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Abstract
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rates to measures of both cash �ow and average q.
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1 Introduction

Kaplan and Zingales (1997) study the sensitivity of investment to the availability

of internal �nance for �rms that face di¤erent cost premia for external �nance, in

a one-period model with no costs of adjusting the capital stock. In this framework

investment is chosen so that the marginal revenue product of capital is equated

with the user cost of capital, i.e. the relevant �rst order condition is the tradi-

tional �neoclassical�marginal productivity condition that describes the demand for

capital in a static framework (cf. Jorgenson, 1963). Kaplan and Zingales (1997)

show that investment may be more sensitive to the availability of internal funds

for �rms that face a lower cost premium for external funds, if the marginal revenue

product of capital is su¢ ciently convex.

Although interesting, this analysis is far removed from the framework of most

empirical studies of investment and �nancing constraints, in the tradition of Faz-

zari, Hubbard and Petersen (1988). These studies typically regress a measure of

investment on a measure of q as well as a measure of cash �ow, i.e. they estimate

the sensitivity of investment to cash �ow conditional on q or, in some cases, a

wider set of control variables. These empirical speci�cations recognise that, even

in the absence of �nancing constraints, investment is likely to be subject to ad-

justment costs that prevent the capital stock adjusting continuously to maintain

equality between the marginal revenue product and the user cost of capital. The

relevant �rst order condition in a model with strictly convex adjustment costs is

that which equates the marginal cost of an additional unit of investment with the

shadow value of an additional unit of installed capital (see, for example, Abel,

1980). Notice that the curvature of the marginal revenue product of capital plays

no direct role in this condition. Interestingly, the special case of this model that

delivers the linear relationship between investment and q, which dominates the
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empirical literature, requires marginal adjustment costs that are linear in invest-

ment.

We study the sensitivity of investment to the availability of internal �nance

in a simple model with quadratic adjustment costs. We distinguish between two

types of cost premia for external funds: a cost premium that is increasing in

the level of external �nance used; and a cost premium that is �xed, independent

of the level of external �nance used. In the former case there are two �nancial

regimes: an unconstrained regime in which investment is �nanced internally and

the shadow value of capital, or marginal q, remains a su¢ cient statistic for cur-

rent investment; and a constrained regime in which external funds are the marginal

source of �nance, and investment displays excess sensitivity to windfall �uctua-

tions in the availability of internal funds. In this constrained regime, there is a

straightforward monotonic relationship between the conditional investment-cash

�ow sensitivity and the severity of the capital market �imperfection�, as measured

by the slope of the cost schedule for external funds. That is, if we consider two

otherwise identical �rms with the same adjustment cost function, supply of in-

ternal funds, and marginal q, the sensitivity of investment to a windfall increase

in cash �ow will be greater for the �rm that faces a more steeply sloping cost of

external funds schedule.

In the model with a �xed cost premium for external �nance, there are three

�nancial regimes: an unconstrained regime in which investment is �nanced inter-

nally; a constrained regime in which available internal funds are exhausted but

the �rm chooses to use no external funds; and an external �nance regime in which

external funds are the marginal source of �nance. In this case, if a �rm is in

the constrained regime, investment increases dollar-for-dollar with small windfall

increases in cash �ow, regardless of the size of the �xed cost premium for internal
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funds. If a �rm is in the external �nance regime, investment is insensitive to small

windfall increases in cash �ow, but may be increased by larger cash �ow shocks

that shift the �rm into a di¤erent regime. In this model we get a weaker result

that, if we consider two otherwise identical �rms with the same adjustment cost

function, supply of internal funds and marginal q, the sensitivity of investment to

a windfall increase in cash �ow will be no lower for the �rm that faces a higher

cost premium for external �nance, and will be strictly greater in response to some

cash �ow shocks.

These results indicate that, at a given level of the shadow value of capital or

marginal q, otherwise identical �rms will display (weakly) greater sensitivity of

investment to cash �ow if they face a greater cost premium for the use of external

�nance. We also study the relationship between marginal q and average q in these

models, to assess the extent to which empirical studies may succeed in controlling

for variation in marginal q by including a standard measure of average q, in the

presence of �nancing constraints. Hayashi (1982) showed that, if there is no cost

premium for external �nance, average q is equal to marginal q if the �rm�s net

revenue function is homogeneous of degree one. More generally we show that

with a cost premium for external �nance, average q continues to equal marginal

q provided the cost premium is also homogeneous of degree one. In this case, our

analysis therefore indicates that otherwise identical �rms will display (weakly)

greater sensitivity of investment to cash �ow, at a given level of average q, if they

face a greater cost premium for external funds.

We illustrate these results using simulated optimal investment data for a panel

of �rms with quadratic adjustment costs and a linear homogeneous net revenue

function. As expected, the simple linear regression of investment rates on average

q and a measure of cash �ow indicates no excess sensitivity to cash �ow when �rms
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face no cost premium for external �nance. When �rms face a linear homogeneous

cost premium for external �nance, we �nd a signi�cant positive coe¢ cient on the

measure of cash �ow in the same speci�cation. More interestingly, this coe¢ cient

on cash �ow is shown to increase monotonically with the level of the cost pre-

mium for external funds. We thus provide a benchmark model in which there

is a monotonic relationship between the sensitivity of investment to cash �ow,

conditional on average q, and the severity of the capital market imperfection. We

also note that the structural �rst order condition for investment can be estimated

directly in the presence of this form of capital market imperfection.

The remainder of the paper is organised as follows. Section 2 reviews the

sensitivity of investment to windfall �uctuations in cash �ow in a static demand for

capital framework, and illustrates the result highlighted by Kaplan and Zingales

(1997). Section 3 outlines our basic model with convex adjustment costs and

discusses the sensitivity of investment to cash �ow conditional on marginal q in

two special cases. Section 4 considers the relationship between marginal q and

average q in these two models. Section 5 presents our results using simulated

investment data. Section 6 concludes.

2 A static model

In a setting with no adjustment costs for capital, the �rst order condition de-

scribing the evolution of the optimal capital stock equates the marginal revenue

product of capital (MPK) to the user cost of capital (u). The user cost of capital

represents the minimum rate of return required for the investment to be value

increasing, and re�ects the cost of �nance. If the �rm faces a higher cost for us-

ing external funds than for using internal funds, this will be re�ected in a higher
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required rate of return on investment �nanced from external sources.1 This situa-

tion is depicted for a case with an increasing marginal cost of external �nance in

Figure 1.

Here the cost of capital for investment �nanced internally is denoted uINT . If

the �rm wants to �nance investment spending beyond the level denoted by C,

the �rm must use increasingly expensive external sources. This increasing cost

premium for external funds is re�ected in the upward sloping segment of the cost

of capital schedule u beyond the investment level C. There are two �nancing

regimes in this framework. If the �rm has a marginal revenue product schedule

MPK1 its desired investment spending is low relative to the availability of low cost

internal funds.2 It �nances its preferred level of investment spending I1 internally,

and this level of investment is insensitive to windfall �uctuations in cash �ow.

More precisely, an increase in the availability of internal funds that leaves the

marginal revenue product of capital schedule unchanged, but increases the level of

investment that can be �nanced internally to C
0
> C; has no e¤ect on the optimal

level of investment spending for �rms in this unconstrained regime.

In contrast, if the �rm has the marginal revenue product schedule MPK2, its

desired investment spending exceeds its supply of low cost internal funds. In this

case it �nances additional investment beyond C by using more expensive external

sources, but the increasing cost of external �nance in�uences its optimal level of

investment spending. This �rm chooses the level of investment I2 where the �rst

order condition equating the marginal revenue product and user cost of capital

is satis�ed. An otherwise identical �rm with the same marginal revenue product

MPK2 and the same cost premium schedule for external �nance, but with a much

1See Hubbard (1998), for example, for a discussion of why this �pecking order�assumption
may be relevant.

2The �gure is drawn for a given inherited level of the capital stock, so there is a one-to-one
association between current investment and the current level of the capital stock.
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greater supply of low cost internal funds, would instead choose the higher level of

investment I3. This indicates that the level of investment spending is sensitive to

windfall �uctuations in the availability of internal funds, for �rms in this �nancially

constrained regime. This sensitivity is illustrated in Figure 2. With more internal

funds available, the �rm is required to use less external �nance, faces a lower

required rate of return for all investment levels above C, and optimally chooses a

higher level of investment I
0
2. Note that in this model with an increasing marginal

cost of external �nance, the increase in investment spending (I
0
2 � I2) is typically

smaller than the windfall increase in cash �ow (C
0 � C).

It would appear that the investment spending of �rms in the constrained regime

will display greater sensitivity to �uctuations in cash �ow for �rms that face a

greater cost premium for external funds, or what might be termed a more severe

�nancing constraint. This is indeed possible, as illustrated in Figure 3. A �rm

with the marginal product schedule MPK and cost of external funds schedule uL

increases its investment spending from IL to I
0
L in response to a windfall increase

in cash �ow from C to C
0
. An otherwise identical �rm with the more steeply

sloping cost of external funds schedule uH increases its investment spending by

the larger amount (I
0
H � IH) as a result of the same cash �ow shock. Thus we

might expect to �nd evidence of greater investment-cash �ow sensitivity among

samples of �rms that face a higher cost premium for the use of external sources

of �nance.

Kaplan and Zingales (1997) have noted that this conclusion depends heavily

on the presumed linearity of the marginal revenue product schedule in Figure 3.

The opposite result is possible if the �rm�s marginal revenue product of capital is

su¢ ciently convex. This case is illustrated in Figure 4, where the �rm facing the

higher cost of external funds schedule uH increases investment by less in response
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to the cash �ow shock than the �rm which faces the lower cost premium re�ected

in uL.

Kaplan and Zingales (1997) correctly conclude that there is not necessarily a

monotonic relationship between the sensitivity of investment to windfall �uctua-

tions in the availability of internal �nance and the slope of the cost of external

�nance schedule in a static demand for capital model of this type. They provide

a formal analysis of a one-period investment problem with no adjustment costs.

In the next section we consider whether a similar result holds in a dynamic in-

vestment problem with strictly convex costs of adjustment, which is the basis for

the investment-q relation adopted by much of the empirical research in this area,

including that presented by Kaplan and Zingales (1997) themselves.

3 A dynamic model with adjustment costs

We study a standard investment problem where the �rm chooses investment to

maximise the value of its equity Vt given by

Vt = Et

( 1X
s=0

�s (Dt+s �Nt+s)
)

(1)

where Dt denotes dividends paid in period t, Nt denotes the value of new equity

issued in period t, � < 1 is the one-period discount factor assumed constant for

simplicity, and Et[:] denotes an expected value given information available at time

t.

Dividends and new equity are linked to the �rm�s net revenue �t each period

by the sources and uses of funds identity

Dt �Nt = �t � �t (2)

where �t = �(Nt; Kt) represents additional costs imposed by issuing new equity

and Kt is the stock of capital in period t. We follow Kaplan and Zingales (1997) in
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not considering debt �nance explicity, so that issuing new equity is the only source

of external �nance considered. Formally we treat �(Nt; Kt) as a transaction fee

that must be paid to third parties when new shares are issued. Less formally we

can also think of these costs re�ecting di¤erential tax treatments, agency costs,

or losses imposed on existing shareholders when the �rm issues new shares in

markets characterised by asymmetric information.3 We assume �(0; Kt) = 0;

�Nt =
@�t
@Nt

> 0 and �Kt = @�t
@Kt

6 0.

Following the q literature, we assume �t = �(Kt; It) where Kt+1 = (1��)Kt+

It, It is gross investment in period t (which may be positive or negative), and � is

the rate of depreciation. Notice that investment in period t does not contribute to

productive capital until period t+ 1, so that Kt depends only on past investment

decisions. With no cost premium for external �nance (i.e. �t � 0), this implies

that investment in period t does not respond to serially uncorrelated productiv-

ity shocks, although investment does respond to serially correlated productivity

shocks that convey information about the (revenue) productivity of capital in pe-

riod t + 1. The dependence of net revenue on investment re�ects the presence of

adjustment costs, which are assumed to be strictly convex in It.

The �rm maximises Vt subject to this capital accumulation constraint and to

non-negativity constraints on dividends and new equity issues, with shadow values

�Dt and �
N
t . The problem can be expressed as

Vt(Kt) = max
It;Nt

8<:
�(Kt; It)� �(Nt; Kt)

+�Dt [� (Kt; It) +Nt � �(Nt; Kt)] + �
N
t Nt

+�Et [Vt+1 ((1� �)Kt + It)]

9=; (3)

Letting �Kt =
@Vt
@Kt

denote the shadow value of inheriting one additional unit of

installed capital at time t, the �rst order condition for optimal investment can be

3See, for example, Myers and Majluf (1984).
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written as

��It =
�Et

�
�Kt+1

�
1 + �Dt

=
�Kt

1 + �Dt
(4)

where ��It = �@�t
@It

is strictly increasing in the level of investment It. If the non-

negativity constraint on dividends is not binding (�Dt = 0), this simply equates

the marginal cost of investing in an additional unit of capital in period t with

the shadow value of an additional unit of capital in period t+ 1, discounted back

to its value in period t. We refer to �Kt as the shadow value of capital and to

�Kt = �Et
�
�Kt+1

�
as the shadow value of investment at time t; the di¤erence here

re�ects the timing convention that investment becomes productive with a lag of

one period.

Along the optimal path, the evolution of the shadow value of capital is de-

scribed by the intertemporal condition

�Kt = (1 + �
D
t )�Kt � (1 + �Dt )�Kt + (1� �)�Et

�
�Kt+1

�
(5)

where �Kt = @�t
@Kt

and �Kt = @�t
@Kt
.

The �rst order condition for optimal new share issues implies

�Dt =
�Nt � �Nt
1� �Nt

(6)

In the case where new shares are issued (Nt > 0) and �
N
t = 0; this simpli�es to

give

�Dt =
�Nt

1� �Nt
(7)

To study the implications we focus on two special cases. The �rst assumes a

strictly increasing cost premium for external �nance, similar to the case considered

in the previous section. The second considers a di¤erent speci�cation of the capital

market imperfection, in which there is a �xed cost premium per unit of new equity

issued.
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3.1 An increasing cost premium

To simplify, we assume that �(Nt; Kt) =
�
�
2

� �
Nt
Kt

�2
Kt where � is a parameter

that speci�es the slope of the cost premium for external �nance. In this case

�Nt = �
�
Nt
Kt

�
, so that the cost premium increases linearly with the amount of

external �nance raised relative to the size of the �rm. In the case where new shares

are issued, this gives 1
1+�Dt

= 1� �
�
Nt
Kt

�
.

The �rst order condition for investment is then depicted in Figure 5, adapted

from Hayashi (1985), which is drawn for a given level of the shadow value of

investment �Kt . The adjustment cost function used to obtain the linear relationship

between investment rates and q makes marginal adjustment costs linear in the

investment rate ( It
Kt
), giving the linear marginal cost schedules depicted here. As

before, levels of investment spending up to C can be �nanced using low cost

internal funds. More precisely, for I < C the �rm issues no new equity (N = 0)

and pays strictly positive dividends (D > 0 and �Dt = 0). For I > C, the �rm

issues new equity (�Nt = 0), pays zero dividends (D = 0), and �
D
t is obtained from

the �rst order condition for new equity issues (7). Here this gives

�Kt
1 + �Dt

= �Kt

�
1� �

�
Nt
Kt

��
(8)

as noted above. The curvature of the �Kt
�
1� �

�
Nt
Kt

��
schedule in the region

where Nt > 0 re�ects the assumption that, as new shares are issued to �nance

investment spending above the level that can be funded internally, an increasing

proportion of the revenue raised is dissipated by the transaction fee paid to third

parties, so that
�
N
K

�
increases at a faster rate than

�
I
K

�
�
�
C
K

�
in this region.

In this model there are again two �nancing regimes. For a given level of the

shadow value of capital or marginal q,4 a �rm with the adjustment cost function

4Marginal q is usually expressed as the ratio of the shadow value of an additional unit of
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��I1 is in the unconstrained regime and chooses the investment rate I1
K
at which

the �rst order condition (4) is satis�ed.5 A �rm with the adjustment cost function

��I2 is in the constrained regime and chooses the investment rate I2
K
. This �rm

would choose a higher level of investment if it was less dependent on expensive

external �nance; if its supply of internal funds was high enough, it would choose

the investment rate I3
K
. This sensitivity of investment to windfall changes in cash

�ow for �rms in the constrained regime is illustrated in Figure 6. Here a windfall

increase in cash �ow is one which leaves expected future pro�tability and hence

the shadow value of an additional unit of investment (�Kt ) unchanged. Formally,

given our timing convention, this can be thought of as a serially uncorrelated shock

to (revenue) productivity in period t.

Figure 7 considers this investment-cash �ow sensitivity for two otherwise iden-

tical �rms, with the same adjustment cost function, availability of internal funds

and shadow value of capital, but subject to di¤erent cost schedules for external

funds. One �rm faces a low cost premium represented by �L, whilst the other �rm

faces a much higher cost premium represented by �H . In the constrained regime,

a given windfall increase in the availability of internal �nance will clearly have a

larger impact on the investment spending of the �rm that faces the more steeply

increasing cost of external �nance schedule, and whose investment conditional on

marginal q is therefore a¤ected much more by reliance on external sources of funds.

This illustrates the main result of this section. In the model with quadratic

adjustment costs and a strictly increasing cost of new equity, there is a simple

monotonic relationship between the conditional sensitivity of investment to wind-

investment (�Kt ) to the purchase price of a unit of capital. Here we normalise the price of capital
goods to unity for simplicity.

5The distinction between the two �nancial regimes may alternatively be illustrated for a �rm
with a given adjustment cost schedule by considering di¤erent levels of the shadow value of
capital.
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fall �uctuations in cash �ow and the severity of the �nancing constaint, as re�ected

in the slope of the cost schedule for external funds, for otherwise identical �rms

in the �nancially constrained regime.

The result is obtained by holding constant the shadow value of capital or mar-

ginal q. In general, �rms with identical technologies but di¤erent cost premia for

external �nance are unlikely to have the same shadow value of capital. Neverthe-

less this is the kind of conditional investment-cash �ow sensitivity that is estimated

in regression speci�cations that relate investment rates to measures of cash �ow

and marginal q. In section 4 we obtain conditions under which marginal q may

be measured by the usual measure of average q, even in the presence of a cost

premium for external �nance. In section 5 we show using simulated investment

data that the monotonic relationship between this conditional investment-cash

�ow sensitivity and the slope of the cost schedule for external funds is found in a

model of this form, using the standard linear econometric speci�cation.

This simple monotonic relationship could of course be overturned by introduc-

ing su¢ cient curvature into the marginal adjustment cost schedule ��It. This

is perfectly consistent with the investment model considered here, but would be

inconsistent with the linear speci�cation found in most of the empirical literature

on �nancing constraints and investment. If this possibility were to be taken seri-

ously, the shape of the adjustment cost function would need to be re�ected in the

functional form speci�ed in the empirical analysis.

3.2 A �xed cost premium

In this section we consider a di¤erent speci�cation of the external �nance premium,

in which external �nance is more costly than internal �nance, but is available at

a �xed cost premium that does not increase with the amount of external funds
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used. Formally this can be thought of as a �xed brokerage fee per unit of new

equity issued.

Here we assume that �(Nt; Kt) = �Nt where � is again a parameter that

re�ects the size of the cost premium for external �nance. In this case �Nt = �,

and in the case where new shares are issued, this gives 1
1+�Dt

= 1� �.

In the static framework reviewed in section 2, this speci�cation gives a step

function for the cost of capital, and a similar result is found for the model with

convex adjustment costs. Although apparently simpler, this formulation gives

three distinct �nancial regimes, which are illustrated in Figure 8. For a given

level of the shadow value of investment (�Kt ), a �rm with the adjustment cost

function ��I1 is again in an unconstrained regime where investment is insensitive

to windfall �uctuations in cash �ow. This �rm chooses the investment rate I1
K
;

investment spending is �nanced from internal funds, with no new equity issues

(Nt = 0) and strictly positive dividend payments (Dt > 0; �Dt = 0). A �rm

with the adjustment cost function ��I2 is in a constrained regime where both

dividend payments and new share issues are zero. Here investment spending is

constrained to the level of available internal funds (C), and locally investment

spending will �uctuate dollar-for-dollar with windfall changes in cash �ow for �rms

in this regime. A �rm with the adjustment cost function ��I3 is in a third regime

where additional investment is �nanced by issuing new equity. The higher cost of

external �nance in�uences the optimal level of investment chosen, as indicated by

the �rst order condition (4). Here �Dt is given from the optimality condition for

new share issues (7), so that

�Kt
1 + �Dt

= �Kt (1� �) (9)

and this �rm chooses the investment rate I3
K
. If the same �rm had access to a

su¢ ciently higher level of internal funds, it would choose the higher investment
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rate I5
K
. Locally, however, investment spending is insensitive to small windfall

�uctuations in cash �ow for �rms in this regime, as illustrated in Figure 9. The

shock to the availability of internal funds must be large enough to move such �rms

from the third �external �nance�regime to the second �constrained�regime in order

for their level of investment spending to be a¤ected, as illustrated in Figure 10.

Depending on which regime a �rm is in prior to a windfall increase in cash

�ow, and on the size of the shock, there are six di¤erent paths along which the

�rm�s investment spending may be a¤ected.6 We �nd that investment displays

excess sensitivity to cash �ow shocks if the �rm is initially in the external �nance

regime and is moved to either of the other regimes, or if the �rm is initially in the

constrained regime.

When we consider the impact of windfall cash �ow shocks on the investment

spending of otherwise identical �rms that are subject to di¤erent cost premia for

external �nance, there are still more possible combinations to consider. We �nd

several cases in which the e¤ect on investment is strictly greater for the �rm with

the higher cost premium; two of these possibilities are illustrated in Figures 11 and

12. For the case in Figure 11, the cash �ow shock increases the investment rate

for the low cost premium (�L) �rm from
I3
K
to C

0

K
, whilst the same cash �ow shock

increases investment for the high cost premium (�H) �rm from the lower rate C
K

also to C
0

K
. For the case in Figure 12, the cash �ow shock increases investment

for the �L �rm from I3
K
toI

0
3

K
, whilst the same shock increases investment for the

�H �rm from C
K
to I

0
3

K
. There is also a case here in which each �rm�s investment

increases dollar-for-dollar with the windfall increase in cash �ow, as illustrated

6A �rm in the �external �nance�regime may remain in that regime, or move into either of
the �constrained� or �unconstrained� regimes. A �rm in the �constrained� regime may remain
in that regime, or move into the �unconstrained�regime. A �rm in the �unconstrained�regime
will necessarily remain in that regime following a windfall increase in the availability of internal
funds.
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in Figure 13. However if we compare otherwise identical �rms with the same

adjustment cost schedule, supply of internal funds, and shadow value of capital,

we �nd no case in which the e¤ect on investment is strictly greater for the �rm

with the lower cost premium.

Thus we �nd that in the model with quadratic adjustment costs and a �xed cost

premium for new equity �nance, there is a weakly monotonic relationship between

the conditional sensitivity of investment to windfall �uctuations in cash �ow and

the severity of the �nancing constaint, as re�ected in the size of the cost premium

for external funds, for otherwise identical �rms. The result is again obtained by

holding the shadow value of capital or marginal q constant. The following section

considers the relationship between marginal q and average q in these models, and

hence the extent to which econometric studies may in fact be able to condition on

marginal q in the presence of �nancing constraints.

4 Marginal q and average q

Hayashi (1982) showed that for a �rm with a linear homogeneous revenue function

�(Kt; It) = �KtKt + �ItIt, the �rst order condition (4) and the intertemporal

condition (5) can be combined in the absence of �nancing constraints (�(Nt; Kt) �

0) to obtain

�Kt =
Vt
Kt

(10)

where Vt is the maximised value of the �rm. This implies that the unobserved

shadow value of an additional unit of capital can be measured using the average

value of capital for a �rm that has inheritedKt units of capital from the past. This

allows a measure of marginal q to be constructed using average q, the ratio of the

maximised value of the �rm to the replacement cost of its inherited capital stock.7

7We discuss the details for our timing convention in the following section.
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At least in the absence of share price bubbles,8 the numerator of this average q

ratio can be measured using the �rm�s stock market valuation. In the absence

of �nancing constraints, econometric speci�cations can in principle condition on

marginal q in the benchmark case of a linear homogeneous revenue function and

strictly convex costs of adjustment.

Combining these optimality conditions in the same way in our model with

costly external �nance yields the equality

�Kt Kt = Et

( 1X
s=0

�s
�
1 + �Dt+s

�
(�t+s � �K;t+sKt+s)

)
(11)

With no cost premium for external �nance (�(Nt; Kt) � 0), the shadow value

of internal funds (�Dt+s) and �K;t+s are both identically zero. The sources and

uses of funds identity (2) then shows that net revenue �t+s equals the net cash

distribution to stockholders (Dt+s � Nt+s), so that the right hand side of (11)

simpli�es to the value of the �rm Vt as in (1). More generally, we need to consider

the relationship between
�
1 + �Dt+s

�
(�t+s � �K;t+sKt+s) and this net distribution

to stockholders.

To obtain the equality between marginal q and average q in this case, we require

that the cost premium for external �nance is also homogeneous of degree one, so

that �(Nt; Kt) = �NtNt + �KtKt. With this assumption, (11) becomes

�Kt Kt = Et

( 1X
s=0

�s
�
1 + �Dt+s

�
(�t+s � �t+s + �N;t+sNt+s)

)
(12)

so that we can focus on the relationship between
�
1 + �Dt+s

�
(�t+s � �t+s + �N;t+sNt+s)

and (Dt+s �Nt+s).

First consider the unconstrained �nancing regime, in whichDt > 0 andNt = 0.

This implies that �Dt = 0 and �t = 0, so we have
�
1 + �Dt

�
(�t � �t + �NtNt) =

8See Bond and Cummins (2001) and Bond and Söderbom (2006) for further discussion.
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�t. The sources and uses of funds identity (2) simpli�es to �t = Dt � Nt, so we

obtain
�
1 + �Dt

�
(�t � �t + �NtNt) = Dt �Nt for �rms in this regime.

Now consider �rms that use external �nance, so that Dt = 0 and Nt > 0. This

implies that �Nt = 0 and �
D
t is given from (7), which implies

�
1 + �Dt

�
=

1

1� �Nt
(13)

Here the sources and uses of funds identity simpli�es to �Nt = �t � �t, which

implies

(�t � �t + �NtNt) = �Nt + �NtNt = �Nt(1� �Nt) (14)

Combining (13) and (14) gives
�
1 + �Dt

�
(�t � �t + �NtNt) = �Nt = Dt �Nt for

�rms in this regime also.

Finally in the case where both Dt = 0 and Nt = 0, we have �t = 0 so that the

sources and uses of funds identity implies Dt � Nt = �t = 0. Again in this case

we obtain
�
1 + �Dt

�
(�t � �t + �NtNt) = Dt �Nt:

Since this equality holds regardless of which �nancial regime the �rm happens

to be in at any time, we have

�Kt Kt = Et

( 1X
s=0

�s
�
1 + �Dt+s

�
(�t+s � �t+s + �N;t+sNt+s)

)

= Et

( 1X
s=0

�s (Dt+s �Nt+s)
)
= Vt (15)

Consequently the equality between marginal q and average q expressed in (10)

continues to hold in this model with �nancing constraints. In addition to linear

homogeneity of the net revenue function �(Kt; It), we also require linear homo-

geneity of the external �nance premium �(Nt; Kt).

It can easily be seen that this linear homogeneity condition holds in both of

the cases analysed in sections 3.1 and 3.2. The result of this section therefore

allows us to state that in the benchmark case of linear homogeneity and quadratic
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adjustment costs, we �nd a monotonic relationship between the size of the cost

premium for external �nance and the sensitivity of investment to wind�ow �uc-

tuations in the availability of internal funds, conditional on observable average q.

More precisely, if we compare otherwise identical �rms with the same adjustment

cost function, supply of internal funds and average q, the e¤ect of a windfall in-

crease in cash �ow on investment is no lower for the �rm that faces the higher

cost premium for external �nance. At least up to a linear approximation, this is

the kind of conditional investment-cash �ow sensitivity that is estimated in the

empirical literature that relates investment rates to measures of cash �ow and

average q.

In the next section we use simulated optimal investment data for a parame-

terised speci�cation of this model to investigate whether this linear approximation

is su¢ ciently adequate for our monotonicity result to describe the behaviour of the

estimated coe¢ cient on cash �ow in the kind of econometric speci�cation that was

used by Fazzari, Hubbard and Petersen (1988) and by many subsequent empirical

papers.

5 Results for simulated investment data

5.1 Speci�cation

To generate simulated investment data for this class of models, we require func-

tional forms for the net revenue function and the external cost premium.

Our net revenue function has the form

�(Kt; It) = AtKt �G(Kt; It)� It (16)

where At is a stochastic productivity parameter and G(Kt; It) denotes costs of

adjustment. The relative price of output and capital goods is assumed to be

constant, with both prices implicitly normalised to unity.

18



We assume a stochastic process for at = lnAt with two components

at = a0 + a
P
t + a

T
t (17)

with

aPt = �aPt�1 + �t (18)

�t � iid N(0; �2�)

and

aTt � iid N(0; �2T ) (19)

The log of productivity thus follows a �rst order Markov process with both per-

sistent and transitory components. The transitory component does not in�uence

the investment decision if the �rm faces no cost premium for external �nance, but

does a¤ect the availability of internal funds to �nance investment spending. We

choose parameters a0 = �1:6725, � = 0:8, �2� = 0:0225, and �2T = 0:0375, giving

serial correlation in at of around 0.5.

We assume a standard functional form for adjustment costs

G(Kt; It) =
b

2

�
It
Kt

� � � et
�2
Kt (20)

which is strictly convex in It and homogeneous of degree one in (Kt; It). The rate

of depreciation is set to � = 0:15 and et is a mean zero adjustment cost shock,

distributed as et � iid N(0; �2e) with �2e = 0:0016. Adjustment costs are minimised

by setting net investment to zero on average. Since there is also no trend in the

productivity process, this generates optimal choices for investment, capital and

output with no systematic trends.

With no cost premium for external funds, this gives a convenient linear func-

tional form for the �rst order condition for investment (4)

It
Kt

=

�
� � 1

b

�
+
1

b

�
�Et[�

K
t+1]
�
+ et (21)
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where, as noted earlier, �Et[�Kt+1] is marginal q given our timing assumption that

current investment becomes productive in period t + 1. Using (10), this can be

written as
It
Kt

=

�
� � 1

b

�
+
1

b

�
�Et

�
Vt+1
Kt+1

��
+ et (22)

which simpli�es to

It
Kt

=

�
� � 1

b

�
+
1

b

�
�Et[Vt+1]

Kt+1

�
+ et (23)

since Kt+1 = (1��)Kt+It is known in period t. We exploit the recursive structure

of the value function (1) to obtain

�Et[Vt+1] = Vt � �t (24)

so that the speci�cation we estimate on the simulated data is

It
Kt

=

�
� � 1

b

�
+
1

b
Qt + et (25)

where average q is measured as9

Qt =
Vt � �t
Kt+1

(26)

The adjustment cost parameter b is set to 5, giving a coe¢ cient on average q of

0.2 in the absence of capital market imperfections. The discount factor � used to

generate the simulated investment data is set to 0.95.

Given that the net revenue function (16) is homogeneous of degree one in

(Kt; It), the �rm�s value maximisation problem would have no unique solution in

the absence of strictly convex adjustment costs. This requires a di¤erent numer-

ical solution method to those that have been used in related papers, which have

9Similar results were obtained when using the realised value Vt+1 to substitute for the ex-
pected value Et[Vt+1] in (23), and estimating using instrumental variables dated t and earlier,
which are orthogonal to the rational expectations forecast error. In this case the parameter we
estimate on Et[Vt+1]=Kt+1 is �=b.
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simulated optimal investment data for models with net revenue functions that are

not homogeneous.10 We choose parameters for the productivity process such that,

on average, the �rm would not want to expand or to contract in the absence of

adjustment costs. The numerical optimisation procedure we use to generate the

simulated investment data is described in Appendix A. One of the contributions

of this section is thus to provide the �rst analysis of simulated investment data for

a model with quadratic adjustment costs and a linear homogeneous net revenue

function, for which structural investment equations like (25) are correctly speci-

�ed in the absence of capital market imperfections, and which has been a popular

speci�cation in the empirical literature.

To extend this analysis to include a cost premium for external funds, we use

the increasing cost schedule

�(Nt; Kt) =

�
�

2

��
Nt
Kt

�2
Kt (27)

that was considered in section 3.1. Setting � = 0 gives the benchmark case in

which external funds are a perfect substitute for internal funds, and the investment

equation (25) is correctly speci�ed. Setting � > 0 gives cases in which external

�nance is more costly than internal �nance, and the investment spending of �rms

that are using external �nance (i.e. those with Nt > 0) is �nancially constrained

in the sense described in section 3.1. We choose values of � and parameters of the

productivity process to ensure that a non-negligible proportion of the observations

in our simulated datasets are in the constrained regime with Nt > 0, and also

to ensure that �Nt = �
�
Nt
Kt

�
< 1, so that �rms can always �nance additional

investment spending by issuing more new shares.

We consider the behaviour of the estimated coe¢ cients on both average q and

10See, for example, Gomes (2001) and Cooper and Ejarque (2003).
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the cash �ow variable in the standard �excess sensitivity�test speci�cation

It
Kt

=

�
� � 1

b

�
+
1

b
Qt + 

�
Ct
Kt

�
+ et (28)

Cash �ow (Ct) is measured as AtKt �G(Kt; It), while output (Yt) is measured as

AtKt. The null hypothesis  = 0 corresponds to the case with no cost premium

for external funds. More generally, the coe¢ cient  estimates the sensitivity of

investment spending to cash �ow conditional on average q. However this simple

linear speci�cation imposes the restriction that this conditional investment-cash

�ow sensitivity is common to all the observations in the sample. When �rms face

a cost premium for external �nance, this linear model is certainly mis-speci�ed; we

know that the conditional sensitivity of investment to cash �ow should be positive

for �rms using external �nance in period t, but should also be zero for �rms that

are not using external �nance in period t.11

Our analysis of investment equations estimated on these simulated datasets will

thus indicate whether our theoretical result on the monotonic relationship between

conditional investment-cash �ow sensitivity and the cost premium for external

funds for observations in the constrained regime is useful for understanding the

behaviour of the estimates of conditional investment-cash �ow sensitivity that

are commonly reported in the empirical literature. In section 5.3 we also note

how the cost premium parameter � can be estimated directly from a correctly

speci�ed structural investment equation for models with linear homogeneity and

an increasing cost premium for external funds of the form considered here.

11While some papers such as Bond and Meghir (1994) have attempted to use current �nancial
policy information to classify observations to di¤erent regimes, this approach has not been
common in the empirical literature.
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5.2 Results

We generate simulated panel datasets for samples with 2000 �rms observed for

16 periods. The generated data has the expected time series properties for a

model with a linear homogeneous net revenue function, so that in the absence of

adjustment costs �rms would have no optimal size.12 The logs of the �rm value

and capital stock series are integrated of order one, while the investment rates and

average q series are integrated of order zero; indicating that �rm value and capital

stocks are cointegrated in this framework. The mean of the simulated average q

variable is close to one; the mean of the investment rates is close to 0.15, the rate

of depreciation; and there are no systematic trends in the capital stocks or other

measures of �rm size.

Column (i) of Table 1 reports the OLS estimates of model (25) for a sample

in which there is no cost premium for external �nance. The intercept coe¢ cient

is close to the theoretical value of -0.05, and the coe¢ cient on average q is close

to the theoretical value of 0.2. While similar results were obtained using 2SLS

with a variety of instrument sets, there is no indication that the average q variable

de�ned in (26) is correlated with the iid adjustment cost shocks (et).

Column (ii) of Table 1 reports the OLS estimates of model (28), with a linear

cash �ow term included, for the same sample. As expected under the null of

perfect capital markets, the baseline average q model is correctly speci�ed, and

there is no evidence of �excess sensitivity�of investment to cash �ow. For this

speci�cation, there is also no correlation between the cash �ow variable (Ct=Kt)

and the adjustment cost shocks, so that the OLS estimates correctly indicate that

there is no sensitivity of investment to cash �ow, conditional on average q.

Column (iii) of Table 1 estimates this model for a sample in which all �rms face

12See, for example, Lucas (1967).
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a cost premium for external �nance, with the parameter � set to 1.6. Firms issue

new equity in 28.4% of the observations in this sample, so we expect to �nd some

evidence of �excess sensitivity�to cash �ow. This is re�ected in a lower coe¢ cient

on average q and a signi�cantly positive coe¢ cient on the cash �ow variable in

the OLS estimates of model (28).

Column (iv) of Table 1 repeats this experiment for a sample in which all �rms

face a higher cost premium for external funds, with � = 4. The fraction of the

observations with �rms in the constrained regime is slightly lower in this case at

27.7%. Nevertheless any e¤ect of this is dominated by the greater sensitivity of

investment to cash �ow, conditional on average q, for the �rms in the constrained

regime in this sample. The estimated coe¢ cient on average q is lower here than

in column (iii), while the estimated coe¢ cient on the cash �ow variable is con-

siderably higher. This comparison thus suggests that the estimates of conditional

investment-cash �ow sensitivities obtained from these simple linear speci�cations

follow the monotonic pattern that we obtained theoretically in section 3.1 for �rms

in the �nancially constrained regime of this model.

Table 2 con�rms that these di¤erences in the estimated coe¢ cients on the cash

�ow variable, for �rms facing di¤erent cost premia for external �nance, are sig-

ni�cantly di¤erent from each other. In column (i), half the �rms in the sample

face no cost premium for external funds, while half the �rms face an increasing

cost schedule for external funds with � = 4. The researcher is assumed to know a

priori which �rms are (always) �unconstrained�and which �rms are (potentially)

�constrained�. All the terms in model (28) are interacted with a binary dummy

variable Dum equal to one for the �rms with a positive cost premium for external

�nance, and zero otherwise. This allows all the coe¢ cients to be di¤erent for the

two sub-samples, and mimics the kind of �sample splitting�test that is common
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in the empirical literature. The results indicate that the estimated coe¢ cient on

average q for the sub-sample facing a cost premium is signi�cantly lower than

the coe¢ cient on average q for the sub-sample facing no cost premium; while

the coe¢ cient on the cash �ow variable is signi�cantly higher for the sub-sample

whose investment spending is �nancially constrained in the periods when they use

external �nance. As expected, the coe¢ cient on cash �ow is not signi�cantly dif-

ferent from zero for the sub-sample whose investment spending is never �nancially

constrained.

Column (ii) of Table 2 considers a similar exercise where half the �rms in the

sample face a low cost premium for external funds (�L = 1:6) and the remaining

�rms face a higher cost premium (�H = 4). In this case the investment spending

of �rms in both sub-samples will be sensitive to the availability of internal funds,

conditional on average q, in the periods when they are reliant on external funds.

However, as shown in section 3.1, we expect the conditional sensitivity of invest-

ment to cash �ow to be higher in this regime for the �rms which face a higher cost

premium for external �nance. As expected, and consistent with the results of Ta-

ble 1, we �nd that the coe¢ cient on the cash �ow variable is signi�cantly di¤erent

from zero for both sub-samples. More interestingly, these results indicate that the

estimated coe¢ cient on the cash �ow variable is not just higher but signi�cantly

higher for the sub-sample that face the larger cost premium for external funds.

This analysis thus suggests that the monotonic relationship between the slope

of the cost premium for external funds and conditional investment-cash �ow sensi-

tivity for �rms in the �nancially constrained regime, that we showed theoretically

in section 3.1, can be detected by estimates of conditional investment-cash �ow

sensitivity obtained from the simple linear speci�cations that have been com-

monly used in the empirical literature. Of course these linear models are clearly
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mis-speci�ed if the conditional investment-cash �ow sensitivity is present only for

a subset of the observations on �rms with a positive cost premium for external

funds, in the periods when they are reliant on external �nance. In the next sec-

tion we note how the cost premium parameter (�) can be estimated directly from

a correctly speci�ed structural model derived from the �rst order condition for

investment (4), in the case where �rms have a linear homogeneous net revenue

function and face an increasing cost premium for external funds of the form spec-

i�ed in (27).

5.3 A structural speci�cation with costly external �nance

Combining the �rst order condition for investment (4) with the �rst order condition

for new shares (6), and using the form of the cost premium (27) as in (8), gives

the condition

��It = �Et[�Kt+1]
�
1� �

�
Nt
Kt

��
(29)

Using the forms of the net revenue function (16) and the adjustment cost function

(20) then gives

It
Kt

=

�
� � 1

b

�
+
1

b

�
�Et[�

K
t+1]

�
1� �

�
Nt
Kt

���
+ et (30)

or
It
Kt

=

�
� � 1

b

�
+
1

b

�
�Et[�

K
t+1]
�
� �
b

�
�Et[�

K
t+1]

�
Nt
Kt

��
+ et (31)

which reduces to (21) when the cost premium parameter � = 0. As expected

marginal q, as conventionally de�ned for the case of perfect capital markets (i.e.

�Et[�
K
t+1] given our timing assumptions), is not a su¢ cient statistic for investment

rates in the model with an increasing cost premium for external funds.

Given linear homogeneity we can again replace marginal q by an observable
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measure of average q, giving

It
Kt

=

�
� � 1

b

�
+
1

b
Qt �

�

b

�
Qt

�
Nt
Kt

��
+ et (32)

where average q is again given by (26). This model can be estimated given data on

investment rates, average q, and the value of new shares issued. The parameters

are all structural parameters of the adjustment cost function or the cost premium

function, and the error term is again the stochastic shock to the rate of investment

at which adjustment costs are minimised.

Several points can be noted about this speci�cation. For �rms paying positive

dividends and issuing no new shares, this reduces to the standard speci�cation

under perfect capital markets given in (25). The additional term in (32) is an

interaction between average q and new equity, which is zero when no external

�nance is used. This interaction term has a negative coe¢ cient, consistent with

the result that at a given level of q, �rms using high cost external �nance will

choose lower investment rates than �rms with su¢ cient low cost internal funds to

�nance all their investment spending (see Figure 5, noting that (I2=K) < (I3=K)).

The cost premium parameter � is identi�ed from the coe¢ cient on this additional

interaction term.

The linear cash �ow term (Ct=Kt) included in the excess sensitivity test speci�-

cation (28) is negatively correlated withQt
�
Nt
Kt

�
, and thereby positively correlated

with the omitted variable ��
b

�
Qt

�
Nt
Kt

��
that is relevant when � > 0. This is con-

sistent with the positive coe¢ cients found on the included linear cash �ow terms

in columns (iii) and (iv) of Table 1. The correlation between (Ct=Kt) and Qt
�
Nt
Kt

�
is -0.306 and -0.337 respectively in these simulated datasets.

Finally the use of external �nance depends in part on the realisation of the

adjustment cost shock (et). All else equal, �rms experiencing adjustment cost

shocks that make them want to undertake additional investment are more likely
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to be in the �nancially constrained regime of the model, with Nt > 0 (see Figure

5, comparing ��I1 and ��I2). This suggests that the interaction term is likely

to be correlated with the error term in (32), and this was found to be the case

in our simulated data. For example, the correlation between Qt
�
Nt
Kt

�
and et is

around 0.56 in the samples used in Table 1. Consequently OLS estimates of the

coe¢ cients in (32) are biased and inconsistent. However we can exploit the struc-

ture of the model to obtain valid and informative instruments. Given our timing

assumptions, the available instruments that are orthogonal to iid adjustment cost

shocks include current and lagged average q, lagged values of the interaction term,

and current output. Since current output re�ects the current shock to the per-

sistent component of the productivity process (i.e. �t in (18) above), and this

productivity innovation also a¤ects both Qt and Nt, current output is expected

to be an informative instrument. The correlation between current output and the

interaction term is around -0.15 in the samples used in Table 1.

Table 3 presents 2SLS estimates of model (32) using these instrumental vari-

ables. The three columns use the same simulated datasets that were used in Table

1, with values of the cost premium parameter � set to zero, 1.6 and 4 respectively,

and common to all �rms in the generated samples. The expected values of the

coe¢ cient (��=b) are thus zero in column (i), -0.32 in column (ii) and -0.8 in

column (iii). The estimated coe¢ cients on the linear average q terms are close

to their expected value of 0.2 in all three samples. In column (i), the estimated

coe¢ cient on the interaction term is not signi�cantly di¤erent from zero, correctly

indicating that the �rms in this sample do not face a cost premium for external

funds. In column (ii), the estimated coe¢ cient on the interaction term is signi�-

cantly di¤erent from zero, and close to its expected value of -0.32. In column (iii),

the estimated coe¢ cient on the interaction term is again signi�cantly di¤erent
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from zero, and not signi�cantly di¤erent from its expected value of -0.8.

These instrumental variables estimates of the structural model (32) thus permit

reliable inference about the presence of a cost premium for external �nance, and

provide a reasonable quantitative guide to the size of this cost premium in di¤erent

samples. Of course this speci�c model, in which new equity is the only source

of external �nance, is much too simple to be useful in practice. Nevertheless our

results in this section suggest that this is a promising direction for further research,

incorporating debt �nance and ideally a richer set of �nancial policies available

to �rms, such as the accumulation of liquid �nancial assets. Hennessy, Levy and

Whited (2005) suggest some tractable ways of extending this kind of structural

model, and present some interesting results for publicly traded US corporations.

6 Conclusions

In contrast to Kaplan and Zingales (1997), we �nd that in a dynamic investment

problem with quadratic costs of adjustment, there is a monotonic relationship be-

tween conditional investment-cash �ow sensitivity and the severity of the �nancing

constraint, as re�ected in the size or slope of the cost premium for external �nance.

In particular we provide a benchmark speci�cation in which a higher cost premium

for one group of �rms would be re�ected in a greater sensitivity of investment to

windfall �uctuations in cash �ow, conditional on average q, for observations in the

constrained �nancing regime, than would be expected for an otherwise identical

group of �rms with a lower cost premium for external �nance. Our adjustment

costs framework is more closely related to the empirical literature on investment

and �nancing constraints than the static demand for capital framework analysed

by Kaplan and Zingales (1997). Results using simulated investment data sug-

gest that, if adjustments costs are quadratic and linear homogeneity is satis�ed,
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a higher cost premium for external funds would also be re�ected in a higher coef-

�cient on a cash �ow variable in the typical econometric speci�cation that relates

investment rates to measures of both cash �ow and average q.
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Appendix A: The dynamic programming model

This appendix describes the numerical optimisation procedure used to generate

the simulated investment data analysed in Section 5. The value of the �rm is given

by the Bellman equation

V (Kt; a
P
t�1; �t; a

T
t ; et) = max

It;Kt+1;Nt

�
�(Kt; a

P
t�1; It; Nt; �t; a

T
t ; et)

+�Et
�
V (Kt+1; a

P
t ; �t+1; a

T
t+1; et+1)

� �
subject to the capital evolution constraint

Kt+1 = It + (1� �)Kt; (33)

and the non-negativity constraints for dividends and new share issues

�(Kt; a
P
t�1; It; Nt; �t; a

T
t ; et) +Nt � 0; Nt � 0 (34)

where �(Kt; a
P
t�1; It; Nt) is the net revenue function

�(Kt; a
P
t�1; It; Nt; �t; a

T
t ; et) = A

�
aPt�1; �t; a

T
t

�
Kt �G(Kt; It; et)� It � � (Nt; Kt)

and A
�
aPt�1; �t; a

T
t

�
; G(Kt; It; et) and �(Nt; Kt) are parameterized as described in

Section 5. Hence, at time t, Kt and aPt�1 are state variables and It; Kt+1 and Nt

are control variables. It is convenient to plug in the capital evolution constraint

(33) into the Bellman equation, in order to reduce the number of control variables

from three to two

V (Kt; a
P
t�1; �t; a

T
t ; et) = max

Kt+1;Nt

�
�(Kt; a

P
t�1; It (Kt+1) ; Nt; �t; a

T
t ; et)

+�Et
�
V (Kt+1; a

P
t ; �t+1; a

T
t+1; et+1)

� � (35)

with It (Kt+1) = Kt+1� (1� �)Kt; subject to the non-negativity constraints (34).

As far as we know, it is not possible to solve for (Kt+1; Nt) analytically as a

function of the state variables, the productivity innovations and the adjustment

cost shock in this model. Therefore we use numerical methods to simulate optimal

investment data.

Solving the Bellman equation using value function iteration

We solve the �rm�s optimisation problem (35), subject to (34), using value

function iteration. Conveniently, because the value function is homogeneous of
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degree one in capital, it is su¢ cient to evaluate the value function at one arbitrary

level of Kt; say �K13

V
�
�K; aPt�1; �t; a

T
t ; et

�
= max

Kt+1;Nt

�
�( �K; aPt�1; It (Kt+1) ; Nt; �t; a

T
t ; et)

+�Et
�
V
�
Kt+1; a

P
t ; �t+1; a

T
t+1; et+1

�� �

V
�
�K; aPt�1; �t; a

T
t ; et

�
= max

Kt+1;Nt

�
�( �K; aPt�1; It (Kt+1) ; Nt; �t; a

T
t ; et)

+�Kt+1
�K
Et
�
V
�
�K; aPt ; �t+1; a

T
t+1; et+1

�� � (36)

Once a solution conditional on Kt = �K has been obtained, the value conditional

on general Kt can be obtained by linear extrapolation

V (Kt; a
P
t�1; �t; a

T
t ; et+1) = V ( �K; a

P
t�1; �t; a

T
t ; et+1)

Kt

�K

Naturally, linear homogeneity is crucial for this to be an appropriate approach.

The principles of our value function iteration algorithm are as follows.

1. Start with a guess for the true value function V
�
�K; aPt�1; �t; a

T
t ; et

�
: Call this

guess V 1. Use it on the right-hand side of the Bellman equation (36), and

compute Et[V
�
�K; aPt ; �t+1; a

T
t+1; et+1

�
] by integrating over the innovations

�t+1; a
T
t+1; zt+1 (more on this step below). Solve for Kt+1 and Nt, imposing

the non-negativity constraints (34) (more on this step below too).

2. Update the guess for the true value function using the solution (Kt+1; Nt)

obtained in the previous step. Call this updated guess V 2: Check if V 2 = V 1.

If true, we have converged to the true function and so iteration can stop; if

not go to step 3.

3. For j = 3; 4; :::, use V j�1 on the right-hand side of the Bellman equation

and calculate the optimal choice rule (Kt+1; Nt), subject to (34). Update

the guess of the value function, V j: Check if V j = V j�1. If true, there is

convergence and so iteration stops; if not, set j = j + 1 and repeat step 3.

13An alternative, equivalent approach would be to divide through by Kt and rewrite the
Bellman equation (35) as
v(APt�1=Kt; �t; a

T
t ; et) = max(It=Kt);(Nt=Kt) �(A

P
t�1=Kt; It=Kt; Nt=Kt; �t; a

T
t ; et) +

(It=Kt + 1� �)�Et
�
v(APt =Kt+1; �t+1; a

T
t+1; et+1)

�
;

where v � V=K and � � �=K (see Bloom, 2005).
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To implement this method we need to deal with three main di¢ culties: �rst,

while discretisation of the state space is a necessity in numerical dynamic program-

ming, we need to allow for the fact that we are dealing with continuous variables

(e.g. capital); second, we need a way of calculating the expected value of the �rm

in the next period; third, we need a way of imposing the non-negativity constraints

(34). We now discuss these issues in turn.

The approximation of the value function

We deal with the �rst problem mentioned above by discretising the state space,

setting the chosen values equal to the optimal nodes of a Chebyshev polynomial.

We then interpolate between nodes using the Chebyshev iterative formula. Con-

ditional on the innovations �t; aTt ; et we write the Chebyshev polynomial approxi-

mation of the value function as

V
�
�K; aPt�1; �t; a

T
t ; et

�
'

nX
j=0

'v;a
T ;e

j Tj

�
2aPt�1 � ahi � alo

ahi � alo

�

where 'v;a
T ;e

j , j = 0; 1; :::; n are the Chebyshev coe¢ cients, ahi and alo are upper

and lower limits on aPt�1, and
14

T0
�
aP
�
= 1

T1
�
aP
�
=

2aP � ahi � alo
ahi � alo

Ti+1
�
aP
�
= 2

�
2aP � ahi � alo
ahi � alo

�
Ti
�
aP
�
� Ti�1

�
aP
�
; i = 2; :::; n� 1

Conditional on �t; aTt ; et the value function V is evaluated at m values of aPt�1:

a1; a2; :::; am, where

ak =
�
�k + 1

��ahi � alo
2

�
+ alo; k = 1; :::;m

�k = � cos
�
2k � 1
2m

�

�
; k = 1; :::;m

14The truncatation of the distribution of the persistent component of productivity is intro-
duced for computational reasons. We set alo = �4�a and ahi = 4�a, which given that a is
normally distributed implies that the likelihood of truncation is approximately 0.00006.
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In our applications, we set m = 5. Increasing m improves the accuracy of the

approximation but also increases the computational time. Increasing m to 9 had

very marginal e¤ects on our results, probably because our value functions are

smooth and monotonic.

The Chebyshev polynomial approximation of the value function has been used

in previous work by Fafchamps and Pender (1997). For more details on this

approach, see Chapter 6 in Judd (1998).

The expected value in the next period

To compute the expected value of the �rm in the next period we use numerical

integration, speci�cally a Gauss-Hermite quadrature. This involves evaluating the

value function at a �nite number of values for the random variables �t+1; aTt+1; et+1,

and summing the results using a set of weights. The weights and the positions of

the nodes are determined by the Gauss-Hermite quadrature. Conditional on aPt ,

Et[V
�
�K; aPt ; �t+1; a

T
t+1; et+1

�
] is given by

Et
�
V
�
�K; aPt ; �t+1; a

T
t+1; et+1

��
=

�
2��2v

��1=2 �
2��2aT

��1=2 �
2��2e

��1=2
�
Z 1

�1

Z 1

�1

Z 1

�1
V
�
�K; aPt ; �t+1; a

T
t+1; et+1

�
�e�v2=(2�2v)e�(a

T )
2
=(2�2

aT
)e�e

2=(2�2e)dvdaTde

since v; aT ; e are normally distributed and independent of each other. An analytical

solution cannot be obtained, so we use numerical integration based on Gauss-

Hermite quadrature

E
�
V
�
�K; aPt ; �t+1; a

T
t+1; et+1

��
' ��3=2

QX
q1=1

!q1

QX
q2=1

!q2

QX
q3=1

!q3V
�
�K; aPt ;

p
2�vxq1;

p
2�aTxq2;

p
2�exq3

�
where Q is the number of quadrature nodes, and !q and xq are �xed weights and

nodes, respectively (see Judd, 1998, pp.261-262). We set Q = 3 throughout.
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Imposing the non-negativity constraints

To impose the non-negativity constraints on dividends and new issues

�(Kt; a
P
t�1; It; Nt; �t; a

T
t ; et) +Nt � 0; Nt � 0 (37)

we use a two stage procedure as follows.

1. First, we solve for optimal investment without imposing the constraint (37)

and setting Nt = 0. At the resulting level of investment, we check if (37)

holds (i.e. we check if �(Kt; a
P
t�1; It; Nt; �t; a

T
t ; et) � 0). If �t � 0, we

conclude that the non-negativity constraint on dividends does not bind, and

take the resulting Kt+1, and Nt = 0, to be optimal. However, if �t < 0, the

solution is not permissible. In this case we proceed to stage 2, which is as

follows.

2. Grid search on Nt.

(a) Set j = 1. Start at Nt = 0 and obtain solutions (if real solutions exist) for

investment that satisfy �t = 0 (conditional on Nt, solutions for which �t = 0 are

always superior to solutions for which �t > 0). Because of quadratic adjustment

costs, there may exist two real solutions. If so, pick the level of investment that

is associated with the highest �rm value. Store this �rm value, denoted V 1.

(b) Set j = j +1. Increase Nt by a small amount, and obtain solutions (if real

solutions exist) for investment that satisfy �t + Nt = 0. Store the relevant �rm

value, denoted V j. Compare to the �rm value obtained in the previous grid search

step, i.e. V j�1. If V j < V j�1, then go to (c). If V j � V j�1, repeat step (b).
(c) Stop grid search. The solution (Kt+1; Nt) obtained in the previous grid

search step (i.e. step j � 1) is taken to be optimal.

36



Table 1. Excess Sensitivity Tests

(i) (ii) (iii) (iv)

� = 0 � = 0 � = 1:6 � = 4

const -0.0481 -0.0483 -0.0495 -0.0516
(.0014) (.0015) (.0014) (.0013)

Qt 0.1983 0.1986 0.1896 0.1839
(.0012) (.0020) (.0019) (.0018)

Ct
Kt

0.0003 0.0412 0.0755
(.0055) (.0052) (.0049)

R2 0.43 0.43 0.47 0.50

Sample size: N = 2000 T = 16 Observations = 32; 000

Ordinary least squares estimates
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Table 2. Split Sample Tests

(i) (ii)

�L = 0 �L = 1:6
�H = 4 �H = 4

const -0.0476 -0.0521
(.0020) (.0019)

Qt 0.1987 0.1944
(.0026) (.0026)

Ct
Kt

-0.0034 0.0303
(.0073) (.0071)

Dum -0.0001 0.0044
(.0028) (.0026)

Dum �Qt -0.0190 -0.0148
(.0038) (.0037)

Dum �
�
Ct
Kt

�
0.0824 0.0487

(.0104) (.0101)

R2 0.46 0.48

Sample size: N = 2000 T = 16 Observations = 32; 000

50% of �rms have � = �L (Dum = 0); 50% of �rms have � = �H (Dum = 1)

Ordinary least squares estimates
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Table 3. Structural Model Estimates

(i) (ii) (iii)

� = 0 � = 1:6 � = 4

const -0.0470 -0.0504 -0.0521
(.0017) (.0019) (.0022)

Qt 0.1985 0.2003 0.2017
(.0014) (.0014) (.0015)

Qt �
�
Nt
Kt

�
-0.1173 -0.3300 -0.6657

(.0812) (.1115) (.1384)

p 0.18 0.79 0.52

Sample size: N = 2000 T = 16 Observations = 32; 000

Two stage least squares estimates

Instrumental variables: Qt, Qt�1, Qt�1 �
�
Nt�1
Kt�1

�
, Yt

p is the p-value of the Sargan test of over-identifying restrictions
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Figure 1    Static Demand for Capital
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Figure 2    A Cash Flow Shock

uINT

MPK1
MPK2

I1 I2 Investment

Marginal
Product

C

u u’

I2’C’

Figure 2:

41



Figure 3    Cost Premia uH > uL
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Figure 4    The Kaplan-Zingales Case
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Figure 5    Q Model - for given λK
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Figure 6    A Cash Flow Shock
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Figure 7    Cost Premia φH > φL
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Figure 8    Fixed Cost Premium
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Figure 9    A Small Cash Flow Shock
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Figure 10    A Larger Cash Flow Shock
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Figure 11    Cost Premia φH > φL
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Figure 12    Cost Premia φH > φL
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Figure 13     Cost Premia φH > φL
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