

β β
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 for large N.

In Table 2, we illustrate for the extended Gini coefficient  how the benchmark position kG(ν)* and

maximum permitted rate of leakage 1 – qG(ν) vary with the distributional judgment parameter ν, using

the same income distribution as in Table 1 and choosing l = 4 and j = 2 as before. The cases 0 < q0 <

1, q0 < 0 and q0 > 1 of Theorem 6 all arise.

v G(v) k* 1 � qG(v)
Theorem 6,

case:
1,2 0,1196 4,4054 0,7464
1,4 0,2140 4,2976 0,8243
1,6 0,2894 4,1941 0,8918
1,8 0,3502 4,0949 0,9499
2 0,4000 4,0000 1,0000

(i)
k* > 4 > 2

  ⇒   0 < q0 < 1

3 0,5520 3,5895 1,1628
4 0,6285 3,2724 1,2446
5 0,6749 3,0244 1,2980
6 0,7060 2,8249 1,3495
7 0,7282 2,6607 1,4141
8 0,7444 2,5225 1,5053
9 0,7566 2,4046 1,6415

10 0,7659 2,3026 1,8568
11 0,7731 2,2135 2,2286
12 0,7787 2,1351 2,9848
13 0,7831 2,0655 5,2139
14 0,7866 2,0034 84,5591

(ii)

4 > k* > 2

⇒   q0 < 0

15 0,7893 1,9477 -4,6751
16 0,7915 1,8975 -2,0133
17 0,7932 1,8521 -1,1755
18 0,7946 1,8108 -0,7730
20 0,7965 1,7386 -0,3936
25 0,7989 1,6028 -0,1036
30 0,7996 1,5083 -0,0319
40 0,8000 1,3866 -0,0033

(iii)

4 > 2 > k* 

⇒   q0 > 1

Table 2:  The benchmark position k* and maximum permitted rate of leakage 1-qG(v)  as
               a function of inequality aversion for the same income distribution ($200, $500,
               $800, $1100, $2400) when l = 4 and j = 2.
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Figure 5 shows the dependence of 1 - qG(ν) on ν graphically, for the same four scenarios as used

in Figure 4 for 1 - qE(c). As before, we see non-monotonicity in some scenarios between ν and 1 - qG(ν).

For the positional indices too, then, there can be no general link between the degree of lower tail

concern of the inequality ordering and the maximum permitted leak.20 The leakage rates shown in Table

2 and Figure 5 may be compared with those of Duclos (2000, p.149-150), who calculates the maximum

tolerable leaks for no welfare loss, where welfare is measured as µ[1 � G(ν)]. Duclos�s maximum leaks

are shown for various scenarios to be increasing in ν and lying between 6.7% and 99.6%.

There is, of course, an analytical connection between our maximum leakage rate (1−q0) for

inequality and those of Atkinson, Jenkins and Duclos for welfare. Letting welfare be evaluated as W

= µ[1 � I], where I is an inequality index in one of our two classes (whose range is contained in the

interval [0,1]), the welfare effect of the leaky transfer is dW = [q∂W/∂xj - ∂W/∂ lx ].δ (compare with

(13)). The maximum permitted leak for a non-adverse welfare effect, call it 1-qW, occurs at the value

of q for which dW = 0. It can easily be shown as a general proposition that 1-qW lies between 0 and 1,

and that in fact the welfare and inequality leakage rates are linked by an equation of the form:

(18) (1-qW) = (1−q0).λ 

in which λ ∈  (-∞,1) is a term that depends on the position of the recipient j relative to the benchmark.21

 

                                                
20 Yaari�s (1988) equality-mindedness measure concerns a leaky bucket.Yaari suggests a thought experiment whereby the incomes of
a given fractile of the poor are raised, at the expense of lowering the incomes of a certain fractile of the rich. A more equality-minded
index M, he argues, would tolerate a bigger fractile of donors than a less equality-minded one, before regarding the �leak� entailed as
detrimental. Thus his leaks involve a loss of mass, whereas ours involve a loss of income.
21 To see this, note that qW = [∂W/∂ lx ]/[∂W/∂xj], which is positive by monotonicity of W, and use direct calculation, and substitution

of ∂Ι/∂ lx as q0∂Ι/∂xj from (14), to obtain λ = -[µ.∂Ι/∂xj ]/[∂W/∂xj]. Now for both the non-positional and positional indices, we know that

λ >(<) 0 if j is below (above) the benchmark (Theorems 2,4), and that (1−q0) > (<) 0 if j is below (above) the benchmark (Theorems 6,7).
Hence qW ∈  (0,1) in all cases. The reader could verify, for example, that for the Atkinson index with e=1, λ = 1 - xj/µ (where, recall, the
benchmark income is simply the mean µ, see the Corollary to Theorem 2, part (f)), whilst for the Gini coefficient, λ = [G - w(j)]/[1 - w(j)]
where w(j) = (2j-N-1)/N, which can also be written λ = [kG* - j]/[N+↔ - j].
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Panel 1: l = 4  and  j = 2                                                                                        Panel 2: l = 3  and  j = 1

Figure 5: Maximum permitted leakage rate 1-qG(v)  for the extended Gini coefficient G(v) as a function of v, for the scenario in Table 1 and three other scenarios
involving the richest and/or poorest person in the transfer
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6. Summary and Conclusions

It is important for economists to be able to compare inequality in income distributions with

different means. Incomes can change due to growth, and also due to disincentive effects arising from

the implementation of redistributive programmes. It is perhaps surprising, then, that one can find little

in the inequality measurement literature about the inequality consequences of a single income growing,

or of a single leaky transfer. The effects on welfare of such changes have, of course, been much

discussed; our results in this paper throw light on the corresponding questions for inequality, which we

believe to be fundamental. 

First, we looked at the effect on inequality of increasing one income. We confirmed the casual

intuition that increasing a low income should reduce inequality and increasing a high one should surely

raise it. In fact we proved that, for large classes of inequality indices, there is a benchmark income level

or position dividing the two responses, which is different for each inequality index and income

distribution. This benchmark can be both quantified and systematically related to a property of the

underlying inequality ordering, its lower tail concern. The intuition for the aggregate, offered up by our

analysis, that income growth in the lower part of a distribution will be equalizing, and income growth

in the upper part disequalizing, seems unexceptionable; but it surely has not been appreciated before

now that the divide between �lower� and �upper� that supports this intuition could differ so markedly

for different inequality indices, and its determinants be understood.22

Second, we turned to the leaky bucket scenario. We took for granted a rate of leakage (1-q) from

the bucket and asked the question, how leaky would the bucket have to be before the intended

inequality-ameliorating effect of a single rich-to-poor transfer would be negated? The answer was (1-

q0), with q0 depending on the relative incomes or ranks of the donor and recipient, and, crucially, on

which side of the benchmark they are located. We showed that a negative rate of leakage or even one

exceeding 100% could be countenanced for some configurations. Only in case the donor and recipient

are both in the lower part of the distribution is there a bound 0 < (1-q0) < 1. So here too, we obtain an

insight for the aggregate: the inefficiencies of redistributive programmes had better not be focussed

                                                
22  Our analytics can in fact be extended to other types of index, for example to the variance of logarithms which, though not Lorenz
consistent (Foster and Ok, 1999), is popular among applied economists.  Let I be a distributional index in the form I(X) = [1/N]. Σi
v(xi,b(X)) where v : ℜ +

2 → ℜ + and b: ℜ +
N → ℜ + are differentiable functions. Then ∂Ι/∂xk = [1/N].Σi {v2(xi,b(X)).bk(X) + v1(xk, b(X)}. For

 the variance of logarithms, v(a,b) = [ln(a/b)]2 and b(X) = (Π i xi)1/N = µ%  which is geometric mean income. Then ∂I/∂xk = 2ln(xk/ µ% )/[Nxk],
whence ∂I/∂xk 

>
< 0 ⇔ xk / µ%   >< 1. Thus the variance of logarithms has a benchmark income level equal to the geometric mean. The leaky

bucket analytics go similarly: q0 =
j

I(.) x

I(.) x

∂ ∂

∂ ∂
l = ln x - ln

(x x )
ln x - ln

j

j

µ

µ
l

l

%

%

. Compare this with (15), and use footnote 19: the analogue of Theorem

6 applies with benchmark µ% .
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entirely within the lower part of an income distribution.23 

A further, major insight arises in the context of tax-transfer policy in a socially heterogeneous

population of households, even in the absence of efficiency losses.  Let l  and  j be two households,

selected as the donor and recipient for a money transfer respectively. If the equivalence scale deflators

for l �s and j�s money incomes are lm  and mj, each unit reduction in the living standard of l  is

accompanied by an increase of q = lm  /mj units in the living standard of j. We can apply Theorems 6

and 7, to examine the effect of the (non-leaky) money transfer on inequality in the distribution of living

standards for any non-positional or positional index. If  j is below the benchmark in the living standards

distribution, inequality reduction requires q > q0 (where 0 < q0 < 1 if l  is also below the benchmark,

and q0 < 0 if l  is above it); and if j is above the benchmark, inequality reduction requires q < q0 (in this

case q0 > 1).24 These results pick up on, and extend, an insight of Glewwe (1991), that some money

transfers from the better-off to the worse-off can exacerbate inequality. Transfers taking place entirely

below the benchmark may do this if from a less needy to a very needy type of household (mj > lm /q0,

where 0 < q0 < 1): we regard this as a strongly counter-intuitive result. Transfers taking place entirely

above the benchmark may also exacerbate inequality, but only if directed to a very much less needy

houshold type (mj < lm /q0, where q0 > 1); this seems less unreasonable. Transfers which are made

across the benchmark are unambiguously  inequality-reducing regardless of relative needs (because q

= lm /mj > q0 is always satisfied if q0 < 0). 

Although negative rates of �leakage� and rates exceeding 100% have not been encountered in

leaky bucket analytics addressing the welfare effect of transfers, and may seem surprising in the

inequality context (indeed were termed �paradoxical� by Seidl (2001) in respect of the Gini), the

intuition is, after all, quite straightforward. Tolerance of a leakage exceeding 100% (q0 < 0) occurs

when donor and �recipient� are either side of the benchmark. Taking from a rich person (above the

benchmark) unambiguously reduces inequality. This effect is necessarily reinforced by giving to a poor

person (below the benchmark). Hence, having taken from the rich, one can also take from the poor (up

to a certain limit, that limit being -q0) without eliminating the inequality gain. Similarly, a negative leak

(q0 > 1) is tolerated when the donor and recipient are both above the benchmark. Taking $1 from a rich

person and giving it to another, less rich but still above the benchmark, reduces inequality (by the

                                                
23   In Lambert (1988), a labour supply model was investigated, in which wage rates were lognormally distributed and a piecewise linear
negative income tax scheme was applied. It was shown that, for a wide range of tax and benefit parameter values, the efficiency loss of
the tax-transfer system exceeded the size of the bucket.
24 These requirements stem from (13), which shows that the inequality effect dI of the transfer is a negative or positive function of q
respectively.
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Principle of Transfers); to restore inequality to the previous level, one may give extra to the recipient

(namely, an additional amount of q0 - 1). Our analytics have enabled these effects to be quantified,

understood and compared for wide classes of inequality indices.25 
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