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Abstract

This paper considers a classical linear simultaneous equations model with random
coefficients on the endogenous variables. Simultaneous equations models are used to
study social interactions, strategic interactions between firms, and market equilibrium.
Random coefficient models allow for heterogeneous marginal effects. I show that random
coefficient seemingly unrelated regression models with common regressors are not point
identified, which implies random coefficient simultaneous equations models are not point
identified. Important features of these models, however, can be identified. For two-
equation systems, I give two sets of sufficient conditions for point identification of the
coefficients’ marginal distributions conditional on exogenous covariates. The first allows
for small support continuous instruments under tail restrictions on the distributions of
unobservables which are necessary for point identification. The second requires full
support instruments, but allows for nearly arbitrary distributions of unobservables. I
discuss how to generalize these results to many equation systems, where I focus on
linear-in-means models with heterogeneous endogenous social interaction effects. I give
sufficient conditions for point identification of the distributions of these endogenous
social effects. I suggest a nonparametric kernel estimator for these distributions based
on the identification arguments. I apply my results to the Add Health data to analyze
peer effects in education.
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1 Introduction

Simultaneous equations models are among the oldest models studied in econometrics. Their im-

portance arises from economists’ interest in equilibrium situations, like social interactions, strategic

interactions between firms, and market equilibrium. They are also the foundation of work on treat-

ment effects and self-selection. The classical linear simultaneous equations model assumes constant

coefficients, which implies that all marginal effects are also constant. While there has been much

work on allowing for heterogeneous marginal effects by introducing random coefficients on exoge-

nous variables, or on endogenous variables in triangular systems, there has been little work on

random coefficients on endogenous variables in fully simultaneous systems. In this paper, I con-

sider identification and estimation in such systems. For example, I provide sufficient conditions for

point identification of the distribution of elasticities across markets in a simple supply and demand

model with linear equations.

I consider the system of two linear simultaneous equations

Y1 = γ1Y2 + β1Z1 + δ′1X + U1 (1)

Y2 = γ2Y1 + β2Z2 + δ′2X + U2,

where Y ≡ (Y1, Y2)′ are observable outcomes of interest which are determined simultaneously as

the solution to the system, Z ≡ (Z1, Z2)′ are observable instruments, X is a K-vector of observable

covariates, and U ≡ (U1, U2)′ are unobservable variables. X may include a constant. Note that,

while important for applied work, the covariates X will play no role in the identification arguments;

see remark 2 on page 23. In the data, we observe the joint distribution of (Y,Z,X). This system

is triangular if one of γ1 or γ2 is known to be zero; it is fully simultaneous otherwise. Two

exclusion restrictions are imposed: Z1 only affects Y1, and Z2 only affects Y2. These exclusion

restrictions, plus the assumption that Z and X are uncorrelated with U , can be used to point

identify (γ1, γ2, β1, β2, δ1, δ2), assuming these coefficients are all constants.1

I relax the constant coefficient assumption by allowing γ1 and γ2 to be random. The distributions

of γ1 | X and γ2 | X, or features of these distributions like the means E(γ1 | X) and E(γ2 | X),

are the main objects of interest. For example, we may ask how the average effect of Y2 on Y1

changes if we increase a particular covariate. Classical mean-based identification analysis may

fail with random γ1 and γ2 due to non-existence of reduced form mean regressions. Moreover, I

show that random coefficient seemingly unrelated regression models with common regressors are

not point identified, which implies that random coefficient simultaneous equations models are not

point identified. Despite this, I prove that the marginal distributions of γ1 | X and γ2 | X are point

identified if the instruments Z have full support and are independent of all unobservables. I show

1This result, along with further discussion of the classical model with constant coefficients, is reviewed in most
textbooks. Also see the handbook chapters of Hsiao (1983), Intriligator (1983), and Hausman (1983), as well as the
classic book by Fisher (1966). Model (1) applies to continuous outcomes. For simultaneous systems with discrete
outcomes, see Bjorn and Vuong (1984), Bresnahan and Reiss (1991), and Tamer (2003).
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that, with tail restrictions on the distribution of unobservables, full support Z can be relaxed. I

show that these tail restrictions are necessary for point identification when Z has bounded support.

I propose a consistent nonparametric estimator for the distributions of γ1 | X and γ2 | X.

I then show how to extend the identification arguments to systems with more than two equa-

tions. A general linear system of N simultaneous equations with random coefficients has O(N2)

coefficients, compared to the 2N dimensional distribution of outcomes and instruments. This di-

mensionality problem implies that it is generally not possible to identify the entire joint distribution

of all these coefficients. Nonetheless, under restrictions that reduce the dimensionality of the ran-

dom coefficients, we can recover point identification. While there are many possible restrictions

one could consider, I focus on a random coefficients generalization of the most widely used social

interactions model—the linear-in-means model (Manski 1993). Specifically, I consider the model

Yi = γi
1

N − 1

∑
j 6=i

Yj + βiZi + δ′iXi + Ui. (2)

Here person i’s outcome depends on the average of the other N−1 people in their reference group. γi

is called the endogenous social interaction parameter. The classical linear-in-means model assumes

γi is constant across all people i, while the random coefficients linear-in-means model allows it

to vary across individuals. I also consider a generalization which incorporates observed network

data. In both cases I give sufficient conditions for point identification of the distribution of the

endogenous social interaction parameter. These conditions are similar to those in the two equation

case.

Throughout I assume all coefficients on exogenous variables are also random. Note that the ad-

ditive unobservables can be thought of as random coefficients on a constant covariate. Throughout

the paper, I use the following application as a leading example of a two-equation system (also see

Moffitt 2001).

Example (Social interactions between pairs of people). Consider a population of pairs of people,

such as spouses, siblings, or best friends. Let Y1 denote the outcome for the first person and Y2 the

outcome for the second. These outcomes may be hours worked, GPA, body weight, consumption,

savings, investment, etc. Model (1) allows for endogenous social interactions: one person’s outcome

may affect the other person’s, and vice versa. Because I allow for random coefficients, these social

interaction effects are not required to be constant across all pairs of people.

Social interaction models for household behavior have a long history within labor and family

economics (see Browning, Chiappori, and Weiss 2014 for a survey). Recently, several papers have

studied social interactions between ‘ego and alter’ pairs of people, or between pairs of ‘best friends’,

studying outcomes like sexual activity (Card and Giuliano 2013), obesity (Christakis and Fowler

2007, Cohen-Cole and Fletcher 2008), and educational achievement (Sacerdote 2001). In an em-

pirical application, I study peer effects in educational achievement. I use the Add Health data to
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construct best friend pairs. I set the outcomes Y1 and Y2 to be each friends’ GPA, and following

one specification in Sacerdote (2000, 2001) I choose Z1 and Z2 to be each friends’ lagged GPA. I

then estimate the distributions of γ1 and γ2 and find evidence for substantial heterogeneity in social

interaction effects and that usual point estimates are smaller than the nonparametrically estimated

average social interaction effect.

In the rest of this section, I review the related literature. Kelejian (1974) and Hahn (2001)

are the only papers explicitly about random coefficients on endogenous variables in simultaneous

systems. Kelejian considers a linear system like (1) and derives conditions under which we can apply

traditional arguments based on reduced form mean regressions to point identify the means of the

coefficients. These conditions rule out fully simultaneous systems. For example, with two equations

they imply that the system is triangular (see remark 3 on page 50). Furthermore, Kelejian assumes

all random coefficients are independent of each other, which I do not require. Hahn considers a

linear simultaneous equations model like system (1). He applies a result of Beran and Millar (1994)

which requires the joint support of all covariates across all reduced form equations to contain an

open ball. This is not possible in the reduced form for system (1) since each instrument enters

more than one reduced form equation (see remark 4 on page 50).

Random coefficients on exogenous variables, in contrast, are well understood. The earliest work

goes back to Rubin (1950), Hildreth and Houck (1968), and Swamy (1968, 1970), who propose

estimators for the mean of a random coefficient in single equation models. See Raj and Ullah

(1981, page 9) and Hsiao and Pesaran (2008) for further references and discussion. More recent

work has focused on estimating the distribution of random coefficients (Beran and Hall 1992,

Beran and Millar 1994, Beran 1995, Beran, Feuerverger, and Hall 1996, and Hoderlein, Klemelä,

and Mammen 2010).

Random coefficients on endogenous variables in triangular systems are also well studied (Heck-

man and Vytlacil 1998, Wooldridge 1997, 2003). For example, suppose γ2 ≡ 0 and γ1 is random.

If β2 is constant then E(γ1) is point identified and can be estimated by 2SLS. If β2 is random, then

the 2SLS estimand is a weighted average of γ1—a parameter similar to the weighted average of

local average treatment effects (Angrist and Imbens 1995). This model has led to a large literature

on instrumental variables methods with heterogeneous treatment effects; that is, generalizations of

a linear model with random coefficients on an endogenous variable (Angrist 2004).

For discrete outcomes, random coefficients have been studied in many settings. Ichimura and

Thompson (1998), Fox, Kim, Ryan, and Bajari (2012), and Gautier and Kitamura (2013) study

binary outcome models with exogenous regressors. Gautier and Hoderlein (2012) and Hoderlein

and Sherman (2013) study triangular systems. Finally, recent work by Dunker, Hoderlein, and

Kaido (2013) and Fox and Lazzati (2013) study random coefficients in discrete games.

A large recent literature has examined nonseparable error models like Y1 = m(Y2, U1), where m

is an unknown function (e.g. Matzkin 2003, Chernozhukov and Hansen 2005, and Torgovitsky 2014).

These models provide an alternative approach to allowing heterogeneous marginal effects. Although
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many papers in this literature allow for Y2 to be correlated with U1, they typically assume that

U1 is a scalar, which rules out models with both an additive unobservable and random coefficients,

such as the first equation of system (1). Additionally, m is typically assumed to be monotonic

in U1, which imposes a rank invariance restriction. For example, in supply and demand models,

rank invariance implies that the demand functions for any two markets cannot cross. The random

coefficient system (1) allows for such crossings. A related literature on nonlinear and nonparametric

simultaneous equations models also allows for nonseparable errors (see Brown 1983, Roehrig 1988,

Benkard and Berry 2006, Matzkin 2008, Blundell and Matzkin 2014, and Berry and Haile 2011,

2014), but these papers again restrict the dimension of unobservables by assuming that the number

of unobservables equals the number of endogenous variables.

Several papers allow for both nonseparable errors and vector unobservables U1, but make as-

sumptions which rule out model (1) with random γ1 and γ2. Imbens and Newey (2009) and Chesher

(2003, 2009) allow for a vector unobservable, but restrict attention to triangular structural equa-

tions. Hoderlein and Mammen (2007) allow for a vector unobservable, but require independence

between the unobservable and the covariate (i.e., Y2 ⊥⊥ U1 in the above model), which cannot hold

in a simultaneous equations model.

Finally, several papers allow for both simultaneity and high dimensional unobservables. Matzkin

(2012) considers a simultaneous equations model with more unobservables than endogenous vari-

ables, but assumes that the endogenous variables and the unobservables are additively separable.

Fox and Gandhi (2011) consider a nonparametric system of equations with nonadditive unob-

servables of arbitrary dimension. They assume all unobservables have countable support, which

implies that outcomes are discretely distributed, conditional on covariates. I focus on continuously

distributed outcomes. Angrist, Graddy, and Imbens (2000) examine the two equation supply and

demand example without imposing linearity or additive separability of a scalar unobserved het-

erogeneity term. Following their work on LATE, they show that with a binary instrument the

traditional linear IV estimator of the demand slope converges to a weighted average of the average

derivative of the demand function over a subset of prices. Their assumptions are tailored to the

supply and demand example and they do not consider identification of the distribution of marginal

effects. Manski (1995, 1997) considers a general model of treatment response. Using a monotonicity

assumption, he derives bounds on observation level treatment response functions. These bounds

hold regardless of how treatment is selected and thus apply to simultaneous equations models.

He shows how these observation level bounds imply bounds on parameters like average demand

functions. I impose additional structure which allows me to obtain stronger identification results. I

also do not require monotonicity. Okumura (2011) builds on the monotonicity based bounds anal-

ysis of Manski, deriving bounds on the medians and cdfs of the unobservables in a simultaneous

equations model with nonparametric supply and demand functions which each depend on a scalar

unobservable. Kasy (2014) studies general nonparametric systems with arbitrary dimensional un-

observables, but focuses attention on identifying average structural functions via a monotonicity

5



condition. Hoderlein, Nesheim, and Simoni (2012) study identification and estimation of distri-

butions of unobservables in structural models. They assume that a particular scalar unobservable

has a known distribution, which I do not require. They also focus on point identification of the

entire distribution of unobservables, which in system (1) includes the additive unobservables and

the coefficients on exogenous variables. As I mentioned above, the entire joint distribution of un-

observables in (1) is not point identified, and hence I focus on identification of the distribution of

endogenous variable coefficients only.

2 The simultaneous equations model

Consider again system (1), the linear simultaneous equations model:

Y1 = γ1Y2 + β1Z1 + δ′1X + U1 (1)

Y2 = γ2Y1 + β2Z2 + δ′2X + U2.

Assume β1 and β2 are random scalars, δ1 and δ2 are random K-vectors, and γ1 and γ1 are random

scalars. In matrix notation, system (1) is

Y = ΓY +BZ +DX + U,

where

Γ =

(
0 γ1

γ2 0

)
, B =

(
β1 0

0 β2

)
, and D =

(
δ′1

δ′2

)
.

Let I denote the identity matrix. When (I −Γ) is invertible (see section 2.1 below), we can obtain

the reduced form system

Y = (I − Γ)−1BZ + (I − Γ)−1DX + (I − Γ)−1U.

Writing out both equations in full yields

Y1 =
1

1− γ1γ2

[
U1 + γ1U2 + β1Z1 + γ1β2Z2 + δ′1X + γ1δ

′
2X
]

(3)

Y2 =
1

1− γ1γ2

[
γ2U1 + U2 + γ2β1Z1 + β2Z2 + γ2δ

′
1X + δ′2X

]
.

Identification follows from examining this reduced form system.

Depending on the specific empirical application, the signs of γ1 and γ2 may both be positive,

both be negative, or have opposite signs. When analyzing social interactions between pairs of

people, like spouses or best friends, we expect positive, reinforcing social interaction effects; both

γ1 and γ2 are positive. If we analyze strategic interaction between two firms, such as in the classical

Cournot duopoly model, we expect negative interaction effects; both γ1 and γ2 are negative. In the
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classical supply and demand model, supply slopes up and demand slopes down; the slopes γ1 and

γ2 have opposite signs.

2.1 Unique solution

For a fixed value of (Z,X), there are three possible configurations of system (1), depending on the

realization of (B,D,U,Γ): parallel and overlapping lines, parallel and nonoverlapping lines, and

non-parallel lines. Figure 1 plots each of these configurations.

Y1

Y2

Y1

Y2

Y1

Y2

Figure 1: These figures plot the lines Y1 = γ1Y2 + C1, shown as the solid line, and Y2 = γ2Y1 + C2, shown
as the dashed line. By varying γ1, γ2, C1, and C2, each plot shows a different possible configuration of the
system: parallel and overlapping, parallel and nonoverlapping, and non-parallel.

When (B,D,U,Γ) are such that the system has non-parallel lines, the model specifies that the

observed outcome Y is the unique solution to system (1). In the case of parallel and overlapping

lines, the model specifies that the observed outcome Y lies on that line, but it does not predict

a unique Y . Finally, when the system has parallel and nonoverlapping lines, the model makes no

prediction and the observed Y is generated from some unknown distribution. Because of these

last two cases, the model is incoherent and incomplete without further assumptions (see Tamer

2003 and Lewbel 2007 for a discussion of coherency and completeness). To ensure coherency and

completeness, I make the following assumption, which implies that a unique solution to system (1)

exists with probability 1.2

Assumption A1 (Existence of a unique solution). P(γ1γ2 = 1 | X,Z) = 0.

Since det(I − Γ) = 1− γ1γ2, this assumption is equivalent to requiring (I − Γ) to be invertible

with probability 1 (conditional on X,Z), which allows us to work with the reduced form system

(3). A1 rules out the first two configurations of system (1) almost surely, since parallel lines occur

when γ1 = 1/γ2, or equivalently when γ1γ2 = 1. The existing literature on simultaneous equations

with continuous outcomes, including both classical linear models with constant coefficients as well

2Here and throughout the paper, stating that an assumption which holds ‘given X’ means that it holds given
X = x for all x ∈ supp(X), where supp(X) denotes the support of X. This can be relaxed to hold only at x values
for which we wish to identify the distribution of γi | X = x, i = 1, 2, or to hold only X-almost everywhere if we are
only interested in the unconditional distribution of γi.

7



as recent nonparametric models, makes a unique solution assumption analogous to A1. Indeed, in

the linear model (1) with constant coefficients, relaxing the unique solution assumption implies that

γ1γ2 = 1 in every system. Hence only the two parallel line configurations may occur. In that case,

it is possible that the distribution of (U1, U2) is such that the lines never overlap, which implies

that constant coefficient model with γ1γ2 = 1 places no restrictions on the data.

When (γ1, γ2) are random coefficients, there is scope for relaxing A1 without obtaining a vac-

uous model, although I do not pursue this in depth. For example, we could replace A1 with the

assumption P(γ1γ2 = 1 | X,Z) < p for some known p, 0 ≤ p < 1. This says that the model

delivers a unique outcome in 100(1 − p) percent of the systems. In the remaining systems, the

model does not. Thus, even if we are unwilling to make assumptions about how the outcome data

Y are generated when γ1γ2 = 1, we may still be able to obtain useful partial identification results,

since we know that a unique solution occurs with at least probability p. This approach is similar

to analysis of contaminated data (see Horowitz and Manski 1995).

2.2 Nearly parallel lines and fat tailed distributions

Although A1 rules out exactly parallel lines, it allows for nearly parallel lines. Nearly parallel lines

occur when γ1γ2 is close, but not equal, to 1. In this case, 1 − γ1γ2 is close to zero, and thus

1/(1−γ1γ2) is very large. This is problematic since 1/(1−γ1γ2) appears in all terms in the reduced

form system (3). So, if γ1γ2 is close to 1 with high enough probability, the means of the random

coefficients in the reduced form do not exist. This possibility precludes the classical mean-based

identification approach of examining E(Y1 | X,Z) and E(Y2 | X,Z), without further restrictions on

the distribution of (γ1, γ2).

In section 3, I show that even when these means fail to exist, we can still identify the marginal

distributions of γ1 and γ2, under the assumption that Z has full support. I then replace full support

Z with the weaker assumption that Z has continuous variation. The trade-off for this change is

that I restrict the distribution of (γ1, γ2) by assuming that the reduced form coefficients do not

have fat tails, so that their means do exist. Thus, in order to relax full support, I eliminate near

parallel lines.

Remark 1. A similar mean non-existence issue arises in Graham and Powell’s (2012) work on panel

data identification of single equation correlated random coefficient models. Since their denominator

term (see equation 22) is an observable random variable, they are able to use trimming to solve

the problem. Here the denominator is unobserved and so we do not see which observations in the

data are problematic. Hence I take a different approach.

2.3 Two-stage least squares

As just discussed, nearly parallel lines can preclude mean-based identification approaches. In this

case, the reduced form mean regressions E(Y1 | X,Z) and E(Y2 | X,Z) may not exist, and hence
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any estimate of them, such as OLS of Y1 and Y2 on (X,Z), may fail to converge. Likewise, the 2SLS

estimand may not exist, and so the 2SLS estimator also may fail to converge. Even when these

means do exist, 2SLS will converge to a weighted average effect parameter, as shown by Angrist

et al. (2000). To see this in the context of the linear model (1), suppose we are only interested in

the first structural equation. Combining the structural equation for Y1 (the first equation of system

1) with the reduced form equation for Y2 (the second equation of system 3) yields

Y1 = γ1Y2 + U1

Y2 = π21 + π23Z2,

where I let δ1 = δ2 = β1 = 0 for simplicity, and denote

π2 = (π21, π23) =

(
U2 + γ2U1

1− γ1γ2
,

β2

1− γ1γ2

)
.

This is a triangular system of equations where γ1 and π2 are random and Z2 is an instrument for

Y2. Let γ̂1 denote the 2SLS estimator of γ1. Assuming the relevant means exist (see section 2.2),

we have

γ̂1
p−→ cov(Y1, Z2)

cov(Y2, Z2)
= E

[
β2/(1− γ1γ2)

E[β2/(1− γ1γ2)]
γ1

]
.

Thus 2SLS converges to a weighted average effect parameter (see appendix A for the derivations).

This occurs even if β2 is constant and therefore cancels out in the above expression. With constant

β2, if γ2 is degenerate on zero, so that the system is not actually simultaneous, then 2SLS recovers

E(γ1), the mean random coefficient. The 2SLS estimand is commonly interpreted as weighting

treatment effects by the heterogeneous instrument effect. Here, even when β2 is a constant so that

the instrument has the same effect on all people, heterogeneous effects of endogenous variables

combined with simultaneity cause 2SLS to estimate a weighted average effect parameter. Obser-

vations in systems which are close to having parallel lines count the most. In this paper, I give

conditions under which we can go beyond this weighted average effect parameter and identify the

entire marginal distribution of each random coefficient.

3 Identification

In this section I study identification of random coefficients models. I first discuss two sets of sufficient

conditions for point-identification in single equation random coefficients models. I later apply these

results to simultaneous equation systems. I then discuss seemingly unrelated regressions. I show

that when the equations have common regressors, the joint distribution of random coefficients is

not point identified. This implies that simultaneous equations models with random coefficients are

not point identified. I then move on to the simultaneous two equation system, where I show that

despite the overall lack of point identification, we can point identify the marginal distributions of
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endogenous variable coefficients. I discuss a special case where we can identify the joint distribution

of these endogenous variable coefficients. I also consider identification in triangular models. Finally,

I end with a discussion of the many equation case, where I give two results for linear-in-means social

interaction models.

Throughout this paper, ‘identified’ means ‘point identified’. See Matzkin (2007) for the formal

definition of identification. Relaxing my sufficient conditions may lead to useful partial identification

results for the features of interest. Since such partial identification results have not been explored

even in single equation random coefficient models, I leave this to future research.

3.1 Single equation models

In this section I discuss two lemmas about identification of single equation random coefficient

models. These lemmas are important steps in the proofs of theorems 2 and 3 on simultaneous

equations models. The first lemma allows for arbitrary distributions of random coefficients, but

requires full support regressors.

Lemma 1. Suppose

Y = A+B′Z,

where Y and A are scalar random variables and B and Z are random K-dimensional vectors.

Suppose the joint distribution of (Y,Z) is observed. If Z ⊥⊥ (A,B) and Z has support RK then the

joint distribution of (A,B) is identified.

While I gather all proofs in appendix A, I sketch the proofs here to show their main ideas. The

proof of this lemma is similar to that of the classical Cramér-Wold theorem (Cramér and Wold 1936

page 291; see also Beran and Millar 1994 page 1980 and Ichimura and Thompson 1998 theorem

1) that the joint distribution of a random vector is uniquely determined by its one-dimensional

projections. The proof follows by examining the characteristic function of Y given Z:

φY |Z(t | z1, . . . , zK) = E[exp(it(A+B1Z1 + · · ·+BKZK)) | Z = (z1, . . . , zK)]

= φA,B(t, tz1, . . . , tzK),

where the second line follows since Z ⊥⊥ (A,B) and by the definition of the characteristic function

for (A,B). Here Bk is the scalar random coefficient on Zk. Thus, by varying (z1, . . . , zK) over RK ,

and t over R, we can learn the entire characteristic function of (A,B).

The following result relaxes the full support condition, but imposes tail conditions on the dis-

tribution of random coefficients. When Z has bounded support, these tail conditions are necessary

if we wish to obtain point identification.

Lemma 2. Suppose

Y = A+B′Z,
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where Y and A are scalar random variables and B and Z are random K-dimensional vectors.

Suppose the joint distribution of (Y,Z) is observed. Assume

1. Z ⊥⊥ (A,B) and

2. supp(Z) contains an open ball in RK .

Then

3. the distribution of (A,B) has finite absolute moments, and

4. the distribution of (A,B) is uniquely determined by its moments

are sufficient for identification of the joint distribution of (A,B). If supp(Z) is bounded, then (3)

and (4) are also necessary for identification of the joint distribution of (A,B), as well as identification

of each marginal distribution of regressor coefficients Bk, k = 1, . . . ,K. If (4) does not hold, then

distribution of the intercept A is point identified if and only if 0 ∈ supp(Z).

For a scalar Z, the sufficiency direction of this result was proved in Beran’s (1995) proposition

2. Lemma 2 here shows that the sufficiency result holds for any finite dimensional vector Z, as

used in the simultaneous equations analysis, uses a different proof technique, and also shows the

necessity direction. The proof of sufficiency is a close adaptation of the proofs of theorem 3.1 and

corollary 3.2 in Cuesta-Albertos, Fraiman, and Ransford (2007), who prove a version of the classical

Cramér-Wold theorem. I first show that all moments of (A,B) are identified, and then conclude

that the distribution is identified from its moments. Because of this proof strategy, if we are only

interested in moments of (A,B) in the first place—say, the first and second moment—then we do

not need assumption (4) in lemma 2.

The necessity direction follows by a counterexample given in Bélisle, Massé, and Ransford

(1997). It exhibits two distributions which have the same projections onto lines defined by the sup-

port of Z (so they are observational equivalent in the random coefficient model), whose moments

are all finite and equal, and yet actually have disjoint support. To get some intuition for this result,

recall that analytic functions are uniquely determined by their values in any small neighborhood

in their domain. So if the characteristic function of (A,B) is analytic, then ‘local’ variation of the

regressors is sufficient to know this characteristic function in a small neighborhood, and hence by

analyticity is sufficient for knowing the entire characteristic function. Having an analytic charac-

teristic function is a kind of thin tail condition. Roughly speaking, once the distribution has fatter

tails, we loose analyticity, and then knowledge the characteristic function in a small neighborhood

is not sufficient for knowledge of the entire function. The formal argument is more complicated

because (A,B) having an analytic characteristic function is actually not necessary for point iden-

tification. But the idea is similar: achieving point identification of (A,B) with small support Z

requires some kind of extrapolation. Lemma 2 shows that the weaker conditions (3) and (4) are

precisely what is necessary.
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In this counterexample, assumption (3) holds while assumption (4) fails. Moreover, although

for clarity I have listed assumptions (3) and (4) separately, assumption (4) actually implies as-

sumption (3); see lemma 5 in the appendix. Hence if (4) is necessary, then so is (3). Finally, the

necessity direction also shows that even the marginal distributions of regressor coefficients are not

point identified if (4) fails. This final step will be important for applying this necessity result to

simultaneous equations models.

This necessity result depends on allowing all the coefficients to be random. In the textbook con-

stant coefficients linear model, it is well known that point identification of the constant coefficients

and the distribution of the random intercept is possible even if the random intercept is Cauchy

distributed. This classical result uses the assumption of constant coefficients and hence does not

contradict lemma 2.

3.2 Seemingly unrelated regressions

A seemingly unrelated regressions (SUR) model is a system of equations

Y1 = A1 +B′1Z1

... (4)

YN = AN +B′NZN

which are related in that their unobservable terms are correlated. Consequently, in the classical case

where A ≡ (A1, . . . , AN ) are random intercepts and B ≡ (B1, . . . , BN ) are constant coefficients,

a more efficient estimator of each coefficient Bn can be obtained by estimating all coefficients

simultaneously. Moreover, sometimes cross equation constraints on the coefficients are imposed,

like B1 = B2, which also implies that joint estimation will improve efficiency. Here the regressors

Zn are subscripted across equations, but this notation allows for common regressors.

In this section I consider the SUR model where B ≡ (B1, . . . , BN ) are random coefficients. For

simplicity I focus on the two equation case:

Y1 = A1 +B′1Z1 (4′)

Y2 = A2 +B′2Z2

although the main result extends immediately to the general system (4).

Say there is a functional dependence of X on W if there exists a function f : R→ R such that

X = f(W ) almost surely. The following result strengthens proposition 2.2 of Beran and Millar

(1994) by providing weaker moment conditions (they assumed the unobservables had compact

support), as well as showing that, given the other assumptions, functional relationships between

covariates preclude point identification.
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Theorem 1. Consider the SUR system 4′ where Y1, Y2, A1, and A2 are scalar random variables,

B1 and Z1 are random K1-dimensional vectors, and B2 and Z2 are random K2-dimensional vectors.

Suppose the joint distribution of (Y1, Y2, Z1, Z2) is observed. Assume

1. (Z1, Z2) ⊥⊥ (A,B),

2. supp(Z1, Z2) contains an open ball in RK1+K2 ,

3. the distribution of (A,B) has finite absolute moments, and

4. the distribution of (A,B) is uniquely determined by its moments.

Then the joint distribution of (A,B) is point identified. If there is a functional dependence of any

component of (Z1, Z2) on any other component, in which case (2) fails, then the joint distribution of

(A,B) is not point identified. If supp(Z) is bounded, then (3) and (4) are necessary for identification

of the joint distribution of (A,B), as well as identification of each marginal distribution of regressor

coefficients.

Necessity of the moments assumption follows because it is necessary in single equation models.

Next, suppose X1 and X2 are functionally related components of (Z1, Z2). Then the distribution

of X1 conditional on X2 is degenerate. We cannot independently vary X1 and X2 in the data. This

means that we only know the characteristic function of the random coefficients on a linear subspace

of RK1+K2+2. From the theory of characteristic functions and Fourier transforms, knowledge of a

Fourier transform on such a subspace, which has measure zero, is not sufficient to pin down the

original function (Cuesta-Albertos et al. 2007).

Corollary 1. Under the assumptions of theorem 1, if Z1 and Z2 contain a common regressor, then

the joint distribution of (A1, A2, B1, B2) is not point identified.

As discussed in the next section, this corollary implies that the joint distribution of random

coefficients in the linear simultaneous equations model is necessarily not point identified. In the

SUR model, the joint distribution of coefficients (An, Bn) from any single equation n is point

identified by applying the single equation lemmas 1 or 2. The result in this corollary is that the

full joint distribution of all cross-equation coefficients is not point identified. Intuitively, consider

the two-equation model with a single scalar covariate Z which is common to both equations:

Y1 = A1 +B1Z

Y2 = A2 +B2Z.

When examining the distribution of (Y1, Y2) | Z = z, variation in z affects both equations simul-

taneously. We cannot independently vary the regressor in the first equation from the regressor in

the second equation. Regardless of the support of Z, this implies that the characteristic function
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of (A1, A2, B1, B2) is known only on a linear subspace of R4, which is not sufficient to pin down its

distribution.

Another result that follows from the previous theorem is that nonlinear random coefficient

models are not point identified.

Corollary 2. Consider the nonlinear single equation random coefficients model

Y = A+B′pK(Z)

where Z is a scalar and

pK(z) = (p1K(z), . . . , pKK(z))′

is a vector of known basis functions. Assume Z ⊥⊥ (A,B). Assume the distribution of (A,B) has

finite absolute moments and is uniquely determined by its moments. Then the joint distribution

of (A,B) is not point identified.

This result is similar to the fact that constant coefficients are not point identified in linear mod-

els if there is perfect multicollinearity (i.e., if the support of the regressors lies in a proper linear

subspace). The difference here is that nonlinear transformations are not sufficient to break the non-

identification result. The intuition for this result is similar to the problem with common regressors

in the SUR model: our inability to vary two regressors independently precludes identification of

the joint distribution of their coefficients.

3.3 Simultaneous equations models

In this section I prove several point-identification results for the simultaneous equations model (1).

The two main results give sufficient conditions for point identification of the marginal distributions

of γ1 | X and γ2 | X. I also provide results on identification of the joint distribution of (γ1, γ2) | X
as well as on identification in triangular models.

The first main result supposes the instruments Z have continuous variation, but allows them to

have bounded support. As in single equation models (lemma 2), a moment determinacy condition

on the distribution of unobservables is necessary for point identification. The second main result

shows that this moment determinacy condition is not necessary if Z has unbounded support. In

this case we are able to identify the marginal distributions γ1 | X and γ2 | X even if the reduced

form mean regression fails to exist because the structural equations are nearly parallel too often.

In addition to the unique solution assumption A1, I place several other restrictions on the

unobservables.

Assumption A2 (Relevance). P(β1 = 0 | X) = 0 and P(β2 = 0 | X) = 0.

For units with β1 = 0, given A3 below, Z1 has no effect whatsoever on the distribution of

(Y1, Y2) | X and hence cannot help with identification; likewise for units with β2 = 0. This
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difficulty of learning causal effects for units whom are not affected by the instrument is well known

and is not particular to the model considered here. As in the existing literature, such as the work

on LATE, A2 can be relaxed if we only wish to identify causal effects for the subpopulation of

units whom are affected by the instrument. That is, if P(β1 = 0 | X) > 0, then we can identify the

distribution of γ2 conditional on X and β1 6= 0. Likewise, if P(β2 = 0 | X) > 0, then we can identify

the distribution of γ1 conditional on X and β2 6= 0. Moreover, as in the constant coefficients case,

if we are only interested in one equation, then we do not need an instrument for the other equation.

That is, P(β1 = 0 | X) > 0 is allowed if we only wish to identify the distribution of γ1 | X. If we

only wish to identify the distribution of γ2 | X, then P(β2 = 0 | X) > 0 is allowed.

Assumption A3 (Independence). Z ⊥⊥ (B,D,U,Γ) | X.

Nearly all of the literature on random coefficients models with cross-sectional data makes an

independence assumption similar to A3.3 Moreover, this assumption commonly is maintained

throughout the literature on nonparametric nonseparable models, in single equation, triangular, and

simultaneous equations models.4 See Berry and Haile (2014) for further discussion of instruments

often used in simultaneous equations models, along with extensive citations to empirical research.

This assumption reduces the complexity of the model by restricting how the distribution of

unobservables can depend on the observed covariates: the distribution of (B,D,U,Γ) is assumed

to be the same regardless of the realization of Z, conditional on X. The covariates X may still be

correlated with the unobservables, and (Y1, Y2), as outcome variables, are generally also correlated

with all of the unobservables.

Example (Social interactions between pairs of people, cont’d). Randomized experiments are some-

times used to learn about social interaction effects (e.g. Duflo and Saez 2003, Hirano and Hahn

2010). Let Z1 and Z2 be treatments applied to persons 1 and 2, respectively. Assuming the coef-

ficients represent time-invariant structural parameters, random assignment of treatments ensures

that the independence assumption A3 holds. If the treatment variable also satisfies the exclusion

restriction, and a support condition (such as A4 or A4′ below), then I show one can identify the

distribution of social interaction effects with experimental data.

For example, suppose we are interested in learning the effect of student 1’s GPA on their best

friend student 2’s GPA. Let our treatment Z1 be the dollar value of a cash transfer paid to person

1 if they achieve a prespecified GPA cutoff. Likewise for Z2. By incentivizing effort, larger values

of the cash transfer Z1 may induce person 1 to get a higher GPA. By randomly assigning different

dollar values to the students, we can ensure that A3 holds.

3One exception is Heckman and Vytlacil (1998), who allow a specific kind of correlated random coefficient, although
their goal is identification of the coefficients’ means, not their distributions. Heckman, Schmierer, and Urzua (2010)
construct tests of the independence assumption, building on earlier work by Heckman and Vytlacil (2007). Several
papers, such as Graham and Powell (2012) and Arellano and Bonhomme (2012), relax independence by considering
panel data models.

4For example, Matzkin (2003), Imbens and Newey (2009), Chernozhukov and Hansen (2005), Matzkin (2008,
2012) and Berry and Haile (2014), among others.
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Assumption A4 (Instruments have continuous variation). supp(Z1 | X = x, Z2 = z2) contains

an open ball in R, for at least some z2 ∈ supp(Z2 | X = x), for each x ∈ supp(X). Likewise,

supp(Z2 | X = x, Z1 = z1) contains an open ball in R, for at least some z1 ∈ supp(Z1 | X = x), for

each x ∈ supp(X).

This assumption requires that, conditional on one of the instruments and the other covariates,

there must always be some region where we can vary the other instrument continuously. For

example, it holds if supp(Z | X = x) contains an open ball in R2, for each x ∈ supp(X). It

holds if supp(Z | X) = supp(Z1 | X) × supp(Z2 | X), where supp(Z1 | X) and supp(Z2 | X)

are non-degenerate intervals. A4 also allows mixed continuous-discrete distributions, and it also

allows the support of Z1 to depend on the realization of Z2, and vice versa. Moreover, as in the

discussion following assumption A2, if we are only interested in one equation, then we do not need

an instrument for the other equation. For example, suppose we only have the instrument Z1 but not

Z2. Then we only need supp(Z1 | X = x) to contain an open ball in R to identify the distribution of

γ2 | X. For simplicity, the results here are stated under the assumption that we have an instrument

for both equations.

Assumption A5 (Moment determinacy). Let πi denote the vector of reduced form coefficients

from equation i = 1, 2. These are defined shortly below.

1. Conditional on X = x, the absolute moments of the reduced form coefficients (π1, π2),∫
|p1|α1 · · · |p6|α6 dFπ1,π2|X(p | x), α ∈ N6,

are finite, for each x ∈ supp(X). N denotes the natural numbers.

2. The distribution of (π1, π2) | X = x is uniquely determined by its moments, for each x ∈
supp(X).

As theorem 2 below shows, the necessity result from lemma 2 in single equation models carries

over to simultaneous equations models: the tail conditions A5 are necessary if we wish to obtain

point identification. A5 places restrictions directly on the reduced form coefficients πi, rather than

on the structural variables (B,D,U,Γ). A6 below provides sufficient conditions for A5, stated in

terms of the structural variables directly. A5.1 implies that the reduced form mean regressions

exist. It restricts the probability of nearly parallel lines (see section 2.2). Assumptions like A5.2

have been used in several papers to achieve identification, since it reduces the problem of identifying

an entire distribution to that of identifying just its moments. For example, Fox, Kim, Ryan, and

Bajari (2012) use it to identify a random coefficients logit model, and Ponomareva (2010) uses it

to identify a quantile regression panel data model. A5.2 is a thin tail restriction on πi | X; for

example, any compactly supported distribution is uniquely determined by its moments, as well as

any distribution whose moment generating function exists, like the normal distribution.
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A simple sufficient condition for A5 is that the outcomes (Y1, Y2) have bounded support. This

is often the case in practice, such as in the empirical application in section 5 where outcomes are

GPAs. Alternatively, the sufficient conditions given in A6 below allow for outcomes to have full

support, so long as their tails are thin enough (e.g., normally distributed). Consequently, it’s only

in applications where we expect outcomes to have fat tails where we might expect A5 to fail.

Theorem 2. Under A1, A2, A3, A4, and A5, the conditional distributions γ1 | X = x and

γ2 | X = x are identified for each x ∈ supp(X). Moreover, if supp(Z | X = x) is bounded, then A5

is necessary for point identification of these marginal distributions.

The full proof is in appendix A. The main idea is as follows. The reduced form system (3) is

Y1 =
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
+

β1

1− γ1γ2
Z1 +

γ1β2

1− γ1γ2
Z2 ≡ π11 + π12Z1 + π13Z2

Y2 =
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
+

γ2β1

1− γ1γ2
Z1 +

β2

1− γ1γ2
Z2 ≡ π21 + π22Z1 + π23Z2.

For (t1, t2) ∈ R2, we have

t1Y1 + t2Y2 = (t1π11 + t2π21) + (t1π12 + t2π22)Z1 + (t1π13 + t2π23)Z2.

Condition on Z1 = z1. Then by applying lemma 2 on identification of random coefficients in single

equation models, we can identify the joint distribution of

([t1π11 + t2π21] + [t1π12 + t2π22]z1, t1π13 + t2π23)

for any (t1, t2) ∈ R2. This lets us learn the joint distribution of, for example,

(π13, π23) =

(
γ1β2

1− γ1γ2
,

β2

1− γ1γ2

)
(5)

and from this we have γ1 = π13/π23. Similarly, if we first condition on Z2 = z2 instead of Z1 = z1

then we can identify the joint distribution of (π12, π22) and thus the distribution of γ2. This proof

strategy is analogous to a standard approach for constant coefficient simultaneous equations models,

in which case π13 and π23 are constants whose ratio equals the constant γ1. The necessity of A5

follows since the simultaneous equations model nests the single equation model, and A5 is necessary

for identification of the marginal distributions of regressor coefficients by lemma 2.

Recall that in the proof of lemma 2 we do not need to assume that the distribution of random

coefficients is uniquely determined by its moments (assumption (4) in lemma 2) if we only wish

to identify moments of the distribution of coefficients. So, in the simultaneous equations model, if

we eliminate assumption A5.2, then we can still identify all moments of π1 and π2. Unfortunately,

these reduced form moments do not necessarily identify the structural moments E(γ1 | X) and

E(γ2 | X), assuming these structural moments exist.
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The only restrictions on the joint distribution of unobservables (B,D,U,Γ) used in theorem 2

are the unique solution assumption A1 and the moment determinacy condition A5. Unlike earlier

work such as Kelejian (1974), these conditions do not require the unobservables to be independent

of each other. Allowing for dependence is important in many applications, such as the following.

Example (Social interactions between pairs of people, cont’d). Suppose we examine social inter-

actions between best friend pairs. Friendships may form because a pair of students have similar

observed and unobserved variables. Consequently we expect that (β1, δ1, γ1, U1) and (β2, δ2, γ2, U2)

are not independent. These are called correlated effects in the social interactions literature. Such

dependence is fully allowed here when identifying the distributions of social interaction effects γ1

and γ2. Furthermore, the covariates X, which may contain variables like person 1’s gender and

person 2’s gender, can be arbitrarily related to the unobservables.

Recall the following definition: Suppose a random variable V satisfies

P(|V | > t) ≤ C exp(−ctp)

for some constants C, c > 0 that depend on V but not t. If p = 1 we say V has subexponential tails

while if p = 2 we say V has sub-Gaussian tails. Then a sufficient condition for A5, in terms of the

structural parameters, is the following.

Assumption A6 (Restrictions on structural unobservables).

1. P(|1 − γ1γ2| ≥ τ | X) = 1 for some τ > 0. That is, 1 − γ1γ2 is bounded away from zero.

Equivalently, γ1γ2 is bounded away from 1.

2. Conditional onX, the distributions of β1, β2, β1γ2, β2γ1,(U1, δ1, γ1U2, γ1δ2),(U2, δ2, γ2U1, γ2δ1)

have subexponential tails.

Proposition 1. A6 implies A5.

As noted earlier, A5 is necessary for point identification. Hence that is the weakest possible set

of assumptions on the distribution of structural unobservables we can make while still achieving

point identification. Assumption A6 strengthens A5 slightly in order to obtain more interpretable

conditions. The main difference is that while A5 allows 1− γ1γ2 to be arbitrarily close to zero, so

long as it has sufficiently little mass near zero, assumption A6.1 rules this out. A6.1 holds if γ1

and γ2 are always known to have opposite signs, as in the supply and demand example, or if the

magnitude of both γ1 and γ2 is bounded above by some τ < 1 (see proposition 5 in appendix A).

The latter assumption may be reasonable in social interactions applications, where a positive social

interaction coefficient of 1 or greater would be substantively quite large and perhaps unlikely to be

true; also see the discussion of stability below.

A6.2 requires certain structural unobservables and certain cross-products of these random vari-

ables to have thin enough tails. This tail condition accommodates most well known distributions,
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such as the normal distribution, as well as any compactly supported distribution. Also, as used

in the proof of proposition 1, a random variable having subexponential tails is equivalent to that

variable’s moment generating function existing in a neighborhood of zero. This is an equivalent

way to view the tail restriction in A6.2.

A6.2 is stated in terms of products of structural unobservables. The following result gives two

different sets of sufficient conditions for assumption A6.2. These conditions do not involve products

and hence are even simpler to interpret, although they are not necessary for point identification.

Proposition 2. Assume either

(A6.2′) Conditional on X, the marginal distributions of all the structural random variables

γ1, γ2, β1, β2, U1, U2, δ11, . . . , δ1K , δ21, . . . , δ2K have sub-Gaussian tails.

or

(A6.2′′) Conditional on X, γ1 and γ2 have compact support and, conditional on X, the

distributions of β1, β2, and (U1, U2, δ1, δ2) have subexponential tails.

Then A6.2 holds.

A6.2 requires subexponential tails for products of random variables. This proposition therefore

shows the tradeoff between the relative tails of the two random variables being multiplied. Compact

support for the endogenous variable random coefficients allows the remaining unobservables to have

merely subexponential tails, while if we allow the endogenous variable random coefficients to have

full support and sub-Gaussian tails, we must restrict the the remaining unobservables to have

thinner than subexponential tails.

A6.1 rules out distributions of (γ1, γ2) with support such that γ1γ2 is arbitrarily close to one.

In particular, this rules out distributions with full support, like the bivariate normal (although it

allows for Gaussian tails). While the normal distribution is often used in applied work for random

coefficients on exogenous variables, it has perhaps unappealing implications as a distribution of

random coefficients on endogenous variables in models with simultaneity. First, it can easily lead

to distributions of 1/(1−γ1γ2) which have no moments, and hence outcome variables which have no

moments. For example, suppose γ2 is a constant coefficient and γ1 ∼ N (µ, σ2). Then 1/(1−γ1γ2) ∼
1/N (1 − γ2µ, γ

2
2σ

2), which does not have a mean (see example (a) on page 40 of Robert 1991).

Consequently, normally distributed coefficients (γ1, γ2) are unlikely to be consistent with the data

if our outcomes have at least one moment. Moreover, if 1/(1−γ1γ2) has no moments, then A5 may

fail. For example, if β1 is constant then π12 = β1/(1 − γ1γ2) would have no moments. This then

implies that the marginal distributions of endogenous variable coefficients are not point identified,

since A5 is necessary for point identification.

Second, one may find it reasonable to assume that the equilibrium in system (1) is stable, in

the sense that if we perturb the equilibrium, the system returns back to equilibrium instead of
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than diverging to infinity. Formally, consider a single realization of the unobservables (Γ, B,D,U).

Although there are many ways to model disequilibrium dynamics, consider the simple dynamic

process

Yt = ΓYt−1 +BZ +DX + U

for each time period t = 1, 2, . . ., where Y0 is some initial value (or the point which we perturb to).

Let

Y = (I − Γ)−1BZ + (I − Γ)−1DX + (I − Γ)−1U

denote the equilibrium (or steady state) value of outcomes. Say this equilibrium is globally stable if

for any Y0 ∈ R2, Yt → Y as t→∞. The equilibrium is globally stable if and only if |γ1γ2| < 1 (see

appendix A). For example, a sufficient condition is that |γ1| < 1 and |γ2| < 1. As discussed above,

this is perhaps reasonable in social interactions applications. See, for example, Bramoullé, Kranton,

and D’Amours (2014) and Bramoullé and Kranton (2015) for further discussion of stability in this

context. Any distribution of (γ1, γ2) with full support, such as the normal distribution, implies

that a positive proportion of systems are globally unstable.

Finally, the question of which specific distributions of random coefficients on the endoge-

nous variable are reasonable to allow is related to problems encountered when choosing priors

for Bayesian analysis of the constant coefficient simultaneous equations model. Kleibergen and van

Dijk (1994) showed that a diffuse prior on the structural coefficients leads to nonintegrability in

the posterior. Chao and Phillips (1998, section 6) give more details and propose using a prior that

avoids this thick tail problem.

Theorem 2 allows for instruments with bounded support. If our instruments have unbounded

support, then we no longer need the moment determinacy conditions A5.

Assumption A4′ (Full, rectangular support instruments). supp(Z | X) = R2.

Theorem 3. Under A1, A2, A3, and A4′, the conditional distributions γ1 | X = x and γ2 | X = x

are identified for each x ∈ supp(X).

The proof is essentially identical to that of theorem 2. The only difference is that in the first step

we apply a different identification result for the single-equation random coefficient model, namely,

lemma 1 rather than lemma 2.5

The following result shows that the full joint distribution of structural unobservables is not point

identified, even with full support instruments and assuming the moment determinacy conditions.

Theorem 4. Under A1, A2, A3, A4′, and A5, the joint distribution of (B,D,Γ, U) is not point

identified. If we further assumed that U1, U2, and D are degenerate on zero, then the joint

distribution of (B,Γ) = (β1, β2, γ1, γ2) is still not point identified.

5A referee pointed out the following alternative proof, which only requires the conditional support of the instru-
ments to be unbounded, but not necessarily all of R: Y1/Y2 can be written as (γ1 + V1/Z2)/(1 + V2/Z2) for some
random variables (V1, V2) and hence P(Y1/Y2 ≤ t | X = x, Z1 = z1, Z2 = z2) → P(γ1 ≤ t | X = x) as z2 → ±∞.
Likewise for the distribution of γ2 | X.
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Proof of theorem 4. The system of reduced form equations (3) is a SUR model whose regressors

are common across equations. Hence corollary 1 to theorem 1 on SUR models implies that the

joint distribution of reduced form coefficients is not point identified. There is a one-to-one mapping

between the reduced form coefficients and the structural coefficients (B,D,Γ, U). Consequently,

the joint distribution of structural coefficients is not point identified.

The second result follows because U1, U2, and D degenerate on zero does not change the fact that

there are common regressors across equations, and so the joint distribution of the four remaining

reduced form coefficients is still not point identified.

Theorems 2 and 3 show that, despite this nonidentification result, we are able to point identify

the marginal distributions of endogenous variable random coefficients.

Next I consider identification of the joint distribution of endogenous variable coefficients. In

some cases the empirical setting naturally provides additional restrictions on the joint distribution

of γ1 and γ2, as in the following example.

Example (Social interactions between pairs of people, cont’d). Assuming the unobservables repre-

sent time-invariant structural parameters, independence between (β1, δ1, γ1, U1) and (β2, δ2, γ2, U2)

holds when people are randomly paired, as in laboratory experiments (e.g. Falk and Ichino 2006)

or natural experiments (e.g. Sacerdote 2001). In particular, there is no matching based on the

endogenous social interaction effect; γ1 and γ2 are independent.

In other cases, however, we might expect γ1 and γ2 to be correlated. In this case, identification of

the joint distribution of (γ1, γ2) would, for example, allow us to learn whether assortative matching

between friends occurred along the dimension of social susceptibility. The following result shows

that when the instrument coefficients are constant, we are able to identify this joint distribution.

Proposition 3. Assume the conditions of theorem 2 hold. Suppose further that (i) β1 and β2

are constant coefficients, (ii) P(γ1γ2 < 1 | X) 6= P(γ1γ2 > 1 | X), and (iii) A4 is strengthened to

supp(Z1, Z2 | X) contains an open ball in R2. Then for each x ∈ supp(X), the joint distribution of

(γ1, γ2) | X = x is identified. If we also assume (iv) E[1/(1− γ1γ2)] exists and is nonzero, then β1

and β2 are identified.

The idea here is that assuming β1 and β2 are constant reduces the dimension of unobserved

heterogeneity in the reduced form coefficients on the instruments,

(π12, π22, π13, π23) =

(
β1

1− γ1γ2
,

γ1β2

1− γ1γ2
,

γ2β1

1− γ1γ2
,

β2

1− γ1γ2

)
,

from 4 to 2. Moreover, the distribution of ‘own’ coefficients (the effect of Zi on Yi) are just scaled

versions of each other:

π23 = π12
β2

β1
.

With these observations the result follows from modifying the proof strategy for theorem 2.
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Under the assumption that β1 and β2 are constant, the relevance assumption A2 simply states

that β1 and β2 are nonzero. Assumption (ii) here restricts the amount of symmetry in the distri-

bution of γ1γ2—it cannot have equal mass both below and above 1. If the distribution of 1− γ1γ2

is continuous and has a strictly increasing cdf, then assumption (ii) is equivalent to the assumption

that the median of 1− γ1γ2 cannot be 0. Assumption (ii) is only used to identify the sign of β1/β2.

If this sign is known a priori then assumption (ii) is not needed. For example, if it is known that

β1 = β2 (for example, as in the best friend pairs example, since the labels of friend 1 and friend 2

do not matter), then β1/β2 is known to be positive. Assumption (iii) is used here because it lets

us identify the joint distribution of the linear combinations of reduced form coefficients on different

instruments, which we use to recover the joint distribution of (γ1, γ2).

Assumption (iv) is only used for identifying the sign of β1 and the sign of β2; it is not used

to identify the joint distribution of (γ1, γ2). Assumption (iv) is also a restriction on the symmetry

of the distribution of γ1γ2. Assumption (iv) holds in some common cases, like with supply and

demand, where we know that γ1γ2 ≤ 0, since supply slopes up and demand slopes down, and hence

1−γ1γ2 > 0 so the mean of the inverse must be strictly positive. See proposition 5 in the appendix

for more discussion of sufficient conditions for assumptions (ii) and (iv).

I conclude this section with a result on triangular systems and a remark about additive sep-

arability and linearity. The following result uses the proof of either theorem 2 or 3 to examine

triangular systems, a case of particular relevance for the literature on heterogeneous treatment

effects.

Proposition 4. Consider model (1) with β1 and γ2 degenerate on zero:

Y1 = γ1Y2 + δ′1X + U1 (6)

Y2 = β2Z2 + δ′2X + U2.

Assume

1. (Relevance) P(β2 = 0 | X) = 0

2. (Independence) Z2 ⊥⊥ (γ1, β2, δ1, δ2, U1, U2) | X

and either

3′. (Full support instruments) supp(Z2 | X) = R

or

3. (Instruments have continuous variation) supp(Z2 | X) contains an open ball in R

4. (Moment determinacy) The distribution of

(U1 + γ1U2 + (δ1 + γ1δ2)′x, U2 + δ′2x, β1, β2, γ1β2) | X = x
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has finite absolute moments and is uniquely determined by its moments, for each x ∈ supp(X).

Then the joint distribution of (γ1, β2) | X is identified. Moreover, if supp(Z2 | X) is bounded, then

the moment determinacy assumption is necessary for identification of the marginal distribution of

γ1 | X and the marginal distribution of β2 | X.

For example, suppose Y1 is log-wage and Y2 is education. While the 2SLS estimator of γ1 in the

triangular model (6) converges to a weighted average effect parameter, this proposition provides

conditions for identifying the distribution of treatment effects, γ1 | X. The assumption that β1

is degenerate on zero just means that no instrument Z1 for the first stage equation is required

for identification, as usual with triangular models; any variables Z1 excluded from the first stage

equation may be included in X by making appropriate zero restrictions on δ2. Proposition 4 makes

no restrictions on the dependence structure of the unobservables (U1, U2, γ1, β2, δ1, δ2), which allows

(6) to be a correlated random coefficient model. For example, education level Y2 may be chosen

based on one’s individual-specific returns to education γ1, which implies that (β2, δ2, U2) and γ1

would not be independent. Sufficient conditions for the moment determinancy assumption can be

obtained by applying propositions 1 and 2. For example, moment determinacy in the triangular

model holds if all the structural unobservables have sub-Gaussian tails. Hoderlein et al. (2010, page

818) also discuss identification of a triangular model like (6), but they assume β2 is constant.

Remark 2 (The role of additive separability and linearity). In both systems (1) and (6), the

exogenous covariates X are allowed to affect outcomes directly via an additive term and indirectly

via the random coefficients. Without further restrictions on the effect of X, the inclusion of δ1 and

δ2 is redundant. We could instead rewrite the system as

Y1 = γ1(X)Y2 + β1(X)Z1 + V1(X)

Y2 = γ2(X)Y1 + β2(X)Z2 + V2(X),

where γi(·), βi(·), and Vi(·) are arbitrary random functions of X, i = 1, 2. This formulation

emphasizes that the key functional form assumption is that the endogenous variables and the

instruments to affect outcomes linearly. Nonetheless, system (1) is more traditional, and is also

helpful when proceeding to estimation where we make assumptions on the effect of X for dimension

reduction.

3.4 Many equations: Social interactions models

In this section I discuss several extensions to systems of more than two equations. For simplicity

I omit covariates X throughout this section; all assumptions and results can be considered as

conditional on X. A general linear system of N simultaneous equations can be written as

Yi =

N∑
i=1

γijYj + βiZi + Ui (7)
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for i = 1, . . . , N , and γii = 0. As before, the βi and Ui are unobserved random variables. In

this case, there are N(N − 1) = O(N2) random coefficients on the endogenous variables. Without

further assumptions, it is generally not possible to identify the entire joint distribution of all these

coefficients. Consequently, in this section I consider restrictions on the set of coefficients {γij}
which yield point identification of distributions of coefficients. There are many possible restrictions

one could consider, depending on the empirical context. I will focus on applications to social

interactions models. I begin with a random coefficients generalization of the most widely used social

interactions model, the linear-in-means model (Manski 1993). I then consider a generalization which

incorporates observed network data. In both cases I give sufficient conditions for point identification

of the marginal distributions of endogenous variable coefficients.

3.4.1 The linear-in-means model with heterogeneous social interaction effects

The classical linear-in-means model assumes that each person i’s outcome is a linear function of

the average of all other persons in their reference group:

Yi = θ
1

N − 1

∑
j 6=i

Yj + βiZi + Ui.

θ is called the endogenous social interaction parameter. See Blume, Brock, Durlauf, and Ioan-

nides (2011) for a survey and many further references. Typically these models assume that this

parameter is constant and common to all units. In this section, I consider the case where θ is a

random coefficient, which allows for heterogeneous social interaction effects. Different people may

be influenced by the mean of their peer group differently. Specifically, I consider the model

Yi = γi
1

N − 1

∑
j 6=i

Yj + βiZi + Ui (2)

mentioned on page 3, where γi is a random coefficient. This can be obtained from equation (7) by

assuming that, for each i, {γij : j = 1, . . . , N, j 6= i} are all equal to a single random variable γi.

Thus the number of unknown random coefficients is reduced from O(N2) to O(N), which turns

out to be sufficient to achieve point identification of the marginal distribution of each γi. Notice

that in this social interactions example, we typically think that the labels of people in the group

are arbitrary, and hence expect the marginal distributions of all the γi should be identical. This

assumption is not needed for the identification argument, however.

I have omitted exogenous social interactions effects from the model. These occur when person

j’s covariates Xj affect the outcome Yi of person i. These may be included without affecting the

main results below; indeed, each person j’s covariates Xj may enter person i’s outcome equation

with its own random coefficients δij . The key assumption, however, is that I do not allow exogenous

social interaction effects of the instruments Z = (Z1, . . . , ZN ). That is, there is at least one covariate

that affects i’s outcome but no one else’s. This assumption is similar to γ = 0 in Manski’s (1993)
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proposition 2; also see Brock and Durlauf (2001, page 3324) and Evans, Oates, and Schwab (1992).

As earlier, let B = diag(β1, . . . , βN ), U = (U1, . . . , UN ), and Γ denote the matrix of random

coefficients on the endogenous variables.

Theorem 5. Consider the linear-in-means model (2). Assume

1. (Support of endogenous effects) There is a τ ∈ (0, 1) such that P(|γi| ≤ τ) = 1 for all

i = 1, . . . , N .

2. (Relevance) P(βi = 0) = 0 for all i = 1, . . . , N .

3. (Independence) Z ⊥⊥ (B,U,Γ).

4. (Instruments have continuous variation) supp(Zi | Z−i = z−i) contains an open ball in R for

at least some z−i ∈ supp(Z−i), for all i = 1, . . . , N , where Z−i = {Zk : k 6= i}.

Then the joint distribution of any subset of N − 1 elements of {γ1, . . . , γN}, is point identified. In

particular, the marginal distribution of γi is point identified, for each i = 1, . . . , N .

Assumptions (2)–(4) are as in the two equation case. The main new assumption here is (1),

which restricts the support of the random coefficients γi to be in (−τ, τ) ( (−1, 1). Previous

research often assumes a common, constant endogenous social interaction coefficient θ such that

|θ| < 1 (e.g., Case 1991, Bramoullé, Djebbari, and Fortin 2009, and Blume, Brock, Durlauf, and

Jayaraman 2015). Hence assumption (1) is a strict generalization of this previous assumption. The

random coefficients linear-in-means model here has similar benefits as in the two equation case. It

does not require all people to be positively affected by their peers. Likewise, it does not require all

people to be negatively affected by their peers. Some people may have positive effects while others

may have negative effects. Moreover, some people may be strongly affected by their peers (large

γi) while others may be only moderately affected by their peers (small γi).

The interpretation of assumption (1) is similar to that discussed in proposition 5 (in the ap-

pendix) in the two equation case: Variation in the mean outcomes of i’s peers will never change

i’s outcome Yi by larger than the magnitude change in mean peer outcomes. For example, if the

mean GPA in my peer group increases by 1 point, my GPA will not increase by more than 1 point,

and it will not decrease by more than 1 point.

Assumption (1) implies that the reduced form system exists with probability 1. It also ensures

that the unique equilibrium is stable. Finally, it ensures that the moments of the distribution of

reduced form coefficients all exist and uniquely determine that distribution, and it also ensures that

certain random variables are bounded away from zero as used in the proof.

The full proof of theorem 5 is in the appendix. To see the main idea, consider the following

25



three equation system:

Y1 = γ1

(
Y2 + Y3

2

)
+ β1Z1 + U1

Y2 = γ2

(
Y1 + Y3

2

)
+ β2Z2 + U2

Y3 = γ3

(
Y1 + Y2

2

)
+ β3Z3 + U3.

The reduced form is

Y1 = det(Γ̃)−1

[(
1− γ2γ3

1

4

)
β1Z1 + γ1

(
1

2
+ γ3

1

4

)
β2Z2 + γ1

(
1

2
+ γ2

1

4

)
β3Z3 + · · ·

]
Y2 = det(Γ̃)−1

[
γ2

(
1

2
+ γ3

1

4

)
β1Z1 +

(
1− γ1γ3

1

4

)
β2Z2 + γ2

(
1

2
+ γ1

1

4

)
β3Z3 + · · ·

]
Y3 = det(Γ̃)−1

[
γ3

(
1

2
+ γ2

1

4

)
β1Z1 + γ3

(
1

2
+ γ1

1

4

)
β2Z2 +

(
1− γ1γ2

1

4

)
β3Z3 + · · ·

]

where the omitted terms are random intercepts depending on (U1, U2, U3) and Γ̃ = I−Γ. As in the

two equation case, we can point identify the joint distribution of reduced form coefficients on Z1:

(π11, π21, π31) ≡

((
1− γ2γ3

1

4

)
β1

det(Γ̃)
, γ2

(
1

2
+ γ3

1

4

)
β1

det(Γ̃)
, γ3

(
1

2
+ γ2

1

4

)
β1

det(Γ̃)

)
.

By dividing the first coefficient into the other two, we point identify the joint distribution of(
π21

π11
,
π31

π11

)
=

(
γ2(1/2 + γ3/4)

1− γ2γ3/4
,
γ3(1/2 + γ2/4)

1− γ2γ3/4

)
.

The point identified random variables (π21/π11, π31/π11) are a one-to-one mapping of the structural

coefficients γ2 and γ3:

γ2 =
2(π21/π11)

1 + (π31/π11)
and γ3 =

2(π31/π11)

1 + (π21/π11)
.

Hence the joint distribution of (γ2, γ3) is point identified via a change of variables. The key obser-

vation here is that the reduced form coefficients on Z1 depend on γ1 only via the determinant term;

γ1 does not appear anywhere else. Consequently, when taking ratios both β1 and γ1 disappear

from the subsequent expression. Intuitively, Z1 is an instrument for the endogenous variable Y1,

and hence is used to identify the effects of Y1 on the other outcome variables, Y2 and Y3; i.e., the

random coefficients γ2 and γ3.

A similar argument can be applied to the reduced form coefficients on Z2 to show that the joint

distribution of (γ1, γ3) is point identified. Consequently, the marginal distributions of all random

coefficients are point identified. The proof in the appendix shows that this argument extends to
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systems of N equations.

3.4.2 The linear-in-means network model

A variation on the classical linear-in-means model discussed above takes means over an observed,

person specific subset of people in the overall group, rather than including everyone in the mean

(e.g., Bramoullé et al. 2009, Lee, Liu, and Lin 2010, and Blume et al. 2015). Specifically, suppose

there are N people in a network. Then the linear-in-means network model specifies person i’s

outcome as

Yi = γi
1

|N (i)|
∑

j∈N (i)

Yj + βiZi + Ui. (8)

N (i) is an observed subset of the indices {j = 1, . . . , N : j 6= i}, called the ‘neighborhood’ of

person i. γi is a random coefficient that represents the effect of the average outcome within person

i’s neighborhood on Yi. Let Ni = |N (i)| denote the number of people who influence person i. Let

1ij = 1[j ∈ N (i)] denote the indicator of whether j is person i’s neighborhood. Let A denote the

matrix whose ij-th element is 1ij . A is called the adjacency matrix. Assume that A is an observable

random matrix.

The following result generalizes theorem 5.

Theorem 6. Consider model (8). Assume

1. (Support of endogenous effects) There is a τ ∈ (0, 1) such that P(|γi| ≤ τ | A) = 1 for all

i = 1, . . . , N .

2. (Relevance) P(βi = 0 | A) = 0 for all i = 1, . . . , N .

3. (Independence) Z ⊥⊥ (B,U,Γ) | A.

4. (Instruments have continuous variation) supp(Z | A) contains an open ball in RN .

5. (Everyone has a friend) P(Ni ≥ 1) = 1 for all i = 1, . . . , N .

Then the marginal distribution of γi | A is point identified for each i = 1, . . . , N .

The assumptions here are similar to those of theorem 5. The main difference is that now

we are conditioning on the adjacency matrix A. Hence, for the identification analysis, it is not

necessary for the links to be formed independently of the unobservables (B,U,Γ), so long as the

instruments are statistically independent of the unobservables conditional on A. Moreover, I also

assume that everyone is influenced by at least one person simply to rule out the trivial cases where

the distribution of γi | A is not identified because we are looking only at networks where Yi is not

influenced by anyone, in which case γi would not enter the outcome equation (8).
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The proof is similar to that of theorem 5. Consider the N = 3 case. The vector of coefficients

on Z1 is

(π11, π21, π31) =
β1

det(Γ̃)

(
1− γ2

N2

γ3

N3
123132,

γ2

N2

(
121 + 123131

γ3

N3

)
,

γ3

N3

(
131 + 132121

γ2

N2

))
.

Dividing the first component into the second and third components cancels out the determinant

and β1 terms, and yields a system of two reduced form random variables in the two structural

random variables γ2 and γ3. This system can be solved for to get:

γ2 =
N2(π21/π11)

121 + 123(π31/π11)
and γ3 =

N3(π31/π11)

131 + 132(π21/π11)
.

The main difference with theorem 5 is that the matrix Γ of random coefficients has some zero terms,

where 1ij = 0, and we let the denominator of the weights be |N (i)| instead of N − 1. Moreover,

note that in order to get the distribution of γ2 and γ3 from these expressions, we need the reduced

form effects of person 1 on 2, π21, and of person 1 on 3, π31, to be nondegenerate. This is guaranteed

in the linear-in-means model, but not in this directed network model. For example, consider the

network where persons 2 and 3 are influenced by each other, but not by person 1. And person 1

is influenced by 2 and 3. In this case, π21 ≡ π31 ≡ 0 since 121 = 131 = 0. Consequently, the above

expressions would not identify the distribution of γ2 and γ3. This is intuitive because above we are

looking at the effects of Z1 on (Y1, Y2, Y3), and yet we know that person 1 does not influence 2 and

3. Instead, because we know that 2 affects 3, we can look at the effect of Z2 on (Y1, Y2, Y3) instead.

In this case, we know that both π22 and π32 are nondegenerate, and similar derivations to those

above show that we can identify the distribution of γ2.

Finally, consider the question of learning the joint distribution of γj and γk, as in theorem 5.

If we further assume that there is a person i who has at least an indirect effect on both j and k,

then we can identify the joint distribution of (γj , γk). This can be seen in the above three person

example by letting j = 2, k = 3, and i = 1. As before, this argument can be used to get the joint

distribution of at most N − 1 of the endogenous variable coefficients.

4 Estimation

In this section I consider estimation of the marginal distributions of γ1 | X and γ2 | X in system

(1), under the identification assumptions of section 3. While I describe the estimator for two

equation systems, the approach can be generalized to the many equation setting. I first describe

the estimator. I then examine the estimator’s finite sample performance with several Monte Carlo

simulations. I end by discussing bandwidth selection in practice.
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4.1 Nonparametric estimation

In this section I describe a constructive, nonparametric kernel-based estimator which is a sample

analog to the identification arguments. For simplicity I omit covariates X. It’s straightforward to

include them in step 1 below, and I also discuss a single-index approach to including covariates

below. I focus on estimating the pdf of γ2. The approach for γ1 is analogous.

Recall that the reduced form of system (1) is

Y1 =
U1 + γ1U2

1− γ1γ2
+

β1

1− γ1γ2
Z1 +

γ1β2

1− γ1γ2
Z2 ≡ π11 + π12Z1 + π13Z2

Y2 =
γ2U1 + U2

1− γ1γ2
+

γ2β1

1− γ1γ2
Z1 +

β2

1− γ1γ2
Z2 ≡ π21 + π22Z1 + π23Z2.

For (t1, t2) ∈ R2, we have

t1Y1 + t2Y2 = (t1π11 + t2π21) + (t1π12 + t2π22)Z1 + (t1π13 + t2π23)Z2

≡ Π1(t1, t2) + Π2(t1, t2)Z1 + Π3(t1, t2)Z2.

Let

Π(t1, t2) ≡
(
Π1(t1, t2),Π2(t1, t2),Π3(t1, t2)

)
denote the vector of random coefficients in this single equation model. The estimator has four

steps, described as follows.

1. (Linear combination reduced form pdf) Apply an existing method (see the discussion below)

to obtain f̂Π(t1,t2), an estimate of the pdf of Π(t1, t2) of linear combinations of the reduced

form coefficients. This is 3-dimensional in the two equation case with one instrument per

equation and no covariates. In general, it is 1 + dZ1 + dZ2 + dX dimensional. Numerically

integrate this joint density over its 1st and 3rd components to obtain the marginal density

f̂Π2(t1,t2), an estimate of the pdf of linear combinations of the reduced form coefficients on Z1.

2. (Convert to reduced form cf) Then note that

φπ12,π22(t1, t2) = E[exp(i[t1π12 + t2π22])]

=

∫
R

exp(is)fΠ2(t1,t2)(s) ds

and hence we can estimate the characteristic function of (π12, π22) by

φ̂π12,π22(t1, t2) =

∫
R

exp(is)f̂Π2(t1,t2)(s) ds,

where numerical integration can be used to compute the integral.
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3. (Convert to reduced form pdf) We now have the characteristic function of (π12, π22),

φπ12,π22(t1, t2) = E[exp(i[t1π12 + t2π22])]

=

∫
R2

exp(i[t1p1 + t2p2])fπ12,π22(p1, p2) dp1 dp2.

Taking the inverse Fourier transform and substituting in our estimated characteristic function

yields an estimator of the the joint pdf of (π12, π22):

f̂π12,π22(p1, p2) = Re

[
1

(2π)2

∫
R2

exp(−i[t1p1 + t2p2])φ̂π12,π22(t1, t2) dt1 dt2

]
.

Here Re(z) stands for the real part of the complex number z. Again, we can use numerical

integration to compute the integral, or the Fast Fourier Transform.

4. (Convert to structural pdf) Finally, note that

γ2 =
π22

π12
.

Hence by theorem 3.1 of Curtiss (1941) we can write the density of γ2 as

fγ2(z) =

∫
R
|v|fπ12,π22(v, zv) dv.

That is, the density of the ratio random variable depends on the integral of the joint density

along a ray in R2 passing through the origin, whose slope is determined by z.

Taking sample analogs yields our final estimator:

f̂γ2(z) =

∫
R
|v|f̂π12,π22(v, zv) dv,

where again we use numerical integration to compute the integral.

The first step involves estimating a single equation random coefficients model with exogenous

regressors. There are several existing approaches for this. Beran and Hall’s (1992) estimator

requires all the coefficients to be independent, and hence cannot be used here. Beran and Millar

(1994) consider a minimum distance estimator where the distribution of random coefficients is

approximated by discretely supported distributions. Besides requiring numerical optimization,

this approach produces an estimated f̂Π2(t1,t2) which has discrete rather than continuous support,

which may cause problems in steps 2–4 above. Instead, I recommend using one of the estimators

proposed in Beran et al. (1996) and Hoderlein et al. (2010). Beran et al. (1996) propose to estimate

the distribution of random coefficients by first estimating their characteristic function and then

inverting it. Hoderlein et al. (2010) construct a regularized inverse Radon transform based kernel

estimator; I use this estimator in my simulations and empirical application.
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Both of the papers Beran et al. (1996) and Hoderlein et al. (2010) prove consistency and

derive rates of convergence for their respective estimators, among other results. Consistency of f̂γ2

then follows since it is a sample analog estimator based on one of these first consistent first step

estimators. I leave a full development of the asymptotic theory of f̂γ2 to future work. Finally, note

that, beyond any necessary regularity conditions and those ensuring identification, the estimator

described above does not restrict the joint distribution of unobservables.

While the above procedure can be extended immediately to allow for additional covariates X,

this would involve estimating 1 + dZ1 + dZ2 + dX dimensional joint density functions in the first

step. One alternative is to assume that the coefficients δ1 and δ2 on the covariates are constant.

For simplicity, consider the structural model (1) with δ2 = 0. Then the reduced form system is

Y1 =
U1 + γ1U2

1− γ1γ2
+

1

1− γ1γ2
(δ′1X) +

β1

1− γ1γ2
Z1 +

γ1β2

1− γ1γ2
Z2

Y2 =
U2 + γ2U1

1− γ1γ2
+

γ2

1− γ1γ2
(δ′1X) +

γ2β1

1− γ1γ2
Z1 +

β2

1− γ1γ2
Z2,

which after defining some notation we write as

Y1 = π̃11 + π̃1x(δ′1X) + π12Z1 + π13Z2

Y2 = π̃21 + π̃2x(δ′1X) + π22Z1 + π23Z2.

If δ1 was known, then this system would be the starting point for the estimator described above.

In this case we could treat δ′1X as a single scalar regressor, and hence we only have to estimate a

4 dimensional joint distribution instead of a 3 + dX dimensional joint distribution. Since δ1 is not

known, this approach is not feasible. Instead, we can estimate

δ̃1 ≡ E(π̃1xδ1) = E(π̃1x)δ1 = E
(

1

1− γ1γ2

)
(δ11, . . . , δ1K)′

by taking the coefficient on X in a linear mean regression of Y1 on (1, X, Z1, Z2). δ̃1 is not quite

equal to δ1 because of the E[1/(1− γ1γ2)] scale factor. Nonetheless, we now have the system

Y1 = π̃11 +
π̃1x

E(π̃1x)
(δ̃′1X) + π12Z1 + π13Z2

Y2 = π̃21 +
π̃2x

E(π̃1x)
(δ̃′1X) + π22Z1 + π23Z2.

where the single index δ̃′1X is estimated in the preliminary linear regression step. Thus, when

estimating this system in step 1 by a single equation random coefficient estimator, we still obtain

consistent estimates of the distribution of t1π12 + t2π22 as needed.

For estimating single equation random coefficient models with many covariates, Hoderlein et al.

(2010) proposed assuming δ1 was constant, estimating it by a preliminary linear regression, and
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then partialing it out as in partially linear models. This approach does not work here because

the determinant term 1/(1 − γ1γ2) ensures that all of the reduced form coefficients are random.

Consequently, subtracting E(π̃1xδ
′
1)X from both sides of the reduced form equation does not remove

the X term from the right hand side as it does in single equation models.

4.2 Monte Carlo simulations

To examine the nonparametric estimator’s finite sample performance, I run several Monte Carlo

simulations. The conditions of both theorems 2 and 3 hold in all simulations so that either result

could be used to ensure identification. I consider four different data generating processes. They

are identical along all dimensions except two. First, the common marginal distribution fγ is one of

the following:

1. fγ is a truncated normal with pre-truncation mean 0.4 and standard deviation 0.05.

2. fγ is a Beta distribution with shape parameter 6 and scale parameter 3.

See figure 2 for plots each of these marginal distributions. The support of the truncated normal

and Beta is [0, 1], which is then scaled to [0, 0.95], which helps ensure that fγ is identified. Second,

the instruments Z1 and Z2 are either standard Cauchy or N (0, 3) distributed.

For each dgp I consider the sample sizes N = 500 and N = 1000. Both dgps have γ1 independent

of γ2. Both dgps use the same distribution of additive unobservables (U1, U2), which are bivariate

normal with µu = 0, σu = 1, and ρu = 0. The instruments Z1 and Z2 have own coefficients β1 = 5

and β2 = 0, respectively, and friend coefficients 0 (e.g. the coefficient on Z1 in the equation for Y2 is

zero), so that they satisfy the exclusion restriction. The constant term is −10. The true structural

system with these parameter values is

Y1 = −10 + γ1Y2 + 5Z1 + 0Z2 + U1

Y2 = −10 + γ2Y1 + 0Z1 + 5Z2 + U2.

For each dgp, I compute several statistics. First, I compute the bias of several scalar parameter

estimators. For any scalar parameter κ, the estimated bias is the mean of κ̂s−κ over all s = 1, . . . , S,

where S is the total number of Monte Carlo simulations, and s indexes each simulation run. The

estimated standard deviation is the standard deviation of κ̂s − κ over all simulations s. The

estimated MSE is the estimated bias squared plus the estimated standard deviation squared. I use

S = 250 simulations, which yields simulation standard errors small enough to make statistically

significant comparisons. I compute these statistics for the nonparametric estimator of the random

coefficients’ mean:

Ê(γ) =

∫ 0.95

0
x · f̂γ(x) dx,
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where f̂γ is the nonparametric estimator described earlier, as well as for the 2SLS estimator of the

endogenous variable coefficient, viewed as an estimator of E(γ). I compute the estimated cdf of γ

by

F̂γ(t) =

∫ t

0
f̂γ(x) dx

and use this to compute the estimated median M̂ed(γ) and interquartile range ÎQR(γ). Finally, I

compute the mean integrated squared error of the nonparametric estimator f̂γ of fγ . For a fixed

simulation s, the ISE is

ISE(f̂γ,s) =

∫ 0.95

0
[f̂γ,s(x)− fγ(x)]2 dx.

The mean ISE (MISE) is estimated by the mean of this value over all simulations.

0 0.25 0.5 0.75 0.95

(a) Indep. trunc. normal(0.4,0.05), N = 500, Zi

standard Cauchy

0 0.25 0.5 0.75 0.95

(b) Indep. trunc. normal(0.4,0.05), N = 500, Zi ∼
N (0, 3)

0 0.25 0.5 0.75 0.95

(c) Indep. Beta(6,3), N = 500, Zi standard

Cauchy

0 0.25 0.5 0.75 0.95

(d) Indep. Beta(6,3), N = 500, Zi ∼ N (0, 3)

Figure 2: Nonparametric estimates of fγ , the common marginal distribution of random coefficients.

Dotted lines show the true density, solid lines show the estimated density. Estimates correspond to

the simulation with integrated squared error at the median over all simulations.
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Figure 2 shows example plots of f̂γ versus the true density, for N = 500. The estimator recovers

the general shape of the true density in all four dgps, although it performs better with Cauchy

distributed instruments compared to the normally distributed instruments. This is to be expected

given the previous literature on nonparametric estimation in single equation random coefficients

models. As discussed above, the only two options for the first step of my estimator are Beran et al.

(1996) and Hoderlein et al. (2010). The assumptions in Beran et al. (1996) require thicker than

normal tailed regressors. They also show that the rate of convergence depends on the rate at which

the density of the regressors goes to zero in the tails: the thinner the regressor tails, the slower the

rate. Likewise, the main theory of Hoderlein et al. (2010) also requires thicker than normal tailed

regressors (see their theorem 3, however, where they show one way to relax this assumption). This

property affects the first step of my estimator, and hence carries through to the final step estimator

of f̂γ , as we can see in the plots.

In addition to plotting the entire density of γ, we may also want to compute various summary

statistics for this distribution. Tables 1 and 2 show the estimated bias, standard deviation, and

MSE for the estimated mean Ê(γ), median M̂ed(γ), and interquartile range ÎQR(γ), all obtained

from f̂γ . I call these the RC estimators. For each dgp, the true values of these parameters are also

shown. For comparison, I also show the estimated bias, standard deviation, and MSE of the 2SLS

estimator, viewed as an estimator of E(γ), although recall that the 2SLS estimand is generally not

equal to the mean random coefficient (see section 2.3). Finally, I also show the mean ISE and

the standard deviation of the ISE. Table 1 shows results for Cauchy distributed instruments, while

table 2 shows results for normally distributed instruments.
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Table 1: Monte Carlo results: Cauchy Z

Ê(γ) M̂ed(γ) ÎQR(γ) MISE

2SLS RC RC RC RC

Indep. trunc. normal(0.4,0.05) E(γ) = 0.38 Med(γ) = 0.38 IQR = 0.0641

N = 500 -0.0007 0.0031 0.0012 0.0253 0.4763

[0.0317] [0.0061] [0.0068] [0.0108] [0.2634]

(0.0010) (0.0000) (0.0000) (0.0008)

N = 1000 0.0003 0.0031 0.0012 0.0231 0.4037

[0.0368] [0.0046] [0.0051] [0.0082] [0.1937]

(0.0014) (0.0000) (0.0000) (0.0006)

Indep. Beta(6,3) E(γ) = 0.63 Med(γ) = 0.6455 IQR = 0.202

N = 500 0.0116 -0.0438 -0.0344 0.0171 0.0841

[0.0966] [0.0207] [0.0196] [0.0202] [0.0593]

(0.0095) (0.0023) (0.0016) (0.0007)

N = 1000 0.0082 -0.0455 -0.0362 0.0142 0.0779

[0.0961] [0.0165] [0.0150] [0.0179] [0.0431]

(0.0093) (0.0023) (0.0015) (0.0005)

For each dgp: Bias is first. Standard deviations in brackets. MSE in parentheses.

First consider table 1, with Cauchy distributed instruments. The first dgp is similar to a model

with a constant coefficient of 0.38. It is symmetric around 0.38 with all the mass within [0.25, 0.5].

Both the RC and the 2SLS estimator estimate E(γ) well, although the standard deviation of 2SLS

is substantially larger than the RC estimator. The RC estimator of the median similarly performs

well. The RC IQR estimator is biased upwards by about 33%, which can be seen in figure 2, since

the estimated pdf is more spread out than the truth.

The second dgp is slightly asymmetric and more spread out than the first dgp. In this case,

both estimators do worse than in the first dgp in estimating the mean. While 2SLS has a smaller

bias then the RC estimator, 2SLS again has a substantially larger standard deviation, which implies

that the RC estimator’s MSE is four times smaller than that of 2SLS. The RC median estimator

has a smaller bias than the RC mean estimator. The RC IQR estimator performs well in this dgp,

with a bias and standard deviation one order of magnitude smaller than the truth.
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Table 2: Monte Carlo results: Normal Z

Ê(γ) M̂ed(γ) ÎQR(γ) MISE

2SLS RC RC RC RC

Indep. trunc. normal(0.4,0.05) E(γ) = 0.38 Med(γ) = 0.38 IQR = 0.0641

N = 500 0.0017 0.0055 0.0041 0.0638 1.3836

[0.0051] [0.0069] [0.0057] [0.0103] [0.2810]

(0.0000) (0.0001) (0.0000) (0.0042)

N = 1000 0.0010 0.0049 0.0034 0.0644 1.3934

[0.0034] [0.0053] [0.0042] [0.0080] [0.2151]

(0.0000) (0.0001) (0.0000) (0.0042)

Indep. Beta(6,3) E(γ) = 0.63 Med(γ) = 0.6455 IQR = 0.202

N = 500 0.0223 -0.0435 -0.0188 0.0920 0.1898

[0.0137] [0.0109] [0.0122] [0.0160] [0.0446]

(0.0007) (0.0020) (0.0005) (0.0087)

N = 1000 0.0237 -0.0428 -0.0178 0.0908 0.1850

[0.0099] [0.0072] [0.0083] [0.0123] [0.0350]

(0.0007) (0.0019) (0.0004) (0.0084)

For each dgp: Bias is first. Standard deviations in brackets. MSE in parentheses.

Next consider table 2, with normally distributed instruments. Consider the first dgp. Despite

the problems mentioned earlier with relatively thin tailed regressors, the RC estimators of the mean

and median do very well. The RC estimators of the location of the distribution are comparable to

2SLS, which now also performs well with both a small bias and a small standard deviation. The

RC IQR estimator performs worse. It is two times larger than the true IQR on average. This

can also be seen in figure 2. In the second dgp, again both estimators do worse than the first

dgp in estimating the location of the distribution. The RC estimator of the mean and 2SLS are

comparable, while the RC median estimator performs better than both. The RC IQR estimator is

now overshooting the truth by about 45% on average.

Overall, the simulation results suggest that the RC estimator performs well with practical

sample sizes. In addition to providing good estimators of the center of the distribution, it provides

reasonable estimators of the spread, and of the entire shape of the distribution. In contrast,

traditional analysis based on the 2SLS estimand necessarily provides a limited summary of the

distribution of γ.

36



4.3 Bandwidth selection

The first step inverse Radon transform estimator requires choosing a bandwidth. In the Monte

Carlo simulations, I follow Hoderlein et al. (2010) and minimize the mean density weighted ISE,

E
[∫ 0.95

0
[f̂γ(x)− fγ(x)]2fγ(x) dx

]
.

Since computing this number requires knowledge of the true density fγ , this approach is not feasible

in practice. As of now, there do not exist any data-based methods for choosing the bandwidth

when estimating single equation random coefficient models, for either the inverse Radon transform

estimator of Hoderlein et al. (2010) or the characteristic function inversion estimator of Beran

et al. (1996). It is likely that reasonable methods, such as plug-in, resampling, or cross-validation

based approaches, can be developed by following the related problem of bandwidth selection in

measurement error deconvolution estimators, for example. Developing such methods is beyond the

scope of the present paper. Instead, for choosing the bandwidth in my empirical application, I

propose the following first pass approach.

First, notice that in step 3 of the RC estimator we need to take an integral over (t1, t2). For

this step, in both the simulations and empirical illustration, I use a 1000 point Halton grid. For

each of these grid points, we have to compute the first step single equation estimator. Hence there

are potentially 1000 different bandwidths we must choose, corresponding to the different values of

(t1, t2) in our grid. For any given point in the (t1, t2) grid, we can choose the bandwidth by visually

inspecting the plot of fΠ2(t1,t2). Even in the related problem of measurement error deconvolution,

where several data-driven bandwidth estimators actually do exist, some authors prefer this visual

method; see Carroll, Ruppert, Stefanski, and Crainiceanu (2006) page 283. The problem is that we

cannot practically do this manually 1000 different times. Instead, I pick a single bandwidth visually,

and then scale it up or down automatically according to the range of the support of t1π12 + t2π22,

which depends on the values of t1 and t2.

To see why this is a reasonable first pass method for choosing all of the bandwidths simulta-

neously, consider the standard problem of estimating the density of a random variable X. Let h

be an optimally chosen bandwidth for estimating fX . Then ah will be the optimal bandwidth for

estimating the density faX of the scaled random variable aX, for a 6= 0. This is the same idea I

use here. The analogy to estimating faX is not quite right, because we’re taking a linear combi-

nation of two dependent random variables, rather than just estimating a single random variable.

Nonetheless, by visually inspecting the plots fΠ2(t1,t2) for various (t1, t2), this method seems to work

reasonably well.
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5 Empirical illustration: Peer effects in education

In this section, I illustrate how to use the methods developed in this paper by exploring hetero-

geneous peer effects in education. Sacerdote (2011) and Epple and Romano (2011) give extensive

surveys of this literature. I construct pairs of best friends using the Add Health dataset (Har-

ris, Halpern, Whitsel, Hussey, Tabor, Entzel, and Udry 2009). I then apply the kernel estimator

described in section 4.1 to nonparametrically estimate the distribution of random coefficients γ1

and γ2 in the simultaneous equations model (1), where outcomes are high school GPAs. Following

one specification in Sacerdote (2000, 2001), I use lagged outcomes as instruments. My approach

yields estimates of the average endogenous social effect, as well as other distributional features like

quantile endogenous social effects, while allowing that not all people affect their best friend equally.

5.1 The Add Health dataset

Add Health is a panel dataset of students who were in grades 7-12 in the United States during the

1994 to 1995 school year. There have been four completed waves of data collection. I use data

from the wave 1 in-home survey, administered between April and December 1995. In this survey,

students were asked to name up to 5 male friends and up to 5 female friends. These friendship

data have been widely used to study the impact of social interactions on many different outcomes

of interest (e.g., Bramoullé et al. 2009 and Lin 2010). Card and Giuliano (2013) use this friendship

data to construct pairs of best friends. They then study social interaction effects on risky behavior,

such as smoking and sexual activity, by estimating discrete game models. These are simultaneous

equations models with discrete outcomes and two equations, where each equation represents one

friend’s best-response function of the other friend’s action. I follow a similar approach, but with

continuous outcomes and allowing for nonparametric heterogeneous social effects.

I also use data from the Adolescent Health and Academic Achievement (AHAA) study, which

obtained transcript release forms from students during the Add Health wave 3 survey administered

between 2001 and 2002. AHAA linked detailed high school transcript data with the earlier surveys.

12,237 students are in the AHAA study. Among these students, I keep only students in grades

10–12 (or higher, due to repeated grades) during the wave 1 survey school year, 1994–1995. Middle

schoolers and 9th graders get dropped because AHAA only collected high school transcript data

and hence I do not have lagged GPAs for them. This leaves 6,585 students. Another 60 students

get dropped due to missing contemporaneous or lagged GPA data, leaving 6,525 students. From

these students, I construct 330 same-sex pairs of students—660 students total. Students were asked

to list their top 5 friends starting with their first best friend, and then their second best friend, and

so on. I first pair all students who named each other as their first best friend. I then pair students

where one student was named as a best friend, but the other student was only named as a second

best friend. I next pair students where both students named each other as second best friends, and

so on. Note that no student is included more than once. The overall sample size is relatively small
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because in order to enter the final sample both students in the pair had to be among the 6,525

students from the AHAA sample of 10–12th graders. If a student named friends who were in 9th

grade or middle school, or who were not even in the original Add Health sample (90,118 students

from in-school wave 1), then that student does not appear in my final sample.

5.2 Empirical results

I estimate a random coefficients analog of equations (8) and (9) in Sacerdote (2000),

GPA1,t = γ1GPA2,t + β1GPA1,t−1 + U1,t (9)

GPA2,t = γ2GPA1,t + β2GPA2,t−1 + U2,t.

Here the outcome of interest is a student’s GPA during the 1994–1995 school year. The explanatory

variables are their best friend’s contemporaneous GPA, and their own GPA in the previous school

year. Table ?? shows summary statistics; there is substantial variation in both current and lagged

GPA. System (9) is a special case of equations (1) and (2) in Sacerdote (2001), where we assume

no measurement error in lagged outcomes and no contextual effect of your best friend’s lagged

outcomes. As in Sacerdote (2001), controlling for lagged outcomes is viewed as a way to condition

on ability. Consequently, the exclusion restriction here says that your best friend’s ability does not

directly affect your performance this year. Instead, specification (9) only allows your best friend’s

contemporaneous studies and effort to affect your GPA.

Table 3: Summary statistics

count p50 mean sd min max

Current GPA 660 2.9 2.74 0.90 .08 4
Lagged GPA 660 2.9 2.83 0.82 .11 4

Besides exclusion, the next assumption needed to apply an instrumental variable identification

strategy is exogeneity. Here that requires your best friend’s past performance to be unrelated to

all unobserved factors that affect your current performance, including your random coefficients.

Given that friendships likely form nonrandomly, this is perhaps implausible in the current setting.

Nonetheless, similar assumptions have been used in previous research with the Add Health data,

like Card and Giuliano (2013). Moreover, this assumption is often plausible in other datasets, to

which my methods would apply. For example, in Sacerdote’s original data roommates were matched

randomly, which he argues justifies the exogeneity assumption.

The final assumptions needed to apply the identification result theorem 2 of section 3 are conti-

nuity of the instrument, which holds here because GPA is a continuous variable, and relevance—your

past GPA must affect your current GPA. Table 4 shows estimates of the reduced form equations

of current GPA on own and friend’s lagged GPA. They are obtained via SUR under the restriction

that the coefficients on own and friend GPA are equal across equations. This constraint holds
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because labels of friend 1 versus friend 2 are arbitrary. This constraint holds regardless of whether

the coefficients are constant or random. Moreover, since the reduced form equations only contain

exogenous regressors, the SUR estimates are consistent for the mean reduced form random coef-

ficients. Own lagged GPA has a large positive effect on own current GPA, suggesting that the

relevance assumption holds.

Table 4: Reduced form regression

Own current GPA

Own lagged GPA 0.8167

[0.7651, 0.8683]

Friend’s lagged GPA 0.1512

[0.0997, 0.2027]

R2 0.65

Observations 330

Observations are pairs of best friends. 95% confidence

intervals shown in brackets. Estimates obtained from

SUR with cross-equation constraints; see body text for

details.

Table 5: Estimates of endogenous social interaction effect

SUR 3SLS RC

Ê(γ) 0.2965 0.1859 0.5383

[0.2477,0.3453] [0.1196,0.2522] [0.5249,0.6384]

Qγ(0.25) 0.3300

[0.3267,0.4496]

Med(γ) 0.6457

[0.6281,0.7101]

Qγ(0.75) 0.7199

[0.7177,0.8330]

Observations 330 330 330

Observations are pairs of best friends. 95% confidence intervals shown in brackets.

See body text for details of estimation.

Table 5 shows the main estimation results. First, SUR provides estimates of system (9), ignor-

ing the simultaneity problem, and imposing the constraint that the coefficients on each equation
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are equal (γ1 = γ2, β1 = β2), as discussed earlier. This gives a single point estimate of the coeffi-

cient on friend’s GPA, shown in the first row of the table. These estimates describe the correlation

between peer outcomes. Next, 3SLS provides estimates of system (9), also with the cross-equation

constraints, but using friend’s lagged GPA as instruments. The 3SLS point estimate of the endoge-

nous social interaction effect implies that a one point increase in your friend’s GPA increases your

own GPA by about 0.19 points, with a 95% confidence interval of [0.12, 0.25]. As discussed earlier,

when the endogenous variables have random coefficients, estimators like 2SLS and 3SLS estimate

weighted average effects, not the mean of the random coefficients. Moreover, these estimates can

be quite different from the actual average coefficient. The RC estimator described in section 4.1,

on the other hand, provides a consistent estimator of the average random coefficient, as well as

their distribution.

Because the labels of friend 1 versus friend 2 are arbitrary, the marginal distributions of γ1

and γ2 are equal, fγ1 = fγ2 . I estimate this common marginal by applying the RC estimator to

both γ2 and γ1 and then averaging the two estimators: f̂γ = (f̂γ1 + f̂γ2)/2. (These two estimators

separately look quite similar.) Using this estimated marginal distribution, I compute the mean,

25th percentile, median, and 75th percentile of the distribution of endogenous social interaction

effects. These estimates are shown in the third column of table 5. 95% confidence intervals are

shown in brackets, using the bootstrap percentile method with 250 bootstrap samples. The mean

estimate is comparable to the 3SLS estimates, in the sense that they are asymptotically equal under

constant coefficients.

These estimates suggest two things: First, there is substantial heterogeneity in the distribu-

tion of endogenous social effects. Second, the unweighted average effect is higher than the 3SLS

estimand, whose point estimate is about 0.19. Recall from section 2.3 that the 2SLS estimand for

equation 1 is a weighted average of γ1, where the weights depend on the strength of the instrument

(your friend’s lagged GPA) and how close your system is to being parallel (the size of the deter-

minant term 1− γ1γ2). Hence the 2SLS estimand can be smaller than the true average coefficient

for several reasons. For example, suppose people who are not too socially susceptible (small γ1)

are more likely to be friends with people whose current academic performance depends strongly

on their past academic performance (large β2). This will tend to make the 2SLS estimand smaller

than the unweighted average random coefficient. While I am unaware of similar derivations in the

literature for the constrained 3SLS estimand, it is likely to have a similar interpretation as 2SLS.

While functionals like the mean and quantiles are usually estimated much more precisely than

entire functions, it can still be informative to examine the overall shape of the estimated density of

γ. Figure 3 plots this estimated density. There are two distinct groups. About 40% of people have

endogenous social interaction effects between 0 and 0.4 while about 55% of people are between 0.55

and 0.8. In this case, the density itself is informative above and beyond the mean and the quartiles.

Overall, these results suggest that for many students, social influence matters for high school

GPA, which is consistent with the existing empirical literature. The RC estimated distribution
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Figure 3: Nonparametric estimate of the density of endogenous social interaction effects.

suggests that there is substantial heterogeneity in social influence, with roughly half of students

being strongly influenced by their best friend and another half still being influenced, but to a much

smaller extent. Moreover, within both of these groups the average effect exceeds the 3SLS point

estimate. This suggests that, when examining peer effects on GPA in high school, findings of social

interaction effects based on 2SLS or 3SLS may understate potential multiplier effects of policy

interventions.

In this section I have illustrated how to use the methods developed in this paper in practice.

For this reason I have focused on a clearly simplified setup and specification. Further analysis

would include estimating distributions of social interaction effects conditional on covariates, which

may help explain the observed bimodality of effects. Such analysis may reveal which covariate

combinations lead to large average effects. This, in turn, may help policy makers choose which

students to target for interventions. More generally, I hope that the methods in this paper will help

researchers understand, identify, and estimate unobserved heterogeneity in various applied settings

with simultaneity.

6 Conclusion

In this paper I have studied identification of linear simultaneous equations models with random

coefficients. In simultaneous systems, random coefficients on endogenous variables pose qualita-

tively different problems from random coefficients on exogenous variables. The possibility of nearly

parallel lines can cause classical mean-based identification approaches to fail. For systems of two

equations, I showed that, even allowing for nearly parallel lines, we can still identify the marginal

distributions of random coefficients by using a full support instrument. When nearly parallel lines

are ruled out, we can relax the full support assumption. I proposed a consistent nonparametric
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estimator for the distribution of coefficients, and show that it performs well in finite samples. I ap-

plied my results to analyze peer effects in educational achievement and found evidence of significant

heterogeneity as well as mean coefficient estimates larger than the usual point estimates.

Several issues remain for future research. First, several estimation issues remain, such as a full

analysis of inference for the nonparametric estimator. Second, I have shown that although the full

joint distribution of structural unobservables is not point identified, some marginal distributions

are point identified. It would be helpful to have a complete characterization of the identified set

for the joint distribution of structural unobservables.
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A Proofs

Remark 3. Kelejian’s (1974) condition for identification is that det(I−Γ) does not depend on the
random components of Γ. In the two equation system det(I − Γ) = 1− γ1γ2. So his results apply
if either γ1 or γ2 is zero with probability one; that is, if system (1) is actually triangular, and there
is no feedback between Y1 and Y2.

Remark 4. Hahn’s (2001) identification result, his lemma 1, applies Beran and Millar (1994)
proposition 2.2. As discussed in section 3.2 on SUR models, the assumptions in that proposition
rule out common regressors, which in turn rules out fully simultaneous equations models, as well
as triangular models, as discussed in section 3.3. More specifically, consider system (1) with no
covariates X for simplicity. In this model, Hahn’s support condition (assumption v) assumes the
support of t1 + t2Z1 + t3Z2 contains an open ball in R for all nonzero (t1, t2, t3) ∈ R3. Beran and
Millar’s support condition is that the support of (t1Z1, t1Z2, t2Z1, t2Z2) contains an open ball in
R4 for all (t1, t2) ∈ R2, t1, t2 nonzero. Hahn’s condition is not sufficient for Beran and Millar’s,
but for the reasons disucssed in sections 3.2 and 3.3, Beran and Millar’s condition cannot hold in
system (1) regardless. Thus neither the results of Beran and Millar (1994) nor those of Hahn (2001)
apply to the fully simultaneous equations model considered here, or even to triangular models.

Derivations to show 2SLS estimates a weighted average effect parameter. We have

cov(Y1, Z2) = E[(γ1Y2 + U1)(Z2 − E(Z2))]

= E[γ1Y2(Z2 − E(Z2))] since Z2 ⊥⊥ U1

= E
[
γ1

(
U2 + γ2U1

1− γ1γ2
+

β2

1− γ1γ2
Z2

)
(Z2 − E(Z2))

]
= 0 + E

[
γ1β2

1− γ1γ2

]
var(Z2) since Z2 ⊥⊥ (β2, U,Γ)
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and

cov(Y2, Z2) = E
[(

U2 + γ2U1

1− γ1γ2
+

β2

1− γ1γ2
Z2

)
(Z2 − E(Z2))

]
= 0 + E

[
β2

1− γ1γ2

]
var(Z2) since Z2 ⊥⊥ (β2, U,Γ).

Proof of lemma 1. First suppose Y = π′Z where π = (A,B) and Z = (Z0, Z1, . . . , ZK) has full
support on RK+1. The characteristic function of Y | Z is

φY |Z(t | z) = E[exp(itY ) | Z = z]

= E[exp(it(π′Z)) | Z = z]

= E[exp(i(tz)′π)]

= φπ(tz)

= φπ(tz0, tz1, . . . , tzK),

where the third line follows since Z ⊥⊥ (A,B). Thus

φπ(tz) = φY |Z(t | z) all t ∈ R, z ∈ supp(Z) = RK+1.

So φπ is completely known and hence the distribution of π is known. For example, setting t = 1
shows that we can obtain the entire characteristic function φπ by varying z. Notice that we do not
need to vary t at all. Now return to the original problem, Y = A+B′Z. This is the same problem
we just considered, except that Z0 ≡ 1. Thus we have

φπ(t, tz1, . . . , tzK) = φY |Z(t | z) all t ∈ R, z ∈ RK .

In this case, the entire characteristic function φπ is still observed. Suppose we want to learn
φπ(s0, . . . , sK), the characteristic function evaluated at some point (s0, . . . , sK) ∈ RK+1. If s0 6= 0,
let t = s0 and zk = sk/s0. If s0 = 0, then consider a sequence (tn, z1n, . . . , zKn) where tn 6= 0,
tn → 0 as n→∞, and zkn = sk/tn. Then

lim
n→∞

φY |Z(tn, tnz1n, . . . , tnzKn) = lim
n→∞

φY |Z(tn, s1, . . . , sK)

= lim
n→∞

φπ(tn, s1, . . . , sK)

= φπ

(
lim
n→∞

tn, s1, . . . , sK

)
= φπ(0, s1, . . . , sK),

where the third line follows by continuity of the characteristic function. Thus the distribution of
π = (A,B) is identified.

Proof of sufficiency in lemma 2.

1. Preliminary definitions and notation. Let L be an arbitrary closed subspace of RK+1. Let
projL : RK+1 → L denote the orthogonal projection of RK+1 onto L. For an arbitrary
probability distribution G on RK+1, let GL denote the projection of G onto L, which is
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defined as the probability distribution on L such that

PGL
(B) ≡ PG(proj−1

L (B))

for each (measurable) B ⊆ L. That is, the probability under GL of an event B is the
probability under G of the event proj−1

L (B), the set of all elements in RK+1 which project
into B.

Let `(ẑ) = {λẑ ∈ RK+1 : λ ∈ R} denote the one-dimensional subspace of RK+1 defined by
the line passing through the origin and the point ẑ ∈ RK+1. Random coefficient models
essentially tell us the projection of the distribution (A,B) onto various lines `(ẑ), and our
goal is to recover the original (K + 1)-dimensional distribution.

2. Proof. Let F denote the true distribution of (A,B) and let F̃ denote an observation-
ally equivalent distribution of (A,B). The conditional distribution of Y | Z = z is the
projection of (A,B) onto the line `(1, z1, . . . , zK). Multiplying Y by a scalar λ tells us
the projection of (A,B) onto the line `(λ, λz1, . . . , λzK); alternatively, simply note that
`(1, z1, . . . , zK) = `(λ, λz1, . . . , λzK) for any nonzero scalar λ. Thus, since F and F̃ are
observationally equivalent, we know that F`(λ,λz) = F̃`(λ,λz) for each z ∈ supp(Z) and each
λ ∈ R. Let

R ≡ {(λ, λz1, . . . , λzK) ∈ RK+1 : z ∈ supp(Z), λ ∈ R}
⊆ {(λ, λz1, . . . , λzK) ∈ RK+1 : F`(λ,λz) = F̃`(λ,λz)}.

(Note that these sets are not necessarily equal since F`(λ,λz) = F̃`(λ,λz) might hold for z /∈
supp(Z). Indeed, we shall show that F = F̃ , in which case the latter set is strictly larger
than the former anytime supp(Z) 6= RK .)

For ẑ = (λ, λz) ∈ R we have ∫
(ẑ′y)ndF (y) =

∫
(t)ndF`(λ,λz)(t)

=

∫
(t)ndF̃`(λ,λz)(t)

=

∫
(ẑ′y)ndF̃ (y).

These integrals are finite by assumption. The first and third lines follow by a change of
variables and the definition of the projection onto a line. The second line follows since ẑ ∈ R.

Define the homogeneous polynomial pn : RK+1 → R by

pn(ẑ) ≡
∫

(ẑ′y)ndF (y)−
∫

(ẑ′y)ndF̃ (y).

Thus we have pn(ẑ) = 0 for all ẑ ∈ R. That is,

R ⊆ S ≡ {ẑ ∈ RK+1 : pn(ẑ) = 0}.

If pn is not identically zero then the set S is a hypersurface in RK+1, and thus has Lebesgue
measure zero by lemma 3. (Here ‘Lebesgue measure’ refers to the Lebesgue measure on
RK+1.) This implies that R has Lebesgue measure zero. But this is a contradiction: supp(Z)
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contains an open ball and thus R contains a cone in RK+1 (see figure 4), which has positive
Lebesgue measure.
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Figure 4: Let K = 2. The horizontal plane shows values of (z1, z2), while the vertical axis shows ‘z0’. The
first plot shows the open ball in supp(Z) as a dashed circle, which is projected up into the plane z0 ≡ 1, as a
solid circle. We know all projections onto lines `(1, z) in this set. The second plot shows four example lines,
through points near the edge of the set. By scaling all of these points up or down by λ ∈ R, we know all
projections onto lines `(ẑ) for points ẑ inside an entire cone, as shown in the third plot (the cone drawn is
only approximately correct).

Thus pn must be identically zero. That is,∫
(ẑ′y)ndF (y) =

∫
(ẑ′y)ndF̃ (y)

for all ẑ ∈ RK+1 and all natural numbers n. By lemma 4, this implies that F and F̃ have the
same moments. Thus F = F̃ .

Lemma 3. Let p : RK → R be a polynomial of degree n, not identically zero. Define

S = {z ∈ RK : p(z) = 0}.

Then S has RK-Lebesgue measure zero.

S is known as a Zariski closed set in Algebraic Geometry, so this lemma states that Zariski
closed sets have measure zero.

Proof of lemma 3. This follows from Rossi and Gunning (1965) corollary 10 on page 9. Also see
the lemma on page 763 of Okamoto (1973), and Landsberg (2012) page 115.

Lemma 4. Let F and G be two cdfs on RK . Then∫
(z′y)n dF (y) =

∫
(z′y)n dG(y) for all z ∈ RK , n ∈ N

implies that F and G have the same moments.

This lemma states that knowledge of the moments of the projection onto each line `(z) is
sufficient for knowledge of the moments of the entire K-dimensional distribution.
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Proof of lemma 4. Fix n ∈ N. Define

pF (z) ≡
∫

(z′y)n dF (y)

=
∑

j1+···+jK=n

(
n

j1 · · · jK

)
zj11 · · · z

jK
K mF

j1,...,jK
,

where

mF
j1,...,jK

≡
∫
yj11 · · · y

jK
K dF (y)

are the moments of F . Define pG(z) likewise. The functions pF (z) and pG(z) are polynomials of
degree n. By assumption, pF = pG. Thus the coefficients on the corresponding terms zj11 · · · z

jK
K

must be equal:
mF
j1,...,jK

= mG
j1,...,jK

.

This follows by differentiating the identity pF (z) ≡ pG(z) in different ways. For example,

∂n

∂zn1
pF (z) = mF

n,0,...,0 = mG
n,0,...,0 =

∂n

∂zn1
pG(z).

In general, just apply
∂n

∂j11 · · · ∂
jK
K

pF (z) = mF
j1,...,jK

.

n was arbitrary, and thus F and G have the same moments.

Lemma 5. In lemma 2, assumption (4) implies assumption (3).

Proof of lemma 5. Let P be a probability measure which is uniquely determined by its first n
moments. If it is compactly supported (e.g., a bernoulli distribution), then (3) holds immediately;
all moments of P actually exist. So suppose it has unbounded support. We prove this case
by contrapositive. Suppose P only has its first n moments. Then Tchakaloff’s theorem (see
theorem 2 in Bayer and Teichmann 2006) implies there is a finitely discretely supported probability
distribution Q with the same n moments. (This is perhaps obvious for distributions on R, but the
cited theorem shows it holds for probability measures on any RK+1 for any integer K ≥ 1.) But P
is not finitely discretely supported, so P 6= Q, and hence (4) does not hold. Thus we have shown
that a probability distribution which does not have all its moments cannot be uniquely determined
by the set of moments it does have.

Proof of necessity in lemma 2. By lemma 5, assumption (4) implies assumption (3), and hence it
suffices to show that (4) is necessary.

Necessity of assumption (4) for identification of the joint distribution of (A,B) follows by directly
applying the counterexample given in theorem 5.4 of Bélisle et al. (1997); see also Cuesta-Albertos
et al. (2007) theorem 3.6. The important step in applying theorem 5.4 to random coefficient models
is noting that we choose the closed ball K (in their notation) in R1+dim(Z) to be outside of the
cone passing through supp(1, Z); e.g. outside of the cone drawn in the third plot of figure 4. Then
conclusion (i) of theorem 5.4 shows that the two constructed measures µ and ν have identical
projections on all dim(Z)-dimensional subspaces not which do not intersect K. These subspaces
include the cone passing through supp(1, Z). Moreover, having identical projections on a higher
dimensional subspace implies that the projections on lower dimensional subspaces—namely, the
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one-dimensional lines—are also identical. Hence these two measures µ and ν are observationally
equivalent.

Note that if Z had full support then any choice of K would intersect the support of the cone
passing through {(1, z) ∈ R1+dim(Z) : z ∈ supp(Z)}. But the theorem only guarantees that the
two measures µ and ν have identical projections outside of K; it allows them to have different
projections inside K, and hence they will not be observationally identical. This is where theorem
5.4 fails to apply in the full support case.

To see that (4) is also necessary for identification of the marginal distributions, it suffices to
choose K slightly more carefully. The basic idea is that in the counterexample, the region K is
where we allow our measures to differ. After all, the two measures are not going to be the same,
so they have to differ somewhere. In the next step I show that we can choose K to ensure that
the measures differ in their projection along one of the axes; this projection is just the marginal
distribution of the random coefficient corresponding to that axis.

1

Figure 5: For a scalar regressor, dim(Z) = 1, (A,B) is two-dimensional with support contained in the plane
R2. We observe projections of this bivariate distribution along lines contained in the set R, plotted here as
the shaded area. This set is determined by the support of Z, shown as the bracketed interval.

To see this formally, I show how to modify Bélisle et al. (1997)’s proof of theorem 5.4 to obtain
the desired result. I use their notation here. Choose K such that it overlaps with one of the axes
2, . . . , d, say the kth axis. In the present context of the random coefficient model, this is possible
because Z having bounded support implies that the set

R ≡ {(λ, λz1, . . . , λzdim(Z)) ∈ R1+dim(Z) : z ∈ supp(Z), λ ∈ R}

(defined as in the proof of sufficiency of lemma 2) intersects the axes 2, . . . , d only at the origin.
For example, consider the case where Z is a scalar. Figure 5 plots the set R, where the support
of Z is shown as the bracketed interval on the horizontal axis. This figure is similar to figure 4,
except here Z is a scalar instead of a 2-vector. The important point here is that because supp(Z)
is bounded above and below, the cone R never intersects the horizontal axis. Hence there always
exists a ball K containing the axis but not intersecting R.

Next, choose p (at the beginning of the proof of theorem 5.4, Bélisle et al. (1997) page 783) to
lie exactly on this axis. Then, for the function f defined on page 782, f(p) > 0. Moreover the point
p + p still lies on the axis (since the kth component of p is zero and zero plus zero is still zero).
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From the proof of their lemma 5.5 we’re working with a function σ whose Fourier transform σ̂ is

σ̂(t) =
1

2
[(f ∗ f)(−t) + (f ∗ f)(t)]

where ∗ denotes convolution. Next, since f(p) > 0, f ≥ 0, and f is infinitely differentiable,
(f ∗ f)(p+ p) > 0. This implies

σ̂(p+ p) =
1

2
[(f ∗ f)(−[p+ p]) + (f ∗ f)(p+ p)]

>
1

2
(f ∗ f)(−[p+ p]) + 0

≥ 0

where last line follows since f ≥ 0.
Thus p+ p is in the support of σ̂. Importantly, this function σ is defined in Bélisle et al. (1997)

such that σ̂ ≡ λ̂1 − λ̂2. Hence λ̂1(p + p) 6= λ̂2(p + p). λ1 and λ2 are essentially the measures µ
and ν we are constructing as our counterexamples (the only difference is that λ1 and λ2 are not
normalized to have measure one). Hence λ̂1 and λ̂2 are essentially just the characteristic functions
of the two measures µ and ν. So λ̂1(p + p) 6= λ̂2(p + p) implies that these characteristic functions
are different for projections passing through p + p. That is, their projections onto this axis are
different. Hence they have different marginal distributions of Zk.

Finally, consider the intercept A. If 0 ∈ supp(Z) then the distribution of A is point identified
from the distribution of Y | Z = 0. In this case we can also see how the above nonidentification
proof would no longer apply. For example, consider figure 5. If 0 ∈ supp(Z), then the cone would
cover the vertical axis, which would prevent us from choosing a K that overlaps with the the
vertical axis. On the other hand, if 0 /∈ supp(Z), then the above proof applies equally to the 1st
axis (corresponding to the intercept), thus showing that the marginal distribution of A is not point
identified in this case.

Proof of theorem 1. The Beran and Millar (1994) proof relied on the assumption that the random
coefficients had compact support, which implies that their characteristic function is analytic. As-
sumptions (3) and (4) are not sufficient for the characteristic function to be analytic, and hence
their proof by analytic continuation does not apply. I instead use the proof strategy from lemma
2. For simplicity I consider the case K1 = K2 = 1, where there is only one covariate per equation.
The multivariate case only requires additional notation. For any (t1, t2) ∈ R2, consider the linear
combination

t1Y1 + t2Y2 = t1A1 + t2A2 + t1Z1B1 + t2Z2B2.

If we consider the distribution of this linear combination conditional on (Z1, Z2) = (z1, z2), we see
that we are observing the distribution of the linear combination

t1A1 + t2A2 + t1z1B1 + t2z2B2.
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Put differently, the characteristic function of (Y1, Y2) | (Z1, Z2) is

φY1,Y2|Z1,Z2
(t1, t2 | z1, z2) = E[exp(i[t1Y1 + t2Y2]) | Z1 = z1, Z2 = z2]

= E[exp(i[t1A1 + t1Z1B1 + t2A2 + t2Z2B2]) | Z1 = z1, Z2 = z2]

= E[exp(i[t1A1 + t2A2 + t1z1B1 + t2z2B2]) | Z1 = z1, Z2 = z2]

= E[exp(i[t1A1 + t2A2 + t1z1B1 + t2z2B2])]

= φA1,A2,B1,B1(t1, t2, t1z1, t2z2).

Define
R ≡ {(t1, t2, t1z1, t2z2) ∈ R4 : (z1, z2) ∈ supp(Z1, Z2), t1, t2 ∈ R}.

Let F and F̃ denote observationally equivalent distributions of (A,B). Then

R ⊆ {(t1, t2, t1z1, t2z2) ∈ R4 : F`(t1,t2,t1z1,t2z2) = F̃`(t1,t2,t1z1,t2z2)}

where `(·) denotes a line in R4 and F`(·) the projection onto that line, both as defined in the proof
of lemma 2. The proof now continues exactly as in the proof of lemma 2. It concludes by noting
that R does not have Lebesgue measure zero because supp(Z1, Z2) contains an open ball in R2, and
thus R contains an open ball in R4. That concludes the proof of sufficiency of assumptions (1)–(4).

The proof of necessity of the moment conditions follows because the SUR model nests the single
equation model.

Finally, to see that functional relationships between components of (Z1, Z2) result in a lack of
point identification, I apply a counterexample from Cuesta-Albertos et al. (2007). Without loss of
generality it suffices to consider the case Z1 ≡ Z2; if the functional relationship is not the identity
then we can simply redefine our covariates to make it so. Likewise, it suffices to consider the case
where there is one covariate per equation, because the multivariate model nests the single-variate
model. Hence we consider the model

Y1 = A1 +B1Z

Y2 = A2 +B2Z,

where Z ≡ Z1 ≡ Z2. By a similar argument as above, we have

φY1,Y2|Z(t1, t2 | z) = φA1,A2,B1,B2(t1, t2, t1z, t2z)

for any t1, t2 ∈ R and z ∈ supp(Z). For simplicity assume supp(Z) = R; the lack of point identifica-
tion result holds even in this case. Thus we see that the characteristic function of (A1, A2, B1, B2)
is known on the set

R ≡ {(t1, t2, t1z, t2z) ∈ R4 : t1, t2 ∈ R, z ∈ supp(Z)}.

Define the homogeneous polynomial p : R4 → R by

p(x) = x1x4 − x2x3.

Then
R ⊆ {x ∈ R4 : p(x) = 0}.

To see this, let x ∈ R. Then there exists t1, t2 ∈ R and z ∈ supp(Z) such that (x1, x2, x3, x4) =
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(t1, t2, t1z, t2z). Hence

p(x) = x1x4 − x2x3

= t1t2z − t2t1z
= 0.

So x ∈ {x ∈ R4 : p(x) = 0}. Note that p is not identically zero. Thus R has R4-Lebesgue measure
zero by lemma 3. That is, the characteristic function of (A1, A2, B1, B2) is point identified only
on a set of measure zero. This is the key problem. The counterexample given in theorem 3.5
of Cuesta-Albertos et al. (2007) shows that knowledge of a characteristic function on such sets
(specifically, projective hypersurfaces) of measure zero is not sufficient to pin down the underlying
distribution. Indeed, they show that this is true even if we assumed the underlying distribution
has compact support. The lack of point identification of the joint distribution of (A1, A2, B1, B2)
follows.

Proof of theorem 2. The proof has three steps: (1) Identify the joint distribution of linear combina-
tions of the reduced form coefficients, (2) Identify the marginal distributions of γ1 | X and γ2 | X,
and (3) Show that A5 is necessary when supp(Z | X = x) is bounded.

1. Fix an x ∈ supp(X). For any z ∈ supp(Z | X = x), we observe the joint distribution of
(Y1, Y2) given Z = z,X = x, which is given by the reduced form system

Y1 =
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
+

β1

1− γ1γ2
z1 +

γ1β2

1− γ1γ2
z2

Y2 =
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
+

γ2β1

1− γ1γ2
z1 +

β2

1− γ1γ2
z2.

Define

π1 ≡ (π11, π12, π13) ≡
(
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
,

β1

1− γ1γ2
,

γ1β2

1− γ1γ2

)
π2 ≡ (π21, π22, π23) ≡

(
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
,

γ2β1

1− γ1γ2
,

β2

1− γ1γ2

)
.

For (t1, t2) ∈ R2, we have

t1Y1 + t2Y2 = (t1π11 + t2π21) + (t1π12 + t2π22)z1 + (t1π13 + t2π23)z2.

By A3, A4, and A5, we can apply lemma 2 to show that, for any z1 ∈ supp(Z1 | X = x), the
joint distribution of

([t1π11 + t2π21] + [t1π12 + t2π22]z1, t1π13 + t2π23)

given X = x is identified, for each (t1, t2) ∈ R2. Hence the distribution of t1π13 + t2π23 is
identified for each (t1, t2) ∈ R2. Likewise, the joint distribution of

([t1π11 + t2π21] + [t1π13 + t2π23]z2, t1π12 + t2π22)

given X = x is identified, for each (t1, t2) ∈ R2. Hence the distribution of t1π12 + t2π22 is
identified for each (t1, t2) ∈ R2.
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2. Consider the term t1π13 + t2π23. The distribution of this scalar random variable is identified
for each (t1, t2) ∈ R2, given X = x. By definition, the characteristic function of (π13, π23) is

φπ13,π23(t1, t2) = E[exp(i(t1π13 + t2π23))].

The right hand side is identified for each (t1, t2) ∈ R2 and hence the characteristic function
φπ13,π23 is identified. Thus the joint distribution of (π13, π23) is identified, given X = x.
Likewise, the joint distribution of (π12, π22) is identified, given X = x.

Since the joint distribution of

(π13, π23) =

(
β2

1− γ1γ2
γ1,

β2

1− γ1γ2

)
is identified, given X, lemma 6 implies that γ1 | X is identified.6 Likewise, since the joint
distribution of

(π12, π22) =

(
β1

1− γ1γ2
,

β1

1− γ1γ2
γ2

)
is identified, given X, lemma 6 implies that γ2 | X is identified.

3. Consider the following special case of system (1):

Y1 = γ1Y2 + U1

Y2 = β2Z2

where δ1, δ2, γ2, β1, U2 are all identically zero. Suppose β2 is a constant. Then this model is
really just a single equation model with exogeneity:

Y1 = γ1β2Z2 + U1

where β2 is a known constant. supp(Z | X = x) bounded implies that supp(Z2 | X = x) is
bounded. Suppose that A5 does not hold. Then the distribution of (γ1, U1) is not uniquely
determined by its moments. Hence the proof of lemma 2 shows that we can construct two
observationally equivalent distributions of (γ1, U1) which have distinct marginal distributions
of γ1.

Lemma 6. Let Y and X be random variables. Assume X does not have a mass point at zero.
Suppose the joint distribution of (Y X,X) is observed. Then the joint distribution of (Y,X) is
identified, and hence the distribution of Y is identified.

Proof of lemma 6. The distribution of X is identified directly from the observed marginal distri-

6Alternatively, note that γ1 = π13/π23. The distribution of the right hand side random variable is identified, and
thus γ1 is identified. Lemma 6 simply makes this argument more formal by showing how to write the cdf of γ1 directly
in terms of observed cdfs. A similar argument applies to γ2 = π22/π12.
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bution of (Y X,X). Next, we have

P(Y X ≤ yx | X = x) = P(Y x ≤ yx | X = x)

=


P(Y ≤ y | X = x) if x > 0

1 if x = 0

P(Y ≥ y | X = x) if x < 0.

Thus, for x > 0,
P(Y ≤ y | X = x) = P(Y X ≤ yx | X = x)

and, for x < 0,

P(Y ≤ y | X = x) = 1− P(Y X ≤ yx | X = x) + P(Y X = yx | X = x).

So FY |X(y | x) = P(Y ≤ y | X = x) is identified for all x 6= 0. Consequently, for t > 0,

FY,X(y, t) = P(Y ≤ y,X ≤ t)

=

∫ t

−∞
FY |X(y | x)dFX(x)

=

∫
{t>x>0}

FY |X(y | x)dFX(x) +

∫
{x<0}

FY |X(y | x)dFX(x) +

∫
{x=0}

FY |X(y | x)dFX(x)

=

∫
{t>x>0}

FY |X(y | x)dFX(x) +

∫
{x<0}

FY |X(y | x)dFX(x),

where the second line follows by iterated expectations and the fourth line follows since X does not
have a mass point at zero. The last line is identified. The result is analogous for t ≤ 0. Hence FY,X
is identified.

Proof of proposition 1. I suppress conditioning on X everywhere. Here we show that A6 implies
A5.2, (π1, π2) is uniquely determined by its moments. As discussed earlier, this is also sufficient for
the existence of all absolute moments. Petersen (1982, theorem 3, page 363) showed that, for an
arbitrary random vector Y , if the coordinate random variables Yj are uniquely determined by their
moments, then Y is uniquely determined by its moments. Thus it suffices to show that each of the
components of (π1, π2) are separately uniquely determined by their moments. I will only consider
the three components π11, π12, π13; the proof for the components of π2 is analogous.

The moment generating function of π12 is, for small enough t > 0,

MGFπ12(t) = E[exp(tπ12)]

= E[exp(tβ1/(1− γ1γ2))]

=

∫
β1≥0

exp

(
tβ1

1

1− γ1γ2

)
dFβ1,γ1,γ2 +

∫
β1<0

exp

(
tβ1

1

1− γ1γ2

)
dFβ1,γ1,γ2

≤
∫
β1≥0

exp ([t/τ ]β1) dFβ1,γ1,γ2 +

∫
β1<0

exp ([−t/τ ]β1) dFβ1,γ1,γ2

≤ MGFβ1(−t/τ) + MGFβ1(t/τ)

<∞

where the fourth line follows by A6.1 and the last line since the MGF of β1 exists by A6.2 and lemma
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8. An analogous argument holds for small enough t < 0. Thus the moment generating function
of π12 exists in a neighborhood of zero and hence π12 is uniquely determined by its moments. An
analogous argument shows that the moment generating function of π13 exists in a neighborhood of
zero, since the MGF of β1γ2 | X exists in a neighborhood of zero by A6.2 and lemma 8.

Finally, consider the moment generating function of π11:

MGFπ11(t) = E[exp(tπ11)]

= E
[
exp

(
t

[
1

1− γ1γ2
U1 +

1

1− γ1γ2
(γ1U2) +

1

1− γ1γ2
δ′1x+

1

1− γ1γ2
(γ1δ2)′x

])]
.

A similar argument to above splits the support of the random coefficients into 24 = 16 pieces,
one for each combination of signs of the four terms U1, γ1U2, δ

′
1x, (γ1δ2)′x, and then uses A6.1 to

eliminate the denominator term. That leaves us with a sum of the moment generating function
of (U1, γ1U2, δ1, γ1δ2) evaluated at various points. For small enough t, each of these MGFs ex-
ists by assumption A6.2 and lemma 8. Thus the moment generating function of π11 exists in a
neighborhood of zero and hence π11 is uniquely determined by its moments.

Proof of proposition 2. Suppress conditioning on X.

1. Suppose assumption A6.2′ holds. Then it follows immediately from lemmas 7 and 8 below
that A6.2 holds.

2. Next suppose assumption A6.2′′ holds. That A6.2 holds follows by a proof similar to that of
proposition 1 above. For t > 0, the MGF

MGFβ2γ1(t) = E[exp(tβ2γ1)]

can be written as a sum of two pieces depending on the sign of β2, at which point γ1 can
be replaced by either M or −M . The result then follows since the MGF of β2 exists in a
neighborhood of zero. Likewise for β1γ2, (U1, δ1, γ1U2, γ1δ2), and (U2, δ2, γ2U1, γ2δ1).

Lemma 7. Let X and Y be random variables with sub-Gaussian tails. Then XY has subexpo-
nential tails.

Proof of lemma 7. Let t > 0. We have

P(|XY | > t) ≤ P(|X| >
√
t) + P(|Y | >

√
t)

≤ Cx exp[−cx(
√
t)2] + Cy exp[−cy(

√
t)2]

= Cx exp(−cxt) + Cy exp(−cyt)
≤ (Cx + Cy) exp(−min{cx, cy}t)
≡ C exp(−ct).

Lemma 8. Let X1, . . . , Xn be random variables with subexponential tails. Then the moment
generating function of (X1, . . . , Xn) exists in a neighborhood of zero.
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Proof of lemma 8. This result is related to Peterson’s (1982) result that if the components of a
random vector are uniquely determined by their moments then the vector itself is uniquely deter-
mined by its moments. The MGF existing in a neighborhood of zero implies that the distribution
is uniquely determined by its moments, but the converse does not hold. Hence the current lemma
is not exactly the same as Peterson’s result, because it makes a stronger assumption, but obtains
a stronger conclusion.

We already know that the result is true for a single random variable; n = 1 (e.g., this can be
shown using the same idea as the following). Hence the purpose of this lemma is to show that it is
also true for a vector of random variables. It suffices to show the result holds for just two random
variables X and Y ; the general case extends immediately.

Let t1, t2 ∈ R be nonzero. The MGF of (X,Y ) is

MGFX,Y (t1, t2) = E[exp(t1X + t2Y )]

=

∫ ∞
0

P[exp(t1X + t2Y ) > s] ds

=

∫ 1

0
P[exp(t1X + t2Y ) > s] ds+

∫ ∞
1

P[exp(t1X + t2Y ) > s] ds

≤ 1 +

∫ ∞
1

P[exp(t1X + t2Y ) > s] ds

= 1 +

∫ ∞
1

P[t1X + t2Y > log(s)] ds.

The second line follows since exp(t1X + t2Y ) is a nonnegative random variable. Next we note that
any linear combination of X and Y also has subexponential tails:

P(|t1X + t2Y | > s) ≤ P(|t1X| > s/2) + P(|t2Y | > s/2)

= P
(
|X| > s

2|t1|

)
+ P

(
|Y | > s

2|t2|

)
≤ Cx exp

(
−cx

s

2|t1|

)
+ Cy exp

(
−cy

s

2|t2|

)
≤ (Cx + Cy) exp

(
−min

{
cx

2|t1|
,
cy

2|t2|

}
s

)
.

Thus

MGFX,Y (t1, t2) ≤ 1 + C

∫ ∞
1

exp

(
−min

{
cx

2|t1|
,
cy

2|t2|

}
log(s)

)
ds

= 1 + C

∫ ∞
1

s
−min

{
cx

2|t1|
,

cy
2|t2|

}
ds.

If t1 and t2 are both very small, then the exponent

min

{
cx

2|t1|
,
cy

2|t2|

}
will be very large, and hence the integral will be finite, because∫ ∞

1

1

xp
dx <∞
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for any p > 1. Thus MGFX,Y (t1, t2) exists in an R2-neighborhood of (0, 0).

Derivations regarding stability of the equilibrium. Let

C = BZ +DX + U.

Let Y denote the equilibrium value, Y = ΓY + C. Then

Yt = ΓYt−1 + C

= ΓYt−1 + Y − ΓY

which implies
(Yt − Y ) = Γ(Yt−1 − Y )

or Ỹt = ΓỸt−1 where Ỹt = Yt − Y is the deviation from equilibrium. The characterization of global
stability now follows immediately from the fact that Ỹt → 0 if and only if all eigenvalues of Γ have
moduli smaller than 1, which is part (ii) of theorem 4.13 on page 187 of Elaydi (2005). In the
present two equation system, we can go further and obtain the explicit characterization that global
stability holds if and only if |γ1γ2| < 1 by applying equation 4.3.9 on page 188 of Elaydi (2005).

Proof of theorem 3. The proof strategy follows the same two steps as in the proof of theorem 2.

1. Use lemma 1 instead of lemma 2 to identify the joint distribution of

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)

given X = x. This step uses A3 and A4′.

2. As in theorem 3.

Proof of proposition 3. Throughout the proof we condition all statements on X = x for some
x ∈ supp(X). There are four steps to the proof: (1) Recall the results on identification of the
distribution of reduced form coefficients from the proof of theorems 2 and 3, (2) show that the ratio
β1/β2 is identified, (3) show that the joint distribution of (γ1, γ2) | X = x is identified, and finally
(4) show that (β1, β2) are identified.

1. From the proof of either theorem 1 or 2, we know that the joint distribution of the reduced
form coefficients

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)

given X = x is identified, for each (t1, t2) ∈ R2, where we used that supp(Z1, Z2 | X) contains
an open ball in R2. In particular, this implies that the marginal distributions of π12 and of
π13 given X = x are identified.

2. Next I show that the scale β1/β2 is identified. This would be immediate if the joint distribution
of (π12, π13) was known at this step, but it is not. Instead, observe that if sign(β1/β2) > 0
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then

Fπ12

(
t
β1

β2

)
= P

(
β1

1− γ1γ2
≤ tβ1

β2

)
= P

(
β2

β1

β1

1− γ1γ2
≤ t
)

= P
(

β2

1− γ1γ2
≤ t
)

= Fπ13(t) all t ∈ R,

whereas if sign(β1/β2) < 0 then

Fπ12

(
t
β1

β2

)
= P

(
β1

1− γ1γ2
≤ tβ1

β2

)
= P

(
β2

β1

β1

1− γ1γ2
≥ t
)

= P
(

β2

1− γ1γ2
≥ t
)

= 1− Fπ13(t) + P(π13 = t) all t ∈ R.

Suppose that the sign of β1/β2 is identified. I will show that this implies that β1/β2 itself is
identified. First suppose sign(β1/β2) > 0. Then, by the calculations above,

Fπ12

(
t
β1

β2

)
= Fπ13(t) all t ∈ R.

Let r ∈ R be such that
Fπ12(tr) = Fπ13(t) all t ∈ R.

Such an r exists, since r = β1/β2 satisfies the above equation. I will show that r is unique,
and hence r = β1/β2 is identified. Suppose by way of contradiction that there is some r̃ 6= r
with

Fπ12(tr̃) = Fπ13(t) all t ∈ R.

Suppose without loss of generality that r̃ > r. Then

Fπ12(tr) = Fπ12(tr̃) all t ∈ R.

If π12 has some continuous variation, then there is some point t̄ 6= 0, so that Fπ12 is invertible
in a neighborhood of t̄. By inverting Fπ12 around that t̄, we must have r = r̃, a contradiction.
If π12 has no continuous variation, then π12 is discretely distributed. Let s denote a support
point. Let t̄ = s/r̃. Then

Fπ12(t̄r̃) = P(π12 ≤ s)

> P
(
π12 ≤ s

r

r̃

)
= Fπ12(t̄r)

where the second line follows since r/r̃ < 1 and s is a support point of the discretely distributed
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π12. This is a contradiction to Fπ12(t̄r̃) = Fπ12(t̄r) for all t̄ ∈ R.

Next suppose that sign(β1/β2) < 0, so that

Fπ12

(
t
β1

β2

)
= 1− Fπ13(t) + P(π13 = t) all t ∈ R.

Let r ∈ R be such that

Fπ12(tr) = 1− Fπ13(t) + P(π13 = t) all t ∈ R.

Such an r exists since β1/β2 satisfies this equation. Let r̃ 6= r also satisfy this equation. Then

Fπ12(tr) = Fπ12(tr̃) all t ∈ R.

Now proceed as above. Thus, if the sign of β1/β2 is identified, the magnitude of β1/β2 is
identified.

Next I show that assumption (ii) implies the sign of β1/β2 is identified. Note that

Fπ12(0) = P
(
β1

1

1− γ1γ2
≤ 0

)
=

{
P[1/(1− γ1γ2) ≤ 0] if β1 > 0

1− P[1/(1− γ1γ2) < 0] if β1 < 0

and

Fπ23(0) = P
(
β2

1

1− γ1γ2
≤ 0

)
=

{
P[1/(1− γ1γ2) ≤ 0] if β2 > 0

1− P[1/(1− γ1γ2) < 0] if β2 < 0.

Thus sign(β1/β2) > 0 implies Fπ12(0) = Fπ23(0). Moreover, sign(β1/β2) < 0 implies Fπ12(0) 6=
Fπ23(0). To see this, suppose by way of contradiction that Fπ12(0) = Fπ23(0). Then, since
sign(β1/β2) < 0,

P[1/(1− γ1γ2) ≤ 0] = 1− P[1/(1− γ1γ2) < 0],

which is equivalent to

P[1/(1− γ1γ2) ≤ 0] + P[1/(1− γ1γ2) ≤ 0] = 1,

since the strictly inequality becomes a weak inequality due to P[1/(1− γ1γ2) = 0] = 0, which
holds by A1. This, in turn, implies P[1/(1 − γ1γ2) ≤ 0] = 1/2. But this is a contradiction
since

P
(

1

1− γ1γ1
≤ 0

)
= P(1− γ1γ1 ≤ 0)

= P(γ1γ2 ≥ 1)

6= 1

2
by assumption (ii).

Thus, sign(β1/β2) > 0 if and only if Fπ12(0) = Fπ23(0).

3. I thank Daniel Wilhelm for suggesting the following analysis. By step 1, the joint distribution
of

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)
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is identified. Thus we know the joint characteristic function of the second and third compo-
nents:

φt1π12+t2π22,t1π13+t2π23(s1, s2) = E
(

exp
(
i
[
s1(t1π12 + t2π22) + s2(t1π13 + t2π23)

]))
.

The key step now is to observe that

π23 = π12
β2

β1

and hence

φt1π12+t2π22,t1π13+t2π23(s1, s2) = E
(

exp

(
i

[
s1(t1π12 + t2π22) + s2

(
t1π13 + t2π12

β2

β1

)]))
= E

(
exp

(
i

[(
s1t1 + s2t2

β2

β1

)
π12 + s1t2π22 + s2t1π13

]))
= φπ12,π22,π13

(
s1t1 + s2t2

β2

β1
, s1t2, s2t1

)
.

We will show that for a set of (x1, x2, x3) ∈ R3 of positive Lebesgue measure, there exists
(s1, s2, t1, t2) ∈ R4 such that

(x1, x2, x3) =

(
s1t1 + s2t2

β2

β1
, s1t2, s2t1

)
Consequently the characteristic function of (π12, π22, π13) is known on a set of positive Lebesgue
measure. Hence, by an argument identical to the proof of lemma 2, this shows that the joint
distribution of (π12, π22, π13) is identified. Thus the joint distribution of

(γ1, γ2) =

(
π13

π12

β1

β2
,
π22

π12

β1

β2

)
is identified.

It remains to be shown that such (s1, s2, t1, t2) exist. Let s1 = x2/t2 and s2 = x3/t1, for
(t1, t2) nonzero, to be defined shortly. This choice of (s1, s2) ensures that x2 = s1t2 and
x3 = s2t1. We now must pick t1, t2 ∈ R to satisfy

x1 = s1t1 + s2t2
β2

β1

= x2
t1
t2

+
β2

β1
x3
t2
t1
.

Equivalently, our choice of t1, t2 must satisfy

0 = (−x1)t1t2 + (x2)t21 +

(
β2

β1
x3

)
t22.
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For any fixed t2, this is a quadratic equation in t1, and hence its solutions are

t1 =
x1t2
2x2
±
√
t22(x2

1 − 4x2x3β2/β1)

2x2
.

Regardless of the value of t2, the solutions for t1 are real if and only if x2
1 ≥ 4x2x3β2/β1. Since

our choice of t2 doesn’t affect the existence of a real solution to t2, it can be chosen arbitrarily;
say t2 = 1. The set of (x1, x2, x3) for which x2

1 ≥ 4x2x3β2/β1 holds has positive measure. For
example, if β2/β1 > 0 it includes the quadrant {(x1, x2, x3) ∈ R3 : x2 < 0, x3 > 0}.

4. Next I show that (β1, β2) are point identified. By assumption (iv), the mean of the reduced
form coefficients exists:

E(π12) = E
(

β1

1− γ1γ2

)
= β1E

(
1

1− γ1γ2

)
.

The term E[1/(1−γ1γ2)] is identified since the joint distribution of (γ1, γ2) is identified. Thus

β1 =
E(π12)

E[1/(1− γ1γ2)]

and hence is identified. This plus identification of the ratio β1/β2 implies that β2 is identified.
Note that if the nonzero mean part of assumption (iv) is dropped, but we assume additionally
that E(π2

12) <∞, then the magnitudes |β1| and |β2| can still be identified by

E(π2
12) = β2

1E
(

1

(1− γ1γ2)2

)
,

where now we know that the expectation on the right hand side must be nonzero.

Proof of proposition 4. Identification of the joint distribution of (γ1β2, β2) follows from the proof
of theorem 3. The result then follows by applying lemma 6.

Proposition 5. Suppose one of the following holds.

1. P[sign(γ1) 6= sign(γ2) | X] = 1.

2. P(|γi| < τi | X) = 1 for some 0 < τi < 1, for i = 1, 2.

Then A6.1 and A1 hold. Assumption (ii) in proposition 3 also holds.

Proof of proposition 5. Suppress conditioning on X. In all cases I will show that there is a τ ∈ (0, 1)
such that P[γ1γ2 ∈ (1−τ, 1+τ)] = 0, which is equivalent to A6.1. Moreover, note that A6.1 implies
A1.

1. Since the sign of γ1 and γ2 are not equal with probability one, P(γ1γ2 < 0) = 1. Let τ be any
number in (0, 1). Then 1− τ > 0 and so P(γ1γ2 ≤ 1− τ) = 1. Hence P[γ1γ2 ∈ (1− τ, 1+ τ)] ≤
P[γ1γ2 > 1 − τ ] = 0. Thus A6.1 holds. Assumption (ii) holds since P(γ1γ2 ≤ 1) = 1 6= 1/2.
Assumption (iv) holds since P(γ1γ2 < 0) = 1 implies P(1 − γ1γ2 > 0) = 1 and hence
1/(1− γ1γ2) > 0 with probability one, so its mean cannot be zero. Finally, 1− γ1γ2 ≥ 1 wp1
so 1/(1− γ1γ2) ≤ 1 wp1. So the mean exists.

67



2. By assumption there are τ1, τ2 ∈ (0, 1) such that P(|γ1| ≤ τ1) = 1 and P(|γ2| ≤ τ2) = 1. Let
τ̃ = max{τ1, τ2} < 1. Thus the support of (γ1, γ2) lies within the rectangle [−τ̃ , τ̃ ]2, as shown
in figure 6.

-2 -1 1 2
Γ1

-2

-1

1

2
Γ2

Figure 6: The solid rectangle is the boundary of [−τ̃ , τ̃ ]2. The dotted rectangle is the boundary of [−1, 1]2.
The line γ1γ2 = 1 is plotted.

So P(γ1γ2 ≤ τ̃2) = 1. Let τ = 1− τ̃2 ∈ (0, 1). Then

P(γ1γ2 ≤ 1− τ) = P(γ1γ2 ≤ τ̃2) = 1.

Hence P[γ1γ2 ∈ (1− τ, 1 + τ)] ≤ P[γ1γ2 > 1− τ ] = 0. Thus A6.1 holds. Assumption (ii) holds
since P(γ1γ2 ≤ 1) ≥ P(γ1γ2 ≤ 1−τ) = 1 6= 1/2. Assumption (iv) holds since P(γ1γ2 ≤ τ̃2) = 1
and τ̃2 < 1 implies P(1− γ1γ2 > 0) = 1 and hence 1/(1− γ1γ2) > 0 with probability one, so
its mean cannot be zero. Finally, 1− γ1γ2 ≥ τ wp1 implies 1/(1− γ1γ2) ≤ 1/τ so the mean
exists.

Proof of theorem 5. I first outline the main argument, and then provide the formal justification for
each step at the end. The system

Yi =
γi

N − 1

∑
j 6=i

Yj + βiZi + Ui,

for i = 1, . . . , N , can be written in matrix form as

Y = ΓY +BZ + U,
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where

Γ =



0
γ1

N − 1
· · · · · · γ1

N − 1
γ2

N − 1
0

γ2

N − 1
· · · γ2

N − 1
...

...
. . .

...
...

...
... · · · . . .

γN−1

N − 1
γN

N − 1

γN
N − 1

· · · γN
N − 1

0


and

B =


β1 0 · · · 0

0 β2
...

...
... · · · . . .

...
0 · · · · · · βN

 .

The reduced form system is
Y = Γ̃−1BZ + Γ̃−1U,

where

Γ̃ ≡ I − Γ =



1 − γ1

N − 1
· · · · · · − γ1

N − 1
− γ2

N − 1
1 − γ2

N − 1
· · · − γ2

N − 1
...

...
. . .

...
...

...
... · · · . . . − γN−1

N − 1
− γN
N − 1

− γN
N − 1

· · · − γN
N − 1

1


.

The inverse of this matrix can be written as

Γ̃−1 =
C ′

det(Γ̃)

where C is the matrix of cofactors. The key observation for the proof is that the rows of Γ̃ each
depend on a single random variable, γi for row i. Consider the vector of coefficients on Zi. This is
the ith column of Γ̃−1B. The element on the kth row of the ith column is

(Γ̃−1)ki =
1

det(Γ̃)
(C ′)ki =

1

det(Γ̃)
(C)ik =

1

det(Γ̃)
(−1)i+kMik,

where Mik is the (i, k)th-minor, the determinant of the matrix obtained by deleting row i and
column k of Γ̃. Let

Π = Γ̃−1B.

Then
πki ≡ (Π)ki = det(Γ̃)

−1
(−1)i+kMikβi

is the coefficient on Zi in the kth equation. By the same argument as in the two equation case, the
joint distribution of reduced form coefficients (π1i, . . . , πNi) on the ith instrument is point identified,
for all i = 1, . . . , N .

By the structure of Γ̃, when row i is deleted, γi no longer appears in the remaining submatrix.
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Consequently, except for inside the determinant term, every reduced form coefficient on Zi depends
only on the N − 1 random coefficients {γk : k 6= i}.

Thus by dividing the coefficient on Zi in the ith equation, πii, into the coefficient on Zi in all
other equations k 6= i, πki, the determinant and βi terms cancel, since they are common to all
coefficients, and we obtain an (N − 1)-dimensional random vector which is a function of the N − 1
structural random coefficients {γk : k 6= i}:(

π1i

πii
, . . . ,

πki
πii

, . . . ,
πNi
πii

)
,

where k = i is not included, and

πki
πii

=
(−1)i+kMik

(−1)2iMii
for k = 1, . . . , N , k 6= i. (10)

Temporarily thinking of the reduced form parameters as constants, equation (10) is a system of
(N − 1) equations in (N − 1) unknowns, {γk : k 6= i}. The unique solution to this system of
equations is

γk =
(N − 1)(πki/πii)

1 +
∑

j 6=k,j 6=i(πji/πii)

for k = 1, . . . , N , k 6= i. This mapping from the parameters {πki/πii : k 6= i} to {γk : k 6= i}
is one-to-one and differentiable and hence the joint distribution of {γk : k 6= i} can be written in
terms of the joint distribution of {πki/πii : k 6= i} via the change of variables formula (e.g., Munkres
(1991) theorem 17.2). Hence the joint distribution of {γk : k 6= i} is point identified.

The same argument can be applied to the coefficients on Zj for any j 6= i to obtain the joint
distribution of {γi : i 6= j}, which concludes the main outline of the proof.

The proof is finished by providing formal justification for the steps above. I will show that

1. The reduced form matrix is invertible with probability 1.

2. The distribution of reduced form parameters satisfy the moment conditions needed to apply
lemma 2 to identify the distribution of reduced form parameters in the single equation model
for the linear combination t1Y1 + · · ·+ tNYN , where t1, . . . , tN ∈ R.

3. The diagonal elements πii are nonzero with probability one, so that the ratio random variables
πki/πii are well-defined.

4. The denominator of the mapping from the ratios of the reduced form coefficients to the
structural parameters is bounded away from zero with probability one, which both ensures
that this unique solution to the system (10) exists and that the mapping is differentiable on
its domain, which is sufficient to apply the change-of-variables theorem, since the mapping
is rational (the ratio of two polynomials) and hence is differentiable everywhere where the
denominator is not zero.

Let ‖ · ‖∞ be the maximum row-sum matrix norm:

‖A‖∞ ≡ max
1≤i≤L

L∑
j=1

|aij |.
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For the ith row of Γ,

L∑
j=1

|(Γ)ij | ≤
(

τ

N − 1
+ · · ·+ τ

N − 1

)
= τ

where the first line follows since |γi| ≤ τ for all i, and the last line follows since we’re summing up
N − 1 different terms. Hence ‖Γ‖∞ ≤ τ < 1. Thus lemma 9 implies that I −Γ is invertible. Hence
P(det(I − Γ) = 0) = 0. Next,

‖(I − Γ)−1‖∞ ≤
1

1− ‖Γ‖∞

≤ 1

1− τ
<∞.

The first line follows by the third exercise following corollary 5.6.16 on page 351 of Horn and
Johnson (2013). The second follows since ‖Γ‖∞ ≤ τ . Since we’re using the maximum row-sum
norm, this implies that the absolute value of each element of (I − Γ)−1 is bounded. Hence the
reduced form coefficients are bounded and hence all of their moments exist and their distribution
is uniquely determined by these moments.

Next we consider the structure of the matrix of reduced form coefficients, (I − Γ). It is helpful
to derive the results for the slightly more general matrix

An =


1 −a1 · · · −a1

−a2 1 . . . −a2
...

...
. . .

...
−an −an · · · 1


with the main case of interest being ak = γk/(N − 1) and n = N . As a running example, consider

A3 =

 1 −a1 −a1

−a2 1 −a2

−a3 −a3 1

 .

The determinant of An is

det(An) = 1−

(∑
i1<i2

ai1ai2 + 2
∑

i1<i2<i3

ai1ai2ai3 + · · ·+ (n− 1)
∑

i1<···<in

ai1 · · · ain

)
.

The first sum on the right hand side is the sum of all possible products of two elements from
{a1, . . . , an} (where order does not matter). The second sum is the the sum of all possible products
of three elements from {a1, . . . , an}. Likewise for the rest of the sums. For example,

det(A3) = 1− a1a2 − a1a3 − a2a3 − 2a1a2a3.

The diagonal element [A−1
n ]i,i is the determinant of the submatrix of An with row i and column i

deleted, divided by the determinant of An. This submatrix has the same form as An and hence
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its determinant has the same form, just with the element ai omitted from all summations. For
example,

det(A3)[A−1
3 ]1,1 = 1− a2a3.

The off diagonal elements [A−1
n ]i,j , i 6= j, have a similar structure:

det(An)[A−1
n ]i,j =

ai

1 +
∑

k:k 6=i,j
ak +

∑
k1<k2:k1,k2 6=i,j

ak1ak2 + · · ·+
∑

k1<···<kn−2:k1,...,kn−2 6=i,j
ak1 · · · akn−2

 .

The first sum on the right hand side is the sum of all elements from {a1, . . . , an} \ {ai, aj}. The
second sum is the sum of all products of two elements from {a1, . . . , an} \ {ai, aj} (where the order
of the product doesn’t matter). Likewise up through the last sum. For example,

det(A3)[A−1
3 ]2,1 = a2(1 + a3).

Using these formulas for the elements of A−1
n , for any i and k, k 6= i,

det(An)

[A−1
n ]ii +

∑
j 6=k,j 6=i

[A−1
n ]ji


= 1 +

∑
`: 6̀=i,k

a` +
∑

`1<`2:`1,`2 6=i,k
a`1a`2 + · · ·+

∑
`1<···<`n−2:`1,...,`n−2 6=i,k

a`1 · · · a`n−2

=
1

ak
det(An)[A−1

n ]ki.

For example, for n = 3, i = 1 and k = 2,

det(A3)

[A−1
3 ]11 +

∑
j 6=2,j 6=1

[A−1
n ]ji

 = det(A3)([A−1
3 ]11 + [A−1

3 ]31)

= det(A3)([1− a2a3] + [a3(1 + a2)])

= det(A3)(1 + a3)

=
1

a2
det(A3)a2(1 + a3)

=
1

a2
det(A3)[A−1

3 ]21.

Hence for any i and k, k 6= i,

ak =
det(An)[A−1

n ]ki

det(An)
(

[A−1
n ]ii +

∑
j 6=k,j 6=i[A

−1
n ]ji

)
which is the same form of the mapping from the reduced form coefficients to the structural coeffi-
cients given above, where note that we can divide both the numerator and denominator by [A−1

n ]ii
to put the right hand side in terms of ratios of off-diagonal elements to diagonal elements, and we
used the notation

πij = [A−1
n ]ij
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and
ak =

γk
N − 1

.

This shows how to derive the mapping from the elements of the inverse matrix to the elements of
the original matrix (i.e., from the reduced form parameters to the structural coefficients). Next,
letting n = N and noting that ak = γk/(n − 1) ≤ τ/(n − 1) the numerator of the ith diagonal
component of A−1

n is

det(An)πii = det(An)[A−1
n−1]ii

≥ 1−

((
n− 1

2

)(
τ

n− 1

)2

+ 2

(
n− 1

3

)(
τ

n− 1

)3

+ · · ·+ ([n− 1]− 1)

(
n− 1

n

)(
τ

n− 1

)n−1
)

= 1−
n−1∑
k=2

(
n− 1

k

)
(k − 1)

(
τ

n− 1

)k

=

(
n− 1

0

)(
τ

n− 1

)0

+

n−1∑
k=2

(
n− 1

k

)(
τ

n− 1

)k
−
n−1∑
k=2

k

(
n− 1

k

)(
τ

n− 1

)k

=

n−1∑
k=0

(
n− 1

k

)(
τ

n− 1

)k
− 1

(
n− 1

1

)(
τ

n− 1

)1

−
n−1∑
k=2

k

(
n− 1

k

)(
τ

n− 1

)k

=
n−1∑
k=0

(
n− 1

k

)(
τ

n− 1

)k
−
n−1∑
k=0

k

(
n− 1

k

)(
τ

n− 1

)k
> 0

where in the first line An−1 is stands for the submatrix of An with the ith row and column of An
deleted, and the last line follows since

n∑
k=0

k

(
n

k

)( τ
n

)k
<

n∑
k=0

(
n

k

)( τ
n

)k
holds for all τ ∈ (0, 1) and all n (it’s important here that the indexing starts at k = 0). This
argument also shows that det(An) > 0. These statements all hold with probability one over the
distribution of the γi’s. Thus P(πii > 0) = 1 (and in fact we’ve shown that it’s actually strictly
bounded away from zero).

Finally, consider the denominator

det(An)

[A−1
n ]ii +

∑
j 6=k,j 6=i

[A−1
n ]ji


= 1 +

∑
`: 6̀=i,k

a` +
∑

`1<`2:`1,`2 6=i,k
a`1a`2 + · · ·+

∑
`1<···<`n−2:`1,...,`n−2 6=i,k

a`1 · · · a`n−2 .

The domain of this function is [−τ/(n − 1), τ/(n − 1)]n−2, τ ∈ (0, 1). This function is strictly
increasing in each component over this domain. Hence it is minimized at a` = −τ/(n − 1), which
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gives

det(An)

[A−1
n ]ii +

∑
j 6=k,j 6=i

[A−1
n ]ji

 ≥ 1 +
n−2∑
k=1

(
n− 2

k

)(
τ

n− 1

)k
(−1)k

= 1 +

n−2∑
k=1

(
n− 2

k

)(
−τ
n− 1

)k

= 1 +
n−2∑
k=0

(
n− 2

k

)(
−τ
n− 1

)k
− 1

=

(
1− τ

n− 1

)n−2

> 0

where the fourth line follows by the binomial theorem and the last line since τ/(n− 1) < 1. Hence
the denominator of our mapping from reduced form coefficients to structural coefficients is strictly
positive and bounded away from zero with probability 1.

Lemma 9. Let Γ be such that ‖Γ‖ < 1, where ‖ · ‖ is any matrix norm. Then (I −Γ) is invertible,∑∞
k=0 Γk converges, and

(I − Γ)−1 =
∞∑
k=0

Γk.

Proof of lemma 9. See the first exercise following corollary 5.6.16 on page 351 of Horn and Johnson
(2013).

Proof of theorem 6. This result follows from a minor generalization of the proof of theorem 5.
Recall that Nj = |N (j)| and 1ji = 1[i ∈ N (j)]. Our structural system can be written as

Y = ΓY +BZ + U,

where

Γ =



0
γ1

N1
112 · · · · · · γ1

N1
11N

γ2

N2
121 0

γ2

N2
123 · · · γ2

N2
12N

...
...

. . .
...

...
...

... · · · . . .
γN−1

NN−1
1N−1,N

γN
NN

1N,1
γN
NN

1N,2 · · · γN
NN

1N,N−1 0


.

This is basically the vector  γ1/N1
...

γN/NN


replicated N times and then element-wise multiplied against the adjacency matrix. In general, for
j = 1, . . . , N , j 6= i,

γj =
Nj(πji/πii)

1ji +
∑

k 6=j,k 6=i 1jk(πki/πii)
.
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In the classical linear-in-means case, this formula simplifies to the one obtained in the proof of
theorem 5 since 1ji = 1 for all distinct i, j. The assumption that Nj ≥ 1 with probability one
ensures that this denominator is never zero. This assumption also ensures that for person j, there
is some other person i who directly affects j. This implies that πji, the reduced form effect of
person i’s covariate Zi on person j, is nondegenerate, which is necessary to recover γi. Note that
in the linear-in-means case, πji nondegenerate is guaranteed by the assumption that everyone in
the reference group affects j. The remainder of the proof follows as in the proof of theorem 5.
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