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Abstract

The traditional approach to obtain valid confidence intervals for nonparametric

quantities is to select a smoothing parameter such that the bias of the estimator is

negligible relative to its standard deviation. While this approach is apparently sim-

ple, it has two drawbacks: First, the question of optimal bandwidth selection is no

longer well-defined, as it is not clear what ratio of bias to standard deviation should

be considered negligible. Second, since the bandwidth choice necessarily deviates from

the optimal (mean squares-minimizing) bandwidth, such a confidence interval is very

inefficient. To address these issues, we construct valid confidence intervals that account

for the presence of a nonnegligible bias and thus make it possible to perform inference

with optimal mean squared error minimizing bandwidths. The key difficulty in achiev-

ing this involves finding a strict, yet feasible, bound on the bias of a nonparametric

estimator. It is well-known that it is not possible to consistently estimate the point-

wise bias of an optimal nonparametric estimator (for otherwise, one could subtract it

and obtain a faster convergence rate violating Stone’s bounds on optimal convergence

rate). Nevertheless, we find that, under minimal primitive assumptions, it is possible to

consistently estimate an upper bound on the magnitude of the bias, which is sufficient

to deliver a valid confidence interval whose length decreases at the optimal rate and

which does not contradict Stone’s results.

1 Introduction

While the classic topic of nonparametric inference is well-established and has been the sub-

ject of many reviews (for instance, Härdle and Linton (1994), Pagan and Ullah (1999),
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Methods and Practice conference and the Conference in Honor of Jerry Hausman for helpful comments. Any
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Ichimura and Todd (2007), Li and Racine (2007), Horowitz (2009)), the topic is still receiv-

ing considerable ongoing attention (Lewbel and Linton (2002), Giné and Nickl (2010), Low

(1997), Cai, Low, and Xia (2013), Hoffmann and Nickl (2011), Cai, Low, and Ma (2014),

Armstrong (2014), Chernozhukov, Chetverikov, and Kato (2014), Calonico, Cattaneo, and

Titiunik (2014), Armstrong and Kolesár (2014), Calonico, Cattaneo, and Titiunik (2015),

Pinkse (2001), Su and Ullah (2008), among many others), due to numerous open problems

that have not found theoretical or practical solutions. One of these remaining problems is

the following undesirable dilemma. When conducting statistical inference in traditional non-

parametric settings, one can either use the optimal level of smoothing which minimizes the

sum of the squared bias and the variance, but the resulting limiting distribution is shifted

off center by an amount that is not asymptotically negligible and that is not consistently

estimatable, thus affecting the validity of the resulting inference. Alternatively, one can

select a bandwidth that undersmooths to obtain the asymptotically negligible bias neces-

sary for valid inference, but at the expense of abandoning efficiency. The loss of efficiency

is actually quite large in this case, because the mean squared error for an undersmoothed

bandwidth sequence is, asymptotically, infinitely bigger than the one obtained at the optimal

bandwidth.

This old dilemma has recently received renewed interest and various approaches towards

a solution have been proposed (see, for instance, Hall and Horowitz (2013), Calonico, Cat-

taneo, and Farrell (2013), Chernozhukov, Chetverikov, and Kato (2014), Hansen (2014)), as

discussed in Section 3. In this paper, we propose a different solution that is both simple to

implement and relies on transparent primitive assumptions. We observe that there is no rea-

son to expect that confidence intervals in a nonparametric context should take the standard

form of a point estimate expanded by a multiple of some standard deviation. An arguably

more appropriate approach is one that allows for an interval of possible values for the bias.

That is, we obtain a feasible bound on the magnitude of the bias and take it into account

during inference, rather than attempting to make it negligible. This is accomplished via a

Fourier representation of the bias and a connection between the large frequency behavior of

Fourier transforms with fundamental results in the theory of dynamical systems (Birkhoff

(1931b)).

Our method relies on a nonparametric kernel point estimate ̂ , such as a density or a

conditional expectation at a given point, estimated for the optimal (mean squared error min-

imizing) smoothing parameters. An interval including the true value of  can, theoretically,

be obtained by taking the point 
h
̂
i
and expanding it into an interval whose width is

determined by an upper bound on the possible bias ̄ of such an estimate:h

h
̂
i
− ̄ 

h
̂
i
+ ̄
i


As the estimate ̂ obtained in practice is random, the boundaries of a confidence interval

centered on ̂ need to be further broadened by an appropriate multiple  of some estimated

standard deviation ̂ to yield a confidence interval of the form:h
̂ − ̄− ̂ ̂ + ̄+ ̂

i
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By explicitly accounting for the unknown, but bounded, bias, one is not forced to use an

undersmoothed suboptimal bandwidth. The key difficulty in proceeding in this fashion

involves finding a strict bound on the bias of a nonparametric estimator that can be feasibly

estimated. It is well-known that it is not possible to consistently estimate the pointwise bias

of an optimal nonparametric estimator, for otherwise, one could subtract it and obtain a

faster convergence rate violating Stone’s bounds (Stone (1980), Stone (1982)) on the optimal

convergence rate. Nevertheless, we show that it is possible to consistently estimate an upper

bound on the magnitude of the bias under primitive regularity conditions, which is sufficient

to deliver a valid confidence interval and that does not contradict Stone’s results.

As a simple example to fix the ideas, if ̂ is a kernel estimate of a density  whose

second derivative  00 may not be continuous, but is known to be bounded by some constant
̄ 00, then an upper bound on the bias is given by ̄ = 2

2̄ 002, where  is the bandwidth
and 2 is the second moment of the kernel. The lack of continuity in  00 precludes a more
efficient estimation, but boundedness is sufficient to strictly bound the bias. Of course,

having to specify an a priori bound on the second derivative would be unappealing in

general, and much of our efforts below will be devoted to avoiding this via formal ways to

estimate an upper bound on the bias that converges sufficiently fast so that it does not affect

the asymptotic distribution. The key idea is to express the bias in terms of the Fourier

transform of the unknown function of interest and find bounds on the latter that are implied

by simple primitive smoothness conditions. These implied bounds take the form of power

law bounds on the Fourier transform that can be shown to be reached (within an arbitrarily

small tolerance) at almost periodic interval as frequency increases, thanks to a powerful result

borrowed from the theory of dynamical systems. This enables both the consistent estimation

of the bounds and their use in a simple estimator of the bias bound.

This paper is organized as follows: We first introduce the basic results needed to bound

the bias, before considering the estimation of such bounds. We then use these results to

generate confidence intervals after adding variance contributions. A comparison with other

proposals to address the bias issue in nonparametrics inference can be found in Section 3.

We discuss various extensions, for instance, estimation of derivatives, of quantiles, adaptive

estimation, etc. All proofs can be found in the appendix.

2 Main results

2.1 Notation and definitions

To transparently cover the density and conditional mean cases jointly whenever possible, we

focus on quantities of the form

 ; () ≡  [ | = ]  ()

where  and  are random variables and  denotes the density of  with respect to the

Lebesgue measure. Note that this specializes to a density if  = 1. Conditional expectation

can be expressed as  [ | = ] =  ; () 1; (). For results that do not depend on
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the specific variables  and  involved, we will abbreviate  ; as  . Fourier transforms

will generally be denoted by the corresponding greek letter, e. g., the Fourier transform of

 ; () is denoted by  ; () ≡
R
 ; () 

.

We consider kernel estimators of  ; ():

̂ ; () = ̂

∙

1




µ
−



¶¸
=
1



X
=1


1




µ
−



¶
for some kernel  (·) and some bandwidth   0. We let ̂ denote the sample average

operator; we will also denote the usual variance estimator by dVar. More generally, all es-
timators are denoted with hats and their dependence on  will be implicit. Similarly, the

-dependence of the bandwidth  will be omitted in the notation.

Kernel estimators are convenient in the present context because their bias admits a very

simple expression, thus making the analysis more transparent. To study the bias, it is useful

to define the expected value:

̄ ; () = 
h
̂ ; ()

i
=

Z
1




µ
− ̃



¶
 ; (̃) ̃

where integrals are conventionally over the real line unless otherwise specified.

We then define a set of smooth functions that will play a central role in our approach.

To do so, we recall the following well-known concept:

Definition 1 The total variation  () of a function  () is

 () = sup
∈N

sup
{0}:
partition of R

X
=1

| ()−  (−1)| 

Intuitively, the total variation is the sum of the “up” and “down” absolute movements

in the value of the function. For a function  whose differential exists and is integrable,

 () =
R∞
−∞
¯̄
 (1) ()

¯̄
, but the above definition holds more generally (for instance, with-

out assuming differentiability). The following definition specifies a hierarchy of increasingly

smooth functions.

Definition 2 For1  ∈ N\ {0 1} and  ∈ R+, let F
 be the set of all functions  :

R 7→ R such that (i)
R | ()|  exists and does not exceed , (ii) for  = 0      − 1,

the -th derivative  () exists and satisfies lim→±∞  () () = 0, (iii) the total variation of

 (−1) is at most  and (iv)  (−1) is absolutely continuous except over a finite nonempty set
of points.

1The requirement that  ≥ 2 simply rules out discontinuous functions (for which the bias could never be
uniformly bounded).

4



We present our theory within the class of functions admitting a finite (but arbitrarily

large) number of derivatives, which is the setting that is traditionally used in the context of

nonparametric estimation.2 Definition 2 ensures that the F
 are disjoint (for two different

values of ) by requiring that  (−1) () fail to be smooth at least at one point (otherwise,
a function that satisfies a certain level of smoothness would obviously satisfy the conditions

for a set of functions having a lower level of smoothness, which would be notationally incon-

venient). This is not the only or the most general way to accomplish this, but it is the most

convenient for the present purpose.

The assumption  ∈ F
 places bounds on the tail behavior of the functions considered

that are not very restrictive, because we work with  ; () ≡  [ | = ]  (), which is

downweighted by a density, rather than with  [ | = ] itself. This assumption ensures

that various boundary terms arising from integration by parts of a kernel estimator vanish,

which is a standard assumption of the nonparametric and semiparametric literature (for

instance, Hardle and Stoker (1989)).

2.2 “Oracle” bias bounds

Our approach exploits the fact that the nonparametric bias takes a particularly simple form

in Fourier representation. It is well-known that the bias  ; ()− ̄ ; () is given by the

inverse Fourier transform

 ; ()− ̄ ; () =
1

2

Z
(1−  ()) ; () 

− (1)

where  (·) denotes the Fourier transform of the kernel  (·) (Schennach (2004)). Hence, a
simple upper bound on the bias can be obtained if one can find a bound on

¯̄
 ; ()

¯̄
:

¯̄
 ; ()− ̄ ; ()

¯̄
≤ 1

2

Z
|1−  ()|

¯̄
 ; ()

¯̄
 (2)

We then rely on a direct relationship between the smoothness of a function and the rate of

decay of its Fourier transform.

Lemma 1 sup∈F


¯̄R
 () i

¯̄
= min

©
 ||−ª for all  ∈ R.

This Lemma, proven in the Appendix, is similar in spirit to the well-know Riemann-

Lebesgue Lemma in that it relates smoothness of a function to the decay of its Fourier

transform. It is more specific in that it provides a specific rate of decay that is related to

2As discussed in Section 4, the possibility of functions admitting an infinite number of derivatives (such as

“supersmooth” functions) could be considered. However, since it is empirically very difficult to distinguish

a function with large but finite number of derivatives from an infinitely differentiable function, the extra

level of complexity may not appeal to most practitioners. Also, it is possible to construct finitely many time

differentiable functions that do not belong to any of the F
, but such functions are somewhat peculiar. For

instance, they are functions that are differentiable to some fractional order. Our focus on the classes F


is driven by the ability to provide transparent primitive conditions.
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the smoothness parameter . By Lemma 1, if one knew which class F
 of functions 

belongs to, one could obtain a bound on the bias. Of course, in practice, one would not

have this information and we will turn shortly to the problem of devising data-driven rules

to determine such information. For the moment, it is nevertheless useful to first consider

“oracle” bias bounds. Note that the bound  ||− for   0 becomes uninformative for very
small , so it is important to combine this bound with the trivial constant bound  from the

assumption of absolute integrability to ensure a finite bound at all frequencies that yields

a finite upper bound on the bias. The Lemma 2 below formalizes these ideas. But first, we

need to more specific about the kernel used.

Assumption 1 The Fourier transform of the kernel,  (), satisfies  () = 1 in a neigh-

borhood of the origin and  () ≤ ̄ ∞.
Employing an “infinite order” kernel makes the method adaptive in the sense that one

does not need to be concerned whether the order of the kernel is sufficient to exploit the

level of smoothness of the function to be estimated. Examples of infinite order kernels can

be found in (Politis and Romano (1999) and Schennach (2004)). The use of an infinite

order kernel is not essential for the method to work, however. Any kernel of a sufficiently

high order (so that it does not limit the convergence rate given the smoothness of the data

generating process) would work as well. In fact, as we will see, our method also indicates, as

a by-product, the level of smoothness of the function, which could be used to select a kernel

of the appropriate order.

Lemma 2 For a given   0  ;  0  ;  0 and  ; ∈ N\ {0 1}, If  ; ∈
F ;
 ;  ;

then

 ; () ∈
£
̄ ; ()−  ;  ̄ ; () +  ;

¤
for all  ∈ R

where

 ; =
1

2

Z
|1−  ()|min© ; ||− ;   ;

ª
 (3)

and where  (·) denotes the Fourier transform of  (·). Moreover, for  ∈ R,
inf

 ;∈F
 ;
 ; ;

 ; () = ̄ ; ()−  ;

sup
 ;∈F

 ;
 ; ;

 ; () = ̄ ; () +  ; 

Also, if Assumption 1 holds,3 then  ; =  ( ;−1).

For  = 1, Lemma 2 provides bias bounds for kernel-smoothed densities. Of course,

when 1; is a density or otherwise known to be positive, quantities such ̄ ; ()−  ; can

be replaced by max
©
̄ ; ()−  ;  0

ª
.

We can give a similar result for kernel regressions.

3If Assumption 1 did not hold, the first part of the Lemma would still be true, but the resulting  ;
may be too large to be useful.
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Lemma 3 For any  ; ∈ F ;
 ;  ;

and any 1; ∈ F1;
1; 1;

 [ | = ] =
 ; ()

1; ()
∈
"

̄ ; ()−  ;

max
©
̄1; () + sgn

¡
̄ ; ()−  ;

¢
1;  0

ª 

̄ ; () +  ;

max
©
̄1; ()− sgn

¡
̄ ; () +  ;

¢
1;  0

ª#
for all  ∈ R, where  ; and 1; are given in Lemma 2 and where the function sgn ()

returns the sign ({−1 0+1}) of  while the function max { 0} has the interpretation



max { 0} ≡

⎧⎪⎪⎨⎪⎪⎩
+∞ if  ≤ 0 and   0
−∞ if  ≤ 0 and   0
0 if  ≤ 0 and  = 0



otherwise

and an interval of the form [∞∞] or [−∞−∞] is considered empty.

2.3 Feasible bias bounds

In order to obtain a practically useful method, we now describe a way to empirically deter-

mine which class F
 a given estimated function belongs to. The idea is simple: As illus-

trated in Figure 1 and proven in Theorem 1 below, one simply considers the estimated log

characteristic function ln
¯̄̄
̂ ()

¯̄̄
as function of log frequency ln  over some range

£
ln  ln ̄

¤
of log frequencies (whose selection will be discussed later). One then finds the tightest linear

upper bound ln
¯̄̄
̂ ()

¯̄̄
≤ ln−  ln  over that interval. Tightness is quantified by the area

under the bounding linear function. The intercept ln ̂ and slope −̂ of the tightest linear
bound will be shown to provide consistent estimates of the  and  parameters, respectively.

The upper bound ̄ must increase at a controlled rate as sample size grows, because the

empirical counterpart ̂ () converges to  () uniformly only over an expanding interval (and

not uniformly over the whole real line). The lower bound  is introduced because it is the

large- behavior of the Fourier transform that is relevant for evaluating the asymptotic bias.

Such a simple scheme works, because any function in the class F
 we consider will

be shown to have a useful property: The magnitude of its Fourier transform | ()| actually
visits a neighborhood of its upper bound  ||− no less often than a certain periodic interval.
The practical implication of this is that not only does the Fourier transform of a function in

F
 exhibits a power law behavior, but it also does so rather uniformly, so that this feature

can be detected even if one has access to a consistent estimate of the spectrum only over some

finite frequency range. This result will not be merely assumed, but will rather be proven from

our primitive conditions, by exploiting a connection with ergodicity in dynamical systems

(as explained further below and as detailed in the proof of Theorem 1).

To state our formal result regarding the estimation of the constants 1;   ; ,  ; ,

1; ,  ; , we need a few assumptions. We consider iid settings for simplicity, although this

could be relaxed.
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ln ϕ(ξ)

ln ξln ξ ln ξn_
_

ln A − r ln ξ^ ^

^

Figure 1: Estimation of the parameters  and  via determination of the tightest linear

upper bound (solid line) on the log empirical Fourier transform ln ̂() as a function of log

frequency ln  over some interval [ln  ln ], based on the minization of the area under the

line.

Assumption 2 ( ) forms an iid sequence of random variables, each taking values in

R2.

Assumption 3  ; ∈ F ;
 ;  ;

for some  ; ∈ N\ {0 1} and  ;   ; ∈ R+ (all of
which do not need to be known a priori).

The randomness in the dependent variable  also needs to be minimally constrained.

Assumption 4  [ 2]  ∞ and Var [ | = ] ≤  for some   ∞ and  [| |] 
∞.
Next, Theorem 1 below formally establishes the validity of the bounding scheme outlined

earlier. For density estimation one invokes Theorem 1 for  = 1, while for conditional

expectations, one invokes Theorem 1 for both  = 1 and for general  .

Theorem 1 Let Assumptions 2-4 hold. Let ̂ ; = ̂ [| |] and³
̂ ;  ̂ ;

´
= arg min

()∈B ;

Z ln ̄

ln 

(ln− )  (4)

B ; =
n
( ) :  ∈ R+ and  ∈ N and

¯̄̄
̂ ; ()

¯̄̄
≤  ||− for  ∈ £ ̄¤o (5)

where ̂ ; () = ̂
£
 i

¤
and for some   0 and ̄ such that ̄ → ∞, ̄ = 

¡
14

¢
and ∆ ;̄

 ;
 → 0 where

∆ ; =

( √
7 

−12 (ln)12 for compactly supported 
7
√
2
3
 

−12 ln for general random 
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and  = ( [
2])

12
.

If  ; ∈ F ;
 ;  ;

for some  ;   ;
∈ R+ and  ; ∈ N\ {0 1} (but4  ; 6∈ F ;



for either    ; or    ;) then

 [̂ ; =  ] → 1

̂ ; − ; =  (1)

̂ ; − ; = 

¡
−12

¢
Proof. See Appendix.

This theorem can intuitively be understood as follows. First, one needs to establish

that the Fourier transform  () of a function in F
 has the property that its magnitude

reaches the power law envelope of the form  ||− sufficiently often so that (i) observing
 () over a sufficiently long finite interval enables us to determine  and  and (ii) the

power law behavior is indicative of actual behavior of the Fourier transform (i.e., replacing

the true bias expression (1) by its bound (2) in terms of  ||− does not result in an overly
pessimistic bias bound).

To show that the power law bound is indeed reached often, we observe that, by the defini-

tion of F
, the derivative 

(−1) () is absolutely continuous except over a finite nonempty
set of points, and can therefore be decomposed as the sum of an absolutely continuous

function and a finite sum of step functions. This conclusion, formalized in Lemma 5 in

the Appendix, is a consequence of the Lebesgue decomposition theorem (see, for instance,

Loève (1977)) applied to functions of bounded variations. After a Fourier transform of  (),

these smooth and step-like components of  (−1) () are mapped, respectively, into a rapidly
decaying function (

¡||−¢, by Lemma 6) and a finite sum of the form ()
−P

=1


for some constants  . For large frequency , the latter, oscillatory, terms dominate. As

detailed in Lemma 7 in the Appendix, the oscillations 
 can be viewed as the solution

to a simple system of first-order differential equations, and fundamental results from the

theory of dynamical systems can thus be applied, namely Birkhoff’s theorem on recurrence

time (Birkhoff (1931b)). Birkhoff’s theorem shows that the state of the system (described

by the vector with entries  ≡ 
) visits any given open region of the set of all possible

states at nearly periodic intervals. As a result, as ̄ →∞, one is assured that, eventually,
over the interval

£
 ̄

¤
one will see at least two local maxima in the ||  () that are within

a small  of the maximum possible value of the function.||  (). These two maxima then
eventually pin down the value of  and  within a given tolerance.

Although Birkhoff’s result does not predict how close these two maxima must be, such

information is not needed to formally show consistency of our bias bound estimator, since

estimation errors in ̂ ; and ̂ ; only have an effect on higher-order asymptotically neg-

ligible remainder terms, as discussed further below. The situation is entirely analogous to

the widely used strategy of only showing consistency (but not the rate of convergence) of

4This qualification merely ensures that the values  ; and  ; are the smallest possible constant

yielding a valid bound.
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standard error estimators, because the associated estimation error has no effect on first-order

asymptotics of -statistics.5

To see how estimation of  and  is accomplished in practice, consider what happens

when minimizing the area under the line, (given by Equation (4)), subject to the constraint

(5) that it bounds the estimated function. As illustrated in Figure 1, for a value of  that is

too small (shown by a dashed line), the area under the line will grow (as ̄ →∞) faster than
for the correct value of  (shown by a solid line), because the dashed line remains constrained

by the same low-frequency peak, regardless of the value of ̄. Beyond that low-frequency

peak, the dashed line will always lie above the solid line and thus, for sufficiently large ̄,

the corresponding area will be larger.

Conversely, for a value of  that is too large (shown by a dotted line), the area under

the line will also grow (as ̄ → ∞) faster than the for the correct value of  (shown by a
solid line) because the dotted line is constrained by peaks lying at increasing frequencies (as

̄ →∞). As a result, the dotted will always lie above the solid one up to that constraining
peak and the area under the line will grow faster than for the correct . It follows that, for

sufficiently large ̄, only the correct  will minimize the area under the line. Consistency of

the corresponding prefactor ̂ then follows easily.

Since the exponent  takes one of a set of discrete values, the convergence properties of

its estimator ̂ are especially simple: It “snaps” to the correct value of  with probability

approaching one. This implies that sampling fluctuations in ̂ can be neglected for the purpose

of asymptotic inference. Sampling fluctuations in the estimator ̂ translate into higher-order

effects on the asymptotic distribution and do not need to be accounted for during inference

either. This follows form the fact that the asymptotic bias bound is proportional to −1,
so replacing  by a consistent estimator yields

̂−1 = (+  (1))
−1 = −1 + 

¡
−1

¢
where the remainder term is asymptotically negligible. Intuitively, this phenomenon occurs

because we obtain ̂ from low frequencies
£
 ̄

¤
, but its noise is scaled down to a negligible

level when we extrapolate the power law to higher frequencies to calculate the bias (since

|1−  ()| in Equation (3) takes nonnegligible values only for large ).
Since the method uses the information gathered for low frequencies to extrapolate the

behavior at higher frequencies (that are not directly estimatable), this prompts the question

of whether there are functions for which this extrapolation would be misleading. One of the

key aspects of the proof of Theorem 1 is specifically to ensure that this does not happen,

for sufficiently large samples, for functions in F
. It is possible, however, to construct

5It is also worth noting that, as the interval
£
 ̄

¤
increases, even a fairly large value of  (the allowed

distance between a local maximum and the true maximum) becomes sufficient to pin down the correct

value of . Since the distance between two “near” maxima decreases as the tolerance  is made larger,

the recurrence of the event “||  () comes within  of its maximum” should then be a relatively common

occurrence. Hence, we are using Birkoff’s theorem in a regime where it has good predictive value, rather

than in extreme cases (see for instance, Petersen (1983), Chap 2) where the recurrence only takes place over

long intervals.
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examples of functions, not belonging to F
, whose Fourier transforms go through an alter-

nance of regimes with different rates of decay. The method would not apply in such cases,

because extrapolation would fail and the resulting error is not necessarily in the direction

of conservative inference. Fortunately, this situation presents itself only for rather contrived

examples, for instance, a function that appears  times differentiable at a low resolution, but

that reveals a different level of smoothness upon zooming. Such functions have been con-

structed in the field of fractal analysis Mandelbrot (1982), but are not typical in statistical

and economics applications.

Note that the theorem accounts for the fact that one does not observe the true  ; ()

but rather an estimate ̂ ; (). Indeed, it is possible to derive an almost sure uniform upper

bound ∆ ; on the error on an estimated Fourier transform ̂ ; () on an expanding

interval (see Lemma 4 in the Appendix). As long as this error is asymptotically negligible

relative to the true  ; (), which is guaranteed by the requirement that ∆ ;̄
 ;
 → 0

in Theorem 1, the geometrical argument illustrated in Figure 1 still holds.

In practice, the parameter  and the sequence ̄ needed to employ Theorem 1 can be

determined by the following data-driven rule:

Theorem 2 In addition to the conditions of Theorem 1, assume 
£||2¤  ∞. Let ̂ =³dVar []´12 and  = ̂−1 . Let ̄ be the largest  ∈

£
0 ̂−1 14

¤
such that∆̂ ;

¯̄̄
̂ ; ()

¯̄̄
≤

(ln)
−1
where∆̂ ; is as∆ ; given in Theorem 1 with  replaced by ̂ ≡

³
̂ [ 2]

´12
.

This choice satisfies

∆ ;̄
 ;
 ≤ 

with the inequality holding with probability approaching one for some deterministic sequence

 with the property  → 0. Moreover, these choices yield inference results that are invari-

ant to nondegenerate linear transformations of .

This rule (whose validity is proven in the appendix) proceeds by first ensuring that

the range of  considered does not grow faster than 14, which is important to secure

a specific rate for the convergence of the estimated Fourier transform. Next, the test

∆̂ ;
¯̄̄
̂ ; ()

¯̄̄
≤ (ln)−1 ensures that the true error bound ∆ ; decays sufficiently

fast relative to the estimated Fourier transform ̂ ; (), which, after simple manipulations,

also implies that it is small relative to the true Fourier transform  ; (), as desired. We

introduce scalings by standard deviations in the various prefactors as a simple way to ensure

invariance with respect to linear rescaling of the data.6

6In principe, replacing ̂ by a multiple of it would also yield a valid method, but one has to realize that

the upper bound ̂−1 14 is rarely the binding constraint in selecting ̄, so this does not really provide an

avenue for researchers to influence the results. Similarly, low frequency behavior is rarely the determining

factor in determining ̂ and ̂, so modifying the lower bound ̂−1 only has a limited effect on the final result.
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2.4 Inference

The inference procedure (described further below) will be considerably simplified thanks to

a few key facts.

First, although the bias is comparable in magnitude to the standard deviation at all

sample sizes, the absolute length of the bias interval still converges to zero with increasing

sample size. This implies that we can still use the “point estimate” ̂ ; () to build a con-

sistent estimate of the asymptotic variance. This also implies that we can use a linearization

of the ratio ̂ ; () ̂1; around ̂ ; () =  ; () and ̂1; () = 1; () to calculate the

variance of the estimator, just as in a conventional kernel regression estimator.

Another important point is that the estimated upper and lower bounds on the set of

possible biases are perfectly correlated. This automatically avoids issues such having to

consider the possibility that the bottom tail of the distribution of the upper bound may

extend below the lower bound, in which case corrections to the critical values would have

been needed.

A final observation is that the effect of estimation error on 1;   ; ,  ; , 1; ,  ;
on the bias interval is of a higher order relative to the standard deviation, as explained

in the previous section. As a result, the corresponding estimation noise does not need to

be accounted for in the asymptotic distribution. Securing this property requires that the

selected bandwidth be “close” to the optimal mean squared error minimizing bandwidth 
in the sense of Assumption 5 below. Note that this condition allows for, but does not require,

undersmoothing.

Assumption 5 plim sup→∞



∞

We can now state our main inference results. For density estimation our regularity

conditions on the density of  specialize to the following:

Assumption 6  [||] ∞.
Assumption 7 1; ∈ F1;

1; 1 for some 1; ∈ N\ {0 1} and 1; ∈ R+ (all of which do
not need to be known a priori).

Theorem 3 If Assumptions 2, 5, 6 and 7 hold, then, for a given  ∈ R and for a given

 ∈ F
1; 1,

lim
→∞


h
 () ∈ D̂ ()

i
≥ 1−  (6)

where

D̂ () =
h
max

n
̂ ()− ̂1; − 2̂ ()  0

o
max

n
̂ () + ̂1; + 2̂ ()  0

oi
where 2 denotes the 1− 2 quantile of a standard normal distribution.

̂1; =

Z ∞

−∞
|1−  ()|min

n
1 ̂1; ||−̂1;

o


̂ () =

Ã
̂1; ()



Z ∞

−∞
2 () 

!12
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For conditional expectations, we have similar result:

Theorem 4 If Assumptions 2-7 hold, then, for a given  ∈ R and for a given  ; ∈
F ;
 ;  ;

and 1; ∈ F1;
1; 1,

lim
→∞


h
 [| = ] ∈ bC ()i ≥ 1−  (7)

where (under the conventions given in Lemma 3)

bC () =
⎡⎣ ̂ ; ()−  ;

max
n
̂1; () + sgn

³
̂ ; ()−  ;

´
1;  0

o − 2̂ | () 

̂ ; () +  ;

max
n
̂1; ()− sgn

³
̂ ; () +  ;

´
1;  0

o + 2̂ | ()

⎤⎦
where

̂ ; =

Z ∞

−∞
|1−  ()|min

n
̂ ;  ̂ ; ||−̂ ;

o


̂1; =

Z ∞

−∞
|1−  ()|min

n
1 ̂1; ||−̂1;

o


̂ | =

ÃdVar [ | = ] ̂ ; ()



Z ∞

−∞
2 () 

!12
Note that the conventions given in Lemma 3 handle potential divisions by zero, by yielding

uninformative confidence regions whenever appropriate.

Thanks to the fact that our bias bounds are uniform, we can readily provide uniform

confidence bands (for instance, over  ∈ [0 1], without loss of generality) by making use
of the well-known uniform bands for kernel estimates (see, for instance, Härdle and Linton

(1994)). This is accomplished as follows:

Corollary 1 Under the assumption of Theorem 3, uniform confidence bands over an interval

of length  can be obtained simply replacing 2 in (6) by

̄2 ≡
Ã
∗

+  +

1

2
ln

Ã R∞
−∞
¡
(1) ()

¢2


42
R∞
−∞ ( ())

2


!!

where  =
p
2 ln () and ∗ = − ln (− (ln (1− )) 2). In the case of conditional expec-

tations, a similar result holds with Equation (7), assuming that  ()  0 in the interval

considered in addition to the assumptions of Theorem 4.
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3 Discussion

One may wonder if, somehow, the assumptions on the set F
 may be such that a more

rapidly converging estimator could be devised, based on the idea that we could somehow

locate the position and estimate the height of the discontinuities in the derivatives, subtract

them and apply a kernel estimator to the, now smoother, remainder. However this scheme

does not offer a way to speed up convergence, because the location of the discontinuities in

the derivatives cannot be exactly determined in a finite sample (sample point spacings place

a fundamental limit on the location accuracy). Any small error on their estimated location

results in an imperfect cancellation of the discontinuities and induces a corresponding large

error in estimating the value of the derivative over a small region near the discontinuity.

Even though the size of the affected region decreases with sample size, the magnitude of the

error does not decrease with sample size. This effect thus precludes the existence a more

rapidly pointwise converging estimator.

It is instructive to compare the proposed method with recent proposals to address the

bias issue in nonparametric inference. Bias correction methods have recently been advocated

to address the bias issue in nonparametric inference (Calonico, Cattaneo, and Farrell (2013)).

However, their main goal is to obtain statistics that are free of bias (to a sufficiently high

order) and that minimize the coverage error of confidence intervals based on standard normal

limiting distributions. Although this represents an extremely valuable and convenient tool

for practitioners, the method does not exploit the unknown function’s level of smoothness

to the full extent to obtain the fastest possible convergence rate. In fact, the authors note

(in Section 3.6) that implementability of the method becomes a problem when the order of

the kernel matches the function’s smoothness, because optimal bandwidth selection (for the

bias correction method) requires the knowledge of constants that are no longer consistently

estimatable. In contrast, by allowing for a nonnegligible bias, our approach allows for the

use of the optimal mean-square minimizing bandwidth that yield optimal convergence rates

(in the sense of reaching Stone’s bounds (Stone (1980), Stone (1982)) for the function’s level

of smoothness), since we don’t require the regularity conditions that would be necessary for

consistent estimation of bias-related quantities.

Hall and Horowitz (2013) propose a bootstrap procedure for computing confidence bands

around a nonparametric kernel regression that does not require the bias to be negligible.

It proceeds by taking the bands obtained while ignoring bias and correcting them by a

multiplicative factor determined so that the band’s actual coverage is accurate over a given

fraction (1− ) of the support. Bootstrap replications are used to estimate this coverage.

While the method is appealing in its conceptual simplicity, it leads to a nonstandard notion

of confidence bands, since the specified confidence level is not met everywhere, but instead

over a fraction (1− ) of the support of the regressor the location of which the user has no

a priori control over. In some sense, their method approaches the problem in a way that

is complementary to ours. Our method seeks to bound the bias everywhere and is thus

appropriately sensitive to portion of the functions that represent worst-case scenarios. In

contrast, their method focuses on the portions of the function where the bias is the smallest

(the authors observe that the excluded region is “typically close to the locations of peaks
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and troughs”, where the bias would be largest for the second-order smoother they use).7

Hansen (2014) also suggests a way to account for the bias in nonparametric inference.

However, his approach is distinct from ours as it focuses on series estimation and, given the

difficulties in obtaining bias expressions in this context, he relies on a high-level assumption

specifying the exact form of the bias, while we provide a bias bound obtained from the

primitive properties of the function to be estimated.

Our extrapolation property bears some superficial resemblance to the concept of self-

similarity used in the adaptive inference literature (for instance, Giné and Nickl (2010),

Chernozhukov, Chetverikov, and Kato (2014)). Self-similarity is traditionally expressed

in terms of the behavior of wavelet coefficients, but the comparison with our method is

facilitated by phrasing the self-similarity assumption in Fourier representation. Self-similarly

essentially amounts to assuming the existence of both an upper and a lower bound on the

Fourier transform that each take the form of a power law with the same exponent. In contrast,

our condition does not assume a lower bound — it only implies that an upper bound can be

proven to be reached often, i.e., quasi periodically. Our condition is also stated in terms

of simple primitive smoothness conditions, instead of being directly assumed in terms of a

specific power law behavior of wavelet or Fourier coefficients. Moreover, our approach is

better adapted to calculate the bias, because the upper bound is reached often, whereas no

such guarantee exists in “self-similarity”. In fact, when assuming self-similarity, one may

want to make the lower bound as small as possible and the upper bound as high as possible

to allow for the largest possible class of self-similar functions. Yet, this situation is precisely

one where the bias implied by the upper bound could be much larger than the actual bias,

because the true function could happen to always remain close to the lower bound beyond

a certain frequency.

4 Extensions

The above framework can be adapted to other similar problems. We did not include them

in the above results to simplify and shorten the exposition. We briefly point out some

possibilities below with their associated potential hurdles.

Derivatives of densities and conditional expectations can be handled in very similar ways.

The only notable difference is that one loses one power of  in the order of the bias for every

additional order of derivative.

Our treatment differs from the usual asymptotic of nonparametric estimators only in the

way the bias is handled. Since the bias admits the same expression in time series settings, our

results can be adapted to time series settings by using serial-dependence-robust expressions

for the standard errors and by rederiving the convergence rate of the empirical characteristic

function under more general conditions. While the first step is already available in the

literature, the second may require more careful attention.

7An additional distinction with our method is that they do not exploit the smoothness of the unknown

function to the full extent, because their Assumption 4.2 requires 2 Hölder-continuous derivatives, while

requiring the use of a smoother with a local polynomial of order 2 − 1.
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Quantile nonparametric regressions could be handled by simply redefining the dependent

variable to be an indicator function 1 ( ≤ ) for any given . Of course, confidence bands

on  [1 ( ≤ ) | = ] have to be mapped onto confidence bands of quantiles in the usual

way. Note that the fact that the indicator function is bounded enables the use of the tighter

value of ∆ ; in Theorem 1 for the error bound on the estimated Fourier transform.

The proposed method can be embedded into an adaptive estimation procedure (i.e. one

that consistently detects the true smoothness of the function to be estimated). Adaptive

bandwidth selection procedure are readily available in the literature (for instance, Politis

(2003)) and are directly compatible with our approach. This follows from the fact that our

bias bound estimator is adaptive as well, since it consistently estimates the decay exponent

 reflecting the true smoothness of the unknown function to be estimated. This feature is

shared by existing wavelet-based adaptive methods which have recently been proposed (for

instance, Giné and Nickl (2010), Hoffmann and Nickl (2011), Cai, Low, and Ma (2014)), but

the underlying assumptions regarding the generating process differ, as explained at the end

of Section 3.

While biases proportional to an integral power of bandwidth are traditionally consid-

ered in nonparametric estimation (Härdle and Linton (1994)), one could also consider decay

rates  of the Fourier transform having a nonintegral value. This would parallel the Holder

differentiability conditions often made in the adaptive nonparametric estimation literature

(Giné and Nickl (2010), Cai, Low, and Xia (2013), Hoffmann and Nickl (2011), Cai, Low,

and Ma (2014), Armstrong (2014), Chernozhukov, Chetverikov, and Kato (2014)). Although

allowing for general power laws for the rates of decay for the Fourier transform is straightfor-

ward, it may be difficult to formulate corresponding transparent sufficient conditions in real

space. Considering fractional orders of differentiation may be necessary. Another difficulty

lies in the fact that the estimated rate exponent, being nondiscrete, would no longer “snap”

to the right value with probability one asymptotically. As a result, it may be necessary to

include a safety margin around the estimated exponent for the upper bound on the bias to

be asymptotically valid.

One could also allow for supersmoothness (i.e., certain classes of infinitely many time

differentiable functions) by considering decay rate of the Fourier transform of the form

exp
³
− ||

´
with  and  to be estimated. This would parallel the settings sometimes

considered in the nonparametric measurement error literature (Schennach (2004)). However,

this possibility is not typically considered in the adaptive nonparametrics literature (and in

the traditional finite-order kernel literature neither). For this extension, some of the same

issues faced when allowing for fractional powers arise: Phrasing simple primitive conditions

is difficult, as it would likely involve limits of sequences of differential operators of diverging

order.

A multivariate extension is conceptually trivial, although there are many ways to ap-

proach the problem, depending on one’s preference for complexity/flexibility trade-off. One

could use a common smoothness parameter  for all elements of  or one could allow

smoothness to differ along each dimension of the covariate. One could even allow for differ-

ing smoothness along different directions (not necessarily aligned with the coordinate axes).
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Applying the proposed setup to series estimation would entail substantial reworking of

the theory, however. Series estimators do not typically admit simple general expressions

for the bias, let alone ones that can be uniformly bounded by estimatable quantities. An

extension to local polynomial smoothers should be possible, thanks to the fact that such

estimators can also be expressed in terms of convolutions.

Our procedure delivers asymptotically valid confidence bands for any bandwidth sequence

satisfying Assumption 5, which allows for both undersmoothing and optimally smoothing

bandwidths. Hence, a researcher who would have an a priori preference for bands whose

width are determined to a larger extent by the standard deviation bands than by the bias

bands could set up a loss function framework that would enable the optimization of his

own criterion for the type of bands desired, while maintaining the asymptotic validity of the

confidence bands.

5 Examples

We consider a simple example of density estimation of a triangular distribution. The data

is generated by drawing ,  = 1     1000 from a triangular distribution that is the convo-

lution of two uniform distributions on on [0 1]. We use an infinite order kernel, so that the

method automatically exploits as much smoothness as possible, regardless of the value of 

that is estimated. The data-driven method of Theorem 2 is used to determine the interval£
ln  ln ̄

¤
of log frequencies used in the determination of ̂ and ̂ via the method of The-

orem 1. As the left panels of Figure 2 show, the true density falls within the bands, as one

would expect for a valid confidence band.

However, it is more instructive to specifically test the properties of the bias bound esti-

mator, which can be done in a simulation context by repeating the estimation many times

on randomly drawn samples and averaging the results (see right panel of Figure 2). In the

resulting 
h
̂1; ()

i
(obtained with 200 replications), the statistical noise averages out and

we are left with the bias only. The bias estimator was used using the data of only one

replication picked at random, to illustrate the fact that bias bounds obtained even from a

finite sample of 1000 observations can accurately reflect the population values. As expected,

the true density then lies within the bias band around the expected value of the estimator.

Of course, in a finite sample, it is possible that the bounds could be slightly exceeded, as our

results are asymptotic, but we show that this error is asymptotically negligible. Nevertheless,

since our bias bands are conservative, it is often the case that, even in a finite sample, the

bounds are not exceeded. This is the case in this example.

It is interesting to see what happens when the bandwidth is decreased below the optimal

bandwidth. The estimate (on the left) becomes more wiggly, but the truth still lies within the

bands. If we now perform the same averaging experiment (on the right of Figure 2), we see

that the averaged estimator has fewer wiggles, as expected, and that the truth lies exclusively

within the bias bounds around the averaged estimator. It is clear from this experiment that

a method that allows for the use of an optimal bandwidth is much preferable. Not only

are the bands narrower than for the undersmoothed estimator, but they are also much less
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Figure 2: Example of nonparametric density estimation for a triangular density. Pointwise

95% confidence bands at various bandwidths (top: optimal, cross-validation minimizing,

bandwidth; results two undersmoothed bandwidths shown below). The left column shows

bands centered around a kernel estimate ̂1;() for one randomly generated sample while

the right column show the bands centered on the expected value [̂1;()], calculated from

200 replications. The latter allows a more detailed study of the bias behavior, as the standard

deviation bands are negligible.

contaminated by noise that can easily obscure clear trends in the data.8 We do not explore

larger-than-optimal bandwidths here because our theory does not guarantee that such bands

guarantee a given coverage level (the estimation error in the bias estimator may then not be

negligible relative to the standard deviation).

Figure 3 repeats a similar exercise for a smoother density: The convolution of three

uniform distributions on [0 1]. The results again confirm that the confidence bands are

valid and that the bias-only bands correctly bound the bias. Note that in both cases, our

data-driven rule for automatically determining the exponent of the power law decay of the

Fourier transform was used and yields the correct value ( = 2 for the triangular case and

 = 3 for the triple-convolution of a uniform density).

We can also investigate how the proposed method performs on real data. Here, we cannot

8It should be noted that we are not claiming any improvement in the accuracy of the level. Traditional

undersmoothed bands already have asymptotically exact coverage. Bands that use bias bounds have an

asymptotically conservative coverage. In spite of this, bias bound bands still asymptotically guarantee a

given level of confidence and are asymptotically infinitely shorter than undersmoothed bands.
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Figure 3: Example of nonparametric density estimation for a a twice differentiable density.

Pointwise 95% confidence bands at the optimal, cross-validation minimizing, bandwidth are

shown on the left while bias bands around the extpected value of the kernel estimator are

shown on the right.

test the validity of the bands, but we can assess their width and nonoscillatory behavior.

We employ data from the widely used Current Population Survey (CPS)/Social Security

Earnings (SER) exact match file from March 1978. In Figure 4, we show a nonparametric

estimate of the log income distribution of a subsample ( = 551) of women from the CPS.

Avoiding undersmoothing clearly yields much narrower bands that are also qualitatively

more plausible.9

6 Conclusion

We propose a simple and practical approach to perform nonparametric inference in kernel

density and conditional mean estimation that avoids the traditional dilemma between effi-

cient estimation at the optimal mean-square-error-minimizing bandwidth and valid inference

at a suboptimal undersmoothed bandwidth. We achieve this by deriving an upper bound on

the bias that can be consistently estimated under primitive assumptions and by accounting

for this bias bound in the construction of confidence bands. The bias bound estimator is

obtained via a combination of a Fourier representation of the bias, powerful results from the

theory of dynamical systems and an asymptotically justified extrapolation procedure that

infers the unknown high-frequency worst-case behavior of the function to be estimated from

its observable low-frequency behavior.

9Note that the distribution is nonsmooth at the upper end because the high-income end of the sample is

truncated for privacy reasons in this data set. However, as the truncation is done based on exact income,

the distribution of mismeasured income plotted here drops to zero gradually rather than discontinuously.
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Figure 4: Example of application to the estimation of log income density. a) Bands at the

optimal (cross-validation-score-minimizing) bandwidth. b) Bands for an undersmoothing

bandwidth (optimal bands from a) are overlaid in dashed lines).
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A Proofs

Proof of Lemma 1. First, we have

| ()| =
¯̄̄̄Z

 () 

¯̄̄̄
≤
Z ¯̄


¯̄
| ()|  =

Z
| ()|  = 

and this bound is reached whenever  () is nonnegative.

To show that | ()| ≤  ||−, note that, by integration by parts:

 () =

Z
 ()  =

1

(−)
Z

 ()

where the boundary terms vanish by requirement (ii) of the definition of F
 and where we

have written the result as a Stieltjes integral. Repeating the process ( − 1) more times, we
have

 () =
1

(−)
Z

 (−1) ()

If  (−1) () has bounded variation  then  (−1) () can be written as  (−1)↑ ()− 
(−1)
↓ ()

where 
(−1)
↑ () and 

(−1)
↓ () are both increasing and such that lim→∞ 

(−1)
↑ ()−lim→−∞ 

(−1)
↑ ()+
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lim→∞ 
(−1)
↓ ()− lim→−∞ 

(−1)
↓ () = . We can then write:

|| | ()| =
¯̄̄̄Z

 (−1) ()

¯̄̄̄
=

¯̄̄̄Z


(−1)
↑ ()−

Z


(−1)
↓ ()

¯̄̄̄
≤

Z ¯̄

¯̄

(−1)
↑ () +

Z ¯̄

¯̄

(−1)
↓ ()

≤
Z


(−1)
↑ () +

Z

(−1)
↓ ()

= lim
→∞


(−1)
↑ ()− lim

→−∞

(−1)
↑ () + lim

→∞

(−1)
↓ ()− lim

→−∞

(−1)
↓ () = 

or | ()| ≤  ||−.
Moreover, this upper bound is reached at all  ∈ R for some sequence  () in F



(  0) with:

 () =  ()  ()

where

 () =


2

−1

( − 1)!
1

2
sgn ()

 () =  () 

where  () is the inverse Fourier transform of some function  () satisfying the following: it

is compactly supported, infinitely many times differentiable, absolutely integrable and such

that
R
 ()  = 1. Note that the Fourier transform of  () is  () ≡  ().

Let  () be the Fourier transform of  (), given by the moment theorem:

 () =
(−1)

( − 1)!
−1

−1



=

(−1)

( − 1)!
−1

−1



=  ()

−


Next, by the convolution theorem,

 () ≡
Z

 () 
 = [ ⊗ ] ()

which is a standard convolution with a compactly supported kernel of shrinking width −1

and thus, for any given  6= 0, lim→∞ [ ⊗ ] () =  () =  ()
−
(note that for 

sufficiently large, the support of  (·− ) eventually excludes the origin, so the convolution

integral is eventually finite).
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Proof of Lemma 2. The exact (but unknown) bias can be bounded as¯̄
 ; ()− ̄ ; ()

¯̄
=

¯̄̄̄
1

2

Z ∞

−∞
 ; () 

− − 1

2

Z ∞

−∞
 () ; () 

−

¯̄̄̄
=

1

2

¯̄̄̄Z ∞

−∞
(1−  ()) ; () 

−

¯̄̄̄
≤ 1

2

Z ∞

−∞
|1−  ()|

¯̄
 ; ()

¯̄


≤ 1

2

Z ∞

−∞
|1−  ()|min© ; ||− ;   ;

ª


by Lemma 1 and the first conclusion of the theorem follows.

Next, also by Lemma 1, the above bounds are actually least upper bounds and the second

conclusion of the theorem follows.

Let ∗ denote the smallest positive  such that  () 6= 1. We then have,

 ; = 2

Z ∞

0

|1−  ()|min© ; ||− ;   ;

ª


= 2

Z ∞

∗−1
|1−  ()|min© ; ||− ;   ;

ª


≤ 2 (̄+ 1)

Z ∞

∗−1
min

©
 ; ||− ;   ;

ª


= 2 (̄+ 1)

Z ∞

∗−1
 ; ||− ;  for all  sufficiently small

= 2 (̄+ 1) ;

"
||− ;+1
− ; + 1

#∞
∗−1

= 2 (̄+ 1)
 ;

1−  ;
 ;−1

for  ;  1.

Proof of Lemma 3. A ratio is always made larger by increasing the numerator. If

the numerator is positive, decreasing a positive denominator (without going below zero)

makes the ratio larger. If the numerator is negative, increasing a positive denominator also

makes the ratio larger. Note that as soon as ̄1; () − 1; ≤ 0, there is a possibility

that the true density in the denominator vanishes (1; () = 0), in which case the ratio

 ; ()  ;1 () could be arbitrarily large in magnitude, hence the infinite upper (lower)

bounds if the numerator is positive (negative). These considerations lead to the expression

for the bias.

Proof of Theorem 1. The maximum error on the empirical Fourier transform ̂ ; ()

satisfies sup
∈[0̄]

¯̄̄
̂ ; ()−  ; ()

¯̄̄
≤ ∆ ; (for ̄ = 

¡
14

¢
) almost surely as
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→∞, by Lemma 4 below, a result we will apply repeatedly below. (We abbreviate ̂ ; ()
by ̂ (), etc.) Let

̂ (̂) =

Z ln ̄

ln 

³
ln ̂− ̂

´


 =

Z ln ̄

ln 

(ln− ) 

We have

̂ (̂) =
¡
ln ̄ − ln 

¢
ln ̂− ̂

2

³¡
ln ̄

¢2 − ¡ln ¢2´
=

¡
ln ̄ − ln 

¢µ
ln ̂− ̂

2

¡
ln ̄ + ln 

¢¶
and similarly

 =
¡
ln ̄ − ln 

¢ ³
ln− 

2

¡
ln ̄ + ln 

¢´


Let ̂ = min argmax∈[̄] ||
̂
¯̄̄
̂ ()

¯̄̄
(that is, the point that is first just touching the line

̂− ̂ ln ). We then have:

ln ̂− ̂ ln ̂ = ln
¯̄̄
̂
³
̂

´¯̄̄
ln ̂ = ̂ ln ̂ + ln

¯̄̄
̂
³
̂

´¯̄̄


Now, we consider

̂ (̂)−

=
¡
ln ̄ − ln 

¢
ln ̂− ̂

2

³¡
ln ̄

¢2 − ¡ln ¢2´− ³¡ln ̄ − ln ¢ ln− 

2

³¡
ln ̄

¢2 − ¡ln ¢2´´
=

¡
ln ̄ − ln 

¢ ³
ln ̂− ln

´
+

µ


2
− ̂

2

¶³¡
ln ̄

¢2 − ¡ln ¢2´
=

¡
ln ̄ − ln 

¢ ³
̂ ln ̂ + ln

¯̄̄
̂
³
̂

´¯̄̄
− ln

´
+

µ


2
− ̂

2

¶³¡
ln ̄

¢2 − ¡ln ¢2´
=

¡
ln ̄ − ln 

¢µ
̂ ln ̂ + ln

¯̄̄
̂
³
̂

´¯̄̄
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢¶
or

̂ (̂)−

ln ̄ − ln 
= ̂ ln ̂ + ln

¯̄̄
̂
³
̂

´¯̄̄
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
If ̂   then ̂ = ̂∗ for some fixed ∗ for all  sufficiently large. Then,

̂ (̂)−

ln ̄ − ln 
= ̂ ln ̂∗ + ln

¯̄̄
̂
³
̂∗
´¯̄̄
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
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where then term ̂ ln ̂∗+ln
¯̄̄
̂
³
̂∗
´¯̄̄
− ln does not change with  (for  sufficiently large).

Since −̂  0 and ̄ →∞, we have that
³
̂ ln ̂∗ + ln

¯̄̄
̂
³
̂∗

´¯̄̄
− ln+ 1

2
( − ̂)

¡
ln ̄ + ln 

¢´→
∞, and

³
̂ (̂)−

´

¡
ln ̄ − ln 

¢→∞ almost surely.

If ̂   then ̂ →∞ and we have

̂ (̂)− ()

ln ̄ − ln 

= ̂ ln ̂ + ln
¯̄̄
̂
³
̂

´¯̄̄
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
≥ ̂ ln ̂ + ln

³¯̄̄

³
̂

´¯̄̄
−∆ ;

´
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
Combining Lemmas 5, 6 and 7 (stated below) shows that ||  () must come within a small
 of its maximum value of  infinitely often, hence we eventually have that

¯̄̄

³
̂

´¯̄̄
≥ ̂

−


for some  ∈ ]05 1[ and thus:

̂ (̂)− ()

ln ̄ − ln 
≥ ̂ ln ̂ + ln

³
̂

−
 −∆ ;

´
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
≥ ̂ ln ̂ + ln

³
̂

−


´
+ ln

Ã
1− 2∆ ;

̂
−


!
− ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
Since ̄



∆ ; → 0 by assumption, we have ln
³
1− 2∆ ;

̂
−


´
≤  and for all  sufficiently

large and it follows that

̂ (̂)− ()

ln ̄ − ln 
≥ ̂ ln ̂ + ln

³
̂

−


´
+  − ln+

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
= (̂ − ) ln ̂ + ln ()− ln+  +

µ


2
− ̂

2

¶¡
ln ̄ + ln 

¢
= (̂ − )

µ
ln ̂ −

1

2

¡
ln ̄ + ln 

¢¶
+ ln + 

where (̂ − )  0 and we show below that
³
ln ̂ − 1

2

¡
ln ̄ + ln 

¢´→∞.
When ̂  , the location of ̂ remains constant over a range of values of  and then

jumps up whenever the interval
£
 ̄

¤
includes a new value of ̂. To capture this, let

̂ ≡ ∗ where the sequence 
∗
 is strictly increasing in  and  satisfies +1−  ∈ {0 1}.

By combining Lemmas 5, 6 and 7 (below), we can find a bound on the distance between

consecutive ∗. Lemma 5 shows that, for  ∈ F
, the function 

(−1) () can be decomposed
as a sum of an absolutely continuous function and a finite sum of step functions. The Fourier
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transform of a sum of  step functions has the form ()
−1P

=1
 for   ∈ R. By

Lemma 6, the Fourier transform of the absolutely continuous part is 
¡||−1¢, which is

asymptotically negligible relative the Fourier transform of the step functions. These results

imply that the Fourier transform of  () has the form  () = ()
−P

=1
+

¡||−¢.
Lemma 7 then shows that

P

=1
 reaches within a arbitrarily small  of its maximum

maximum value at quasi-periodic intervals. Specifically, it shows that:¯̄
∗+1 − ∗

¯̄
≤ 1

3
|∗|

∗+1 ≤
4

3
∗

ln ∗+1 ≤ ln
4

3
+ ln ∗

Since +1 −  ∈ {0 1}, we have +1 ≤  + 1. Hence, ̂+1 = ∗(+1) ≤ ∗()+1 ≤
ln 4

3
+ ln ∗ = ln

4
3
+ ln ̂ and we also have:µ

ln ̂ −
1

2

¡
ln ̄ + ln 

¢¶ ≥
µ
ln ̂ −

1

2

³
ln ̂+1 + ln 

´¶
≥

µ
ln ̂ −

1

2

µ
ln
4

3
+ ln ̂ + ln 

¶¶
=

µ
ln ̂ −

1

2
ln ̂ −

1

2
ln  − 1

2
ln
4

3

¶
=

µ
1

2
ln ̂ −

1

2
ln  − 1

2
ln
4

3

¶
where ̂ →∞ and all other terms are constant. It follow that

³
̂ (̂)−

´

¡
ln ̄ − ln 

¢→
∞ almost surely.

We now show that for ̂ = ,
³
̂ (̂)−

´

¡
ln ̄ − ln 

¢
remains bounded, since it
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reduces to:

̂ ()− ()

ln ̄ − ln 
=  ln ̂ + ln

¯̄̄
̂
³
̂

´¯̄̄
− ln

≤  ln ̂ + ln
¯̄̄

³
̂

´
+∆ ;

¯̄̄
− ln

≤  ln ̂ + ln
¯̄̄
̂

−
 +∆ ;

¯̄̄
− ln

=  ln ̂ + ln̂
−
 + ln

¯̄̄̄
¯1 + ∆ ;

̂
−


¯̄̄̄
¯− ln

=  ln ̂ −  ln ̂ + ln+ ln

¯̄̄̄
¯1 + ∆ ;

̂
−


¯̄̄̄
¯− ln

= ln

¯̄̄̄
¯1 + ∆ ;

̂
−


¯̄̄̄
¯→ 0

almost surely.

Since for both ̂   and ̂  , we have that ̂ (̂)− diverges faster than for ̂ = ,

it follows that ̂ =  with probability approaching one.

Next, for a given  (and in particular for the true value of ), we have

̂ ; () = sup
∈[̄]

¯̄̄
̂ ; ()

¯̄̄


and we also define


 ; () = sup

∈[̄]

¯̄
 ; ()

¯̄


We then have¯̄̄
̂ ; (̂)− ;

¯̄̄
≤
¯̄̄
̂ ; (̂)− ̂ ; ()

¯̄̄
+
¯̄̄
̂ ; ()−

 ; ()
¯̄̄
+
¯̄

 ; ()− ;

¯̄
where (i)

¯̄̄
̂ ; (̂)− ̂ ; ()

¯̄̄
→ 0 because ̂ =  with probability approaching one, (ii) al-

most surely
¯̄̄
̂ ; ()−

 ; ()
¯̄̄
≤ ∆ ;

 → 0 and (iii)
¯̄

 ; ()− ;

¯̄
→ 0 because,

by construction, 
 ; () is increasing in  and is bounded above by sup∈R

¯̄
 ; ()

¯̄
|| =

 ; which is finite if  ∈ F
;, thus implying that lim→∞

 ; () exists and is equal to

 ; .

Lemma 4 If ( ) is iid,  [||] ∞ and ( [ 2
 ])

12 ≡  ∞, then, for any given
̄ ∈ R+ and  ∈ R+

sup
||≤̄

¯̄̄̄
¯−1

X
=1


i −

£


i
¤¯̄̄̄¯ ≤ 2

√
2

3
(3 + 2) 

−12 ln
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almost surely as →∞. If, in addition, || is bounded, then

sup
||≤̄

¯̄̄̄
¯−1

X
=1


i −

£


i
¤¯̄̄̄¯ ≤ 2 (3 + 2)12  −12 (ln)12

almost surely as →∞.

Proof. Let

∆ ; () = −1
X
=1


i −

£


i
¤

and let  =
2
√
2
3
(3 + 2) (in the unbounded  case). The proof proceeds by bounding

∆ ; () on a finite mesh of equidistant pointsM =
n
0 ̄




 2̄




     ̄

o
(with  to

be determined) and bounding 
¡
∆ ; ()

¢
 uniformly to ensure uniform convergence

everywhere:


£
∆ ; () ≤ 

−12 ln for all || ≤ ̄
¤

≤ 
£
∆ ; () ≤ 

−12 ln for all  ∈M and
¯̄

¡
∆ ; ()

¢

¯̄
≤  for all || ≤ ̄

¤
≤ 

h
∆ ; () ≤ 

−12 ln for all  ∈M and
¯̄̄
̂ []

¯̄̄
≤  for all || ≤ ̄

i
≤

X
=0



∙
∆ ;

µ
̄



¶
≤ 

−12 ln

¸
+ 

h¯̄̄
̂ []

¯̄̄
≤ 

i
(8)

for  =  [] +  with   0. In the above display, we have used (i) a standard

device to show uniform convergence by bounding the derivative 
¡
∆ ; ()

¢
 between

the mesh points at which we bound the function’s value (ii) the fact that
¯̄̄



£


i
¤¯̄̄
=¯̄


£


i
¤¯̄ ≤  [||], provided the latter exists and (iii) a Bonferroni-type bound.

To be able to use Bernstein’s inequality to handle the first term of (8), we condition on

the event that all 
i are bounded. We observe that

max
∈{1}

¯̄


i
¯̄
= max

∈{1}
|| =

µ
max

∈{1}
||2

¶12
≤

Ã
X
=1

||2
!12

= 12

Ã
1



X
=1

||2
!12

≤ 12
¡

£||2¤+  (1)

¢12
≤ 12

¡

£||2¤+ 2

¢12 ≡ ̄ (9)
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almost surely as →∞ for any 2  0. To allow for the fact that ∆ ; () is complex, we

write:

 [||  ] = 
£
(Re)

2
+ (Im)

2
 2

¤
≤ 

£
(Re)

2
 22 or (Im)

2
 22

¤
≤ 

£
(Re)

2
 22

¤
+ 

£
(Im)

2
 22

¤
= 

h
Re  

√
2
i
+ 

h
Im  

√
2
i

By Bernstein’s inequality:

 [Re  ] ≤ 2 exp
µ
−1
2

22

 [ 2
 ] + ̄3

¶
with ̄ being the almost sure bound on || defined in (9) and similarly for 

£
Im  

√
2
¤
.

Next,


£
Re  12 ln

¤ ≤ 2 exp

Ã
−1
2

¡
12 ln

¢2
2

2 + 12 ( + 2) (12 ln) 3

!

= 2 exp

Ã
−1
2

2 (ln)
2
2

2 + ( + 2) (ln) 3

!

= 2 exp

Ã
−1
2

3 ln
62



 ln
+ 2 ( + 2)

!

= 2 exp

⎛⎝−1
2

3 ln

2 ( + 2)

1
62



2( +2) ln
+ 1

⎞⎠
= 2 exp

⎛⎝−3
4

 ln

 + 2

1
32



( +2) ln
+ 1

⎞⎠
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Let  =  (where  is to be determined so that the overall probability of exceeding the

bound decreases). We then have:


£
Re  −12 ln

¤ ≤ 2 exp

⎛⎝−3
4

 ln

 + 2

1
32



 ( +2) ln
+ 1

⎞⎠
= 2 exp

Ã
−3
4

 ln

1 + 2

1
3

(1+2 ) ln
+ 1

!

= 2 exp

µ
−3
4
 ln

1

1 + 3
 ln

+ 2

¶
≤ 2 exp

µ
−3
4
 (1− 3) ln

¶
= 2−

3
4
(1−3) ≡ 

for some arbitrarily small 3  0 and sufficiently large .

To determine the necessary number of mesh points , we balance the maximum possible

deviation from mesh point values
¯̄̄
̂ ()− ̂

³
̄



´¯̄̄
and the pointwise error in ̂ () :

( [| |] +  (1))
̄



=  
−12 ln

We thus need

 =
 [| |] ̄
 −12 ln

=
̄ [| |]



+12

ln

The total probability that Re  −12 ln for one of the mesh point is thus bounded by
a Bonferroni-type bound:

 =
̄ [| |]



+12

ln
2−

3
4
(1−3)

= 

µ
1

ln
+

1
2
− 3
4
(1−3)

¶
We thus require + 1

2
− 3

4
(1− 3)   −1, leading to

(1− 3)   2 +
4

3


For bounded  , we similarly have
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h
Re  12

√
ln

i
≤ 2 exp

⎛⎜⎝−1
2

³
12

√
ln

´2
2

2 + (
12 ln) 3

⎞⎟⎠
≤ 2 exp

µ
−1
2
(1− 4)

2 (ln) 2

2

¶
= 2exp

µ
−1
2
(1− 4)

22  (ln) 2

2

¶
= 2exp

µ
−1
4
(1− 4) 

2 (ln)

¶
= 2−

1
4
(1−4)2

We thus require + 1
2
− 1

4
(1− 4) 

2  −1, leading to

(1− 4) 
2  6 + 4

Lemma 5 For any function  ∈ F
, we have that 

(−1) () can be written as

 (−1) () =  () +

X
=1

1 { ≥ }

for some  ∈ N, where  () is absolutely continuous and  ∈ R, and 1 {} denotes an
indicator function of the event . Also, the total variation of  (−1) is given by


¡
 (−1)

¢
=

Z ∞

−∞
| ()| +

X
=1

|| 

Proof. Let 1  2       be the points where  () () does not exist (and let

0 = −∞ and +1 = ∞, understood as appropriate limits). By the absolute continuity
property,  (−1) () is equal to the integral of its derivative for  6∈ {1     }. Thus, for
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 ∈ ] +1[, we have

 (−1) () = lim
→+

 (−1) () + lim
→+

Z 



 () () 

= lim
→−

 (−1) ()− lim
→−

 (−1) () + lim
→+

 (−1) () + lim
→+

Z 



 () () 

=

Ã
lim

→+−1
 (−1) () + lim

12→0

Z −2

−1+1
 () () 

!
+ lim

→+

 (−1) ()− lim
→−

 (−1) () + lim
→+

Z 



 () () 

= lim
→+−1

 (−1) () + +

Z −

+−1

 () () +

Z 

+

 () () 

= lim
→−∞

 (−1) () +
X

=1

 +

X
=1

Z −


+
−1

 () () +

Z 

+

 () () 

= 0 +

X
=1

1 ( ≥ ) +

Z
]−∞]\{1}

 () () 

=

X
=1

1 ( ≥ ) +  ()

where  = lim→+
 (−1) () − lim→−

 (−1) () and  () =
R
]−∞]\{1} 

() () .

The bounded total variation assumption ensures that all these quantities are finite.

Remark 1 This Lemma could also be shown using the Lebesgue decomposition theorem (see,

for instance, Loève (1977)): Since the function  (−1) () is of bounded variation, it can be
written as the difference of two nondecreasing functions (for which the Lebesgue decompo-

sition theorem applies). It follows that the measure  (−1) () can be written as the sum
of absolutely continuous, purely discrete and singular components. By assumption,  () ()

exists everywhere except at a finite number of points, so the decomposition reduces to the

absolutely continuous component (corresponding to  ()) and a purely discrete component

(corresponding to
P

=11 ( ≥ )).

Lemma 6 The Fourier transform  () of an absolutely continuous function  () with

bounded variation satisfies  () = 
¡||−1¢.

Proof. Since  has bounded variations, the limits + = lim→∞  () and − = lim→−∞  ()

exists and are finite. Let  () =
(++−)

2
+erf ()

(+−−)
2

and 0 () =  ()−  () and ob-

serve that the Fourier transform of  () is  () =
(++−)

2
 () +

(+−−)
2

1

2−

1
4
2 =  (||).
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Also, by construction lim||→∞ 0 () = 0 and is absolutely continuous with bounded varia-

tions because  and  are.

We then have

 () =

Z
 ()  =

Z
0 () 

+

Z
 ()  =

Z
0 () 

+  (||)

If 0 is absolutely continuous then it can be written as 0 ()+
R 

 ()  for some Lebesgue

integrable function . We then have, by integration by parts:

 () =

Z µ
0 () +

Z 



 () 

¶
+ 

¡||−1¢
=

∙
0 ()





¸∞
−∞
−
Z

 ()



+ 

¡||−1¢
= 0− 1



Z
 () + 

¡||−1¢
Since 0 has bounded variation,  is absolutely integrable. Then, by the Riemann-Lebesgue

Lemma, lim||→∞
R
 ()  = 0, so − 1



R
 ()  = 

¡||−1¢ as well.
Theorem 5 [Adapted from the Recurrence Theorem of Birkhoff (1931b)10]. Let  ∈ R be

the state of a dynamical system evolving according to a measure-preserving transformation

of the form



= Ψ (1     )  = 1     , (10)

where the functions Ψ are analytic. Let  () denote the system’s trajectory (solving (10)).

Consider an analytic surface S in R and let  (S) denote the time  where the trajectory
 () crosses S for the -th time. Then, there exists ∗ ∗ ∈ R+ with |∗ − ∗| arbitrarily
small such that, for all initial conditions  (0) (except on a set of null Lebesgue measure),

we have, for all  ∈ N greater than some 0,

∗ ≤  (S) ≤ ∗ (11)

Corollary 2 Theorem 5 obviously holds for complex-valued  as well: One merely needs to

consider the real and imaginary parts of each  as two distinct state variables and create an

equivalent dynamical system consisting of 2 real-valued variables. Also, the results obviously

holds if the surface S is the boundary of some set open P defined by analytic inequalities.

Hence, a relation of the form (11) also holds (perhaps for different ∗ ∗) for the times
 (P) the trajectory enters P for the -th time.
10This article is an extension of Birkhoff (1931a), which is useful to consult first. We report here some

of the paper’s intermediate results rather than its final conclusion, because they are more useful for our

purposes.
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Lemma 7 Let ̄ () =
P

=1
 where  ∈ C\ {0} and  ∈ R for  = 1     . Then,

for all values of 1      (except on a set of null Lebesgue measure), there exists, for any

  0, a strictly increasing sequence  with  →∞ such that
¯̄
̄ ()

¯̄
≥P

=1 ||−  and¯̄
+1 − 

¯̄
 || ≤ 13.

Proof. We recast this question in a dynamical system framework to enable us to the invoke

Birkhoff’s Theorem (reproduced above as Theorem 5 and Corollary 2). Let the system’s

state be denoted  ≡ (1     ) ∈ C which evolves (with increasing ) according to




= 

from the initial conditions  =  at  = 0. This dynamical system simply defines a rotation

in space and thus satisfies Birkhoff Theorem’s requirement of being measure-preserving and

analytic. Observe that we then have  () = 
 so that ̄ () =

P

=1  (). Let

P =
©
 ∈ C : Re

¡


¢ ≥ ||−  for  = 1     
ª
and note that  ∈ P is a sufficient

condition for
¯̄
̄ ()

¯̄
≥P

=1 ||− , since

¯̄
̄ ()

¯̄
≥
¯̄
Re
¡
̄ ()

¢¯̄ ≥ Re ̄ () = X
=1

Re
¡
 ()

¢ ≥ X
=1

(||− ) =

X
=1

||− 

Birkhoff ergodic theorem on recurrence time Birkhoff (1931b) then implies that, for all

initial conditions  (except on a set of null Lebesgue measure), the “times”  (P) when
 () enters P for the -th time satisfy:

∗ ≤  (P) ≤ ∗

where |∗ − ∗| can be chosen arbitrarily small (in particular, such that ∗∗ ≤ 16). Thus,
+1 (P)−  (P)

 (P)
≤ ( + 1)

∗ − ∗
∗

=
∗

∗
+ −1

∗

∗
− 1 ≤ 2

∗

∗
≤ 1
3


Proof of Theorem 2. For  ∈ £0 ̂−1 14
¤
, Lemma 4 applies and the error on ̂ ; ()

is indeed bounded by ∆ ; over that interval. Also, ∆̂ ;∆ ;

→ 1. Since 1
ln
≥

∆̂ ;

|̂ ;(̄)| by construction, we then have

1

ln
≥ ∆̂ ;¯̄̄

̂ ;
¡
̄
¢¯̄̄ ≥ ∆̂ ;¯̄

 ;
¡
̄
¢¯̄
+∆ ;

≥ ∆ ;2¯̄
 ;

¡
̄
¢¯̄
+∆ ;

=
12

| ;(̄)|
∆ ;

+ 1

with probability approaching one (wpa1). Next, since the function (1+ 1)
−1
is increasing

in , we have, wpa1,
∆ ;¯̄
 ;

¡
̄
¢¯̄ ≤ 1

1
2
ln− 1 → 0
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Since
¯̄
 ; ()

¯̄
≤  ;

−; ,

∆ ;¯̄
 ;

¡
̄
¢¯̄ ≥ ∆ ;

 ; ̄
− ;


and thus ∆ ;̄
 ;
 → 0. Since sup

∈[̄]∆ ;
 ; = ∆ ;̄

 ;
 → 0, the conclu-

sion follows.

Proof of Theorem 3. The result follows directly from our bias bounds and traditional

standard deviation bands (for instance, Härdle and Linton (1994)). The only additional step

is to observe that, since under assumption 5 the bias and the standard deviations are of the

same order, so the fact that the estimation error on the bias bound is negligible relative to

the bias itself implies that it is also negligible relative to the standard deviation.

Proof of Theorem 4. Similar to Theorem 3 and therefore omitted.
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