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1. Models Linear in Endogenous Variables

∙Most models that are linear in parameters are estimated using

standard IV methods – two stage least squares (2SLS).

∙ An alternative, the control function (CF) approach, relies on the same

kinds of identification conditions.

∙ In models with nonlinearities or random coefficients, the form of

exogeneity is stronger and more restrictions are imposed on the reduced

forms.
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CF Methods Based on Linear Projections

∙ Let y1 be the response variable, y2 the endogenous explanatory

variable (EEV), and z the 1  L vector of exogenous variables (with

z1  1:

y1  1y2  z11  u1,     (1)

where z1 is a 1  L1 strict subvector of the 1  L exogenous variables z.
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∙Weakest exogeneity assumption:

Ez′u1  0.     (2)

∙ Reduced form for y2 is a linear projection:

y2  z2  v2, Ez′v2  0     (3)

∙ The linear projection of u1 on v2 in error form is

u1  1v2  e1,     (4)

where 1  Ev2u1/Ev2
2 is the population regression coefficient.

∙ By construction, Ev2e1  0 and Ez′e1  0.
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∙ Plug u1  1v2  e1 into y1  z11  1y2  u1:

y1  1y2  z11  1v2  e1,     (5)

where v2 is now an explanatory variable in the equation. The new error,

e1, is uncorrelated with y2 as well as with v2 and z.

∙ Two-step procedure: (i) Regress yi2 on zi and obtain the reduced form

residuals, v̂i2; (ii) Regress

yi1 on yi2, zi1, and v̂i2.     (6)
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∙ OLS estimators from (6) are consistent for 1,1, and 1. These are

the control function estimators.

∙ Implicit error in (6) is ei1  1zi̂2 − 2, so asymptotic variance

depends on the sampling error in ̂2 unless 1  0.

∙ Can use heteroskedasticity-robust t statistic to test H0 : 1  0 (y2

exogenous). Regression-based Hausman test.

∙ Algebra: The OLS estimates of 1 and 1 from (6) are identical to the

2SLS estimates of

y1  1y2  z11  u1
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CF Methods Based on Conditional Expectations

∙ Start again with the basic equation

y1  1y2  z11  u1

We can derive a CF approach based on Ey1|y2,z rather than

Ly1|y2,z.

∙ The estimating equation is based on

Ey1|y2,z  1y2  z11  Eu1|y2,z.     (7)
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∙ The linear projection approach imposes no distributional assumptions,

even about a conditional mean. (Second moments finite.) Using the CE

approach we may have to impose a lot of structure to get Eu1|y2,z.

∙ As an example, suppose

y2  1z2  e2 ≥ 0     (8)

where u1,e2 is independent of z, Eu1|e2  1e2, and

e2  Normal0, 1. Then

Eu1|y2,z  1y2z2 − 1 − y2−z2,     (9)

where  is the inverse Mills ratio (IMR).
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∙ Heckman two-step approach (for endogeneity, not sample selection):

(i) Probit to get ̂2 and compute the generalized residuals,

gri2 ≡ yi2zi̂2 − 1 − yi2−zi̂2.

(ii) Regress yi1 on zi1, yi2, gri2, i  1, . . . ,N.

∙ The Stata command treatreg effectively implements this

procedure (two-step or full MLE).
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∙ Consistency of the CF estimator hinges on the probit model for

Dy2|z being correctly specified along with Eu1|e2  1e2, where

y2  1z2  e2 ≥ 0.

∙ Instead we can apply 2SLS directly to y1  1y2  z11  u1. We

need make no distinction among cases where y2 is discrete, continuous,

or some mixture.

∙ If y2 is a vector the CF approach based on Ey1|y2,z can be much

harder than 2SLS. We need Eu1|y2,z.
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∙ How might we use the binary nature of y2 in IV estimation in a robust

manner?

(i) Obtain the fitted probabilities, ̂i2  zi̂2, from the first stage

probit.

(ii) Estimate yi1  zi11  i1y2  ui1 by IV using zi1, ̂i2 as

instruments (not regressors!)

∙ If Eu1|z  0, this IV estimator is fully robust to misspecification of

the probit model, usual standard errors from IV asymptotically valid.

Efficient IV estimator if Py2  1|z  z2 and Varu1|z  1
2.
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2. Models Nonlinear in Endogenous Variables

∙ Adding nonlinear functions of EEVs produces differences between IV

and CF approaches. For example, add y2
2:

y1  1y2  1y2
2  z11  u1

Eu1|z  0.
    (10)
    (11)

∙ Assumption (11) is stronger than Ez′u1  0 and is essential for

nonlinear models (so that nonlinear functions of EEVs come with their

own IVs).

∙ Suppose z2 is a scalar not in z1. We can use z2
2 as an instrument for

y2
2. So the IVs would be z1, z2, z2

2 for z1,y2,y2
2.
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∙ A linear projection CF approach would regress y2 and y2
2 separately

on z1, z2, z2
2, obtain two sets of residuals, and add these as controls in

an OLS regression. This is identical to the IV estimate. (Can add z1z2

to IV list.)

∙ If we make a stonger assumption then a single control function

suffices. In particular, assume

Eu1|z,y2  Eu1|v2  1v2,     (12)

where y2  z2  v2.

∙ Independence of u1,v2 and z is sufficient for the first equality,

which is a substantive restriction. Linearity of Eu1|v2 is also a

substantive restriction.
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∙ Assumption (12) imposes real restrictions; not just a linear projection.

It would be hard to justify for discrete y2 (or discrete y1).

∙ If we assume (12),

Ey1|z,y2  1y2  1y2
2  z11  1v2,     (13)

and a CF approach is immediate.
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(i) Get the OLS residuals, v̂i2, from the first-stage regression yi2 on zi.

(ii) OLS of yi1 on zi1, yi2, yi22 , v̂i2.

∙ A single control function suffices.

∙ This CF method not equivalent to a 2SLS estimate. CF likely more

efficient but less robust.
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∙ Similar comments hold in a model such as

y1  1y2  y2z11  z11  u1     (14)

∙We could use IVs of the form z1, z2, z2z1 and add squares, too.

∙ If we assume y2  z2  v2 with Eu1|y2,z  1v2 then just add one

CF.

∙ In general, CF approach imposes extra assumptions when we base it

on Ey1|y2,z. In a parametric context, often half to for models

nonlinear in parameters and random coefficient models.
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∙ Heckman and Vytlacil (1998) suggest “plug-in” estimators in (14)

(and also with random coefficients). Key assumption along with

Eu1|z  0 is

Ey2|z  z2

∙ Estimating equation is based on Ey1|z:

Ey1|z  1z2  z11  z2z11

(i) Regress yi2 on zi, get fitted values ŷi2. (ii) Regress yi1 on ŷi2, zi1,

ŷi2zi1.
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∙ As with CF approach must deal with generated regressors. CF

approach gives simple test of exogeneity of y2.

∙ Plug-in approach less robust than the estimator that uses nonlinear

functions of z as IVs [because such methods do not restrict Ey2|z].

∙ Can use IV with instruments zi,ŷi2zi.
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3. Correlated Random Coefficient Models

∙ Suppose we allow y2 to have a random slope:

y1  1  a1y2  z11  u1,     (15)

where a1, the “random coefficient” on y2. Heckman and Vytlacil

(1998) call (15) a “correlated random coefficient” (CRC) model.

∙ For a random draw i from the population:

yi1  1  ai1yi2  z11  ui1     (16)
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∙Write a1  1  v1 where 1  Ea1 (the average partial effect) is

(initially) the object of interest.

∙ Rewrite the equation as

y1  1  1y2  z11  v1y2  u1

≡ 1  1y2  z11  e1.
    (17)
    (18)
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∙ Potential problem with applying IV: the error term v1y2  u1 is not

necessarily uncorrelated with the instruments z, even if we maintain

Eu1|z  Ev1|z  0.     (19)

∙We want to allow y2 and v1 to be correlated, Covv1,y2 ≡ 1 ≠ 0,

along with Covy2,u1 ≠ 0.

∙ Suppose the conditional covariate is constant:

Covv1,y2|z  Covv1,y2,     (20)

which is sufficient along with (19) for standard IV estimators to

consistently estimate 1,1 (not intercept).
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∙ The CF approach due to Garen (1984) requires more assumptions, but

is more efficient and delivers more:

y2  z2  v2

Ey1|z,v2  1  1y2  z11  Ev1|z,v2y2  Eu1|z,v2

 1  1y2  z11  1v2y2  1v2

∙ CF estimator: After getting residuals v̂i2 from yi2 on zi run

yi1 on 1, yi2, zi1, v̂i2yi2, v̂i2

∙ Joint Wald test for null that y2 is exogenous (two degrees of

freedom).
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∙ Neither Covv1,y2|z  Covv1,y2 nor Garen’s CF assumptions

[Ev1|z,v2  1v2, Eu1|z,v2  1v2] can be obtained if y2 follows

standard discrete response models.

∙ Card (2001) shows (20) can can be violated even if y2 is continuous.

Wooldridge (2005) shows how to allow parametric heteroskedasticity

in the reduced form equation.
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4. Endogenous Switching

∙ Suppose y2 is binary and interacts with an unobservable. If y2 also

interacts with z1 we have an unrestricted “endogenous switching

regression” model:

y1  1  1y2  z11  y2z1 − 11  u1  y2v1     (21)

where 1  Ez1 and 1 is the average treatment effect.
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∙ If y2  1z2  e2  0 follows a probit model,

Eu1|e2,z  1e2, Ev1|e2,z  1e2

then

Ey1|z,e2  1  1y2  z11  y2z1 − 11  1e2  1y2e2

∙ By iterated expectations,

Ey1|z,y2  1  1y2  z11  y2z1 − 11

 1h2y2,z2  1y2h2y2,z2

where h2y2,z2  y2z2 − 1 − y2−z2 is the generalized

residual function for the probit model.
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∙ The two-step estimation method is the one due to Heckman (1976).

Centering zi1 before interacting with yi2 ensures ̂1 is the estimated

ATE:

yi1 on 1, yi2, zi1, yi2zi1 − z̄1, h2yi2,zi̂2, yi2h2yi2,zi̂2     (22)

where ̂2 is from the probit of yi2 on zi.
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∙ Note: We do not get any interesting treatment effects by taking

changes or derivatives of Ey1|z,y2.

∙ The average treatment effect on the treated (ATT) for a given z is

estimated as

̂attz  ̂1  z1 − z̄1̂1  ̂1z̂2.

Can average out z over the treated group to get the unconditional ATT.
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∙ Extension to random coefficients everywhere:

y1  1  a1y2  z1d1  y2z1 − 1g1  u1.     (23)

∙ If we assume that Ea1|v2, Ed1|v2, and Eg1|v2 are linear in e2,

then

Ey1|z,y2  1  1y2  z11  y2z1 − 11  1Ee2|z,y2

 1y2Ee2|z,y2  z1Ee2|z,y21  y2z1 − 1Ee2|z,y21

 1  1y2  z11  1h2y2,z2  1y2h2y2,z2

 h2y2,z2z11  y2h2y2,z2z1 − 11.
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∙ After the first-stage probit, the second-stage regression can be

obtained as

yi1 on 1, yi2, zi1, yi2zi1 − z̄1, ĥi2, yi2ĥi2, ĥi2zi1, yi2ĥi2zi1 − z̄1     (24)

across all observations i, where ĥi2  h2yi2,zi̂2

∙ So IMR appears by itself, interacted with yi2 and zi1, and also in a

triple interaction.

∙ Can bootstrap standard errors or use delta method.

∙ Null test of exogenous is joint significance of all terms containing
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∙ If apply linear IV to the endogenous switching regression model get

“local average treatment effect” interpretation under weak assumptions.

∙ Under the assumption that each regime has the same unobservable,

IV estimates the treatment effect conditional on zi1.

∙ If we believe the CF assumptions, we can estimate treatment effects

conditional on yi2,zi, and so ATT and ATU as special cases.

30



∙ Let x1 be a general function of y2,z1, including an intercept. Then

the general model can be written as

y1  x1b1

where b1 is a K1  1 random vector. If y2 follows a probit

y1  1z2  e2  0

then under multivariate normality (or weaker assumptions) the CF

approach allows us to estimate

Eb1|y2,z

∙ IV approaches allow us to estimate Eb1 under some assumptions

and only LATE under others.
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5. Random Coefficients in Reduced Forms

∙ Random coefficients in reduced forms ruled out in Blundell and

Powell (2003) and Imbens and Newey (2006).

∙ Hoderlein, Nesheim, and Simoni (2012) show cannot generally get

point identification, even in simple model.

∙ Of interest because the reaction of individual units to changes in the

instrument may differ in unobserved ways.

∙ Under enough assumptions can obtain new CF methods in linear

models that allow for slope heterogeneity everywhere.
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∙ For simplicity, a single EEV, y2. x1 a function of y2,z1, and has an

intercept. IV vector z also contains unity:

y1  x1b1 ≡ x1  x1a1 ≡ x1  u1

y2  zg2  z2  zc2 ≡ z2  v2

    (25)
    (26)

where b1  1  a1, Ea1  0, g2  2  c2, Ec2  0, and

u1  x1a1

v2  zc2

∙ Assume a1,c2 independent of z.
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∙We can estimate v2 because Ev2|z  0. Assuming joint normality

(and somewhat weaker), can obtain a CF approach.

Ea1|v2,z  Cova1,v2|z
Varv2|z  v2 

Ea1c2zi′
Varv2|z  v2     (27)

Now

Varv2|z  z′cz
Cova1,v2|z  Ea1v2|z  Ea1c2z′  acz′.
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∙ Combining gives

Ea1|v2,z  acz′
z′cz

 v2     (28)

and so

Ey1|v2,z  x11  x1Ea1|v2,z  x11 
x1acz′
z′cz

v2

 x11  x1 ⊗ zvecacv2/hz,c

≡ x11  x1 ⊗ zv2/hz,c1     (29)

where 1  vecac and hz,c ≡ z′cz.
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∙ Can operationalize (29) by noting that 2 and c are identified from

the reduced form for y2:

Ey2|zi  z2

Vary2|z  z′cz

∙ Can use two-step estimation for 2 and c but also the quasi-MLE

using the normal distribution.

∙ Given consistent estimators of 2 and c, we can form

v̂i2  yi2 − zi̂2, ĥi2  zi′̂czi     (30)

∙ Can use OLS on the second-stage estimating equation:

yi1  xi11  xi1 ⊗ ziv̂i2/ĥi21  errori     (31)
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∙ Need to adjust the asymptotic variance of ̂1
′ , ̂1

′
′ for the first-stage

estimation, possibly via bootstrapping or the delta method.

∙ The population equation underlying (31) has heteroskedasticity.

Account for in inference, maybe estimation (GMM).

∙ Notice that no terms in xi1 ⊗ zi appears by itself in the equation;

each is interacted with v̂i2/ĥi2, which is necessary to preserve

identification.
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1. General Approach

∙With models that are nonlinear in parameters, the linear projection

approach to CF estimation rarely works (unless the model happens to

be linear in the EEVs).

∙ If u1 is a vector of “structural” errors, y2 is the vector of EEVs, and z

is the vector of exogenous variables, we at least have to model

Eu1|y2,z and often Du1|y2,z (in a parametric context).

∙ An important simplification is when

y2  g2z,2  v2     (1)

where v2 is independent of z. Unfortunately, this rules out discrete y2.
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∙With discreteness in y2, difficult to get by without modeling Dy2|z.

∙ In many cases – particularly when y2 is continuous – one has a choice

between two-step control function estimators and one-step estimators

that estimate parameters at the same time. (Typically these have a

quasi-LIML flavor.)

∙More radical suggestions are to use generalized residuals in nonlinear

models as an approximate solution to endogeneity.
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2. Nonlinear Models with Additive Errors

∙ Suppose

y1  g1y2,z1,1  u1

y2  g2z,2  v2

and

Eu1|v2,z  Eu1|v2  v21

∙ Assume we have enough relevant elements in z2 so identification

holds.
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∙We can base a CF approach on

Ey1|y2,z  g1y2,z1,1  v21     (2)

∙ Estimate 2 by multivariate nonlinear least squares, or an MLE, to get

v̂i2  yi2 − g2zi, ̂2.

∙ In second step, estimate 1 and 1 by NLS using the mean function in

(2).

∙ Easiest when y2  zΓ2  v2 so can use linear estimation in first stage.

∙ Can allow a vector y1, as in Blundell and Robin (1999, Journal of

Applied Econometrics): expenditure share system with total

expenditure endogenous.
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∙ In principle can have y2 discrete provided we can find Eu1|y2,z.

∙ If y2 is binary, can have nonlinear switching regression – but with

additive noise.

∙ Example: Exponential function:

y1  exp1  1y2  z11  y2z11  u1  y2v1

y2  1z2  e2  0

∙ Usually more natural for the unobservables to be inside the

exponential function. And what if y1 is something like a count variable?

∙ Same issue arises in share equations.

6



3. Models with Intrinsic Nonlinearity

∙ Typically three approaches to nonlinear models with EEVs.

(1) Plug in fitted values from a first step estimation in an attempt to

mimic 2SLS in linear model. Usually does not produce consistent

estimators because the implied form of Ey1|z or Dy1|z is incorrect.

(2) CF approach: Plug in residuals in an attempt to obtain Ey1|y2,z or

Dy1|y2,z.

(3) Maximum Likelihood (often limited information): Use models for

Dy1|y2,z and Dy2|z jointly.

∙ All strategies are more difficult with nonlinear models when y2 is

discrete.
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Binary and Fractional Responses

Probit model:

y1  11y2  z11  u1 ≥ 0,     (3)

where u1|z  Normal0, 1. Analysis goes through if we replace z1,y2

with any known function x1 ≡ g1z1,y2.

∙ The Rivers-Vuong (1988) approach is to make a

homoskedastic-normal assumption on the reduced form for y2,

y2  z2  v2, v2|z  Normal0,2
2.     (4)
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∙ RV approach comes close to requiring

u1,v2 independent of z.     (5)

If we also assume

u1,v2  Bivariate Normal     (6)

with 1  Corru1,v2, then we can proceed with MLE based on

fy1,y2|z. A CF approach is available, too, based on

Py1  1|y2,z  1y2  z11  1v2     (7)

where each coefficient is multiplied by 1 − 1
2−1/2.
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The Rivers-Vuong CF approach is

(i) OLS of yi2 on zi, to obtain the residuals, v̂i2.

(ii) Probit of yi1 on zi1,yi2, v̂i2 to estimate the scaled coefficients. A

simple t test on v̂2 is valid to test H0 : 1  0.
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∙ Can recover the original coefficients, which appear in the partial

effects – see Wooldridge (2010, Chapter 15). Or, obtain average partial

effects by differentiating the estimated “average structural function”:

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2,     (8)

that is, we average out the reduced form residuals, v̂i2.

∙ Cover the ASF in more detail later.
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∙ The two-step CF approach easily extends to fractional responses:

0 ≤ y1 ≤ 1. Modify the model as

Ey1|y2,z,q1  x11  q1,     (9)

where x1 is a function of y2,z1 and q1 contains unobservables.

∙ Assume q1  1v2  e1 where De1|z,v2  Normal0,e1
2 .

∙ Use the same two-step estimator as for probit. (In Stata, glm

command in second stage.) In this case, must obtain APEs from the

ASF in (8).
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∙ In inference, assume only that the mean is correctly specified. (Use

sandwich in Bernoulli quasi-LL.)

∙ To account for first-stage estimation, the bootstrap is convenient.

∙ No IV procedures available unless assume that, say, the log-odds

transform of y1 is linear in x11 and an additive error independent of z.
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∙ CF has clear advantages over “plug-in” approach, even in binary

response case. Suppose rather than conditioning on v2 along with z (and

therefore y2) to obtain Py1  1|z,y2 we use

Py1  1|z  1z2  z11/1

1
2  Var1v2  u1

(i) OLS on the reduced form, and get fitted values, ŷi2  zi̂2. (ii)

Probit of yi1 on ŷi2, zi1. Harder to estimate APEs and test for

endogeneity.

14



∙ Danger with plugging in fitted values for y2 is that one might be

tempted to plug ŷ2 into nonlinear functions, say y2
2 or y2z1, and use

probit in second stage. Does not result in consistent estimation of the

scaled parameters or the partial effects.

∙ Adding the CF v̂2 solves the endogeneity problem regardless of how

y2 appears.
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Example: Married women’s fraction of hours worked.
. use mroz

. gen frachours  hours/8736

. sum frachours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

frachours | 753 .0847729 .0997383 0 .5666209
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. reg nwifeinc educ exper expersq kidslt6 kidsge6 age huseduc husage

Source | SS df MS Number of obs  753
------------------------------------------- F( 8, 744)  23.77

Model | 20722.898 8 2590.36225 Prob  F  0.0000
Residual | 81074.2176 744 108.970723 R-squared  0.2036

------------------------------------------- Adj R-squared  0.1950
Total | 101797.116 752 135.368505 Root MSE  10.439

------------------------------------------------------------------------------
nwifeinc | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .6721947 .2138002 3.14 0.002 .2524713 1.091918

exper | -.3133239 .1383094 -2.27 0.024 -.5848472 -.0418007
expersq | -.0003769 .0045239 -0.08 0.934 -.0092581 .0085043
kidslt6 | .9004389 .8265936 1.09 0.276 -.7222947 2.523172
kidsge6 | .4462001 .3225308 1.38 0.167 -.1869788 1.079379

age | .2819309 .1075901 2.62 0.009 .0707146 .4931472
huseduc | 1.188289 .1617589 7.35 0.000 .8707307 1.505847

husage | .0681739 .1047836 0.65 0.515 -.1375328 .2738806
_cons | -15.46223 3.9566 -3.91 0.000 -23.22965 -7.694796

------------------------------------------------------------------------------

. predict v2h, resid
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. glm frachours educ exper expersq kidslt6 kidsge6 age nwifeinc v2h, fam(bin)
link(probit) robust

note: frachours has noninteger values

Generalized linear models No. of obs  753
Optimization : ML Residual df  744

Scale parameter  1
Deviance  77.29713199 (1/df) Deviance  .103894
Pearson  83.04923963 (1/df) Pearson  .1116253

Variance function: V(u)  u*(1-u/1) [Binomial]
Link function : g(u)  invnorm(u) [Probit]

AIC  .4338013
Log pseudolikelihood  -154.3261842 BIC  -4851.007

------------------------------------------------------------------------------
| Robust

frachours | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

educ | .0437229 .0169339 2.58 0.010 .010533 .0769128
exper | .0610646 .0096466 6.33 0.000 .0421576 .0799717

expersq | -.00096 .0002691 -3.57 0.000 -.0014875 -.0004326
kidslt6 | -.4323608 .0782645 -5.52 0.000 -.5857565 -.2789651
kidsge6 | -.0149373 .0202283 -0.74 0.460 -.0545841 .0247095

age | -.0219292 .0043658 -5.02 0.000 -.030486 -.0133725
nwifeinc | -.0131868 .0083704 -1.58 0.115 -.0295925 .0032189

v2h | .0102264 .0085828 1.19 0.233 -.0065957 .0270485
_cons | -1.169224 .2397377 -4.88 0.000 -1.639102 -.6993472

------------------------------------------------------------------------------
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. fracivp frachours educ exper expersq kidslt6 kidsge6 age
(nwifeinc  huseduc husage)

Fitting exogenous probit model
note: frachours has noninteger values

Probit model with endogenous regressors Number of obs  753
Wald chi2(7)  240.78

Log pseudolikelihood  -3034.3388 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0131207 .0083969 -1.56 0.118 -.0295782 .0033369

educ | .0434908 .0169655 2.56 0.010 .0102389 .0767427
exper | .060721 .0098379 6.17 0.000 .041439 .0800029

expersq | -.0009547 .0002655 -3.60 0.000 -.0014751 -.0004342
kidslt6 | -.4299361 .0802032 -5.36 0.000 -.5871314 -.2727408
kidsge6 | -.0148507 .0205881 -0.72 0.471 -.0552025 .0255012

age | -.0218038 .0045701 -4.77 0.000 -.030761 -.0128465
_cons | -1.162787 .2390717 -4.86 0.000 -1.631359 -.6942151

-----------------------------------------------------------------------------
/athrho | .1059984 .0906159 1.17 0.242 -.0716056 .2836024

/lnsigma | 2.339528 .0633955 36.90 0.000 2.215275 2.463781
-----------------------------------------------------------------------------

rho | .1056032 .0896054 -.0714835 .2762359
sigma | 10.37633 .657813 9.163926 11.74915

------------------------------------------------------------------------------
Instrumented: nwifeinc
Instruments: educ exper expersq kidslt6 kidsge6 age huseduc husage
------------------------------------------------------------------------------
Wald test of exogeneity (/athrho  0): chi2(1)  1.37 Prob  chi2  0.2421
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∙What are the limits to the CF approach? Consider

Ey1|z,y2,q1  1y2  z11  q1     (10)

where y2 is discrete. Rivers-Vuong approach does not generally work

(even if y1 is binary).

∙ Neither does plugging in probit fitted values, assuming

Py2  1|z  z2     (11)

In other words, do not try to mimic 2SLS as follows: (i) Do probit of y2

on z and get the fitted probabilities, ̂2  z̂2. (ii) Do probit of y1

on z1, ̂2, that is, just replace y2 with ̂2.
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∙ The only strategy that works under traditional assumptions is

maximum likelihood estimation based on fy1|y2,zfy2|z. [Perhaps

this is why some, such as Angrist (2001), promote the notion of just

using linear probability models estimated by 2SLS.]

∙ “Bivariate probit” software can be used to estimate the probit model

with a binary endogenous variable. Wooldridge (2011) shows that the

same quasi-LIML is consistent when y1 is fractional if (10) holds.

∙ Can also do a full switching regression when y1 is fractional. Use

“heckprobit” quasi-LLs.
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∙ A CF approach based on generalize residuals can be justified for

“small” amounts of endogeneity. Consider

Ey1|y2,z,q1  x11  q1     (11)

and

y2  1z2  e2  0     (12)

∙ q1,e1 jointly normal and independent of z.

∙ Let

gri2 ≡ yi2zi̂2 − 1 − yi2−zi̂2     (13)

be the generalized residuals from the probit estimation.
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∙ The variable addition test (essentially score test) for the null that q1

and e2 are uncorrelated can be obtained by “probit” of yi1 on the mean

function

xi11  1gri2     (14)

and use a robust t statistic for ̂1. (Get scaled estimates of 1 and 1.)
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∙Wooldridge (2011) suggests that this can approximate the APEs,

obtained from the estimated average structural function:

ASFy2,z1  N−1∑
i1

N

x1̂1  ̂1gri2     (15)

∙ Simulations suggest this can work pretty well, even if the amount of

endogeneity is not “small.”
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∙ If we have two sources of unobservables, add an interaction:

Ey1|y2,z ≈ x11  1gr2  1y2gr2

ASFy2,z1  N−1∑
i1

N

x1̂1  ̂1gri2  ̂1y2gri2

    (16)

    (17)

∙ Two df test of null that y2 is exogenous.
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Multinomial Responses

∙ Recent push by Petrin and Train (2010), among others, to use control

function methods where the second step estimation is something simple

– such as multinomial logit, or nested logit – rather than being derived

from a structural model. So, if we have reduced forms

y2  z2  v2,     (18)

then we jump directly to convenient models for Py1  j|z1,y2,v2.

The average structural functions are obtained by averaging the response

probabilities across v̂i2.

26



∙ Can use the same approach when we have a vector of shares, say y1,

adding up to unity. (Nam and Wooldridge, 2012.) The multinomial

distribution is in the linear exponential family.

∙ No generally acceptable way to handle discrete y2, except by

specifying a full set of distributions.

∙Might approximate by adding generalized residuals as control

functions to standard models (such as MNL).
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Exponential Models

∙ IV and CF approaches available for exponential models. For y1 ≥ 0

(could be a count) write

Ey1|y2,z, r1  expx11  q1,     (19)

where q1 is the omitted variable independent of z. x1 can be any

function of y2,z1.

∙ CF method can be based on

Ey1|y2,z  expx11Eexpq1|y2,z.     (20)
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∙ For continuous y2, can find Eexpq1|y2,z when Dy2|z is

homoskedastic normal (Wooldridge, 1997) and when Dy2|z follows a

probit (Terza, 1998).

∙ In the probit case,

Ey1|y2,z  expx11hy2,z2,1     (21)

hy2,z2,1  exp1
2/2y21  z2/z2

 1 − y21 − 1  z2/1 − z2.
    (22)

∙ Can use two-step NLS, where ̂2 is obtained from probit. If y1 is

count, use a QMLE in the linear exponential family, such as Poisson or

geometric.
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∙ Can show the VAT score test is obtained from the mean function

expxi11  1gri     (23)

where

gri2  yi2zi̂2 − 1 − yi2−zi̂2

∙ Convenient to use Poisson QMLE. Computationally very simple. At a

minimum might as well test H0 : 1  0 first.
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∙ As in binary/fractional case, adding the GR to the exponential mean

might account for endogeneity, too.

ASFy2,z1  N−1∑
i1

N

expx1̂1  ̂1gri2

 N−1∑
i1

N

exp̂1gri2 expx1̂1

∙ Add yi2gri2 for a swithing regression version:

“Eyi1|yi2,zi  expxi11  1gri  1yi2gri2     (24)
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∙ IV methods that work for any y2 without distributional assumptions

are available [Mullahy (1997)]. If

Ey1|y2,z,q1  expx11  q1     (25)

and q1 is independent of z then

Eexp−x11y1|z  Eexpq1|z  1,     (26)

where Eexpq1  1 is a normalization. The moment conditions are

Eexp−x11y1 − 1|z  0.     (27)

∙ Requires nonlinear IV methods. How to approximate the optimal

instruments?
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Quantile Regression

∙ Suppose

y1  1y2  z11  u1,     (28)

where y2 is endogenous and z is exogenous, with z1 ⊂ z.

∙ Amemiya’s (1982) two-stage LAD estimator is a plug-in estimator.

Reduced form for y2,

y2  z2  v2.     (29)

First step applies OLS or LAD to (29), and gets fitted values,

yi2  zi̂2. These are inserted for yi2 to give LAD of yi1 on zi1,ŷi2.

2SLAD relies on symmetry of the composite error 1v2  u1 given z.
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∙ If Du1,v2|z is “centrally symmetric” can use a control function

approach, as in Lee (2007). Write

u1  1v2  e1,     (30)

where e1 given z would have a symmetric distribution. Get LAD

residuals v̂i2  yi2 − zi̂2 and do LAD of yi1 on zi1,yi2, v̂i2. Use t test on

v̂i2 to test null that y2 is exogenous.

∙ Interpretation of LAD in context of omitted variables is difficult

unless lots of symmetry assumed.

∙ See Lee (2007) for discussion of general quantiles.
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4. “Special Regressor” Methods for Binary Response

∙ Lewbel (2000) showed how to semi-parametrically estimate

parameters in binary response models if a regressor with certain

properties is available. Dong and Lewbel (2012) have recently relaxed

those conditions somewhat.

∙ Let y1 be a binary response:

y1  1w1  y22  z11  u1  0
 1w1  x11  u1  0

    (31)

where w1 is the “special regressor” normalized to have unity coefficient

and assumed to be continuously distributed.
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∙ In willingness-to-pay applications, w1  −cost, where cost is the

amoung that a new project will cost. Then someone prefers the project

if

y1  1wtp  cost

∙ In studies that elicit WTP, cost is often set completely exogenously:

independent of everything else, including y2.

∙ Dong and Lewbel (2012) assume w1, like z1, is exogenous in (31),

and that there are suitable instruments:

Ew1
′ u1  0, Ez′u1  0     (32)
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∙ Need usual rank condition if we had linear model without w1: rank

Ez′x1  K1.

∙ Setup is more general but they also write a linear equation

w1  y21  z2  r1

Ey2
′ r1  0, Ez′r1  0

    (33)

and then require (at a minimum)

Er1u1  0.     (34)

∙ Condition (34), along with previous assumptions, means w1 must be

excluded from the reduced form for y2 (which is a testable restriction).
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∙ To see this, multiply (33) by u1, take expectations, impose exogeneity

on w1 and z, and use (31):

Eu1w1  Eu1y21  Eu1z2  Eu1r1

or

0  Eu1y21     (35)

For this equation to hold except by fluke we need 1  0 (and in the

case of a scalar y2 this is the requirement). From (33) this means y2 and

w1 are uncorrelated after z has been partialled out. This implies w1 does

not appear in the reduced form for y2 once z is included.
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∙ Can easily test the Dong-Lewbel identification assumption on the

special regressor. Can hold if w1 depends on z provided that w1 is

independent of y2 conditional on z.

∙ In WTP studies, means we can allow w1 to depend on z but not y2.

∙ Dong and Lewbel application: y1 is decision to migrate, y2 is home

ownership dummy. The special regressor is age. But does age really

have no partial effect on home ownership given the other exogenous

variables?
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∙ If the assumptions hold, D-L show that, under regularity conditions

(including wide support for w1),

s1  x11  e1

Ez′e1  0

    (36)

where

s1 
y1 − 1w1 ≥ 0
fw1|y2,z     (37)

where f|y2,z is the density of w1 given y2,z.
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∙ Estimate this density by MLE or nonparametrics:

ŝ i1 
yi1 − 1wi1 ≥ 0
f̂wi1|yi2,zi

∙ Requirement that f|y2,z is continuous means the special regressor

must appear additively and nowhere else. So no quadratics or

interactions.
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1. The Average Structural Function

∙ In nonlinear models it can be counterproductive to focus on

parameters. Sometimes parameters cannot be identified but average

partial effects can.

∙ Example: Suppose

Py  1|x,q  x  q
q  Normal0,q2

    (1)

∙ Even if we assume q is independent of x,  is not identified. But

q  / 1  q2 is. These scaled parameters index the average partial

effects.

2



∙ In fact, q appears in the average structural function:

ASFx  Eqx  q   x/ 1  q2 .     (2)

∙ q is exactly what is estimated from probit of y on x when

Dq|x  Dq.

∙ Blundell and Powell (2003) define the notion of the ASF in a very

general setting.

y1  g1y2,z1,u1 ≡ g1x1,u1     (3)

where u1 is a vector of unobservables.
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∙ The ASF averages out the unobservables for given values of y2,z1:

ASF1y2,z1   g1y2,z1,u1dF1u1,     (4)

where F1 is the distribution of u1.

∙ Notice that y2 and z1 are treated symetrically in the definition.

Endogeneity of y2 is irrelvant for the definition.

∙ Typically approach: Parameterize g1, make distributional

assumptions about u1, make identification assumptions (including

restrictions on Dy2|z.
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∙ Sometimes useful to start with a weaker assumption:

Ey1|y2,z1,q1  g1y2,z1,q1     (5)

Allows more natural treatment of models for counts, fractional reponses

when only conditional means are specified.

∙ Can write as

y1  g1y2,z1,q1  e1

u1  q1,e1

    (6)

but may only wish to maintain Ee1|y2,z1,q1  0 (and not stronger

forms of independence).
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∙ Key insight of Blundell and Powell. Suppose y2 can be written as

y2  g2z  v2

u1,v2 is independent of z
    (7)
    (8)

∙ Next, define

Ey1|y2,z  Ey1|v2,z ≡ h1y2,z1,v2

  g1y2,z1,u1dG1u1|v2

    (9)
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∙ Using iterated expectations,

ASFy2,z  Ev2h1y2,z1,v2     (10)

∙ To identify ASFy2,z we can shift attention from g1 to h1, and

the latter depends on (effectively) observed variables: v2  y2 − g2z.

∙Wooldridge (2011) makes the argument slightly more general. Start

with the “structural” conditional mean specification

Ey1|y2,z,q1  g1y2,z1,q1.
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∙ Suppose that for r2  k2y2,z we assume

Dq1|y2,z  Dq1|r2     (11)

for a vector of “generalized residuals” r2, which we assume can be

estimated.

∙We can still recover the ASF:

Ey1|y2,z1,r2   g1y2,z1,q1dF1q1|r2 ≡ h1y2,z1,r2

ASFy2,z1  Er2h1y2,z1,r2

    (12)

    (13)
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∙Where might r2 come from if not an additive, reduced form error?

Perhaps generalized residuals when y2 is discrete, or even standardized

residuals if heteroskedasticity is present in a reduced form.

∙When y2 is discrete (11) is nonstandard. Typically the assumption is

made on the underlying continuous variables in a discrete response

model.

∙ Generally, when y2 is continuous and has wide support we have many

good options to choose from. Much harder when y2 is discrete.
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∙ Focus on the ASF can have some surprising implications. Suppose

y  1x  u  0
u|x  Normal0, expx1

where x1 excludes an intercept. This is the so-called “heteroskedastic

probit” model.

∙ The response probability is

Py  1|x  exp−x1/2x;     (14)

all parameters identified. Can use MLE.
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∙ The partial derivatives of Py  1|x are complicated; not

proportional to j.

∙ The partial effects on the ASF are proportional to the j:

ASFx  1 − G−x     (15)

where G is the unconditional distribution of u.
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∙ Is the focus on the ASF “superior” in such examples (there are a lot of

them)? Maybe, but we cannot really tell the difference between

heteroskedasticity in u and random coefficients,

yi  1xibi  0

with bi independent of xi.
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2. Nonparametric Estimation Approaches

∙ In Blundell and Powell’s (2003) general setup, use a two-step CF

approach. In the first step, the function g2 is estimated:

y2  g2z  v2

Ev2|z  0
    (16)

∙ Can use kernel regression or or series estimation or impose, say,

index restrictions.

∙ Need the residuals,

v̂i2  yi2 − ĝ2zi.     (17)
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∙ In the second step, use nonparametric regression of yi1 on xi1, v̂i2 to

obtain ĥ1.

∙ The ASF is consistently estimated as

ASFx1  N−1∑
i1

N

ĥ1x1, v̂i2     (18)

∙ Need to choose bandwidths in kernels or rates in series suitably.

∙ Inference is generally difficult. With series, can treat as flexible

parametric models that are misspecified for any particular N.

Ackerberg, Chen, Hahn (2009, Review of Economics and Statistics).

∙ Note how g1 is not estimated (and is not generally identified).
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Quantile Structural Function

∙ Like Blundell and Powell (2003), Imbens and Newey (2006) consider

a triangular system.

∙ As before, the structural equation is

y1  g1y2,z1,u1.

∙ Now the reduced form need not have an additive error but needs to

satisfy monoticity in the error:

y2  g2z,e2,

where g2z,  is strictly monotonic.
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∙Monotoncity rules out discrete y2 but allows some interaction

between the single unobserved heterogeneity in y2 and the exogenous

variables.

∙ One useful result: Imbens and Newey show that, if u1,e2 is

independent of z, then a valid control function that can be used in a

second stage is v2 ≡ Fy2|zy2,z, where Fy2|z is the conditional

distribution of y2 given z.

∙ One can use parametric or nonparametric estimates v̂i2  F̂y2|zyi2,zi

in a second-step nonparametric estimation, and then average to get the

ASF.
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∙ Imbens and Newey described identification of other quantities of

interest, including the quantile structural function. When u1 is a scalar

and monotonically increasing in u1, the QSF is

QSFx1  g1x1,Quantu1,

where Quantu1 is the th quantile of u1.
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3. Semiparametric Approaches

∙ Full nonparametric estimation can lead to the “curse of

dimensionality,” especially if the dimensions of z and/or y2 are large.

Semiparametric approaches can help.

∙ Blundell and Powell (2004) show how to relax distributional

assumptions on u1,v2 in the specification

y1  1x11  u1  0

y2  g2z  v2

u1,v2 is independent of z

    (19)

    (20)
    (21)

where x1 can be any function of y2,z1. (19) is semiparametric

because no distributional assumptions are made on u1.
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∙ Under these assumptions,

Py1  1|z,v2  Ey1|z,v2  H1x11,v2     (22)

for some (generally unknown) function H1, . The average structural

function is just ASFx1  Evi2H1x11,vi2.

∙ Two-step estimation: Estimate the function g2 and then obtain

residuals v̂i2  yi2 − ĝ2zi. BP (2004) show how to estimate H1 and 1

(up to scale) and G1, the distribution of u1.

∙ Estimated ASF is obtained from Ĝ1x1̂1 or

ASFz1,y2  N−1∑
i1

N

Ĥ1x1̂1, v̂i2;     (23)
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∙ In some cases, an even more parametric approach suggests itself.

Suppose we have the exponential regression

Ey1|y2,z,q1  expx11  q1,     (24)

where q1 is the unobservable.

∙ If y2  g2z2  v2 and q1,v2 is independent of z, then

Ey1|y2,z1,v2  h2v2expx11,     (25)

where now h2  0 is an unknown function. It can be approximated

using a sieve with an log link function to ensure nonnegativity.

First-stage residuals v̂2 replace v2.
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∙ To handle certain cases where y2 is discrete, Wooldridge (2011)

suggests making the model for y2 parametric or semiparametric,

leaving Ey1|y2,z1,q1 unspecified.

∙ Suppose r2 is a vector of estimable “generalized residuals” –

r2  k2y2,z,2 for known function k2 and identified parameters

2 – and we are willing to assume r2 acts as a “sufficient statistic” for

endogeneity of y2:

Dq1|y2,z  Dq1|r2.
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∙We can use nonparametric, semiparametric, or flexible parametric

approaches to estimate

Ey1|y2,z1,r2  h1x1,r2

in a second stage by inserting r̂i2 in place of ri2. The r̂i2 would often

come from an MLE.

∙ Smoothness in r2 is critical, and it must vary enough separately from

y2,z1.
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∙ As before,

ASFx1  N−1∑
i1

N

ĥ1x1, r̂i2

∙ Suppose y2 is binary. We might model y2 as flexible probit, or

heteroskedatic probit. In the probit case r̂i2 are the GRs; an extension

holds for heteroskedastic probit.

∙We could use full nonparametric in the second stage or assume

something like

Ey1|x1, r2  H1x11, r2

similar to BP (2004).
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4. Parametric Approximations, Reconsidered

∙ One implication of the Blundell and Powell approach: It is liberating

even if we focus on parametric analysis at one or both stages. The

problem is reduced to getting a good approximation to Ey1|y2,z1,v2

and a reliable way to obtain residuals v̂i2.

∙ Sometimes flexible parametric may be preferred to obtain more

precise estimators and make computation simpler.
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∙ Example: Suppose we start with

y1  1x11  u1  0

y2  z2  e2

e2  h2z v2

where u1,v2 is independent of z and h2z  0 is a heteroskedasticity

function.

∙ Under joint normality can write

u1  1v2  a1

where a1 is independent of v2,z (and therefore x1).
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∙ The control function is

v̂i2  êi2/ ĥ2zi

and this can be used in a Blundell-Powell analysis or just a flexible

probit. Typically ĥ2zi would be a flexible exponential function.

∙ Because we know that the ASF can be obtained from averaging v2 out

of Ey1|y2,z2,v2, we can use a very flexible parametric model in the

second stage. For example, estimate the equation

xi11  1v̂i2  1v̂i22  v̂i2xi11

and then, for fixed x1, average out v̂i2.
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∙Might even use a “hetprobit” model where v̂i2 can appear in the

variance.

∙ All works when y1 is fractional, too.

∙ Generally, if v2 is the control function, use models in the second stage

that reflect the nature of y1, and use sensible (but robust) estimation

methods. If y1 is a count, and y2 a scalar, might use Poisson regression

with mean function

expxi11  1v̂i2  1v̂i22  v̂i2xi11
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∙ Even if yi2 is discrete, or we have a vector yi2, we might obtain

generalized residuals from MLE estimation and use similar schemes.

∙ At a minimum, flexible parametric approaches are simple ways to

allow sensitivity analysis. Also the tests for exogeneity are valid quite

generally.

∙ Simple empirical example: Women’s LFP and fertility. Maybe a more

serious nonparametric analysis is needed.
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. use labsup

. probit morekids age agesq nonmomi educ samesex

Probit regression Number of obs  31857
LR chi2(5)  2365.72
Prob  chi2  0.0000

Log likelihood  -20893.576 Pseudo R2  0.0536

------------------------------------------------------------------------------
morekids | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | .1190289 .0307712 3.87 0.000 .0587185 .1793393

agesq | -.0010264 .0005285 -1.94 0.052 -.0020623 9.44e-06
nonmomi | -.0028068 .0003653 -7.68 0.000 -.0035228 -.0020908

educ | -.0882257 .0023305 -37.86 0.000 -.0927935 -.083658
samesex | .1458026 .0143639 10.15 0.000 .11765 .1739552

_cons | -1.652074 .4418017 -3.74 0.000 -2.517989 -.7861586
------------------------------------------------------------------------------

. predict zd2, xb

. gen gr2  morekids*normalden(zd2)/normal(zd2) -
(1 - morekids)*normalden(-zd2)/normal(-zd2)

. sum gr2

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

gr2 | 31857 1.42e-10 .7802979 -1.854349 1.638829
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. probit worked morekids age agesq nonmomi educ gr2

Probit regression Number of obs  31857
LR chi2(6)  2069.78
Prob  chi2  0.0000

Log likelihood  -20530.203 Pseudo R2  0.0480

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
morekids | -.7692097 .2375535 -3.24 0.001 -1.234806 -.3036134

age | .1694555 .0324621 5.22 0.000 .1058309 .2330802
agesq | -.0022156 .0005353 -4.14 0.000 -.0032648 -.0011663

nonmomi | -.0047247 .0004426 -10.67 0.000 -.0055922 -.0038572
educ | .0614195 .0081478 7.54 0.000 .0454501 .077389

gr2 | .2985435 .146857 2.03 0.042 .010709 .586378
_cons | -2.961497 .4402391 -6.73 0.000 -3.82435 -2.098645

------------------------------------------------------------------------------

. margeff

Average marginal effects on Prob(worked1) after probit

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
morekids | -.2769055 .0764453 -3.62 0.000 -.4267356 -.1270754

age | .0624673 .011951 5.23 0.000 .0390437 .0858909
agesq | -.0008167 .0001972 -4.14 0.000 -.0012033 -.0004302

nonmomi | -.0017417 .0001623 -10.73 0.000 -.0020598 -.0014236
educ | .0226414 .0029956 7.56 0.000 .0167702 .0285126

gr2 | .1100537 .0541261 2.03 0.042 .0039684 .2161389
------------------------------------------------------------------------------

. probit worked morekids age agesq nonmomi educ

Probit regression Number of obs  31857
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LR chi2(5)  2065.65
Prob  chi2  0.0000

Log likelihood  -20532.27 Pseudo R2  0.0479

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
morekids | -.2872582 .0149444 -19.22 0.000 -.3165487 -.2579677

age | .1478441 .0306711 4.82 0.000 .0877298 .2079583
agesq | -.0020299 .0005275 -3.85 0.000 -.0030637 -.0009961

nonmomi | -.0042178 .0003656 -11.54 0.000 -.0049343 -.0035012
educ | .0772888 .0023425 32.99 0.000 .0726977 .0818799

_cons | -2.912884 .4395955 -6.63 0.000 -3.774475 -2.051293
------------------------------------------------------------------------------

. margeff

Average marginal effects on Prob(worked1) after probit

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
morekids | -.1070784 .0055612 -19.25 0.000 -.1179783 -.0961786

age | .0545066 .011295 4.83 0.000 .0323687 .0766445
agesq | -.0007484 .0001944 -3.85 0.000 -.0011293 -.0003674

nonmomi | -.001555 .000134 -11.61 0.000 -.0018175 -.0012924
educ | .0284945 .0008184 34.82 0.000 .0268905 .0300986

------------------------------------------------------------------------------

. reg morekids age agesq nonmomi educ samesex

Source | SS df MS Number of obs  31857
------------------------------------------- F( 5, 31851)  490.14

Model | 568.823401 5 113.76468 Prob  F  0.0000
Residual | 7392.85001 31851 .232107313 R-squared  0.0714
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------------------------------------------- Adj R-squared  0.0713
Total | 7961.67342 31856 .249926966 Root MSE  .48178

------------------------------------------------------------------------------
morekids | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | .0440951 .0114907 3.84 0.000 .021573 .0666173

agesq | -.0003733 .0001975 -1.89 0.059 -.0007604 .0000137
nonmomi | -.0010596 .0001372 -7.72 0.000 -.0013285 -.0007907

educ | -.0328862 .0008425 -39.03 0.000 -.0345376 -.0312348
samesex | .0549188 .0053988 10.17 0.000 .044337 .0655006

_cons | -.1173924 .1649003 -0.71 0.477 -.4406034 .2058187
------------------------------------------------------------------------------

. predict v2, resid
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. reg worked morekids age agesq nonmomi educ v2, robust

Linear regression Number of obs  31857
F( 6, 31850)  386.10
Prob  F  0.0000
R-squared  0.0634
Root MSE  .47607

------------------------------------------------------------------------------
| Robust

worked | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

morekids | -.2134551 .0971395 -2.20 0.028 -.4038523 -.0230578
age | .062004 .0122329 5.07 0.000 .038027 .0859811

agesq | -.0008351 .0001998 -4.18 0.000 -.0012268 -.0004435
nonmomi | -.0016831 .0001729 -9.74 0.000 -.0020219 -.0013443

educ | .0253881 .0033018 7.69 0.000 .0189164 .0318598
v2 | .1066713 .0973191 1.10 0.273 -.0840778 .2974204

_cons | -.6258267 .164867 -3.80 0.000 -.9489724 -.3026811
------------------------------------------------------------------------------
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. reg worked morekids age agesq nonmomi educ, robust

Linear regression Number of obs  31857
F( 5, 31851)  463.02
Prob  F  0.0000
R-squared  0.0634
Root MSE  .47607

------------------------------------------------------------------------------
| Robust

worked | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

morekids | -.1071292 .0055642 -19.25 0.000 -.1180352 -.0962232
age | .0572601 .01145 5.00 0.000 .0348177 .0797025

agesq | -.0007945 .0001964 -4.05 0.000 -.0011794 -.0004095
nonmomi | -.0015715 .0001399 -11.23 0.000 -.0018457 -.0012973

educ | .0288871 .0008471 34.10 0.000 .0272268 .0305473
_cons | -.6154823 .1646188 -3.74 0.000 -.9381415 -.2928231

------------------------------------------------------------------------------
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. biprobit (worked morekids age agesq nonmomi educ) (morekids  age agesq nonmomi educ samesex)

Comparison: log likelihood  -41425.846

Fitting full model:

Seemingly unrelated bivariate probit Number of obs  31857
Wald chi2(10)  4547.96

Log likelihood  -41423.859 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
worked |

morekids | -.7217122 .1996235 -3.62 0.000 -1.112967 -.3304573
age | .1640598 .0309654 5.30 0.000 .1033687 .2247509

agesq | -.0021513 .0005238 -4.11 0.000 -.003178 -.0011245
nonmomi | -.0045819 .0003826 -11.98 0.000 -.0053318 -.003832

educ | .0610621 .0087203 7.00 0.000 .0439706 .0781535
_cons | -2.888228 .4378617 -6.60 0.000 -3.746421 -2.030035

-----------------------------------------------------------------------------
morekids |

age | .1194871 .0307611 3.88 0.000 .0591965 .1797777
agesq | -.0010345 .0005284 -1.96 0.050 -.0020701 1.10e-06

nonmomi | -.002818 .0003658 -7.70 0.000 -.0035349 -.0021011
educ | -.0884098 .0023329 -37.90 0.000 -.0929822 -.0838374

samesex | .1443195 .0144174 10.01 0.000 .1160619 .172577
_cons | -1.654577 .4416112 -3.75 0.000 -2.520119 -.7890352

-----------------------------------------------------------------------------
/athrho | .2809234 .1385037 2.03 0.043 .0094611 .5523856

-----------------------------------------------------------------------------
rho | .2737595 .1281236 .0094608 .5023061

------------------------------------------------------------------------------
Likelihood-ratio test of rho0: chi2(1)  3.97332 Prob  chi2  0.0462

. probit worked morekids age agesq nonmomi educ gr2 gr2morekids
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Probit regression Number of obs  31857
LR chi2(7)  2085.72
Prob  chi2  0.0000

Log likelihood  -20522.231 Pseudo R2  0.0484

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
morekids | -.6711282 .2387995 -2.81 0.005 -1.139167 -.2030898

age | .1704885 .0324784 5.25 0.000 .106832 .2341449
agesq | -.0022739 .0005358 -4.24 0.000 -.003324 -.0012239

nonmomi | -.0046295 .0004433 -10.44 0.000 -.0054984 -.0037607
educ | .0656273 .0082146 7.99 0.000 .0495269 .0817276

gr2 | .3796138 .1482436 2.56 0.010 .0890617 .670166
gr2morekids | -.2779973 .0696335 -3.99 0.000 -.4144764 -.1415181

_cons | -2.932433 .4405598 -6.66 0.000 -3.795914 -2.068951
------------------------------------------------------------------------------
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1. Introduction

∙When panel data models contain unobserved heterogeneity and

omitted time-varying variables, control function methods can be used to

account for both problems.

∙ Under fairly week assumptions can obtain consistent, asymptotically

normal estimators of average structural functions – provided suitable

instruments are available.

∙ Other issues with panel data: How to treat dynamics? Models with

lagged dependent variables are hard to estimate when heterogeneity and

other sources of endogeneity are present.
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∙ Approaches to handling unobserved heterogeneity:

1. Treat as parameters to estimate. Can work well with large T but with

small T can have incidental parameters problem. Bias adjustments are

available for parameters and average partial effects. Usually weak

dependence or even independence is assumed across the time

dimension.

2. Remove heterogeneity to obtain an estimating equation. Works for

simple linear models and a few nonlinear models (via conditional MLE

or a quasi-MLE variant). Cannot be done in general. Also, may not be

able to identify interesting partial effects.
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∙ Correlated Random Effects: Mundlak/Chamberlain. Requires some

restrictions on distribution of heterogeneity, although these can be

nonparametric. Applies generally, does not impose restrictions on

dependence over time, allows estimation of average partial effects. Can

be easily combined with CF methods for endogeneity.

∙ Can try to establish bounds rather than estimate parameters or APEs.

Chernozhukov, Fernández-Val, Hahn, and Newey (2009) is a recent

example.
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2. General Setup and Quantities of Interest

∙ Static, unobserved effects probit model for panel data with an omitted

time-varying variable rit:

Pyit  1|xit,ci, rit  xit  ci  rit, t  1, . . . ,T.     (1)

What are the quantities of interest for most purposes?

(i) The element of , the j. These give the directions of the partial

effects of the covariates on the response probability. For any two

continuous covariates, the ratio of coefficients, j/h, is identical to the

ratio of partial effects (and the ratio does not depend on the covariates

or unobserved heterogeneity, ci).
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(ii) The magnitudes of the partial effects. These depend not only on the

value of the covariates, say xt, but also on the value of the unobserved

heterogeneity. In the continuous covariate case,

∂Pyt  1|xt,c, rt
∂xtj

 jxt  c  rt.     (2)

∙ Questions: (a) Assuming we can estimate , what should we do about

the unobservables c, rt? (b) If we can only estimate  up-to-scale, can

we still learn something useful about magnitudes of partial effects? (c)

What kinds of assumptions do we need to estimate partial effects?
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∙ Let xit,yit : t  1, . . . ,T be a random draw from the cross section.

Suppose we are interested in

Eyit|xit,ci,rit  mtxit,ci,rit.     (3)

ci can be a vector of unobserved heterogeneity, rit a vector of omitted

time-varying variables.

∙ Partial effects: if xtj is continuous, then

jxt,c,rt ≡
∂mtxt,c,rt

∂xtj
,     (4)

or discrete changes.
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∙ How do we account for unobserved ci,rit? If we know enough

about the distribution of ci,rit we can insert meaningful values for

c,rt. For example, if c  Eci, rt
 Erit then we can compute

the partial effect at the average (PEA),

PEAjxt  jxt,c,rt
.     (5)

Of course, we need to estimate the function mt and c,rt
. If we can

estimate the distribution of ci,rit, or features in addition to its mean,

we can insert different quantiles, or a certain number of standard

deviations from the mean.
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∙ Alternatively, we can obtain the average partial effect (APE) (or

population average effect) by averaging across the distribution of ci:

APExt  Eci,ritjxt,ci,rit.     (6)

The difference between (5) and (6) can be nontrivial. In some leading

cases, (6) is identified while (5) is not. (6) is closely related to the

notion of the average structural function (ASF) (Blundell and Powell

(2003)). The ASF is defined as

ASFtxt  Eci,ritmtxt,ci,rit.     (7)

∙ Passing the derivative through the expectation in (7) gives the APE.
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3. Assumptions with Neglected Heterogeneity

Exogeneity of Covariates

∙ Cannot get by with just specifying a model for the contemporaneous

conditional distribution, Dyit|xit,ci.

∙ The most useful definition of strict exogeneity for nonlinear panel

data models is

Dyit|xi1, . . . ,xiT,ci  Dyit|xit,ci.     (8)

Chamberlain (1984) labeled (8) strict exogeneity conditional on the

unobserved effects ci. Conditional mean version:

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (9)
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∙ The sequential exogeneity assumption is

Dyit|xi1, . . . ,xit,ci  Dyit|xit,ci.     (10)

Much more difficult to allow sequential exogeneity in in nonlinear

models. (Most progress has been made for lagged dependent variables

or specific functional forms, such as exponential.)

∙ Neither strict nor sequential exogeneity allows for contemporaneous

endogeneity of one or more elements of xit, where, say, xitj is correlated

with unobserved, time-varying unobservables that affect yit.
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Conditional Independence

∙ In linear models, serial dependence of idiosyncratic shocks is easily

dealt with, either by “cluster robust” inference or Generalized Least

Squares extensions of Fixed Effects and First Differencing. With

strictly exogenous covariates, serial correlation never results in

inconsistent estimation, even if improperly modeled. The situation is

different with most nonlinear models estimated by MLE.

∙ Conditional independence (CI) (under strict exogeneity):

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci.     (11)
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∙ In a parametric context, the CI assumption reduces our task to

specifying a model for Dyit|xit,ci, and then determining how to treat

the unobserved heterogeneity, ci.

∙ In random effects and correlated random frameworks (next section),

CI plays a critical role in being able to estimate the “structural”

parameters and the parameters in the distribution of ci (and therefore, in

estimating PEAs). In a broad class of popular models, CI plays no

essential role in estimating APEs.
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Assumptions about the Unobserved Heterogeneity

Random Effects

∙ Generally stated, the key RE assumption is

Dci|xi1, . . . ,xiT  Dci.     (12)

Under (12), the APEs are actually nonparametrically identified from

Eyit|xit  xt.     (13)

∙ In some leading cases (RE probit and RE Tobit with heterogeneity

normally distributed), if we want PEs for different values of c, we must

assume more: strict exogeneity, conditional independence, and (12)

with a parametric distribution for Dci.
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Correlated Random Effects

A CRE framework allows dependence between ci and xi, but restricted

in some way. In a parametric setting, we specify a distribution for

Dci|xi1, . . . ,xiT, as in Chamberlain (1980,1982), and much work

since. Distributional assumptions that lead to simple estimation –

homoskedastic normal with a linear conditional mean — can be

restrictive.
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∙ Possible to drop parametric assumptions and just assume

Dci|xi  Dci|x̄i,     (14)

without restricting Dci|x̄i. Altonji and Matzkin (2005, Econometrica).

∙ Other functions of xit : t  1, . . . ,T are possible.
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∙ APEs are identified very generally. For example, under (14), a

consistent estimate of the average structural function is

ASFxt  N−1∑
i1

N

qtxt, x̄i,     (15)

where qtxit, x̄i  Eyit|xit, x̄i.

∙ Need a random sample x̄i : i  1, . . . ,N for the averaging out to

work.
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Fixed Effects

∙ The label “fixed effects” is used differently by different researchers.

One view: ci, i  1, . . . ,N are parameters to be estimated. Usually leads

to an “incidental parameters problem.”

∙ Second meaning of “fixed effects”: Dci|xi is unrestricted and we

look for objective functions that do not depend on ci but still identify

the population parameters. Leads to “conditional MLE” if we can find

“sufficient statistics” s i such that

Dyi1, . . . ,yiT|xi,ci, s i  Dyi1, . . . ,yiT|xi, s i.     (16)

∙ Conditional Independence is usually maintained.

∙ Key point: PEAs and APEs are generally unidentified.
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4. Models with Heterogeneity and Endogeneity

∙ Let yit1 be a scalar response, yit2 a vector of endogenous variables,

zit1 exogenous variables, and we have

Eyit1|yit2,zit1,ci1,rit1  mt1yit2,zit1,ci1,rit1     (17)

∙ yit2 is allowed to be correlated with rit1 (as well as with ci1).

∙ The vector of exogenous variables zit : t  1, . . . ,T with zit1 ⊂ zit

are strictly exogenous in the sense that

Eyit|yit2,zi,ci1,rit1  Eyit|yit2,zit1,ci1,rit1

Drit1|zi,ci1  Drit1

    (18)
    (19)
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∙ Sometimes we can eliminate ci and obtain an equation that can be

estimated by IV (linear, exponential). Generally not possible.

∙ Now a CRE approach involves modeling Dci1|zi.

∙ Generally, we need to model how yit2 is related to rit1.

∙ Control Function methods are convenient for allowing both.

∙ Suppose yit2 is a scalar and

yit2  mit2zit, z̄i,2  vit2

Evit2|zi  0
Drit1|vit2,zi  Drit1|vit2

    (20)
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∙With suitable time-variation in the instruments, the assumptions in

(20) allow identification of the ASF if we assume a model for

Dci1|zi,vit2

Generally, we can estimate

Eyit1|yit2,zi,vit2  Eyit1|yit2,zit1, z̄i,vit2 ≡ gt1yit2,zit1, z̄i,vit2     (21)
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∙ The ASF is now obtained by averaging out z̄i,vit2:

ASFyt2,zt1  Ez̄i,vit2gt1yt2,zt1, z̄i,vit2

∙Most of this can be fully nonparametric (Altonji and Matzkin, 2005;

Blundell and Powell, 2003) although some restriction is needed on

Dci1|zi,vit2, such as

Dci1|zi,vit2  Dci1|z̄i,vit2

∙With T sufficiently large we can add other features of

zit : t  1, . . . ,T to z̄i.

22



5. Estimating Some Popular Models

Linear Model with Endogeneity

∙ Simplest model is

yit1  1yit2  zit11  ci1  uit1 ≡ xit11  ci1  uit1

Euit1|zi,ci1  0

    (22)

∙ The fixed effects 2SLS estimator is common. Deviate variables from

time averages to remove ci1 then apply IV:

ÿit1  ẍit11  üit1

z̈it  zit − z̄i
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∙ Easy to make inference robust to serial correlation and

heteroskedasticity in uit1. (“Cluster-robust inference.”)

∙ Test for (strict) exogeneity of yit2:

(i) Estimate the reduced form of yit2 by usual fixed effects:

yit2  zit1  ci2  uit2

Get the FE residuals,

üit2  ÿit2 − z̈it̂1.

∙ Estimate the augment equation

yit1  1yit2  zit11  1

üit2  ci1  errorit     (23)

by FE and use a cluster-robust test of H0 : 1  0.
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∙ The random effects IV approach assumes ci1 is uncorrelated with zi,

and nominally imposes serial independence on uit1.

∙ Simple way to test the null whether REIV is sufficient. (Robust

Hausman test comparing REIV and FEIV.)

Estimate

yit1  1  xit11  z̄i1  ai1  uit1     (24)

by REIV, using instruments 1,zit, z̄i. The estimator of 1 is the FEIV

estimator.

∙ Test H0 : 1  0, preferably using a fully robust test. A rejection is

evidence that the IVs are correlated with ci, and should use FEIV.
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∙ Other than the rank condition, the key condition for FEIV to be

consistent is that the instruments, zit, are strictly exogenous with

respect to uit. With T ≥ 3 time periods, this is easily tested – as in the

usual FE case.

∙ The augmented model is

yit1  xit11  zi,t11  ci1  uit1, t  1, . . . ,T − 1

and we estimate it by FEIV, using instruments zit,zi,t1.

∙ Use a fully robust Wald test of H0 : 1  0. Can be selective about

which leads to include.
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Example: Estimating a Passenger Demand Function for Air Travel

N  1, 149, T  4.

∙ Uses route concentration for largest carrier as IV for logfare.
. use airfare

. * Reduced form for lfare; concen is the IV.

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)
ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557
-----------------------------------------------------------------------------

sigma_u | .43389176
sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtivreg lpassen ldist ldistsq y98 y99 y00 (lfare  concen), re theta

G2SLS random-effects IV regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.4075 Obs per group: min  4
between  0.0542 avg  4.0
overall  0.0641 max  4

Wald chi2(6)  231.10
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000
theta  .91099494

------------------------------------------------------------------------------
lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -.5078762 .229698 -2.21 0.027 -.958076 -.0576763
ldist | -1.504806 .6933147 -2.17 0.030 -2.863678 -.1459338

ldistsq | .1176013 .0546255 2.15 0.031 .0105373 .2246652
y98 | .0307363 .0086054 3.57 0.000 .0138699 .0476027
y99 | .0796548 .01038 7.67 0.000 .0593104 .0999992
y00 | .1325795 .0229831 5.77 0.000 .0875335 .1776255

_cons | 13.29643 2.626949 5.06 0.000 8.147709 18.44516
-----------------------------------------------------------------------------

sigma_u | .94920686
sigma_e | .16964171

rho | .96904799 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concen
------------------------------------------------------------------------------

. * The quasi-time-demeaning parameter is quite large: .911 ("theta").
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. xtivreg2 lpassen ldist ldistsq y98 y99 y00 (lfare  concen), fe cluster(id)
Warning - collinearities detected
Vars dropped: ldist ldistsq

FIXED EFFECTS ESTIMATION
------------------------
Number of groups  1149 Obs per group: min  4

avg  4.0
max  4

Number of clusters (id)  1149 Number of obs  4596
F( 4, 1148)  26.07
Prob  F  0.0000

Total (centered) SS  128.0991685 Centered R2  0.2265
Total (uncentered) SS  128.0991685 Uncentered R2  0.2265
Residual SS  99.0837238 Root MSE  .1695

------------------------------------------------------------------------------
| Robust

lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfare | -.3015761 .6124127 -0.49 0.622 -1.501883 .8987307
y98 | .0257147 .0164094 1.57 0.117 -.0064471 .0578766
y99 | .0724166 .0250971 2.89 0.004 .0232272 .1216059
y00 | .1127914 .0620115 1.82 0.069 -.0087488 .2343316

------------------------------------------------------------------------------
Instrumented: lfare
Included instruments: y98 y99 y00
Excluded instruments: concen
------------------------------------------------------------------------------
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. egen concenb  mean(concen), by(id)

. xtivreg lpassen ldist ldistsq y98 y99 y00 concenb (lfare  concen), re theta

G2SLS random-effects IV regression Number of obs  4596
Group variable: id Number of groups  1149

Wald chi2(7)  218.80
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000
theta  .90084889

------------------------------------------------------------------------------
lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -.3015761 .2764376 -1.09 0.275 -.8433838 .2402316
ldist | -1.148781 .6970189 -1.65 0.099 -2.514913 .2173514

ldistsq | .0772565 .0570609 1.35 0.176 -.0345808 .1890937
y98 | .0257147 .0097479 2.64 0.008 .0066092 .0448203
y99 | .0724165 .0119924 6.04 0.000 .0489118 .0959213
y00 | .1127914 .0274377 4.11 0.000 .0590146 .1665682

concenb | -.5933022 .1926313 -3.08 0.002 -.9708527 -.2157518
_cons | 12.0578 2.735977 4.41 0.000 6.695384 17.42022

-----------------------------------------------------------------------------
sigma_u | .85125514
sigma_e | .16964171

rho | .96180277 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concenb concen
------------------------------------------------------------------------------
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. ivreg lpassen ldist ldistsq y98 y99 y00 concenb (lfare  concen), cluster(id)

Instrumental variables (2SLS) regression Number of obs  4596
F( 7, 1148)  20.28
Prob  F  0.0000
R-squared  0.0649
Root MSE  .85549

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -.3015769 .6131465 -0.49 0.623 -1.50459 .9014366
ldist | -1.148781 .8809895 -1.30 0.193 -2.877312 .5797488

ldistsq | .0772566 .0811787 0.95 0.341 -.0820187 .2365319
y98 | .0257148 .0164291 1.57 0.118 -.0065196 .0579491
y99 | .0724166 .0251272 2.88 0.004 .0231163 .1217169
y00 | .1127915 .0620858 1.82 0.070 -.0090228 .2346058

concenb | -.5933019 .2963723 -2.00 0.046 -1.174794 -.0118099
_cons | 12.05781 4.360868 2.77 0.006 3.50164 20.61397

------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concenb concen
------------------------------------------------------------------------------
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. * Now test whether instrument (concen) is strictly exogenous.

. xtivreg2 lpassen y98 y99 concen_p1 (lfare  concen), fe cluster(id)

FIXED EFFECTS ESTIMATION
------------------------
Number of groups  1149 Obs per group: min  3

avg  3.0
max  3

Number of clusters (id)  1149 Number of obs  3447
F( 4, 1148)  33.41
Prob  F  0.0000

Total (centered) SS  67.47207834 Centered R2  0.4474
Total (uncentered) SS  67.47207834 Uncentered R2  0.4474
Residual SS  37.28476721 Root MSE  .1274

------------------------------------------------------------------------------
| Robust

lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfare | -.8520992 .3211832 -2.65 0.008 -1.481607 -.2225917
y98 | .0416985 .0098066 4.25 0.000 .0224778 .0609192
y99 | .0948286 .014545 6.52 0.000 .066321 .1233363

concen_p1 | .1555725 .0814452 1.91 0.056 -.0040571 .3152021
------------------------------------------------------------------------------

Instrumented: lfare
Included instruments: y98 y99 concen_p1
Excluded instruments: concen
------------------------------------------------------------------------------
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. * What if we just use fixed effects without IV?

. xtreg lpassen lfare y98 y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.4507 Obs per group: min  4
between  0.0487 avg  4.0
overall  0.0574 max  4

F(4,1148)  121.85
corr(u_i, Xb)  -0.3249 Prob  F  0.0000

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -1.155039 .1086574 -10.63 0.000 -1.368228 -.9418496

y98 | .0464889 .0049119 9.46 0.000 .0368516 .0561262
y99 | .1023612 .0063141 16.21 0.000 .0899727 .1147497
y00 | .1946548 .0097099 20.05 0.000 .1756036 .213706

_cons | 11.81677 .55126 21.44 0.000 10.73518 12.89836
-----------------------------------------------------------------------------

sigma_u | .89829067
sigma_e | .14295339

rho | .9753002 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * Test formally for endogeneity of lfare in FE:

. qui areg lfare concen y98 y99 y00, absorb(id)

. predict u2h, resid

. xtreg lpassen lfare y98 y99 y00 v2h, fe cluster(id)

------------------------------------------------------------------------------
| Robust

lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfare | -.301576 .4829734 -0.62 0.532 -1.249185 .6460335
y98 | .0257147 .0131382 1.96 0.051 -.0000628 .0514923
y99 | .0724165 .0197133 3.67 0.000 .0337385 .1110946
y00 | .1127914 .048597 2.32 0.020 .0174425 .2081403
u2h | -.8616344 .5278388 -1.63 0.103 -1.897271 .1740025

_cons | 7.501007 2.441322 3.07 0.002 2.711055 12.29096
-----------------------------------------------------------------------------

. * p-value is about .10, so not strong evidence even though FE and

. * FEIV estimatoestimates are uite different.
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∙ Turns out that the FE2SLS estimator is robust to random coefficients

on xit1, but one should include a full set of time dummies.

(Murtazashvili and Wooldridge, 2005).

∙ Can model random coefficients and use a CF approach.

yit1  ci1  xit1bi1  uit1

yit2  2  zit2  z̄i2  vit2

∙ Assume Eci1|zi,vit2 and Ebi1|zi,vit2 are linear in z̄i,vit2 and

Euit1|zi,vit2 is linear in vit2, can show

Eyit1|zi,vit2  1  xit11  z̄i1  1vit2

 z̄i −  z̄ ⊗ xit11  vit2xit11

    (25)
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(1) Regress yit2 on 1, zit, z̄i and obtain residuals v̂it2.

(2) Regress

yit1 on 1, xit1, z̄i, v̂it2, z̄i − z̄ ⊗ xit1, v̂it2xit1

∙ Probably include time dummies in both stages.
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Binary and Fractional Response

∙ Unobserved effects (UE) “probit” model – exogenous variables. For a

binary or fractional yit,

Eyit|xit,ci  xit  ci, t  1, . . . ,T.     (26)

Assume strict exogeneity (conditional on ci) and Chamberlain-Mundlak

device:

ci    x̄i  ai, ai|xi ~ Normal(0,a
2.     (27)
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∙ In binary response case under serial independence, all parameters are

identified and MLE (Stata: xtprobit) can be used. Just add the time

averages x̄i as an additional set of regressors. Then ̂c  ̂  x̄̂ and

̂c
2 ≡ ̂

′ N−1∑i1
N x̄i − x̄′x̄i − x̄ ̂  ̂a

2. Can evaluate PEs at, say,

̂c  k̂c.

∙ Only under restrictive assumptions does ci have an unconditional

normal distribution, although it becomes more reasonable as T gets

large.

∙ Simple to test H0 :   0 as null that ci, x̄i are independent.
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∙ The APEs are identified from the ASF, estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄i̂a     (28)

where, for example, ̂a  ̂/1  ̂a
21/2.

∙ For binary or fractional response, APEs are identified without the

conditional serial independence assumption. Use pooled Bernoulli

quasi-MLE (Stata: glm) or generalized estimating equations (Stata:

xtgee) to estimate scaled coefficients based on

Eyit|xi  xita  a  x̄ia.     (29)

(Time dummies have been supressed for simplicity.)
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∙ A more radical suggestion, but in the spirit of Altonji and Matzkin

(2005), is to just use a flexible model for Eyit|xit, x̄idirectly, say,

Eyit|xit, x̄i  t  xit  x̄i 

x̄i ⊗ x̄i  xit ⊗ x̄i.
    (30)

Just average out over x̄i to get APEs.

∙ If we have a binary response, start with

Pyit  1|xit,ci  xit  ci,     (31)

and assume CI, we can estimate  by FE logit without restricting

Dci|xi.
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∙ In any nonlinear model using the Mundlak assumption

Dci|xi  Dci|x̄i, if T ≥ 3 can include lead values, wi,t1, to simply

test strict exogeneity.

∙ Example: Married Women’s Labor Force Participation: N  5, 663,

T  5 (four-month intervals).

∙ Following results include a full set of time period dummies (not

reported).

∙ The APEs are directly comparable across models, and can be

compared with the linear model coefficients.
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LFP (1) (2) (3) (4) (5)

Model Linear Probit CRE Probit CRE Probit FE Logit

Est. Method FE Pooled MLE Pooled MLE MLE MLE

Coef. Coef. APE Coef. APE Coef. APE Coef.

kids −. 0389 −. 199 −. 0660 −. 117 −. 0389 −. 317 −. 0403 −. 644

. 0092 . 015 . 0048 . 027 . 0085 . 062 . 0104 . 125

lhinc −. 0089 −. 211 −. 0701 −. 029 −. 0095 −. 078 −. 0099 −. 184

. 0046 . 024 . 0079 . 014 . 0048 . 041 . 0055 . 083

kids — — — −. 086 — −. 210 — —

— — — . 031 — . 071 — —

lhinc — — — −. 250 — −. 646 — —

— — — . 035 — . 079 — —
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Probit with Endogenous Explanatory Variables

∙ Represent endogeneity as an omitted, time-varying variable, in

addition to unobserved heterogeneity:

Pyit1  1|yit2,zi,ci1,vit1  Pyit1  1|yit2,zit1,ci1, rit1

 xit11  ci1  rit1

∙ Elements of zit are assumed strictly exogenous, and we have at least

one exclusion restriction: zit  zit1,zit2.

43



∙ Papke and Wooldridge (2008, Journal of Econometrics): Use a

Chamberlain-Mundlak approach, but only relating the heterogeneity to

all strictly exogenous variables:

ci1  1  z̄i1  ai1, Dai1|zi  Dai1.

∙ Even before we specify Dai1, this is restrictive because it assumes,

in particular, Eci|zi is linear in z̄i and that Varci|zi is constant.

Using nonparametrics can get by with less, such as

Dci1|zi  Dci1|z̄i.
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∙ Only need

Eyit1|yit2,zi,ci1,vit1  xit11  ci1  vit1,     (32)

so applies to fractional response.

∙ Need to obtain an estimating equation. First, note that

Eyit1|yit2,zi,ai1, rit1  xit11  1  z̄i1  ai1  rit1

≡ xit11  1  z̄i1  vit1.     (33)
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∙ Assume a linear reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T

Dvit2|zi  Dvit2

    (34)

(and we might allow for time-varying coefficients).

∙ Next, assume

vit1|zi,vit2  Normal1vit2,1
2, t  1, . . . ,T.

[Easy to allow 1 to change over time; just have time dummies interact

with vit2.]

∙ Assumptions effectively rule out discreteness in yit2.
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∙Write

vit1  1vit2  eit1

where eit1 is independent of zi,vit2 (and, therefore, of yit2) and

normally distributed. Again, using a standard mixing property of the

normal distribution,

Eyit1|yit2,zi,vit2  xit11  1  z̄i1  1vit2     (35)

where the “” denotes division by 1  1
21/2.

∙ Identification comes off of the exclusion of the time-varying

exogenous variables zit2.
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∙ Two step procedure (Papke and Wooldridge, 2008):

(1) Estimate the reduced form for yit2 (pooled or for each t

separately). Obtain the residuals, v̂it2.

(2) Use the probit QMLE to estimate 1,1,1 and 1.

∙ How do we interpret the scaled estimates? They give directions of

effects. Conveniently, they also index the APEs. For given y2 and z1,

average out z̄i and v̂it2 (for each t):

̂1  N−1∑
i1

N

̂1yt2  zt1̂1  ̂1  z̄i̂1  ̂1v̂it2 .
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∙ Application: Effects of Spending on Test Pass Rates

∙ N  501 school districts, T  7 time periods.

∙ Once pre-policy spending is controlled for, instrument spending with

the “foundation grant.”

∙ Initial spending takes the place of the time average of IVs.
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. * First, linear model:

. ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01
(lavgrexp  lfound lfndy96-lfndy01), cluster(distid)

Instrumental variables (2SLS) regression Number of obs  3507
F( 18, 500)  107.05
Prob  F  0.0000
R-squared  0.4134
Root MSE  .11635

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .5545247 .2205466 2.51 0.012 .1212123 .987837

lunch | -.0621991 .0742948 -0.84 0.403 -.2081675 .0837693
alunch | -.4207815 .0758344 -5.55 0.000 -.5697749 -.2717882

lenroll | .0463616 .0696215 0.67 0.506 -.0904253 .1831484
alenroll | -.049052 .070249 -0.70 0.485 -.1870716 .0889676

y96 | -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119
...

y01 | -.704579 .7310773 -0.96 0.336 -2.140941 .7317831
lexppp94 | -.4343213 .2189488 -1.98 0.048 -.8644944 -.0041482

le94y96 | .1253255 .0318181 3.94 0.000 .0628119 .1878392
...

le94y01 | .0865874 .0816732 1.06 0.290 -.0738776 .2470524
_cons | -.334823 .2593105 -1.29 0.197 -.8442955 .1746496

------------------------------------------------------------------------------
Instrumented: lavgrexp
Instruments: lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01

lexppp94 le94y96 le94y97 le94y98 le94y99 le94y00 le94y01
lfound lfndy96 lfndy97 lfndy98 lfndy99 lfndy00 lfndy01

------------------------------------------------------------------------------
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. * Get reduced form residuals for fractional probit:

. reg lavgrexp lfound lfndy96-lfndy01 lunch alunch lenroll alenroll y96-y01
lexppp94 le94y96-le94y01, cluster(distid)

Linear regression Number of obs  3507
F( 24, 500)  1174.57
Prob  F  0.0000
R-squared  0.9327
Root MSE  .03987

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgrexp | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfound | .2447063 .0417034 5.87 0.000 .1627709 .3266417

lfndy96 | .0053951 .0254713 0.21 0.832 -.044649 .0554391
lfndy97 | -.0059551 .0401705 -0.15 0.882 -.0848789 .0729687
lfndy98 | .0045356 .0510673 0.09 0.929 -.0957972 .1048685
lfndy99 | .0920788 .0493854 1.86 0.063 -.0049497 .1891074
lfndy00 | .1364484 .0490355 2.78 0.006 .0401074 .2327894
lfndy01 | .2364039 .0555885 4.25 0.000 .127188 .3456198

...
_cons | .1632959 .0996687 1.64 0.102 -.0325251 .359117

------------------------------------------------------------------------------

. predict v2hat, resid
(1503 missing values generated)
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. glm math4 lavgrexp v2hat lunch alunch lenroll alenroll y96-y01 lexppp94
le94y96-le94y01, fa(bin) link(probit) cluster(distid)

note: math4 has non-integer values

Generalized linear models No. of obs  3507
Optimization : ML Residual df  3487

Scale parameter  1
Deviance  236.0659249 (1/df) Deviance  .0676989
Pearson  223.3709371 (1/df) Pearson  .0640582

Variance function: V(u)  u*(1-u/1) [Binomial]
Link function : g(u)  invnorm(u) [Probit]

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | 1.731039 .6541194 2.65 0.008 .4489886 3.013089

v2hat | -1.378126 .720843 -1.91 0.056 -2.790952 .0347007
lunch | -.2980214 .2125498 -1.40 0.161 -.7146114 .1185686

alunch | -1.114775 .2188037 -5.09 0.000 -1.543623 -.685928
lenroll | .2856761 .197511 1.45 0.148 -.1014383 .6727905

alenroll | -.2909903 .1988745 -1.46 0.143 -.6807771 .0987966
...

_cons | -2.455592 .7329693 -3.35 0.001 -3.892185 -1.018998
------------------------------------------------------------------------------
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. margeff

Average partial effects after glm
y  Pr(math4)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .5830163 .2203345 2.65 0.008 .1511686 1.014864

v2hat | -.4641533 .242971 -1.91 0.056 -.9403678 .0120611
lunch | -.1003741 .0716361 -1.40 0.161 -.2407782 .04003

alunch | -.3754579 .0734083 -5.11 0.000 -.5193355 -.2315803
lenroll | .0962161 .0665257 1.45 0.148 -.0341719 .2266041

alenroll | -.0980059 .0669786 -1.46 0.143 -.2292817 .0332698
...

------------------------------------------------------------------------------

. * These standard errors do not account for the first-stage estimation.

. * Can use the panel bootstrap. Might also look for partial effects at

. * different parts of the spending distribution.
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Count and Other Multiplicative Models

∙ Conditional mean with multiplicative heterogeneity:

Eyit|xit,ci  ci expxit     (36)

where ci ≥ 0. Under strict exogeneity in the mean,

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci,     (37)

the “fixed effects” Poisson estimator is attractive: it does not restrict

Dyit|xi,ci, Dci|xi, or serial dependence.
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∙ The FE Poisson estimator is the conditional MLE derived under a

Poisson and conditional independence assumptions. It is one of the rare

cares where treating the ci as parameters to estimate gives a consistent

estimator of .

∙ The FE Poisson estimator is fully robust to any distributional failure

and serial correlation. yit does not even have to be is not a count

variable! Fully robust inference is easy (xtpqml in Stata).
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∙ For endogeneity there are control function and GMM approaches,

with the former being more convenient but imposing more restrictions.

∙ CF uses same approach as before.

∙ Start with an omitted variables formulation:

Eyit1|yit2,zi,ci1, rit1  expxit11  ci1  rit1.     (38)

∙ The zit – including the excluded instruments – are assumed to be

strictly exogenous here.

56



∙ If yit2 is (roughly) continuous we might specify

yit2  2  zit2  z̄i2  vit2.

∙ Also write

ci1  1  z̄i1  ai1

so that

Eyit1|yit2,zi,vit1  exp1  xit11  z̄i1  vit1,

where vit1  ai1  rit1.
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∙ Reasonable (but not completely general) to assume vit1,vi2 is

independent of zi.

∙ If we specify Eexpvit1|vit2  exp1  1vit2 (as would be true

under joint normality), we obtain the estimating equation

Eyit1|yit2,zi,vit2  exp1  xit11  z̄i1  1vit2.     (39)
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∙ Now apply a simple two-step method. (1) Obtain the residuals v̂it2

from the pooled OLS estimation yit2 on 1, zit, z̄i across t and i. (2) Use a

pooled QMLE (perhaps the Poisson or NegBin II) to estimate the

exponential function, where z̄i, v̂it2 are explanatory variables along

with xit1. (As usual, a fully set of time period dummies is a good idea

in the first and second steps).

∙ Note that yit2 is not strictly exogenous in the estimating equation. and

so GLS-type methods account for serial correlation should not be used.

GMM with carefully constructed moments could be.
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∙ Estimating the ASF is straightforward:

ASFtyt2,zt1  N−1∑
i1

N

exp̂1  xt1̂1  z̄i̂1  ̂1v̂it2;

that is, we average out z̄i, v̂it2.

∙ Test the null of contemporaneous exogeneity of yit2 by using a fully

robust t statistic on v̂it2.

∙ Can allow more flexibility by iteracting z̄i, v̂it2 with xit1, or even just

year dummies.
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∙ A GMM approach – which slightly extends Windmeijer (2002) –

modifies the moment conditions under a sequential exogeneity

assumption on instruments and applies to models with lagged

dependent variables.

∙Write the model as

yit  ci expxitrit

Erit|zit, . . . ,zi1,ci  1,
    (40)
    (41)

which contains the case of sequentially exogenous regressors as a

special case (zit  xit).
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∙ Now start with the transformation
yit

expxit
− yi,t1

expxi,t1
 cirit − ri,t1.     (42)

∙ Can easily show that

Ecirit − ri,t1|zit, . . . ,zi1  0, t  1, . . . ,T − 1.
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∙ Using the moment conditions

E yit
expxit

− yi,t1
expxi,t1

|zit, . . . ,zi1  0, t  1, . . . ,T − 1     (43)

generally causes computational problems. For example, if xitj ≥ 0 for

some j and all i and t – for example, if xitj is a time dummy – then the

moment conditions can be made arbitarily close to zero by choosing j

larger and larger.

∙Windmeijer (2002, Economics Letters) suggested multiplying

through by expx where x  T−1∑r1
T Exir.
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∙ So, the modified moment conditions are

E yit
expxit − x

− yi,t1
expxi,t1 − x

|zit, . . . ,zi1  0.     (44)

∙ As a practical matter, replace x with the overall sample average,

x̄  NT−1∑
i1

N

∑
r1

T

xir.     (45)

∙ The deviated variables, xit − x̄, will always take on positive and

negative values, and this seems to solve the GMM computational

problem.
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1. The Basic Methodology

∙ Standard case: outcomes are observed for two groups for two time

periods. One of the groups is exposed to a treatment in the second

period but not in the first period. The second group is not exposed to

the treatment during either period. Structure can apply to repeated cross

sections or panel data.

∙With repeated cross sections, let A be the control group and B the

treatment group. Write

y  0  1dB  0d2  1d2  dB  u,     (1)

where y is the outcome of interest.
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∙ dB captures possible differences between the treatment and control

groups prior to the policy change. d2 captures aggregate factors that

would cause changes in y over time even in the absense of a policy

change. The coefficient of interest is 1.

∙ The difference-in-differences (DD) estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (2)

Inference based on moderate sample sizes in each of the four groups is

straightforward, and is easily made robust to different group/time

period variances in regression framework.
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∙ Can refine the definition of treatment and control groups.

∙ Example: Change in state health care policy aimed at elderly. Could

use data only on people in the state with the policy change, both before

and after the change, with the control group being people 55 to 65 (say)

and and the treatment group being people over 65. This DD analysis

assumes that the paths of health outcomes for the younger and older

groups would not be systematically different in the absense of

intervention.
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∙ Instead, use the same two groups from another (“untreated”) state as

an additional control. Let dE be a dummy equal to one for someone

over 65 and dB be the dummy for living in the “treatment” state:

y  0  1dB  2dE  3dB  dE  0d2
 1d2  dB  2d2  dE  3d2  dB  dE  u

    (3)
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∙ The OLS estimate ̂3 is

̂3  ȳB,E,2 − ȳB,E,1 − ȳB,N,2 − ȳB,N,1

− ȳA,E,2 − ȳA,E,1 − ȳA,N,2 − ȳA,N,1

    (4)

where the A subscript means the state not implementing the policy and

the N subscript represents the non-elderly. This is the

difference-in-difference-in-differences (DDD) estimate.

∙ Can add covariates to either the DD or DDD analysis to (hopefully)

control for compositional changes. Even if the intervention is

independent of observed covariates, adding those covariates may

improve precision of the DD or DDD estimate.
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2. How Should We View Uncertainty in DD Settings?

∙ Standard approach: All uncertainty in inference enters through

sampling error in estimating the means of each group/time period

combination. Long history in analysis of variance.

∙ Recently, different approaches have been suggested that focus on

different kinds of uncertainty – perhaps in addition to sampling error in

estimating means. Bertrand, Duflo, and Mullainathan (2004), Donald

and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and

Hainmueller (2007) argue for additional sources of uncertainty.

∙ In fact, in the “new” view, the additional uncertainty swamps the

sampling error in estimating group/time period means.

7



∙ One way to view the uncertainty introduced in the DL framework – a

perspective explicitly taken by ADH – is that our analysis should better

reflect the uncertainty in the quality of the control groups.

∙ ADH show how to construct a synthetic control group (for California)

using pre-training characteristics of other states (that were not subject

to cigarette smoking restrictions) to choose the “best” weighted average

of states in constructing the control.
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∙ Issue: In the standard DD and DDD cases, the policy effect is just

identified in the sense that we do not have multiple treatment or control

groups assumed to have the same mean responses. So, for example, the

Donald and Lang approach does not allow inference in such cases.

∙ Example from Meyer, Viscusi, and Durbin (1995) on estimating the

effects of benefit generosity on length of time a worker spends on

workers’ compensation. MVD have the standard DD before-after

setting.
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. reg ldurat afchnge highearn afhigh if ky, robust

Linear regression Number of obs  5626
F( 3, 5622)  38.97
Prob  F  0.0000
R-squared  0.0207
Root MSE  1.2692

------------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

afchnge | .0076573 .0440344 0.17 0.862 -.078667 .0939817
highearn | .2564785 .0473887 5.41 0.000 .1635785 .3493786

afhigh | .1906012 .068982 2.76 0.006 .0553699 .3258325
_cons | 1.125615 .0296226 38.00 0.000 1.067544 1.183687

------------------------------------------------------------------------------
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. reg ldurat afchnge highearn afhigh if mi, robust

Linear regression Number of obs  1524
F( 3, 1520)  5.65
Prob  F  0.0008
R-squared  0.0118
Root MSE  1.3765

------------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

afchnge | .0973808 .0832583 1.17 0.242 -.0659325 .2606941
highearn | .1691388 .1070975 1.58 0.114 -.0409358 .3792133

afhigh | .1919906 .1579768 1.22 0.224 -.117885 .5018662
_cons | 1.412737 .0556012 25.41 0.000 1.303674 1.5218

------------------------------------------------------------------------------
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3. Inference with a Small Number of Groups

∙ Suppose we have aggregated data on few groups (small G) and large

group sizes (each Mg is large). Some of the groups are subject to a

policy intervention.

∙ How is the sampling done? With random sampling from a large

population, no clustering is needed.

∙ Sometimes we have random sampling within each segment (group) of

the population. Except for the relative dimensions of G and Mg, the

resulting data set is essentially indistinguishable from a data set

obtained by sampling entire clusters.
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∙ The problem of proper inference when Mg is large relative to G – the

“Moulton (1990) problem” – has been recently studied by Donald and

Lang (2007).

∙ DL treat the parameters associated with the different groups as

outcomes of random draws.
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∙ Simplest case: a single regressor that varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm.

    (5)
    (6)

(6) has a common slope,  but intercept, g, that varies across g.

∙ Donald and Lang focus on (5), where cg is assumed to be independent

of xg with zero mean. Define the composite error vgm  cg  ugm.

∙ Standard pooled OLS inference applied to (5) can be badly biased

because it ignores the cluster correlation. And we cannot use fixed

effects.
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∙ DL propose studying the regression in averages:

ȳg    xg  v̄g,g  1, . . . ,G.     (7)

If we add some strong assumptions, we can perform inference on (7)

using standard methods. In particular, assume thatMg  M for all g,

cg|xg  Normal0,c2 and ugm|xg,cg  Normal0,u2. Then v̄g is

independent of xg and v̄g  Normal0,c2  u2/M. Because we assume

independence across g, (7) satisfies the classical linear model

assumptions.
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∙ So, we can just use the “between” regression,

ȳg on 1, xg, g  1, . . . ,G.     (8)

With same group sizes, identical to pooled OLS across g and m.

∙ Conditional on the xg, ̂ inherits its distribution from

v̄g : g  1, . . . ,G, the within-group averages of the composite errors.

∙We can use inference based on the tG−2 distribution to test hypotheses

about , provided G  2.

∙ If G is small, the requirements for a significant t statistic using the

tG−2 distribution are much more stringent then if we use the

tM1M2...MG−2 distribution (traditional approach).
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∙ Using the between regression is not the same as using cluster-robust

standard errors for pooled OLS. Those are not justified and, anyway,

we would use the wrong df in the t distribution.

∙ So the DL method uses a standard error from the aggregated

regression and degrees of freedom G − 2.

∙We can apply the DL method without normality of the ugm if the

group sizes are large because Varv̄g  c2  u2/Mg so that ūg is a

negligible part of v̄g. But we still need to assume cg is normally

distributed.
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∙ If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,     (9)

provided G  K  L  1.

∙ If cg is independent of xg, z̄g with a homoskedastic normal

distribution, and the group sizes are large, inference can be carried out

using the tG−K−L−1 distribution. Regressions like (9) are reasonably

common, at least as a check on results using disaggregated data, but

usually with larger G then just a handful.
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∙ If G  2, should we give up? Suppose xg is binary, indicating

treatment and control (g  2 is the treatment, g  1 is the control). The

DL estimate of  is the usual one: ̂  ȳ2 − ȳ1. But in the DL setting,

we cannot do inference (there are zero df). So, the DL setting rules out

the standard comparison of means.
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∙ Can we still obtain inference on estimated policy effects using

randomized or quasi-randomized interventions when the policy effects

are just identified? Not according the DL approach.

∙ If ygm  Δwgm – the change of some variable over time – and xg is

binary, then application of the DL approach to

Δwgm    xg  cg  ugm,

leads to a difference-in-differences estimate: ̂  Δw2 − Δw1. But

inference is not available no matter the sizes ofM1 and M2.
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∙ ̂  Δw2 − Δw1 has been a workhorse in the quasi-experiemental

literature, and obtaining inference in the traditional setting is

straightforward [Card and Krueger (1994), for example.]

∙ Even when DL approach can be applied, should we? Suppose G  4

with two control groups (x1  x2  0) and two treatment groups

(x3  x4  1). DL involves the OLS regression ȳg on 1,xg,

g  1, . . . , 4; inference is based on the t2 distribution.
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∙ Can show the DL estimate is

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2.     (10)

∙With random sampling from each group, ̂ is approximately normal

even with moderate group sizes Mg. In effect, the DL approach rejects

usual inference based on means from large samples because it may not

be the case that 1  2 and 3  4.

22



∙Why not tackle mean heterogeneity directly? Could just define the

treatment effect as

  3  4/2 − 1  2/2,

or weight by population frequencies.
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∙ The expression ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 hints at a different way

to view the small G, large Mg setup. DL estimates two parameters, 

and , but there are four population means.

∙ The DL estimates of  and  can be interpreted as minimum distance

estimates that impose the restrictions 1  2   and

3  4    . If we use the 4  4 identity matrix as the weight

matrix, we get ̂ and ̂  ȳ1  ȳ2/2.
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∙With large group sizes, and whether or not G is especially large, we

can put the problem into an MD framework, as done by Loeb and

Bound (1996), who had G  36 cohort-division groups and many

observations per group.

∙ For each group g, write

ygm  g  zgmg  ugm.     (11)

Assume random sampling within group and independence across

groups. OLS estimates within group are Mg -asymptotically normal.
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∙ The presence of xg can be viewed as putting restrictions on the

intercepts:

g    xg,g  1, . . . ,G,     (12)

where we think of xg as fixed, observed attributes of heterogeneous

groups. With K attributes we must have G ≥ K  1 to determine  and

. In the first stage, obtain ̂g, either by group-specific regressions or

pooling to impose some common slope elements in g.
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∙ Let V̂ be the G  G estimated (asymptotic) variance of ̂. Let X be the

G  K  1 matrix with rows 1,xg. The MD estimator is

̂  X′V̂−1X−1X′V̂−1
̂     (13)

∙ Asymptotics are as theMg get large, and ̂ has an asymptotic normal

distribution; its estimated asymptotic variance is X′V̂−1X−1.

∙When separate group regressions are used, the ̂g are independent and

V̂ is diagonal.

∙ Estimator looks like “GLS,” but inference is with G (number of rows

in X) fixed with Mg growing.
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∙ Can test the overidentification restrictions. If reject, can go back to

the DL approach, applied to the ̂g. With large group sizes, can analyze

̂g    xg  cg,g  1, . . . ,G     (14)

as a classical linear model because ̂g  g  OpMg
−1/2, provided cg is

homoskedastic, normally distributed, and independent of xg.

∙ Alternatively, can define the parameters of interest in terms of the g,

as in the treatment effects case.
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4. Multiple Groups and Time Periods

∙With many time periods and groups, setup in BDM (2004) and

Hansen (2007a) is useful. At the individual level,

yigt  t  g  xgt  zigtgt  vgt  uigt,

i  1, . . . ,Mgt,

    (15)

where i indexes individual, g indexes group, and t indexes time. Full set

of time effects, t, full set of group effects, g, group/time period

covariates (policy variabels), xgt, individual-specific covariates, zigt,

unobserved group/time effects, vgt, and individual-specific errors, uigt.

Interested in .
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∙ As in cluster sample cases, can write

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt;     (16 )

a model at the individual level where intercepts and slopes are allowed

to differ across all g, t pairs. Then, think of gt as

gt  t  g  xgt  vgt.     (17)

Think of (17) as a model at the group/time period level.
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∙ As discussed by BDM, a common way to estimate and perform

inference in the individual-level equation

yigt  t  g  xgt  zigt  vgt  uigt

is to ignore vgt, so the individual-level observations are treated as

independent. When vgt is present, the resulting inference can be very

misleading.

∙ BDM and Hansen (2007b) allow serial correlation in

vgt : t  1, 2, . . . ,T but assume independence across g.

∙We cannot replace t  g a full set of group/time interactions

because that would eliminate xgt.
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∙ If we view  in gt  t  g  xgt  vgt as ultimately of interest –

which is usually the case because xgt contains the aggregate policy

variables – there are simple ways to proceed. We observe xgt, t is

handled with year dummies,and g just represents group dummies. The

problem, then, is that we do not observe gt.

∙ But we can use OLS on the individual-level data to estimate the gt in

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt

assuming Ezigt′ uigt  0 and the group/time period sample sizes, Mgt,

are reasonably large.
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∙ Sometimes one wishes to impose some homogeneity in the slopes –

say, gt  g or even gt   – in which case pooling across groups

and/or time can be used to impose the restrictions.

∙ However we obtain the ̂gt , proceed as if Mgt are large enough to

ignore the estimation error in the ̂gt; instead, the uncertainty comes

through vgt in gt  t  g  xgt  vgt.

∙ The minimum distance (MD) approach effectively drops vgt and

views gt  t  g  xgt as a set of deterministic restrictions to be

imposed on gt. Inference using the efficient MD estimator uses only

sampling variation in the ̂gt.
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∙ Here, proceed ignoring estimation error, and act as if

̂gt  t  g  xgt  vgt.     (18)

∙We can apply the BDM findings and Hansen (2007a) results directly

to this equation. Namely, if we estimate (18) by OLS – which means

full year and group effects, along with xgt – then the OLS estimator has

satisfying large-sample properties as G and T both increase, provided

vgt : t  1, 2, . . . ,T is a weakly dependent time series for all g.

∙ Simulations in BDM and Hansen (2007a) indicate cluster-robust

inference works reasonably well when vgt follows a stable AR(1)

model and G is moderately large.
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∙ Hansen (2007b) shows how to improve efficiency by using feasible

GLS – by modeling vgt as, say, an AR(1) process.

∙ Naive estimators of  are seriously biased due to panel structure with

group fixed effects. Can remove much of the bias and improve FGLS.

∙ Important practical point: FGLS estimators that exploit serial

correlation require strict exogeneity of the covariates, even with large

T. Policy assignment might depend on past shocks.
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5. Individual-Level Panel Data

∙ Let wit be a binary indicator, which is unity if unit i participates in the

program at time t. Consider

yit    d2t  wit  ci  uit, t  1, 2,     (19)

where d2t  1 if t  2 and zero otherwise, ci is an observed effect  is

the treatment effect. Remove ci by first differencing:

yi2 − yi1    wi2 − wi1  ui2 − ui1     (20)

Δyi    Δwi  Δui.     (21)

If EΔwiΔui  0, OLS applied to (21) is consistent.
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∙ If wi1  0 for all i, the OLS estimate is

̂FD  Δȳtreat − Δȳcontrol,     (22)

which is a DD estimate except that we different the means of the same

units over time.

∙ It is not more general to regress yi2 on 1,wi2,yi1, i  1, . . . ,N, even

though this appears to free up the coefficient on yi1. Why? Under (19)

with wi1  0 we can write

yi2    wi2  yi1  ui2 − ui1.     (23)

Now, if Eui2|wi2,ci,ui1  0 then ui2 is uncorrelated with yi1, and yi1
and ui1 are correlated. So yi1 is correlated with ui2 − ui1  Δui.
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∙ In fact, if we add the standard no serial correlation assumption,

Eui1ui2|wi2,ci  0, and write the linear projection

wi2  0  1yi1  ri2, then can show that

plim̂LDV    1u1
2 /r2

2 

where

1  Covci,wi2/c2  u1
2 .

∙ For example, if wi2 indicates a job training program and less

productive workers are more likely to participate (1  0), then the

regression yi2 (or Δyi2) on 1, wi2, yi1 underestimates the effect.
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∙ If more productive workers participate, regressing yi2 (or Δyi2) on 1,

wi2, yi1 overestimates the effect of job training.

∙ Following Angrist and Pischke (2009), suppose we use the FD

estimator when, in fact, unconfoundedness of treatment holds

conditional on yi1 (and the treatment effect is constant). Then we can

write

yi2    wi2  yi1  ei2
Eei2  0, Covwi2,ei2  Covyi1,ei2  0.
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∙Write the equation as

Δyi2    wi2   − 1yi1  ei2
≡   wi2  yi1  ei2

Then, of course, the FD estimator generally suffers from omitted

variable bias if  ≠ 1. We have

plim̂FD     Covwi2,yi1
Varwi2

∙ If   0 (  1) and Covwi2,yi1  0 – workers observed with low

first-period earnings are more likely to participate – the plim̂FD  ,

and so FD overestimates the effect.
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∙We might expect  to be close to unity for processes such as

earnings, which tend to be persistent. ( measures persistence without

conditioning on unobserved heterogeneity.)

∙ As an algebraic fact, if ̂  0 (as it usually will be even if   1) and

wi2 and yi1 are negatively correlated in the sample, ̂FD  ̂LDV. But this

does not tell us which estimator is consistent.

∙ If either ̂ is close to zero or wi2 and yi1 are weakly correlated, adding

yi1 can have a small effect on the estimate of .
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∙With many time periods and arbitrary treatment patterns, we can use

yit  t  wit  xit  ci  uit, t  1, . . . ,T,     (24)

which accounts for aggregate time effects and allows for controls, xit.

∙ Estimation by FE or FD to remove ci is standard, provided the policy

indicator, wit, is strictly exogenous: correlation beween wit and uir for

any t and r causes inconsistency in both estimators (with FE having

advantages for larger T if uit is weakly dependent).
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∙What if designation is correlated with unit-specific trends?

“Correlated random trend” model:

yit  ci  git  t  wit  xit  uit     (25)

where gi is the trend for unit i. A general analysis allows arbitrary

corrrelation between ci,gi and wit, which requires at least T ≥ 3. If

we first difference, we get, for t  2, . . . ,T,

Δyit  gi   t  Δwit  Δxit  Δuit.     (26)

Can difference again or estimate (26) by FE.
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∙ Can derive panel data approaches using the counterfactural

framework from the treatment effects literature.

For each i, t, let yit1 and yit0 denote the counterfactual outcomes,

and assume there are no covariates. Unconfoundedness, conditional on

unobserved heterogeneity, can be stated as

Eyit0|wi,ci  Eyit0|ci
Eyit1|wi,ci  Eyit1|ci,

    (27)
    (28)

where wi  wi1, . . . ,wiT is the time sequence of all treatments.

Suppose the gain from treatment only depends on t,

Eyit1|ci  Eyit0|ci  t.     (29)
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Then

Eyit|wi,ci  Eyit0|ci  twit     (30)

where yi1  1 − wityit0  wityit1. If we assume

Eyit0|ci  t0  ci0,     (31)

then

Eyit|wi,ci  t0  ci0  twit,     (32)

an estimating equation that leads to FE or FD (often with t  .
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∙ If add strictly exogenous covariates and allow the gain from treatment

to depend on xit and an additive unobserved effect ai, get

Eyit|wi,xi,ci  t0  twit  xit0

 wit  xit − t  ci0  ai  wit,

    (33)

a correlated random coefficient model because the coefficient on wit is

t  ai. Can eliminate ai (and ci0. Or, with t  , can “estimate” the

i    ai and then use

̂  N−1∑
i1

N

̂i.     (34)
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∙With T ≥ 3, can also get to a random trend model, where git is added

to (25). Then, can difference followed by a second difference or fixed

effects estimation on the first differences. With t  ,

Δyit  t  Δwit  Δxit0  Δwit  xit − t  ai  Δwit  gi  Δuit.     (35)

∙Might ignore aiΔwit, using the results on the robustness of the FE

estimator in the presence of certain kinds of random coefficients, or,

again, estimate i    ai for each i and form (34).
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∙ As in the simple T  2 case, using unconfoundedness conditional on

unobserved heterogeneity and strictly exogenous covariates leads to

different strategies than assuming unconfoundedness conditional on

past responses and outcomes of other covariates.

∙ In the latter case, we might estimate propensity scores, for each t, as

Pwit  1|yi,t−1, . . . ,yi1,wi,t−1, . . . ,wi1,xit.
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6. Semiparametric and Nonparametric Approaches

∙ Consider the setup of Heckman, Ichimura, Smith, and Todd (1997)

and Abadie (2005), with two time periods. No units treated in first time

period. Without an i subscript, Ytw is the counterfactual outcome for

treatment level w, w  0, 1, at time t. Parameter: the average treatment

effect on the treated,

att  EY11 − Y10|W  1.     (36)

W  1 means treatment in the second time period.
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∙ Along with Y01  Y00 (no counterfactual in time period zero),

key unconfoundedness assumption:

EY10 − Y00|X,W  EY10 − Y00|X     (37)

Also the (partial) overlap assumption is critical for att

PW  1|X  1     (38)

or the full overlap assumption for ate  EY11 − Y10,

0  PW  1|X  1.
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Under (37) and (38),

att  E
W − pXY1 − Y0

1 − pX     (39)

where Yt, t  0, 1 are the observed outcomes (for the same unit),

  PW  1 is the unconditional probability of treatment, and

pX  PW  1|X is the propensity score.
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∙ All quantities are observed or, in the case of pX and , can be

estimated. As in Hirano, Imbens, and Ridder (2003), a flexible logit

model can be used for pX; the fraction of units treated would be used

for ̂. Then

̂att  N−1∑
i1

N
Wi − p̂XiΔYi
̂1 − p̂Xi

.     (40)

is consistent and N -asymptotically normal. HIR discuss variance

estimation. Wooldridge (2007) provides a simple adjustment in the case

that p̂ is treated as a parametric model.

52



∙ If we add

EY11 − Y01|X,W  EY11 − Y01|X,     (41)

a similar approach works for ate.

̂ate  N−1∑
i1

N
Wi − p̂XiΔYi
p̂Xi1 − p̂Xi

    (42)
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7. Synthetic Control Methods for Comparative Case Studies

∙ Abadie, Diamond, and Hainmueller (2007) argue that in policy

analysis at the aggregate level, there is little or no estimation

uncertainty: the goal is to determine the effect of a policy on an entire

population, and the aggregate is measured without error (or very little

error). Application: California’s tobacco control program on state-wide

smoking rates.

∙ ADH focus on the uncertainty with choosing a suitable control for

California among other states (that did not implement comparable

policies over the same period).
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∙ ADH suggest using many potential control groups (38 states or so) to

create a single synthetic control group.

∙ Two time periods: one before the policy and one after. Let yit be the

outcome for unit i in time t, with i  1 the treated unit. Suppose there

are J possible control units, and index these as 2, . . . ,J  1. Let xi be

observed covariates for unit i that are not (or would not be) affected by

the policy; xi may contain period t  2 covariates provided they are not

affected by the policy.
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∙ Generally, we can estimate the effect of the policy as

y12 −∑
j2

J1

wjyj2,     (43)

where wj are nonnegative weights that add up to one. How to choose

the weights to best estimate the intervention effect?
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∙ ADH propose choosing the weights so as to minimize the distance

between y11,x1 and∑j2
J1wj  yj1,xj, say. That is, functions of the

pre-treatment outcomes and the predictors of post-treatment outcomes.

∙ ADH propose permutation methods for inference, which require

estimating a placebo treatment effect for each region, using the same

synthetic control method as for the region that underwent the

intervention.
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1. When Can Missing Data be Ignored?

∙ Linear model with IVs:

yi  xi  ui,     (1)

where xi is 1  K, instruments zi are 1  L, L ≥ K. Let si is the

selection indicator, si  1 if we can use observation i.

∙With L  K, the “complete case” estimator is

̂IV  N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′yi

   N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′ui .

    (2)

    (3)
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∙ For consistency, rank Ezi′xi|si  1  K and

Esizi′ui  0,     (4)

which is implied by

Eui|zi, si  0.     (5)

Sufficient for (5) is

Eui|zi  0, si  hzi     (6)

for some function h.
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∙ Zero covariance assumption in the population, Ezi′ui  0, is not

sufficient for consistency when si  hzi.

∙ If xi contains elements correlated with ui, we cannot select the sample

based on those endogenous elements even though we are instrumenting

for them.

∙ Special case is when Eyi|xi  xi and selection si is a function of

xi.
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∙ Nonlinear models/estimation methods:

Nonlinear Least Squares: Ey|x, s  Ey|x.

Least Absolute Deviations: Medy|x, s  Medy|x

Maximum Likelihood: Dy|x, s  Dy|x or Ds|y,x  Ds|x.

∙ All of these allow selection on x but not generally on y. For

estimating   Eyi, unbiasedness and consistency of the sample

mean computed using the selected sample requires Ey|s  Ey.
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∙ Panel data: If we model Dyt|xt, and st is the selection indicator, the

sufficient condition to ignore selection is

Dst|xt,yt  Dst|xt, t  1, . . . ,T.     (7)

Let the true conditional density be ftyit|xit,. Then the partial

log-likelihood function for a random draw i from the cross section can

be written as

∑
t1

T

sit log ftyit|xit,g ≡ ∑
t1

T

sitlitg.     (8)

Can show under (7) that

Esitlitg|xit  Esit|xitElitg|xit.     (9)
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∙ If xit includes yi,t−1, (7) allows selection on yi,t−1, but not on “shocks”

from t − 1 to t.

∙ Similar findings for NLS, quasi-MLE, quantile regression.

∙Methods to remove time-constant, unobserved heterogeneity: for a

random draw i,

yit   t  xit  ci  uit,     (10)

with IVs zit for xit. Random effects IV methods (unbalanced panel):

Euit|zi1, . . . ,ziT, si1, . . . , siT,ci  0, t  1, . . . ,T     (11)

Eci|zi1, . . . ,ziT, si1, . . . , siT  Eci  0.     (12)

Selection in any time period cannot depend on uit or ci.
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∙ FE on unbalanced panel: can get by with just (11). Let

ÿit  yit − Ti−1∑r1
T siryir and similarly for and ẍit and z̈it, where

Ti  ∑r1
T sir is the number of time periods for observation i. The FEIV

estimator is

̂FEIV  N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sit′ z̈it′ yit .

Weakest condition for consistency is∑t1
T Esitz̈it′ uit  0.

∙ One important violation of (11) is when units drop out of the sample

in period t  1 because of shocks uit realized in time t. This generally

induces correlation between si,t1 and uit.
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∙ A simple variable addition test is to estimate the auxiliary model

yit   t  xit  si,t1  ci  uit

by FE2SLS, where si,t1 acts as its own instrument, and test   0.

Lose a time period, so need T ≥ 3 initially.

∙ Similar to test of strict exogeneity of instruments: include leads zi,t1

and estimate by FE2SLS.
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∙ Consistency of FE (and FEIV) on the unbalanced panel under breaks

down if the slope coefficients are random and one ignores this in

estimation. The error term contains the term xidi where di  bi − .

∙ Simple test based on the alternative

Ebi|zi1, . . . ,ziT, si1, . . . , siT  Ebi|Ti.     (13)

Add interaction terms of dummies for each possible sample size (with

Ti  T as the base group):

1Ti  2xit, 1Ti  3xit, ..., 1Ti  T − 1xit.     (14)

Estimate equation by FE or FEIV. (In latter case, IVs are 1Ti  rzit.)
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∙ Can use FD in basic model, too, which is very useful for attrition

problems. Generally, if

Δyit  t  Δxit  Δuit, t  2, . . . ,T     (15)

and, if zit is the set of IVs at time t, we can use

EΔuit|zit, sit  0     (16)

as being sufficient to ignore the missingess. Again, can add si,t1 to test

for attrition.

∙ Nonlinear models with unosberved effects are more difficult to

handle. Certain conditional MLEs (logit, Poisson) can accomodate

selection that is arbitrarily correlated with the unobserved effect.
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2. Regression on Missing Data Indicators

∙When data are missing on the covariates, it is common in empirical

work it is common to see the data used when covariates are observed

and otherwise to include a missing data indicator.

∙ Not clear that this is that helpful. It does not generally produce

consistent estimators when the data are missing as a function of the

covariates (above).

∙ Suppose we start with the standard population model

y    x  u
Eu|x  0
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∙ Assume we always observe y. Let s be the selection indicator for

observing x (all or nothing for simplicity). Then m  1 − s is the

missing data indicator.

∙ If u, s is independent of x then we can assume Ex  0 for

identification [because Ex  Ex|s  1].

∙ Note that s is allowed to be correlated with u but not with any of the

observables.

∙Write

y    sx  1 − sx  u
   sx  mx  u
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∙ Using the independence assumption,

Ey|x,m    sx  mx  Eu|x,m
   sx  mx  Eu|m
     sx  mx  m

∙ The proper population regression with missing data is the linear

projection of y on 1, sx,m:

Ly|1, sx,m      sx  Lmx|1, sx,m  m
     sx  m

because Lmx|1, sx,m  0. (Use Ex  0, sm  0, and m independent

of x. 
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∙We have shown that the slopes on sx are correct:  from the

population model. The intercept is not the population intercept. When

we allow for Ex ≠ 0 the intercept will be different yet.

∙ Not obvious that there are interesting situations where

Lmx|1, sx,m  Lmx|1,m, which means adding m solves the missing

data problem.
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∙ Key point: The assumption Eu|x, s  0 is sufficient for

complete-case OLS to be consistent for ; it allows arbitrary correlation

between s and x. Adding s (or m) as a regressor and using all data uses

something like independence between s and x (but u and s can be

related).
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3. Inverse Probability Weighting

Weighting for Cross Section Problems

∙When selection is not on conditioning variables, can try to use

probability weights to reweight the selected sample to make it

representative of the population. Suppose y is a random variable whose

population mean   Ey we would like to estimate, but some

observations are missing on y. Let yi, si,zi : i  1, . . . ,N indicate

independent, identically distributed draws from the population, where

zi is always observed (for now).
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∙Missingness is “ignorable” or “selection on observables” assumption:

Ps  1|y,z  Ps  1|z ≡ pz     (17)

where pz  0 for all possible values of z. Consider

̃IPW  N−1∑
i1

N
si
pzi

yi,     (18)

where si selects out the observed data points. Using (17) and iterated

expectations, can show ̂IPW is consistent (and unbiased) for yi. (Same

kind of estimate used for treatment effects.)
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∙ Sometimes pzi is known, but mostly it needs to be estimated. Let

p̂zi denote the estimated selection probability:

̂IPW  N−1∑
i1

N
si
p̂zi

yi.     (19)

Can also write as

̂IPW  N1
−1∑

i1

N

si
̂
p̂zi

yi     (20)

where N1  ∑i1
N si is the number of selected observations and

̂  N1/N is a consistent estimate of Psi  1.
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∙ A different estimate is obtained by solving the least squares problem

minm ∑
i1

N
si
p̂zi

yi − m2.

∙ Horowitz and Manski (1998) study estimating population means

using IPW. HM focus on bounds in estimating Egy|x ∈ A for

conditioning variables x. Problem with certain IPW estimators based on

weights that estimate Ps  1/Ps  1|z: the resulting estimate of the

mean can lie outside the natural bounds. One should use

Ps  1|x ∈ A/Ps  1|x ∈ A,z if possible. Unfortunately, cannot

generally estimate the proper weights if x is sometimes missing.
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∙ The HM problem is related to another issue. Suppose

Ey|x    x.     (21)

Let z be a variables that are always observed and let pz be the

selection probability, as before. Suppose at least part of x is not always

observed, so that x is not a subset of z. Consider the IPW estimator of

,  solves

min
a,b
∑
i1

N
si
p̂zi

yi − a − xib2.     (22)
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∙ The problem is that if

Ps  1|x,y  Ps  1|x,     (23)

the IPW is generally inconsistent because the condition

Ps  1|x,y,z  Ps  1|z     (24)

is unlikely. On the other hand, if (23) holds, we can consistently

estimate the parameters using OLS on the selected sample.

∙ If x always observed, case for weighting is much stronger because

then x ⊂ z. If selection is on x, this should be picked up in large

samples in flexible estimation of Ps  1|z.
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∙ If selection is exogenous and x is always observed, is there a reason

to use IPW? Not if we believe Ey|x    x along with the

homoskedasticity assumption Vary|x  2. Then, OLS is efficient

and IPW is less efficient. IPW can be more efficient with

heteroskedasticity (but WLS with the correct heteroskedasticity

function would be best).

23



∙ Still, one can argue for weighting under (23) as a way to consistently

estimate the linear projection. Write

Ly|1,x  ∗  x∗     (25)

where L| denotes the linear projection. Under under

Ps  1|x,y  Ps  1|x, the IPW estimator is consistent for

∗  ∗,∗′′. The unweighted estimator has a probabilty limit that

depends on px.
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∙ Parameters in LP show up in certain treatment effect estimators, and

are the basis for the “double robustness” result of Robins and Ritov

(1997) in the case of linear regression.

∙ The double robustness result holds for certain nonlinear models, but

must choose model for Ey|x and the objective function appropriately;

see Wooldridge (2007). [For binary or fractional response, use logistic

function and Bernoulli quasi-log likelihood (QLL). For nonnegative

response, use exponential function with Poisson QLL.]
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∙ Return to the IPW regression estimator under

Ps  1|x,y,z  Ps  1|z  Gz,, with

Eu  0, Ex′u  0,     (26)

for a parametric function G (such as flexible logit), and ̂ is the

binary response MLE. The asymptotic variance of ̂IPW, using the

estimated probability weights, is

Avar N ̂IPW −   Exi′xi−1Eriri′Exi′xi−1,     (27)

where ri is the P  1 vector of population residuals from the regression

si/pzixi′ui on di′, and di is the M  1 score for the MLE used to

obtain ̂.
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∙ Variance in (27) is always smaller than the variance if we knew pzi.

Leads to a simple estimate of Avar̂IPW:

∑
i1

N

si/Ĝixi′xi
−1

∑
i1

N

r̂ir̂i′ ∑
i1

N

si/Ĝixi′xi
−1

    (28)

If selection is estimated by logit with regressors hi  hzi,

d̂i  hi′si − hi̂,     (29)

where a  expa/1  expa.
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∙ Illustrates an interesting finding of RRZ (1995): Can never do worse

for estimating the parameters of interest, , and usually do better, when

adding irrelevant functions to a logit selection model in the first stage.

The Hirano, Imbens, and Ridder (2003) estimator keeps expanding hi.

∙ Adjustment in (27) carries over to general nonlinear models and

estimation methods. Ignoring the estimation in p̂z, as is standard, is

asymptotically conservative. When selection is exogenous in the sense

of Ps  1|x,y,z  Ps  1|x, the adjustment makes no difference.
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∙ Nevo (2003) studies the case where population moments are

Erwi,  0 and selection depends on elements of wi not always

observed.

∙ Approach: Use information on population means Ehwi such that

Ps  1|w  Ps  1|hw and use method of moments.
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∙ For a logit selection model,

E si
hwi

rwi,  0     (30)

E sihwi
hwi

 ̄h     (31)

where ̄h is known. Equation (31) generally identifies , and ̂ can be

used in a second step to choose ̂ in a weighted GMM procedure.
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Attrition in Panel Data

∙ Inverse probability weighting can be applied to the attrition problem

in panel data. Many estimation methods can be used, but consider

MLE. We have a parametric density, ftyt|xt,, and let sit be the

selection indicator. Pooled MLE on on the observed data:

max
∈Θ
∑
i1

N

∑
t1

T

sit log ftyit|xit,,     (32)

which is consistent if Psit  1|yit,xit  Psit  1|xit. If not, maybe

we can find variables rit, such that

Psit  1|yit,xit,rit  Psit  1|rit ≡ pit  0.     (33)
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∙ The weighted MLE is

max
∈Θ
∑
i1

N

∑
t1

T

sit/pit log ftyit|xit,.     (34)

Under (33), ̂IPW is generally consistent because

Esit/pitqtwit,  Eqtwit,     (35)

where qtwit,  log ftyit|xit,.

∙ How do we choose rit to make (33) hold (if possible)? RRZ (1995)

propose a sequential strategy,

it  Psit  1|zit, si,t−1  1, t  1, . . . ,T.     (36)

Typically, zit contains elements from wi,t−1, . . . ,wi1.
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∙ How do we obtain pit from the it? Not without some strong

assumptions. Let vit wit,zit, t  1, . . . ,T. An ignorability assumption

that works is

Psit  1|vi, si,t−1  1  Psit  1|zit, si,t−1  1.     (37)

That is, given the entire history vi  vi1, . . . ,viT, selection at time t

depends only on variables observed at t − 1. RRZ (1995) show how to

relax it somewhat in a regression framework with time-constant

covariates. Using (37), can show that

pit ≡ Psit  1|vi  iti,t−1   i1.     (38)
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∙ So, a consistent two-step method is: (i) In each time period, estimate a

binary response model for Psit  1|zit, si,t−1  1, which means on the

group still in the sample at t − 1. The fitted probabilities are the ̂it.

Form p̂it  ̂it̂i,t−1   ̂i1. (ii) Replace pit with p̂it in (34), and obtain

the weighted pooled MLE.

∙ As shown by RRZ (1995) in the regression case, it is more efficient to

estimate the pit than to use know weights, if we could. See RRZ (1995)

and Wooldridge (2010) for a simple regression method for adjusting the

score.
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∙ IPW for attrition suffers from a similar drawback as in the cross

section case. Namely, if Psit  1|wit  Psit  1|xit then the

unweighted estimator is consistent. If we use weights that are not a

function of xit in this case, the IPW estimator is generally inconsistent.

∙ Related to the previous point: would rarely apply IPW in the case of a

model with completely specified dynamics. Why? If we have a model

for Dyit|xit,yi,t−1, . . . ,xi1,yi0 or Eyit|xit,yi,t−1, . . . ,xi1,yi0, then our

variables affecting attrition, zit, are likely to be functions of

yi,t−1,xi,t−1, . . . ,xi1,yi0. If they are, the unweighted estimator is

consistent. For misspecified models, we might still want to weight.
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4. Imputation

∙ So far, we have discussed when we can just drop missing

observations (Section 1) or when the complete cases can be used in a

weighting method (Section 2). A different approach to missing data is

to try to fill in the missing values, and then analyze the resulting data

set as a complete data set. Little and Rubin (2002) provide an

accessible treatment to imputation and multiple imputation methods,

with lots of references to work by Rubin and coauthors.
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∙ Imputing missing values is not always valid. Most methods depend

on a missing at random (MAR) assumption. When data are missing on

the response variable, y, MAR is essentially the same as

Ps  1|y,x  Ps  1|x. Missing completely at random (MCAR) is

when s is independent of w  x,y.

∙MAR for general missing data patterns. Let wi  wi1,wi2 be a

random draw from the population. Let ri  ri1, ri2 be the “retention”

indicators for wi1 and wi2, so rig  1 implies wig is observed. MCAR is

that ri is independent of wi. The MAR assumption is that

Pri1  0, ri2  0|wi  Pri1  0, ri2  0 ≡ 00 and so on.

37



∙MAR is more natural with monotone missing data problems; we just

saw the case of attrition. If we order the variables so that if wih is

observed the so is wig, g  h. Write

fw1, . . . ,wG  fwG|wG−1, . . . ,w1

fwG−1|wG−1, . . . ,w1fw2|w1fw1. Partial log likelihood:

∑
g1

G

rig log fwig|wi,g−1, . . . ,wi1,,     (39)

where we use rig  rigri,g−1ri2. Under MAR,

Erig|wig, . . . ,wi1  Erig|wi,g−1, . . . ,wi1.     (40)

(39) is the basis for filling in data in monotonic MAR schemes.
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∙ Simple example of imputation. Let y  Ey, but data are missing on

some yi. Unless Psi  1|yi  Psi  1, the complete-case average is

not consistent for y. Suppose that the selection is ignorable conditional

on x:

Ey|x, s  Ey|x  mx,.     (41)

NLS using selected sample is consistent for . Obtain a fitted value,

mxi, ̂, for any unit it the sample. Let ŷi  siyi  1 − simxi, ̂ be

the imputed data. Imputation estimator:

̂y  N−1∑
i1

N

siyi  1 − simxi, ̂.     (42)
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∙ From plim(̂y  Esiyi  1 − simxi, we can show consistency

of ̂y because under (41),

Esiyi  1 − simxi,  Emxi,  y.     (43)

∙ Danger in using imputation methods: we might be tempted to treat the

imputed data as real random draws. Generally leads to incorrect

inference because of inconsistent variance estimation. (In linear

regression, easy to see that estimated variance is too small.)

∙ Little and Rubin (2002) call (43) the method of “conditional means.”

In Table Table 4.1 they document the downward bias in variance

estimates.
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∙ LR propose adding a random draw to mxi, ̂ – assuming that we can

estimate Dy|x. If we assume Dui|xi  Normal0,u2, draw u i from

a Normal0, ̂u2, distribution, where ̂u2 is estimated using the complete

case nonlinear regression residuals, and then use mxi, ̂  u i for the

missing data. Called the “conditional draw” method of imputation

(special case of stochastic imputation).

∙ Generally difficult to quantity the uncertainty from single-imputation

methods, where a single imputed values is obtained for each missing

variable. Can bootstrap the entire estimation/imputation steps, but this

is computationally intensive.
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∙Multiple imputation is an alternative. Its theoretical justification is

Bayesian, based on obtaining the posterior distribution – in particular,

mean and variance – of the parameters conditional on the observed

data. For general missing data patterns, the computation required to

impute missing values is intensive, and involves simulation methods of

estimation. See also Cameron and Trivedi (2005).

∙ General idea: rather than just impute one set of missing values to

create one “complete” data set, create several imputed data sets. (Often

the number is fairly small, such as five or so.) Estimate the parameters

of interest using each imputed data set, and average to obtain a final

parameter estimate and sampling error.
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∙ Let Wmis denote the matrix of missing data and Wobs the matrix of

observations. Assume that MAR holds. MAR used to estimate

E|Wobs, the posterier mean of  given Wobs. But by iterated

expectations,

E|Wobs  EE|Wobs,Wmis|Wobs.     (44)

If ̂d  E|Wobs,Wmis
d  for imputed data set d, then approximate

E|Wobs as

̄  D−1∑
d1

D

̂d.     (45)
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∙ Further, we can obtain a “sampling” variance by estimating

Var|Wobs using

Var|Wobs  EVar|Wobs,Wmis|Wobs

 VarE|Wobs,Wmis|Wobs,
    (46)

which suggests

Var|Wobs  D−1∑
d1

D

V̂d

 D − 1−1∑
d1

D

̂d − ̄̂d − ̄
′

≡ V̄  B.

    (47)
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∙ For small number of imputations, a correction is usually made,

namely, V̄  1  D−1B. assuming that one trusts the MAR assumption

and the underlying distributions used to draw the imputed values,

inference with multiple imputations is fairly straightforward. D need

not be very large so estimation using nonlinear models is relatively

easy, given the imputed data.

∙ Use caution when applying to models with missing conditioning

variables. Suppose x  x1,x2, we are interested in Dy|x, data are

missing on y and x2, and selection is a function of x2. Using the

complete cases will be consistent. Imputation methods would not be, as

they require Ds|y,x1,x2  Ds|x1.
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5. Heckman-Type Selection Corrections

∙With random slopes in the population, get a new twist on the usual

Heckman procedure.

y1  a1  x1b1 ≡ 1  x11  u1  x1e1

where u1  a1 − 1 and e1  b1 − 1. Let x be the full set of

exogenous explanatory variables with x1 a strict subset of x.

∙ Assume selection follows a standard probit:

y2  2  x2  v2  0
Dv2|x  Normal0, 1
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∙ Also, u1,e1,v2 independent of x with Eu1,e1|v2 linear in v2. Then

Ey1|x,v2  1  x11  1v2  x1v21

and so

Ey1|x,y2  1  1  x11  12  x2  2  x2  x11

∙ Compared with the usual Heckman procedure, add the interactions

̂i2  xi1, where ̂i2  ̂2  xi̂2 is the estimated IMR:

yi1 on 1, xi1, ̂i2, ̂i2  xi1 using yi2  1
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∙ Bootstrapping is convenient for inference. Full MLE, where

u1,e1,v2 is multivariate normal, would be substantially more

difficult.

∙ Can test joint significance of ̂i2, ̂i2  xi1 to test null of no selection

bias – no need to adjust for first-stage estimation.

∙ Be careful with functional form. Interactions might be significant

because population model is not a true conditional mean.
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∙ Back to constant slopes but endogenous explanatory variable.

∙ If can find IVs, has advantage of allowing missing data on

explanatory variables in addition to the response variable. (A variable

that is exogenous in the population model need not be in the selected

subpopulation.)

y1  z11  1y2  u1

y2  z22  v2

y3  1z3  v3  0.

    (48)
    (49)
    (50)
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∙ Assume (a) z,y3 is always observed, y1,y2 observed when y3  1;

(b) Eu1|z,v3  1v3; (c) v3|z~Normal0, 1; (d) Ez2
′ v2  0 and

22 ≠ 0 where z22  z121  z2122.

∙ Then we can write

y1  z11  1y2  gz,y3  e1     (51)

where e1  u1 − gz,y3  u1 − Eu1|z,y3. Selection is exogenous in

(51) because Ee1|z,y3  0. Because y2 is not exogenous, we estimate

(51) by IV, using the selected sample, with IVs z2,z3 because

gz, 1  z3.
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∙ The two-step estimator is (i) Probit of y3 on z to (using all

observations) to get ̂i3 ≡ zi̂3; (ii) IV (2SLS if overidentifying

restrictions) of yi1 on zi1,yi2, ̂i3 using IVs zi2, ̂i3.

∙ If y2 is always observed, tempting to obtain the fitted values ŷi2 from

the reduced form yi2 on zi2, and then use OLS of yi1 on zi1,ŷi2, ̂i3 in

the second stage. But this effectively puts 1v2 in the error term, so we

would need u1  2v2 to be normally (or something similar). Rules out

discrete y2. The procedure just outlined uses the linear projection

y2  z22  2z3  r3 in the selected population, and does not care

whether this is a conditional expectation.
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∙ In theory, can set z2  z, although that usually means lots of

collinearity in the (implicit) reduced form for y2 in the selected sample.

∙ Choosing z1 a strict z2 and z2 a strict ssubset of z enforces discipline.

Namely, we should have an exogenous variable that would be valid as

an IV for y2 in the absense of sample selection, and at least one more

variable (in z) that mainly affects sample selection.
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∙ If an explanatory variable is not always observed, ideally can find an

IV for it and treat it as endogenous even if it is exogenous in the

population. The usual Heckman approach (like IPW and imputation) is

hard to justify in the model Ey|x  Ey|x1 if x1 is not always

observed. The first-step would be estimation of Ps  1|x2 where x2 is

always observed. But then we would be assuming

Ps  1|x  Ps  1|x2, effectively an exclusion restriction on a

reduced form.
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