

Analysing tax and social security policy: examples from Mexico and the UK David Phillips, Senior Research Economist, IFS

© Institute for Fiscal Studies

Analysing tax, benefits and pensions policy

- Quantitative analysis of tax, benefits and pensions policy is important input in policy-making and evaluation process
 - Assessing the distributional impact of system or reforms
 - Assessing impact on behaviour and economic efficiency
- IFS analysis of tax policy in UK relies a lot on this
 - Analysing distributional impact of government budget measures
 - Suggesting improvements to UK tax system (the Mirrlees Review)
- IFS researchers have also been involved in analysing policy in middle income countries:
 - Study of tax reforms in Mexico and El Salvador (World Bank)

What's coming up?

- Methodological issues:
 - What kind of models?
 - How to assess the distributional impact of reforms
- A tax-microsimulation model for Mexico: MEXTAX
- Using microsimulation for UK tax system design: TAXBEN

Methodological Issues

A static or dynamic models?

- Static models simulate impact of reform at one point in time
 - Only single cross-section of data required
 - No need to project forward population dynamics
 - But can change the point in time to apply a model
- Dynamic models simulate the impact of a reform over time
 - Simulate population dynamics (e.g. future earnings/employment, fertility, health status, etc)
 - Demographic projections usually require panel data to estimate
- What model to use depends on policies in question
 - e.g. distributional impact of income tax change: static suitable
 - e.g. impact of change in social security contributions and pension entitlement rules on pension costs and payments: dynamic required
- Today, discuss static models

Allow for behavioural response?

- No-behavioural response modelling is most common
 - Easier to do than modelling behaviour
 - Reasonably approximation for many kinds of small reforms
 - Can give upper (lower) bounds on household static welfare costs (gains) from tax increases (cuts)
- But reforms can cause large changes in behaviour
 - Changes in how much people work or the income they generate
 - Changes in what people buy and consume
- Behavioural microsimulation models allow such responses
 - Sometimes very important: e.g. revenues from UK's 50% income tax
 - Can better investigate 'good' policy
 - Important to realise estimated responses are subject to uncertainty

How to assess distributional effects?

- How to rank households as rich or poor: income or expenditure?
 - Both suffer from measurement error and are volatile
 - Borrowing and saving mean rank people differently
 - Probably worthwhile looking at impacts over both income and expenditure distributions
- Relative gains/losses: proportion of income or expenditure?
 - Borrowing and saving mean dividing by income or spending can give very different answers
 - Best to divide gains/losses from direct changes by income, gains/losses from indirect changes by expenditure
- Also look at gains/losses in cash terms
 - Policy may redistribute proportionally but not in cash terms

Analysing Reforms in Mexico

MEXTAX – our simulator (I)

- We developed a tax microsimulation model for Mexico called MEXTAX
 - Included income tax, indirect taxes and social security contributions
 - Simulate these and other reforms to the tax system
- Want to use this to
 - Estimate revenues from tax increases
 - Estimate the distributional impact
 - Model the impact on work, consumption
 - Allow for less-than-full pass through of VAT to consumer prices
 - Take into account the fact that informality means much activity is not taxed

MEXTAX – our simulator (II)

- Built and runs using Stata
 - Widely available econometrics program, but requires some basic knowledge of the language
 - Users edit an 'interface' and 'parameters' modules
 - No need to edit calculation code unless very major reforms (e.g. Shift from individual to joint taxation)

Parameters module

```
🖺 Untitled1.do 📋 params_ 2008.do
******* INCOME TAX EXEMPTIONS *******
scalar NUMSOURCES = 20
**** MONETARY AMOUNTS ****
scalar EXEMPT1 = 0
scalar EXEMPT2 = 0
scalar EXEMPT3 = 1577.7
scalar EXEMPT4 = 1577.7
scalar EXEMPT5 = 788.85
scalar EXEMPT6 = 788.85
scalar EXEMPT7 = 1000000000
scalar EXEMPT8 = 0
scalar EXEMPT9 = 100000000
scalar EXEMPT10 = 1000000000
foreach X of numlist 11(1)20 {
    scalar EXEMPT'X' = 1000000000
}
**** PERCENTAGES ****
scalar PEXEMPT1 = 0
scalar PEXEMPT2 = 0.5
foreach X of numlist 3(1)20 {
    scalar PEXEMPT'X' = 0
}
scalar MPEXEMPT1 = 0
scalar MPEXEMPT2 = 13673.4
foreach X of numlist 3(1)20 {
    scalar MPEXEMPT'X' = 0
}
```

🖺 Untitled1.do 📋 params 2008.do ******* INCOME TAX THRESHOLDS ******* scalar NUMBANDS = 8 scalar BANDO = 0 scalar BAND1 = 5952.84scalar BAND2 = 50524.92scalar BAND3 = 88793.04 scalar BAND4 = 103218.00 scalar BAND5 = 123580.20scalar BAND6 = 249243.48 scalar BAND7 = 392841.96 scalar BAND8 = 1000000000******* INCOME TAX RATES ******* scalar RATE1 = 0.0192scalar RATE2 = 0.064scalar RATE3 = 0.1088scalar RATE4 = 0.16scalar RATE5 = 0.1792scalar RATE6 = 0.1994scalar RATE7 = 0.2195scalar RATES = 0.28 ******* INCOME SUBSIDY LIMITS ******* scalar NUMCREDS = 11 scalar LCREDO = 0.01scalar LCRED1 = 21227.52scalar LCRED2 = 31840.56scalar LCRED3 = 41674.08 scalar LCRED4 = 42454.44scalar LCRED5 = 53353.80 scalar LCRED6 = 56606.16scalar LCRED7 = 64025.04scalar LCRED8 = 74696.04scalar LCRED9 = 85366.80scalar LCRED10 = 88587.96 scalar LCRED11 = 1000000000

Running the program

•					
. program	i set_propwages				
	version 11				
2.	global prop_wages = `1'				
3. . end					
. program	1 set_adout_ind				
1.	version 11				
2.	syntax anything				
•	global outdata_ad_ind `anyth	ing'			
. end					
. program 1.	i set_logdec_ind				
• 2	version 11				
3.	alobal loafilodosilo ind	`ap thing'			
4.	grobal logi liedectie_ind	anyching			
. end					
. program	1 set_loahh_ind				
1.	version 11				
2.	syntax anything				
- 3. -	global logfilehhtype_ind	`anything'			
4. . end					
. program	<pre>set_logrev_ind</pre>				
	version 11				
3.	syntax anytning				
• 4.	global logfilerevenue_ind	`anything'			
. end					
and of de	- file				
ena or ac					
. set_cou	intry "mexico"				
. set_sys	tems 2010 20112 20113				
. set_def	aults				
Command					
simulator					
	10 11				
					_

MEXTAX – our simulator (II)

- Built and runs using Stata
 - Widely available econometrics program, but requires some basic knowledge of the language
 - Users edit an 'interface' and 'parameters' modules
 - No need to edit calculation code unless very major reforms (e.g. Shift from individual to joint taxation)
- Outputs individual, household files and summary distributional and revenue statistics
- Being developed into LATAX
 - Tax simulator for Latin America where choose country
 - Scope for adding additional features like subsidies, cash transfers etc.

MEXTAX: Coping with poor quality income data

- Household surveys often fail to pick up all income sources or all types of spending
 - Especially the case for savings/investments income
 - Or spending on things like alcohol or tobacco
- Researchers in Latin America typically responded by multiplying reported incomes by fixed factors so match National Accounts
 - What if under-reporting is concentrated amongst certain people? (e.g. the rich)
 - What if some people do not under-report but completely forget about a source of income?
- We tested sensitivity of results to these assumptions
- Provides info but not solve problem need better data

MEXTAX: What happens to behaviour?

- People may work less or shift to the informal sector when their taxes go up
 - Tax increase raise less revenue or even reduce revenue
- No good estimates of labour supply responses to taxation for Mexico
 - Assess how much revenue would be raised under different assumptions about how responsive people are

Reform	Baseline	"Low"	"Medium"	"High"
	Revenue	Response	Response	Response
Total	50,550	48,710	46,880	43,180

- Similar approach could be used elsewhere until more evidence on how responsive people actually are
 - Taking account of reductions in work effort can make important differences to results

MEXTAX: analysing 2010 tax reforms (I)

- Increases in tax rates in 2010 to reduce government deficit
- Initial proposals included
 - Substantial expansion in indirect (VAT) base (new 2% uniform VAT on top of existing VAT)
 - Increases in various income tax and duties rates
- Approved reform was a much reduced version of this, in particular replacing new 2% uniform VAT with 1% increase in existing VAT
 - Part of reason proposals rejected is seen as "regressive"
 - Proper quantitative analysis can help assess whether this was the case

MEXTAX: analysing 2010 tax reforms (II)

Proposed reforms: losses measured as % of income

MEXTAX: analysing 2010 tax reforms (III)

Proposed reforms: losses measured as % of expenditure

Utilising behavioural modelling in MEXTAX

- Changes in VAT rates on different goods may cause people to change their spending patterns
 - e.g. buy more food because of lower rate of VAT on it
- We estimated how spending patterns respond to changes in taxes using info on how spending patterns related to changes in prices over time and across Mexico
 - Spending patterns do respond
 - But only a small effect on revenue and distributional impact of reforms
- Also used model to examine a broad uniform VAT in Mexico
 - Efficiency gain equal to 0.1% of aggregate expenditure
 - But evidence of interactions between consumption and labour supply which may undermine case for uniform VAT

Analysing Policy in the UK

TAXBEN

- Long-standing IFS tax/benefit micro-simulation model
 - Historical systems back to 1975, highly detailed
 - Easily make basic changes in graphical 'front-end'
 - Able to code up major reforms and analyse
- Used to analyse distributional, revenue and work-incentive impact of policy changes and budget measures
 - Day after budget we have full set of results to present to media and stakeholders
- But also used in more fundamental analysis of tax system
 - e.g. the Mirrlees Review

Reforming the UK VAT: analysis with TAXBEN (I)

- One of the key recommendations of Mirrlees Review is to move to single rate of VAT on (nearly) all goods and services
 - But this is regressive
 - And would damage work incentives
- Use TAXBEN to analyse the impact of reform and design compensating cuts in other taxes and increases in benefits
 - On average, distributionally neutral
 - On average, not worsen work incentives
- TAXBEN also used with demand model to look at welfare gains from uniformity
 - Around 0.1 0.2% of consumer spending

Reforming the UK VAT: analysis with TAXBEN (II)

- After trial-and-error, following reform looked workable:
 - VAT at 20% on all items
 - Automatic increase of 3.4% in all tax allowances, thresholds, benefit and tax credit rates (because indexation to prices)
 - Further increases in certain benefits
 - Cuts in tax rates, increase in tax-free allowance, slightly lower higherrate income tax threshold
- Difficult to assess distributional impact of reforms when both direct and indirect taxes are affects
 - By income and expenditure distributions, % of income and spending
- Also calculate marginal tax rates and participation tax rates to look at work incentive effects

Tax by Design

222

Broadening the VAT Base 223

Conclusions

- Quantitative analysis of tax, benefits and pensions policy is useful
- Different ways of building models
 - Relatively simple like MEXTAX
 - Highly detailed like TAXBEN
- But have to be aware of the limitations
 - Data
 - Behavioural response
 - How to decide something is progressive or regressive?

