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Abstract

In this paper we examine the properties of a simple criterion-based, likeli-
hood ratio type test of parameter restrictions for standard GMM estimators
in autoregressive panel data models. A comparison is made with recent
test proposals based on the continuously-updated GMM criterion (Hansen,
Heaton and Yaron, 1996) or exponential tilting parameters (Imbens, Spady
and Johnson, 1998). The likelihood ratio type statistic is computed simply
as the difference between the standard GMM tests of overidentifying restric-
tions in the restricted and unrestricted models. In Monte Carlo simulations
we find this test has similar properties to the two criterion-based alterna-
tives, whilst being much simpler to compute. All three criterion-based tests
outperform conventional Wald tests in this context.
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1. Introduction

The problems of doing inference based on the efficient two-step GMM estimator
for panel data are well known. The asymptotic standard errors underestimate
the variability of this estimator in small samples, and standard Wald tests of
parameter restrictions are seriously oversized (see, for example, Arellano and Bond
(1991) and Koenker and Machado (1999)). Because of this, it has become common
practice to report the one-step GMM results for more reliable inference. However,
as this estimator is generally not asymptotically efficient, one would expect the
power properties of tests based on it to be sub-optimal.

In this paper we compare the size and power properties of some alternative
tests of parameter restrictions, based on the minimised values of different criterion
functions for estimation in the restricted and unrestricted models. Recent papers
by Hansen, Heaton and Yaron (1996), (HHY), and Imbens, Spady and Johnson
(1998), (ISJ), have proposed such criterion-based tests and shown that their finite
sample properties are superior to those of the standard GMM Wald test, albeit not
in the context of panel data models. HHY propose a test of parameter restrictions
using the minimised values of the criterion function for their continuously-updated
GMM estimator, which is equivalent to robust LIML. This estimator requires
numerical methods for optimisation even in linear models, and is documented to
have convergence problems and multi-modality (see HHY, ISJ and Alonso-Borrego
and Arellano (1999)). ISJ use the empirical likelihood framework and advocate
use of a weighted optimisation criterion, exponential tilting. This also requires
numerical optimisation methods even in linear models, although the particular
test proposed by ISJ avoids many of the computational problems that have been
found for the HHY test. ISJ show that their exponential tilting test of parameter

restrictions has superior size properties compared to the two-step GMM Wald



statistic, but do not compare it to the HHY test.

We compare the properties of these test statistics with a particularly sim-
ple alternative based on the standard GMM criterion. This test is also of the
“likelihood ratio” form, comparing the minimised value of the GMM criterion
function under the null to the criterion under the alternative. Our Monte Carlo
results suggest that this simple criterion-based test behaves well in the context
of autoregressive panel data models. It is found to have similar size and power
properties to the computationally more burdensome alternatives based on the
continuously-updated GMM criterion or the exponential tilting parameters. All
three criterion-based tests perform well compared to the standard GMM Wald

tests in this context.

2. GMM and Test Statistics

Consider the moment conditions
Elg (X, 00)] = Elg: (60)] =0,

where g (.) is a vector of order ¢ and 6, is a parameter vector of order k < g. The

GMM estimator 6 for 6, then minimises the weighted quadratic distance!
1N ! 1N
o) Wit |5 a).

with respect to 8; where Wy is a positive semidefinite weight matrix which satisfies
plimy_ .. Wy = W, with W a positive definite matrix. Regularity conditions
are assumed such that limy_. ~ >V, g; (8) = E[g; (9)] and \/LN SN g (6y) —
N (0,¥). Let I'(0) = E[0g; (0)/00] and 'y = T (6p), then \/N(é— 90) has a
limiting normal distribution, v N (5 — 60) — N (0, Viy), where

Vie = (ToW~'To) " TyW " wW =T, (TW'Ty) . (2.1)

1See Hansen (1982).



The efficient GMM estimator is based on a weight matrix that satisfies plimy_,
Wy = V¥, with Vi = (F(J\IJ_lFO)fl. A weight matrix that satisfies this property
is given by

Wy <§1> = i igz’ <§1> Gi <§1>,, (2:2)
N =
where 0, is a consistent initial (one-step) estimator for 6.

Denote g (f) = =+ >V, g; (f). The standard test for overidentifying restrictions

is based on the minimised GMM criterion, given by
~ ~\/ ~ ~
J(6:) =7 (8) Wi (61)7 (%)
where 0, is the efficient two-step GMM estimator. In particular the test statistic
NJ (§2> has an asymptotic chi-squared distribution with ¢ — k degrees of freedom

when the moment conditions are valid.

For testing r restrictions of the form
r(6p) =0,
the criterion-based test statistic we consider is given by
Du =N () 1 (3).

where 65 is the two-step GMM estimator in the unrestricted model and 0 is
the two-step GMM estimator in the restricted model, based on the same set of
moment conditions. Notice that QNQ uses a weight matrix Wy <§1>, where 51 is
a consistent initial estimator for the restricted model. Dpgy is the “likelihood
ratio” test equivalent for GMM (see, for example, Newey and West (1987) and
Davidson and MacKinnon (1993, pp. 614-620)). Under the null hypothesis that
the restrictions are valid, Dgy has an asymptotic chi-squared distribution with r

degrees of freedom.?

2The Dgy statistic has recently been considered by Hansen (2000) in the context of testing
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HHY (1996) proposed the use of a statistic similar to D g for the continuously-
updated GMM estimator. This estimator is equivalent to robust LIML and is

defined as the value of 6, denoted §CU, that minimizes

-1

/ 1 al !/ —
1 0) =30) (535006 07) 706). 23)
i=1
The test statistic D$Y is then defined as
Dgg N (JCU <§CU> _ jou (§CU)> :

where 5%[] and 0V are the continuously-updated GMM estimators for the unre-
stricted and restricted models respectively.

The ISJ (1998) approach to testing is based on the empirical likelihood method.
The “exponential tilting” estimator for 6y, proposed by Imbens (1997), minimises
the Kullback-Leibler information criterion and is given by the solution to the

following optimisation problem
N N N

min Zm In7; subject to Zgi (@) m; =0 and Zm = 1.
i=1 i=1

0 “ =

The estimated probabilities have the form

| _ exp (79 (0))
) =S e (g, )

where v is the vector of tilting parameters, of order ¢. Intuitively these measure
how much the sample has to be re-weighted in order for the moment conditions
to hold exactly. ISJ (1998) consider tests of overidentifying restrictions based
on the magnitude of . Tilting parameters can also be estimated conditional on
the standard GMM estimator (52), rather than the exponential tilting estimator
of 6p. ISJ (1998, p.349) report that the tilting parameter test of overidentifying

non-linear restrictions in the classical linear regression model. He shows via Edgeworth expan-
sions that the asymptotic chi-squared distribution provides a better approximation for the D gy
statistic than for the Wald statistic.



restrictions based on the GMM estimator performs similarly to that based on
the exponential tilting estimator, and therefore recommend the former which is
simpler to compute.

The corresponding test of parameter restrictions based on the tilting para-
meters evaluated using the two-step GMM estimator in the restricted and unre-

stricted models is given by the difference
D = N (¥ By (62,7) 7 — 7R (02,79) 7)
where
1 Y ~
~ - /o .
7 =max In N ;exp (fy Ji (92>> ; (2.4)
v is the equivalent vector of tilting parameters based on the efficient two-step

GMM estimator in the restricted model, 52; and

Ry (6 [Zgz g (0) m; (6, HNZgz gi 2(9,7)]
lzgz gi ¢(9,7)1

is a robust estimate of the variance of the moments.

-1

Both DGY and DEL have an asymptotic chi-squared distribution with r degrees
of freedom, and have been shown by respectively HHY (1996) and ISJ (1998) to
have better finite sample properties than the conventional two-step Wald tests
in particular contexts. However both require the use of numerical optimisation
procedures even to test linear restrictions in linear models estimated using linear
moment conditions.® This is not the case for the criterion-based test based on the
standard GMM criterion (Dpgy). So far as we are aware, the HHY (Dgg) and
ISJ (DIE?E) tests of linear restrictions have not been compared to the simpler Dgy

test. We consider this here in the context of linear dynamic panel data models.

3We note that computing the ISJ test is more straightforward than computing the HHY test,
given that the objective function in (2.4), unlike (2.3), is strictly concave with derivatives that
can be calculated easily.



3. AR(1) Process with Individual Effects

To evaluate the finite sample behaviour of the test statistics described in the
previous section, we consider the linear first order autoregressive panel data model

with individual effects (n;)
Yit = QoYit—1 T 1M + Uit

where i = 1,...,N and t = 2,...,T; N is large, T is fixed and |ap| < 1. If the

observations are independent across individuals and the error term satisfies
E(m;) =0, E(uy) =0, E(yquy) =0 fori=1,...,Nandt=2,..,T (3.1

and

E (uguis) =0 fori=1,..., N andt# s (3.2)

then the complete set of second order moment conditions available are the

(T'—1) (T — 2) /2 linear moment conditions
E [?/zt'f2 (Ayi — OéoAyz'tﬂ)} =0, t=3,...,T, (3.3)

where 42 = [yi1, Yi2, ..., Yir_2]. We call these the DIF moment conditions, see
Arellano and Bond (1991).*

Under the additional error components assumption
E (niuyg) =0, fori=1,..,Nandt=2,...,T (3.4)
and the initial conditions assumption

E (n;Ay;n) =0 fori=1,...N (3.5)

*If the error components assumption, F (n;u;;) =0, fori =1,..., N and t = 2, ..., T, is added,
then further non-linear moment conditions become available, see Ahn and Schmidt (1995).



the additional (7" — 2) linear moment conditions
E[Ayi-1 (yir — aoyie—1)] = 0; t=3,..,T (3.6)

are valid. The joint moment conditions (3.3) and (3.6) comprise the complete set
of second order moment conditions available under assumptions (3.1), (3.2), (3.4)
and (3.5). We call these the SYS moment conditions, see Arellano and Bover
(1995) and Blundell and Bond (1998).

Let Z; be the matrix of instruments for observation 7, then the moment con-
ditions can generically be written as E [Z/v (ap)] = 0. For the estimator which
uses the DIF moment conditions only, there is an efficient one-step GMM weight
matrix in the special case when the u; are homoscedastic and not serially cor-
related. This is given by Wy = ~ Y, Z/HZ;, where H is a (T — 2) square
matrix which has 2’s on the main diagonal, -1’s on the first subdiagonals and
zeros elsewhere. For the estimator which uses the SYS moment conditions there
is no simple one-step efficient weight matrix, and often the one-step weight ma-
trix is set to Wy = + X, Z/Z;. We use these initial weight matrices for the
DIF and SYS moment conditions respectively in the Monte Carlo study below.
The efficient weight matrix for both estimators under general conditions is given
by Wy (a1) = % SN Zh; (&1) v (@) Zs, with @; the consistent one-step GMM
estimator of .

In Figures 1-8 we present some Monte Carlo results for the AR(1) panel data

process. The data generating process is

Yit = QoYit—1+ N + Uy
n ~ dN(0,1) ; wy ~itdN (O,U?t)
i

Yin = 1_—%+ei ; eiwiidN(O,af),

with 7;, e; and u;; mutually independent. The sample size is N = 100, T" = 6,
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and we report the size properties of the test statistics for 10,000 samples. We
consider tests of the null hypothesis Hy : ap = 0. We report results based on the
DIF moment conditions and on the SYS moment conditions, and in each case two
different designs are considered. A covariance stationary process sets o = 1 for
all i and ¢, and 0? = TZO; for all 7. For the second design the u; disturbances are
conditionally heteroskedastic with u; ~ N (0, 0.4+ O.Syftfl). For this case fifty
initial time periods are generated before the estimation sample is drawn, with
Yi,—a9 ~ N (1—%—0, ?l%z)

Figures 1-4 compare size properties of the various test statistics for ag = 0. The
statistic W5 is the Wald test based on the efficient two-step GMM estimator, W is
the Wald test based on the one-step GMM estimator, and Dgp, DGY and DEL are
the three criterion-based tests described above.?:% Note that in this one-parameter
model the criterion function under the null, as required for the computation of
Dgryy and DY, is the Anderson-Rubin statistic.”

These results confirm that the two-step Wald test is severely oversized in this
context, particularly when conditional heteroskedasticity is present. This test will
reject a correct null hypothesis much more frequently than indicated by its nominal
size. In contrast, the one-step Wald test and the three criterion-based tests have
rejection frequencies approximately equal to their nominal size in the designs with
i.i.d. disturbances (Figures 1 and 2), and are only slightly oversized in the designs
with conditional heteroskedasticity (c.h.) (Figures 3 and 4). The test based on

the exponential tilting parameters (DE]) appears to have the best size properties

5The test statistics Dy and Dgg can be negative in finite samples. When a statistic is
negative, we interpret this as a non-rejection of the null hypothesis.

SFor the calculation of the continuously-updated estimator and the exponential tilting para-
meters we used Maxlik 4.0 in Gauss with analytical derivatives.

"We have obtained similar results for higher-order autoregressive models in which the null
hypothesis tested does not completely specify the parameter vector. These can be obtained from
the authors on request.



in the i.i.d. designs, though not necessarily when conditional heteroskedasticity
is present.

Figures 5-8 display the power of the three criterion-based tests and the one-step
Wald test at the 5% level of significance testing Hy : g = 0, for various true values
of ap, again based on 10,000 Monte Carlo replications. The power functions are
corrected for size distortions. The properties of the three criterion-based tests are
strikingly similar. They have more power than the one-step Wald test except in
the design with i.i.d. disturbances when only the DIF moment conditions are used
- this is the special case in which the one-step GMM estimator is asymptotically
efficient.

Overall the results of these Monte Carlo simulations indicate that these criterion-
based tests offer advantages in terms of size and power compared to standard
Wald tests for GMM estimators in the context of autoregressive panel data mod-
els. Moreover the simple to compute Dpgy test, based on the standard GMM
criterion, is found to have very similar properties to the computationally more

burdensome D} and DEL test statistics in this context.

4. Conclusions

In this paper we have considered the properties of a simple test of parameter
restrictions based on the standard two-step efficient GMM estimator. The test
is computed simply as the difference between the minimised values of the GMM
criterion function in the restricted and unrestricted models. We compared this to
criterion-based tests of parameter restrictions based on the continuously-updated
GMM estimator of Hansen, Heaton and Yaron (1996) and the exponential tilting
parameters of Imbens, Spady and Johnson (1998), as well as to standard asymp-

totic Wald tests.



We investigated the properties of these tests using Monte Carlo experiments in
the context of simple parameter restrictions in linear dynamic panel data models.
Our main findings are that the criterion-based tests appear to be useful alterna-
tives to standard Wald tests, and the simple test based on the standard GMM
criterion function has very similar properties to the computationally more bur-
densome alternatives. In future research we will investigate whether this finding

holds in more general settings.
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