Estimating a Collective Household Model with Survey Data on Financial Satisfaction

Rob Alessie (Groningen)

Thomas Crossley (Cambridge and IFS)

Vincent Hildebrand (York and CEPS/INSTEAD)

October 2008

Outline

- Motivation
- Data
 - The European Community Household Panel, sample, descriptive analysis
- Model
 - Preferences, household consumption technology, sharing rule
- Econometric Issues
 - Recovering structural parameters; unobserved heterogeneity
- Estimates
 - Reduced form, structural parameters
- Discussion
 - Applications

Motivation

- The big questions:
 - How large are the returns to scale in household consumption?
 - How are resources allocated within households of multiple individuals?
- Applications
 - Inequality, poverty
 - Benefits (how much? too whom?)
 - Life insurance
 - The effects of divorce law on divorced and married women
 - Tax policy

Background

- The unitary model
 - Runs counter to methodological individualism
 - Has empirical implications that are rejected by the data (income pooling)
- The collective approach
 - Is the leading class of intra-household model
 - Assumes only efficiency of intra-household decisions
 - With restrictions on preferences, implies "sharing rules" (decentralization)

Background

- Identification and estimation of intrahousehold models is difficult
 - Assignable goods
 - Leisure? Male and female clothing?
 - Browning, Chiappori and Lewbel (2003)
 - egoistic preferences
 - Demand patterns

This paper:

- Use survey data on financial satisfaction to estimate a collective intra-household model
 - Different identifying assumptions
 - Computationally manageable/modest data requirements

---- applications

Related Literature

- General "happiness" research (Frey and Stutzer, 2002)
- Equivalence Scales
 - "Leyden" approach
 - Schwarze (2003), Kuklys (2003)
- Intra-household
 - Bonke and Browning (2003)

Data: The European Community Household Panel

- Micro data on living standards in European Countries
- **1994-2001**
- 130,000 adults in 60,000 households
- Some "harmonized" national surveys
- Data from most, but not all, countries suitable for our purposes

Data: Sample

- Individuals living as a single person or as member of a couple without children ("cohabiting")
- Deleted small numbers of cases: same sex couples, zero household income, no usable financial satisfaction response

Financial Satisfaction

- How satisfied are you with your present financial situation?
 - Not at all satisfied
 - Largely unsatisfied
 - Mildly unsatisfied
 - 4. Mildly satisfied
 - Largely satisfied
 - Fully satisfied

Table 1: Distribution of Financial Satisfaction, Singles and Couples (no children), ECHP 1994-2001 (column %)

	Single Men	Single	Cohabiting	Cohabiting
	Single Wen	Women	Men	Women
			erlands	women
4				
very dissatisfied	3.7	5.8	1.2	1.0
dissatisfied	7.4	9.6	2.7	2.3
A bit dissatisfied	13.3	16.7	8.0	7.2
A bit satisfied	24.7	26.0	23.7	20.7
Satisfied	35.9	29.7	44.4	45.2
Very satisfied	14.9	12.2	19.9	23.7
no. obs	3,991	6,22	0 10,749	10,747
		United	Kingdom	
1. finding it very difficult	3.0	3.0	1.2	1.1
finding it quite difficult	7.3	6.3	2.9	3.3
just about getting by	25.8	29.7	22.9	19.7
4. doing alright	31.9	31.3	32.3	34.9
5. living Comfortably	31.9	29.7	40.7	41.0
no. obs	3,777	6,07	1 9,308	9,318
		Sp	ain	
very dissatisfied	10.4	14.7	9.1	9.8
2. dissatisfied	15.8	20.9	16.3	16.8
A bit dissatisfied	22.4	24.5	24.9	24.5
4. A bit satisfied	24.0	21.2	25.3	24.5
5. Satisfied	20.7	14.4	19.4	19.1
Very satisfied	6.8	4.3	5.0	5.4
no. obs	2,271	4,47	3 8,834	8,867

Table 2: Within-Household Patterns of Financial Satisfaction Couples (no children), ECHP 1994-2001

Netherlands

(n=10,737, Row %)

Female partner										
Male partner	1	2	3	4	5	6	Total			
Very dissatisfied	41.6	22.4	17.6	10.4	6.4	1.6	100			
dissatisfied	7.9	33.5	30.7	16.7	8.2	3.1	100			
a bit dissatisfied	2.3	7.3	36.2	34.5	17.3	2.4	100			
a bit satisfied	0.3	1.2	9.4	44.6	38.6	5.9	100			
5. satisfied	0.1	0.4	2.0	13.9	66.4	17.4	100			
Very satisfied	0.0	0.1	0.7	3.3	24.5		100			

United Kingdom

(n=9,298) (Row %)

		partner				
Male partner	1	2	3	4	5	Total
1. finding it very difficult	30.6	31.5	27.0	10.8	0	100
finding it quite difficult	9.9	37.4	37.7	12.8	2.2	100
just about getting by	1.5	5.7	54.1	27.9	10.8	100
4. doing alright	0.1	1.4	13.3	56.1	29.2	100
5. living Comfortably	0.1	0.3	3.9	24.2	71.5	100

Table 2: Within-Household Patterns of Financial Satisfaction Couples (no children), ECHP 1994-2001

Spain (n=8,782) (Row %)

Female partner									
Male partner	1	2	3	4	5	6	Total		
Very dissatisfied	60.4	21.2	10.8	4.3	2.3	1.1	100		
dissatisfied	13.6	49.4	22.4	9.6	4.1	1.0	100		
a bit dissatisfied	4.5	17.5	49.9	19.4	7.6	1.0	100		
a bit satisfied	2.7	7.0	21.6	49.1	17.2	2.4	100		
satisfied	1.1	3.4	9.0	24.7	54.6	7.2	100		
Very satisfied	0.7	1.8	3.9	7.1	29.5	57.1	100		

Kappa Statistics

	Expected	Actual	Kappa (SE)
	Agreement, %	Agreement, %	
Netherlands	30.4	58.6	0.41 (0.006)
United Kingdom	32.6	61.1	0.42 (0.007)
Spain	19.9	51.8	0.40 (0.005)

Table 3: Changes in Financial Satisfaction Singles and Couples (no children), ECHP 1994-2001

Note: change in satisfaction >=2 means considerable improvement, <=-2 means considerable deterioration **Netherlands**

(column %)

				(,				
		Ma	le				fen	nale	_
Change in	single	single	cohabiting	cohabiting		single	Single	cohabiting	cohabiting
Satisfaction	single	cohabiting	single	cohabiting		single	cohabiting	single	cohabiting
<=-2	5.1	7.9	8.7	4.0		5.8	3.3	16.9	3.6
-1	19.0	17.9	30.2	18.5		19.7	10.8	27.9	18.4
0	46.8	40.0	36.5	52.1		43.8	31.7	37.2	53.7
1	21.2	17.9	16.7	20.6		23.0	29.2	12.6	20.1
>=2	7.9	16.4	7.9	4.8		7.7	25.0	5.5	4.2
Obs.	2,891	140	126	7,971		4,704	120	183	7,966

United Kingdom (column %)

				(continu	, ,					
		Ma	le		female					
Change in	single	single	cohabiting	cohabiting		single	Single	cohabiting	cohabiting	
Satisfaction	single	cohabiting	single	cohabiting		single	cohabiting	single	cohabiting	
<=-2	3.5	2.9	8.9	2.9		3.7	2.2	7.9	2.8	
-1	16.2	14.3	23.1	15.5		16.7	16.4	28.3	15.0	
0	57.5	43.6	42.0	60.2		54.1	36.6	42.9	61.2	
1	18.4	30.0	18.9	17.8		20.3	30.6	17.3	17.4	
>=2	4.4	9.3	7.1	3.7		5.21	14.2	3.7	3.6	
Obs.	2,743	140	169	7,150		4,741	134	191	7,168	

Table 3: Changes in Financial Satisfaction Singles and Couples (no children), ECHP 1994-2001

Spain (column %)

		Ma	le					fer	nale	
Change in	single	single	cohabiting	cohabiting		single	Single	9	cohabiting	cohabiting
Satisfaction	single	cohabiting	single	cohabiting		single	cohabit	ing	single	cohabiting
<=-2	13.6	13.3	5.2	12.6		13.2	15.8		28.7	12.9
-1	20.0	22.2	26.0	21.3		21.3	15.8		24.3	21.3
0	31.7	20.0	39.0	30.2		30.0	29.0		19.9	30.1
1	20.0	26.7	11.7	21.8		21.5	23.7		13.2	20.8
>=2	14.8	17.8	18.2	14.1		14.0	15.8		14.0	14.9
Obs.	1,621	45	77	6,403		3,40′	1	38	136	6,433

Test of Gender Equality

(p-values)

	S-P	P-S
Netherlands	0.020	0.246
United Kingdom	0.635	0.523
Spain	0.856	< 0.001

Descriptive Analysis: Main Messages

- Partners view their finances differently
- Changes in financial satisfaction with changes in cohabitation differ by gender
- Patterns differ across countries
- We need a model

Model - Preferences

$$V_{ict} = \alpha_{ct}(z_{ict}) + \beta_{ct} \ln x_{ict} + \mu_i + \varepsilon_{ict}, \qquad (2)$$

- PIGLOG
- egoistic preferences, sharing rule
- Direct (dis)utility from cohabitation is additively separable

Household Income and Private Consumption

Singles:

$$x_{ict} = y_{ict} \,. \tag{3}$$

Couples:

$$x_{ict} = \eta_{ict} F^{-1}(y_{ict})$$
. (4)

Household Income and Private Consumption

$$(x^1 + x^2) = \frac{y}{A}$$

$$x_{ict} = \eta_{ict} \frac{y_{ict}}{A}.$$
 (5)

$$\eta^{1} = \frac{e^{\gamma(p,y,w)}}{1 + e^{\gamma(p,y,w)}} \tag{6}$$

$$\gamma(p, y, w) = \gamma_{ct}^0 + \gamma_{ct}^1 \ln y + \gamma_{ct}^2 w^1$$
(7)

Empirical Implementation

Linearize

$$\ln(1 + e^{\gamma_{ct}^0 + \gamma_{ct}^1 \ln y + \gamma_{ct}^2 w^1}) \approx \ln(1 + e^{\gamma_{ct}^0}) + \frac{e^{\gamma_{ct}^0}}{1 + e^{\gamma_{ct}^0}} (\gamma_{ct}^1 \ln y + \gamma_{ct}^2 w^1)$$

Final Specification

Singles

$$V_{ict} = \alpha_{ct}(z_{ict}) + \beta_{ct} \ln y_{ict} + \mu_i + \varepsilon_{ict}$$

Cohabiting Men

$$V_{ict} = \alpha_{ct}(z_{ict}) + \beta_{ct} \begin{cases} -\ln(1 + e^{\gamma_{ct}^0}) - \frac{e^{\gamma_{ct}^0}}{1 + e^{\gamma_{ct}^0}} (\gamma_{ct}^1 \ln y + \gamma_{ct}^2 w^1) \\ +\ln y_{ict} - \ln A \end{cases} + \mu_i + \varepsilon_{ict},$$

Cohabiting Women

$$V_{ict} = \alpha_{ct}(z_{ict}) + \beta_{ct} \begin{cases} \gamma_{ct}^{0} + \gamma_{ct}^{1} \ln y + \gamma_{ct}^{2} w^{1} - \ln(1 + e^{\gamma_{ct}^{0}}) \\ -\frac{e^{\gamma_{ct}^{0}}}{1 + e^{\gamma_{ct}^{0}}} (\gamma_{ct}^{1} \ln y + \gamma_{ct}^{2} w^{1}) + \ln y_{ict} - \ln A \end{cases} + \mu_{i} + \varepsilon_{ict},$$

Combined Reduced Form

$$\begin{split} V_{ict} &= \pi_{at}^{0}(z_{ict}) + \pi_{at}^{1} \ln y_{ict} + \pi_{at}^{2} D^{c} + \pi_{ct}^{3} D^{c} D^{f} \\ &+ \pi_{at}^{4} D^{c} D^{f} \ln y_{ict} + \pi_{ct}^{5} D^{c} D^{f} w_{ict}^{1} \\ &+ \pi_{at}^{6} D^{c} (1 - D^{f}) \ln y_{ict} + \pi_{ct}^{7} D^{c} (1 - D^{f}) w_{ict}^{1} \\ &+ \mu_{i} + \varepsilon_{ict} \end{split}$$

Econometric Issues: Measuring Utility

$$FS_{ick} = 6 \Leftrightarrow V_{ict} > k_5$$

$$FS_{ick} = 5 \Leftrightarrow k_5 > V_{ict} > k_4$$

$$FS_{ick} = 4 \Leftrightarrow k_4 > V_{ict} > k_3$$

$$FS_{ick} = 3 \Leftrightarrow k_3 > V_{ict} > k_2$$

$$FS_{ick} = 2 \Leftrightarrow k_2 > V_{ict} > k_1$$

$$FS_{ick} = 1 \Leftrightarrow k_1 > V_{ict}$$

Ordered Probit

Recovering Structural Parameters

Minimum distance step (fast)

$$\pi^{0}_{ct}(z_{ict}) = \alpha_{ct}(z_{ict})$$

$$\pi^{1}_{ct} = \beta_{ct}$$

$$\pi^{2}_{ct} = -\beta_{ct}(\ln A + \ln(1 + e^{\gamma_{ct}^{0}}))$$

$$\pi^{3}_{ct} = \beta_{ct}\gamma^{0}_{ct}$$

$$\pi^{4}_{ct} = \beta_{ct}\left(1 - \frac{e^{\gamma_{ct}^{0}}}{1 + e^{\gamma_{ct}^{0}}}\right)\gamma^{1}_{ct} = \frac{\beta_{ct}\gamma^{1}_{ct}}{1 + e^{\gamma_{ct}^{0}}}$$

....etc.

Unobserved Heterogeneity

Pooled probit consistently estimates

$$\pi^{k}/(1+\sigma_{\mu}^{2})^{1/2}$$

- This is sufficient to identify A, γ
- Random effects probit requires strict exogeneity, no "serial correlation"
- Add Chamberlain/Mundlak terms in household size (requires strict exogeneity)

Constraining the Returns to Scale Parameter

Parameterize
$$A = \frac{1 + 2 \exp(a)}{2 + 2 \exp(a)}$$

to impose $0.5 \le A \le 1$

Minimum distance step slower (now nonlinear) but whole procedure still fast.

Results

- Estimate separately by country; full set of time effects
- Specifications
 - Base
 - + Mundlak/Chamberlain terms
- Estimates:
 - Reduced form parameters
 - Structural Parameters
 - Estimated Shares

Comparison Points

- Returns to scale (A) (2A=equivalence scale)
 - □ OECD: 0.85, 0.75
 - "Square-root": 0.7
 - Schwarze (2003): 0.61-0.63
 - Browning, Chiappori, Lewbel: 0.79
- Sharing rule (BCL):
 - Women's share increasing in household income,
 >0.5 at median household income
 - No effect of income shares (contradicts Browning et al., 1994)

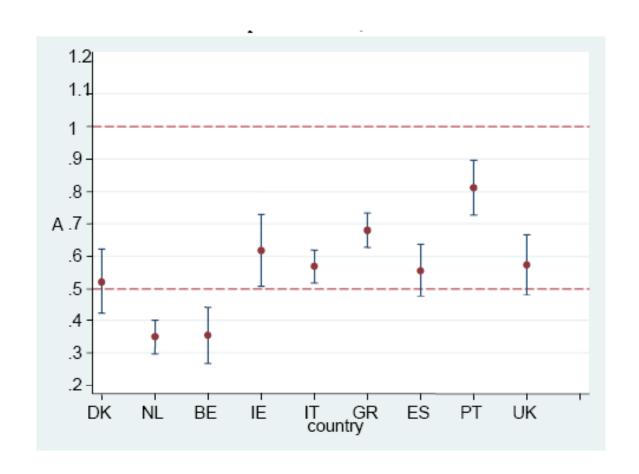
Table 4: Selected Means, by Country Singles and Couples (no children), ECHP 1994-2001

	ln real household income at PPP	Female income share (Couples only)
Denmark	9.74	0.41
Netherlands	9.81	0.29
Belgium	9.74	0.27
Ireland	9.46	0.27
Italy	9.49	0.29
Greece	8.98	0.24
Spain	9.31	0.20
Portugal	8.88	0.32
United Kingdom	9.74	0.37

Notes: Household income is the sum of personal incomes. Personal income is net, and is the sum all income components, over the year preceding the survey.

Table 5a: Reduced Form Parameter Estimates (Base Specification)

	DK	NL	BE	IE	IT.	GR	ES	PT	UK
$\text{Ln(income}_{s})$ (π^{1})	0.362***	0.422***	0.346***	0.511***	0.608***	0.759***	0.367***	0.595***	0.375***
	(0.043)	(0.031)	(0.044)	(0.061)	(0.035)	(0.032)	(0.033)	(0.035)	(0.030)
Couple _k (π^2)	-0.114**	-0.0353	-0.0287	-0.253***	-0.128***	-0.257***	-0.211***	-0.336***	-0.139***
	(0.048)	(0.038)	(0.054)	(0.066)	(0.040)	(0.047)	(0.039)	(0.049)	(0.043)
Couple, *female, (π^3)	0.229***	0.360***	0.254***	0.275***	0.0933*	0.0809	0.259***	0.131**	0.184***
	(0.062)	(0.049)	(0.072)	(0.085)	(0.054)	(0.058)	(0.051)	(0.061)	(0.055)
Couple*female*ln(income) (\pi^4)	0.132**	0.147***	-0.0258	0.0159	-0.0275	-0.0345	0.197***	-0.0678	0.260***
	(0.062)	(0.047)	(0.062)	(0.082)	(0.045)	(0.038)	(0.048)	(0.044)	(0.044)
Couple, *female, *income_share_female, (π^4)	-0.317**	-0.253***	-0.151	-0.399***	-0.0349	-0.155**	-0.134*	-0.297***	-0.158
	(0.14)	(0.081)	(0.11)	(0.12)	(0.074)	(0.064)	(0.071)	(0.083)	(0.099)
Couple, *male, *ln(income,) (π^6)	0.263***	0.120***	0.0152	0.0217	0.0167	0.0202	0.208***	-0.0209	0.284***
	(0.063)	(0.046)	(0.064)	(0.084)	(0.045)	(0.037)	(0.048)	(0.043)	(0.045)
Couple _k *male _i *income_share_female _{it} (π^{7})	-0.756***	-0.216***	-0.169	-0.256**	-0.262***	-0.436***	-0.337***	-0.779***	-0.371***
	(0.14)	(0.078)	(0.10)	(0.13)	(0.070)	(0.064)	(0.071)	(0.081)	(0.097)
Female _i	-0.0912*	-0.212***	-0.140**	-0.133**	-0.121***	-0.120**	-0.244***	-0.225***	-0.103**
	(0.048)	(0.041)	(0.059)	(0.067)	(0.047)	(0.053)	(0.044)	(0.054)	(0.045)
(Upper) secondary education	0.0413	0.216***	0.356***	0.348***	0.412***	0.356***	0.364***	0.203***	0.192***
	(0.037)	(0.033)	(0.043)	(0.061)	(0.049)	(0.042)	(0.034)	(0.065)	(0.030)
Post secondary education	-0.00471	0.127***	0.121***	0.209***	0.263***	0.350***	0.217***	0.126**	0.153***
	(0.033)	(0.028)	(0.035)	(0.045)	(0.028)	(0.034)	(0.032)	(0.053)	(0.033)
Age _{it}	-0.0185***	-0.0350***	-0.0268***	-0.0318***	0.00436	-0.00627	0.000368	-0.0159***	-0.0357***
	(0.0047)	(0.0042)	(0.0057)	(0.0066)	(0.0042)	(0.0042)	(0.0038)	(0.0042)	(0.0040)
Age ²	0.000386***	0.000414***	0.000376***	0.000449***	-0.0000229	0.0000643*	0.0000711**	0.000124***	0.000432***
	(0.000047)	(0.000041)	(0.000052)	(0.000062)	(0.000039)	(0.000037)	(0.000036)	(0.000039)	(0.000039)
Home owner yes/no	0.253***	0.418***	0.419***	0.138**	0.203***	0.226***	0.187***	0.294***	0.426***
	(0.031)	(0.024)	(0.038)	(0.056)	(0.026)	(0.032)	(0.026)	(0.027)	(0.029)


Table 5b: Structural Parameter Estimates (Base Specification)

	DK	NL	BE	IE	IT	GR	ES	PT	UK
				Sharing Rule I					
Intercept	0.323*	0.619***	0.670***	0.329*	0.174**	0.136*	0.407***	0.248**	0.176
(γ°)	(0.17)	(0.12)	(0.23)	(0.17)	(0.089)	(0.075)	(0.13)	(0.10)	(0.14)
Ln(mcome)	-0.392**	-0.0574	-0.0858	0.0413	-0.07/90	-0.07/18	-0.250*	-0.0426	-0.29*/**
(γ^1)	(0.18)	(0.11)	(0.19)	(0.16)	(0.070)	(0.044)	(0.14)	(0.069)	(0.14)
Female Income	1.665***	0.356	0.374	0.0963	0.439***	0.400***	0.813***	0.988***	0.809**
Share									
(γ^2)	(0.59)	(0.24)	(0.41)	(0.35)	(0.17)	(0.12)	(0.26)	(0.21)	(0.37)
		Househ	old Consump	tion Technolo	gy (returns to	scale parame	eter)		
			(Given equal o		equivalence so	cale is 2A)			
A	0.522***	0.349***	0.353***	0.619***	0.569***	0.681***	0.555***	0.811***	0.574***
	(0.050)	(0.026)	(0.043)	(0.055)	(0.025)	(0.026)	(0.041)	(0.043)	(0.046)
E	stimated Fer			Mean Househ		nd Alternative	Female Inco	me Shares	
$\eta^1(\overline{\ln(y)}, 0.25)$	0.514***	0.647***	0.660***	0.581***	0.538***	0.535***	0.610***	0.545***	0.520***
	(0.057)	(0.027)	(0.051)	(0.042)	(0.022)	(0.019)	(0.030)	(0.027)	(0.040)
$\eta^{1}(\ln(y), 0.50)$	0.516***	0.667***	0.681***	0.587***	0.566***	0.559***	0.657***	0.605***	0.571***
	(0.038)	(0.026)	(0.049)	(0.040)	(0.023)	(0.018)	(0.031)	(0.023)	(0.033)
$\eta^{1}(\ln(y), 0.75)$	0.709***	0.686***	0.701***	0.593***	0.592***	0.584***	0.701***	0.663***	0.619***
•	(0.043)	(0.031)	(0.056)	(0.048)	(0.027)	(0.021)	(0.036)	(0.024)	(0.039)
$\eta^1(\overline{\ln(y)}, \overline{w})$	0.580	0.650***	0.661***	0.582+++	0.543***	0.534+++	0.600	0.562+++	0.544***
	(0.042)	(0.027)	(0.050)	(0.041)	(0.022)	(0.019)	(0.031)	(0.025)	(0.035)
Overidentification	0.000	0.000	0.124	0.000	4.020	0.000	0.000	0.000	
test p value	0.000	0.000	0.134	0.002	0.020	0.000	0.000	0.000	0.000

Figure 1: Estimates of the Returns to Scale in Household Consumption (A) (Base Specification)

Table 6a: Reduced Form Parameter Estimates (Chamberlain/Mundlak Estimator)

	DK	. NI	. BE	IE	II :	GR	ES	PT	UK
Ln(income_2) (π^1)	0.363***	0.424***	0.346***	0.511***	0.607***	0.761***	0.368***	0.595***	0.375***
	(0.044)	(0.031)	(0.044)	(0.061)	(0.035)	(0.032)	(0.033)	(0.035)	(0.030)
$Couple_{it}(\pi^2)$	-0.0832	-0.130*	-0.0700	-0.647***	-0.163**	-0.297***	-0.161*	-0.374***	-0.215***
	(0.067)	(0.070)	(0.085)	(0.13)	(0.078)	(880.0)	(0.084)	(0.094)	(0.061)
$Couple_{t}$ * $female_{t}(\pi^{3})$	0.0985	0.297***	0.111	0.532***	0.162	-0.0116	0.194*	0.0405	0.135
	(0.091)	(0.094)	(0.13)	(0.16)	(0.11)	(0.11)	(0.12)	(0.12)	(0.086)
Couple*female*ln(income) (π^4)	0.130**	0.144***	-0.0269	0.0141	-0.0273	-0.0376	0.197***	-0.0697	0.260***
	(0.063)	(0.048)	(0.062)	(0.083)	(0.045)	(0.038)	(0.048)	(0.044)	(0.044)
Couple, *female, *income_share_female, (π ⁴)	-0.310**	-0.241***	-0.146	-0.395***	-0.0361	-0.153**	-0.134*	-0.293***	-0.148
	(0.14)	(0.081)	(0.11)	(0.12)	(0.075)	(0.064)	(0.071)	(0.083)	(0.100)
Couple _k *male _i *ln(income _k) (π ⁶)	0.264***	0.118**	0.0157	0.0245	0.0168	0.0196	0.207***	-0.0205	0.285***
	(0.063)	(0.046)	(0.064)	(0.084)	(0.045)	(0.037)	(0.049)	(0.043)	(0.045)
Couple _k *male _i *income_share_female _k (π^{τ})	-0.755***	-0.212***	-0.167	-0.245*	-0.262***	-0.435***	-0.337***	-0.779***	-0.368***
	(0.14)	(0.079)	(0.10)	(0.13)	(0.070)	(0.064)	(0.071)	(0.081)	(0.097)
Female,	-0.102**	-0.214***	-0.146**	-0.129*	-0.116**	-0.125**	-0.248***	-0.231***	-0.105**
	(0.051)	(0.044)	(0.062)	(0.069)	(0.049)	(0.056)	(0.046)	(0.057)	(0.048)
(Upper) secondary education,	0.0423	0.215***	0.357***	0.347***	0.413***	0.357***	0.364***	0.204***	0.192***
	(0.037)	(0.034)	(0.043)	(0.061)	(0.049)	(0.042)	(0.034)	(0.065)	(0.030)
Post secondary education	-0.00412	0.125***	0.121***	0.207***	0.263***	0.351***	0.217***	0.127**	0.152***
	(0.033)	(0.028)	(0.035)	(0.045)	(0.028)	(0.034)	(0.032)	(0.053)	(0.033)
Ageir	-0.0186***	-0.0350***	-0.0267***	-0.0315***	0.00439	-0.00634	0.000320	-0.0160***	-0.0358***
	(0.0047)	(0.0042)	(0.0057)	(0.0066)	(0.0042)	(0.0042)	(0.0038)	(0.0042)	(0.0040)
Age ² _{it}	0.000388***	0.000414***	0.000376***	0.000446***	-0.0000232	0.0000656*	0.0000716**	0.000125***	0.000434***
	(0.000047)	(0.000041)	(0.000052)	(0.000062)	(0.000039)	(0.000037)	(0.000036)	(0.000039)	(0.000039)
Home owner yes/no	0.252***	0.417***	0.417***	0.135**	0.203***	0.225***	0.187***	0.294***	0.424***
	(0.031)	(0.024)	(0.038)	(0.057)	(0.026)	(0.032)	(0.026)	(0.027)	(0.029)
Couple	-0.0360	0.104	0.0449	0.414***	0.0377	0.0443	-0.0535	0.0424	0.0859
	(0.079)	(0.078)	(0.100)	(0.14)	(0.089)	(0.10)	(0.092)	(0.11)	(0.075)
Couple*female,	0.150	0.0674	0.154	-0.261	-0.0753	0.103	0.0693	0.0999	0.0542
	(0.11)	(0.11)	(0.15)	(0.18)	(0.12)	(0.13)	(0.13)	(0.13)	(0.10)
Joint Statistical significance, Mundlak terms – pvalue									
	0.077	0.001	0.039	0.003	0.761	880.0	0.894	0.1	0.002

Table 6b: Structural Parameter Estimates (Chamberlain/Mundlak Estimator)

	DK	NL	BE	IE	IT	GR	ES	PT	UK		
Sharing Rule Parameters											
Intercept (γ°)	0.109 (0.25)	0.273 (0.20)	0.198 (0.38)	0.447* (0.26)	0.313* (0.18)	0.185 (0.15)	0.0589 (0.28)	0.472** (0.19)	-0.0456 (0.22)		
Ln(income) (γ¹)	0.343* (0.21)	0.125 (0.12)	0.110 (0.19)	0.0054 1 (0.16)	0.0783 (0.070)	0.0780* (0.044)	0.331* (0.19)	0.0812 (0.069)	0.366* (0.19)		
Female Income Share	1.209*	0.446*	0.286	0.444	0.450***	0.285**	0.892***	0.532**	0.846**		
(y2)	(0.66)	(0.26)	(0.45)	(0.34)	(0.17)	(0.13)	(0.31)	(0.26)	(0.40)		
Household Consumption Technology (returns to scale parameter)											
					equivalence so						
A	0.618*** (0.080)	0.463*** (0.057)	0.525*** (0.100)	0.775*** (0.14)	0.571*** (0.051)	0.78)*** (0.059)	0.576*** (0.095)	1.018*** (0.10)	0.702*** (0.081)		
I					nold Income as				(0.001)		
$\eta^1(\overline{\ln(y)}, 0.25)$	0.479***	0.563***	0.548***	0.608***	0.573***	0.547***	0.526***	0.607***	0.464***		
$\eta^{i}(\overline{\ln(y)}, 0.50)$	(0.081) 0.554***	(0.050) 0.590***	(0.095) 0.566***	(0.064) 0.634***	(0.044) 0.600***	(0.036) 0.565***	(0.068) 0.581***	(0.048) 0.638***	(0.060) 0.517***		
$\eta^{1}(\ln(y), 0.75)$	(0.056) 0.627***	(0.044) 0.617***	(0.088) 0.583***	(0.057) 0.659***	(0.041) 0.627***	(0.033) 0.582***	(0.059) 0.634***	(0.038) 0.668***	(0.050) 0.569***		
$\eta^{1}(\overline{\ln(y)}, \overline{w})$	(0.053) 0.527***	(0.044) 0.568***	(0.088) 0.549***	(0.057) 0.610***	(0.041) 0.578***	(0.032) 0.545***	(0.055) 0.515***	(0.032) 0.616***	(0.050) 0.489***		
	(0.063)	(0.049)	(0.095)	(0.063)	(0.043)	(0.036)	(0.070)	(0.015)	(0.054)		
Overidentification test p value	0.000	0.000	0.138	0.022	0.062	0.000	0.000	0.000	0.000		

Figure 2: Estimates of the Returns to Scale in Household Consumption (A) (Chamberlain/Mundlak Estimator)

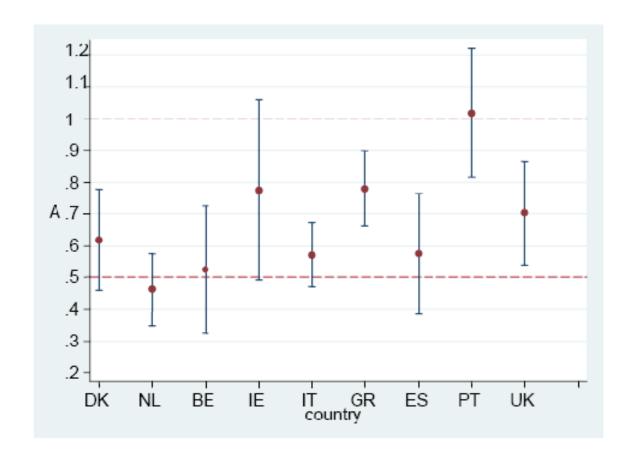
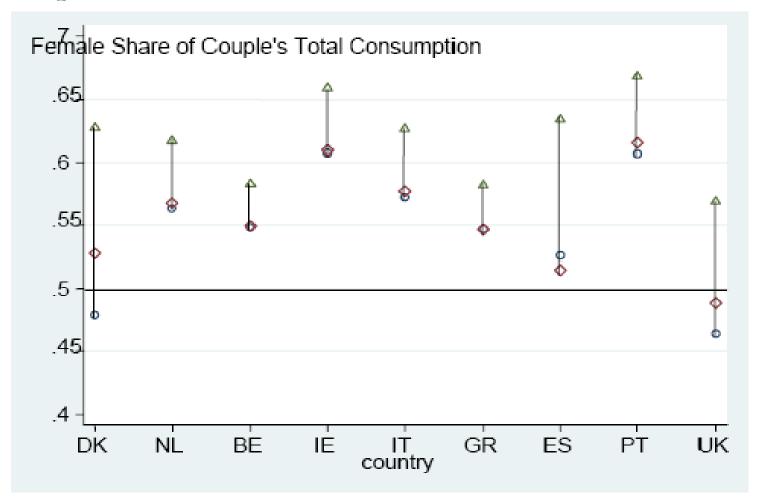
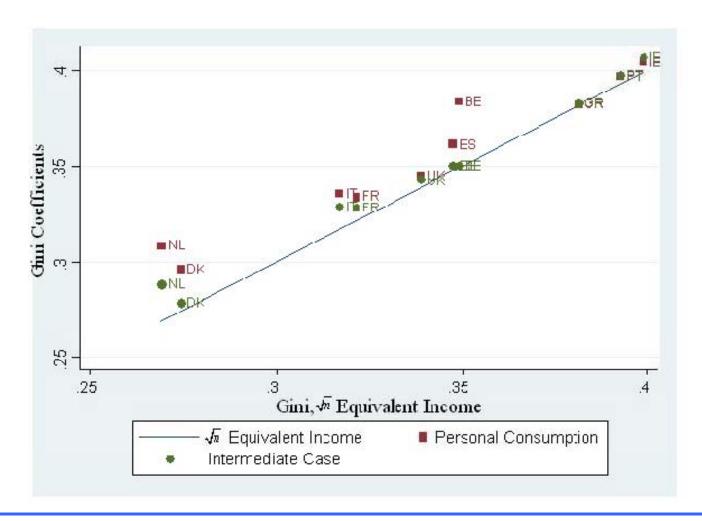



Figure 3: Estimates of the Female Share of a Couple's Total Consumption

Table 6b: Structural Parameter Estimates (Chamberlain/Mundlak Estimator, A constrained)

	DK	NL	BE	IE	IT	GR	ES	PT	UK	
Sharing Rule Parameters										
Intercept	0.510**	0.626***	0.390	1.096***	0.367**	0.237	0.620**	0.853***	0.328**	
(γ°)	(0.20)	(0.20)	(0.40)	(0.35)	(0.18)	(0.15)	(0.24)	(0.20)	(0.17)	
Ln(income)	-0.427***	-0.0471	-0.136	-0.0653	-0.0820	-0.0785*	-0.149	-0.0742	-0.135	
(γ^1)	(0.16)	(0.10)	(0.20)	(0.17)	(0.072)	(0.044)	(0.11)	(0.073)	(0.095)	
Female Income	1.354***	0.207	0.258	0.183	0.480***	0.459***	0.679***	1.446***	0.570**	
Share	(0.43)	(0.22)	(0.43)	(0.32)	(0.17)	(0.12)	(0.21)	(0.21)	(0.26)	
(γ²)	(0.43)							(0.21)	(0.20)	
				ion Technolog			ter)			
				illocation, the e						
A	0.570***	0.502***	0.510***	0.974***	0.565***	0.779***	0.592***	0.990***	0.713***	
	(0.060)	(0.052)	(0.11)	(0.16)	(0.051)	(0.059)	(0.077)	(0.10)	(0.059)	
I	Estimated Ferr	iale Consump	tion Shares, I	Mean Househo	old Income an	d Alternative	Female Incor	ne Shares		
$\eta^1(\overline{\ln(y)}, 0.25)$	0.573***	0.650***	0.595***	0.749***	0.586***	0.560***	0.658***	0.680***	0.565***	
	(0.053)	(0.046)	(0.097)	(0.065)	(0.043)	(0.036)	(0.055)	(0.043)	(0.042)	
$\eta^1(\overline{\ln(y)}, 0.50)$	0.653***	0.661***	0.611***	0.757***	0.614***	0.588***	0.695***	0.753***	0.600***	
	(0.047)	(0.045)	(0.098)	(0.064)	(0.043)	(0.036)	(0.053)	(0.036)	(0.040)	
$\eta^1(\overline{\ln(y)}, 0.75)$	0.725***	0.673***	0.626***	0.766***	0.642***	0.615***	0.730***	0.814***	0.633***	
-	(0.050)	(0.047)	(0.10)	(0.066)	(0.044)	(0.037)	(0.052)	(0.031)	(0.043)	
$\eta^{1}(\overline{\ln(y)}, \overline{w})$	0.625***	0.652***	0.596***	0.750***	0.591***	0.559***	0.650***	0.701***	0.581***	
	(0.048)	(0.045)	(0.097)	(0.065)	(0.043)	(0.036)	(0.055)	(0.041)	(0.040)	
Overidentification test p value	0.000	0.000	0.144	0.001	0.0.073	0.000	0.000	0.000	0.000	
test p value	0.000	0.000	V.1 77	0.001	0.0.073	0.000	0.000	0.000	0.000	


Application: Inequality

- We can calculate "personal consumption" as $x_i = \eta_i y_h / A$
- A more traditional approach calculates "Equivalent income" as: $x_i = y_h/E$
- We would like to compare patterns of inequality over countries and time using personal consumption rather than equivalent income.
- For example, what are the effects of differences in female labour force participation on inequality?
- Follows Phipps and Burton (1995) and Lise and Seitz (2004)

Figure 4: Inequality in Equivalent Income and Personal Consumption

Conclusion

Summary:

- Plausible (high-end) estimates of the returns to scale in consumption
- Significant effects of female income share on sharing rule in most countries – evidence against the unitary model

Value:

- Corroborates other research with very different data
- Low data and computation demands
 - →applications

Potential Application: The effect of institutions on sharing rule parameters

- For example, how divorce laws affect the labour supply and welfare of married and unmarried women? (Gray, AER, 1998; Chiappori et al., JPE, 2002)
- More ambitious
- Potential to use cross national variation in institutions

Final Comment:

- A (possibly) surprising aspect of the estimates is the high consumption shares of women
- But this result is consistent with findings based on other approaches to estimating these models
- Here it reflects the fact that women report a larger improvement in financial satisfaction as they move into cohabitation

