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The Allais critique of expected utility theory (EUT) has led to the development of

theories of choice under risk that relax the independence axiom, but which adhere to

the conventional axioms of ordering and monotonicity. Unlike many existing labora-

tory experiments designed to test independence, our experiment systematically tests

the entire set of axioms, providing much richer evidence against which EUT can be

judged. Our within-subjects analysis is nonparametric, using only information about

revealed preference relations in the individual-level data. For most subjects we find

that departures from independence are statistically significant but minor relative to

departures from ordering and/or monotonicity.
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“I can tell you of an important new result I got recently. I have what I suppose

to be a completely general treatment of the revealed preference problem, which

will give a fresh setting for the related work of Samuelson-Houthakker-Uzawa.

Calculus methods are unavailable. The methods are set-theoretic or algebraical.”

— A letter from Sydney Afriat to Oskar Morgenstern, 1964

1 Introduction

Canonical decision-theoretic models of choice under risk consider a decision-maker who has

a complete and transitive preference relation over the set of lotteries (probability measures)

on a set of consequences (outcomes). By Debreu’s (1954, 1960) theorem, any continuous

preference relation can be represented by a continuous utility function, but any such con-

tinuous utility representation is admissible. For the utility function to have an expected

utility representation, the preference relation must also satisfy the familiar von Neumann

and Morgenstern (1947) independence axiom.

Expected utility theory (EUT) lies at the very heart of economics, and so it is natural

that experimentalists would want to empirically test the axioms which characterize the EUT

model. Empirical violations of these axioms generate intriguing questions about the ratio-

nality of individual behavior, and specifically raise criticisms of the independence axiom and

its status as the touchstone for rational decision-making in the context of risk. In response to

these criticisms, various generalizations of EUT have been formulated, and the experimental

scrutiny of these theories has led to new empirical regularities in the laboratory.

Considerable effort has been put towards developing alternatives to EUT. Almost all of

these models embody ordering (completeness and transitivity) and generalize EUT by weak-

ening the independence axiom, while generally staying within the class of utility functions

that are monotone (in other words, increasing) with respect to first-order stochastic domi-

nance (FOSD); this is true, for example, of weighted expected utility (Dekel, 1986; Chew,

1989), rank-dependent utility (Quiggin, 1982, 1993), cumulative prospect theory (Tversky

and Kahneman, 1992), and (under certain restrictions) reference-dependent risk preferences
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Kőszegi and Rabin (2007).1,2 The accompanying experimental investigations for the most

part use pairwise choices, à la Allais, to test EUT and its generalizations, presuming that

subjects have well-defined preferences.

Given that EUT is part of the core of economics—and not something that one can or

should abandon lightly—we wish to provide a comprehensive assessment of all the axioms

on which EUT is based, and not just the independence axiom. Our overall objective is to

provide a better, positive account of choice behavior under risk by evaluating the performance

of EUT (and other models) in a choice environment where all features of the model(s) can

be simultaneously evaluated. Our experiment and analysis draw upon our prior work (in

particular, Choi et al. (2007a) and Polisson, Quah, and Renou (2020)). In the experiment,

subjects choose an allocation of contingent commodities from a three-dimensional budget

set through a simple “point-and-click” design. As our power analysis shows, data from

three-dimensional budget sets provide a much stronger test—especially of EUT versus non-

EUT alternatives—than data from two-dimensional budget lines (as collected by Choi et al.

(2007a), Choi et al. (2014), and Halevy, Persitz, and Zrill (2018), among others).

Afriat’s (1967) theorem tells us that if a finite dataset generated by an individual’s choices

from linear budget sets satisfies the Generalized Axiom of Revealed Preference (GARP),

then the data can be rationalized by a well-behaved (by which we mean a continuous and

increasing) utility function. This result provides a practical way of checking whether a

dataset is rationalizable in this minimal/basic sense. There are also extensions of Afriat’s

theorem that allow us to test whether a dataset can be rationalized by a utility function with

stronger properties. In particular, we could test whether a dataset is FOSD-rationalizable,

in the sense that it is consistent with the maximization of a utility function that is monotone

with respect to FOSD, and whether a dataset is EUT-rationalizable, in the sense that it is

consistent with the maximization of an expected utility function.

1Monotonicity with respect to first-order stochastic dominance is a natural and widely accepted principle
in decision theory, so much so that theories of choice under risk have been modified to avoid violations of
stochastic dominance, as pointed out by Quiggin (1990), Wakker (1993), and Starmer (2000); for example,
cumulative prospect theory (Tversky and Kahneman, 1992) “dominance corrects” the original formulation
of prospect theory (Kahneman and Tversky, 1979).

2In the choice acclimating personal equilibrium model of Kőszegi and Rabin (2007), monotonicity with
respect to FOSD holds if the coefficient of loss aversion is within a certain range (see Masatlioglu and
Raymond (2016)).
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For datasets that do not satisfy GARP exactly, Afriat (1973) introduces the notion of

the Critical Cost Efficiency Index (CCEI), which measures the extent to which budget sets

need to be reduced in order to rationalize the data. The CCEI, denoted by e∗, is bounded

between 0 and 1; the closer it is to 1, the smaller are the budgetary adjustments required for

rationalizability. There are also known procedures to measure the extent to which budget sets

need to be adjusted in order for a dataset to be FOSD-rationalizable and EUT-rationalizable.

Thus, for any dataset collected from an individual subject’s choices, three CCEI-type scores

can be calculated: e∗ for (basic) rationalizability, e∗∗ for FOSD-rationalizability (which can

be no greater than e∗ since FOSD-rationalizability is the more stringent requirement) and

e∗∗∗ for EUT-rationalizability (which can be no greater than e∗∗ since EUT-rationalizability

is the more stringent requirement).

While other measures of violations of rationalizability are available, we adopt the CCEI

since it is straightforward to calculate and interpret (and, partly for those reasons) the

most commonly used measure in empirical work. The use of the same measure for all three

models we consider has the very important advantage that we can decompose violations of

EUT and compare the magnitudes of violations of the different axioms from which EUT

can be derived. Perfect consistency with EUT implies that 1 = e∗ = e∗∗ = e∗∗∗, whereas

perfect consistency with any of the familiar non-EUT alternatives (such as rank-dependent

utility) that respect FOSD but not EUT itself implies that 1 = e∗ = e∗∗ > e∗∗∗. Our rich

individual-level data also allow us to make statistical comparisons of rationalizability (e∗),

FOSD-rationalizability (e∗∗), and EUT-rationalizability (e∗∗∗) for each subject, using a purely

nonparametric econometric approach.

Figure 1 depicts the distributions of the e∗, e∗∗, and e∗∗∗ rationalizability scores. The

horizontal axis presents score values; the vertical axis indicates the percent of subjects whose

score is above each value. Only a small fraction of our subjects are perfectly rationalizable

(have no violations of GARP), but none are perfectly FOSD-rationalizable and thus EUT-

rationalizable. More importantly, the difference between perfect rationalizability and FOSD-

rationalizability (1 − e∗∗) is much larger at all score values than the difference between

FOSD-rationalizability and EUT-rationalizability (e∗∗ − e∗∗∗). This difference in differences

is statistically significant for nearly all subjects. Violations of EUT thus run deeper than
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Figure 1: Distributions of Rationalizability Scores

To interpret the bars, consider the score value 0.9. The proportion of subjects in the sample with
e∗ > 0.9 is 76.8 percent, the proportion with e∗∗ > 0.9 is 48.2 percent, and the proportion with
e∗∗∗ > 0.9 is 36.9 percent. The braces represent exact 95 percent confidence intervals on the proportions.

violations of independence, challenging the most prominent non-EUT alternatives.

The emphasis in our paper is to provide a comprehensive and nonparametric test of com-

plete representations of preferences under risk rather than focusing on individual axioms.

Our main result—that violations of EUT are relatively minor after accounting for violations

of ordering and monotonicity—is what Quiggin (1982) calls an “undesirable result” as or-

dering and monotonicity are more fundamental principles than the standard independence

axiom, and they are embodied in the most prominent non-EUT theories of choice under

risk. As Starmer (2000) notes, economists have taken the view that the independence axiom

needs to be weakened on the grounds of predictive validity and psychological realism, but

have generally left ordering and monotonicity unchallenged.

Our rich individual-level experimental data involving three states and three associated

securities could also be used, in principle, to test each non-EUT theory against the others.

The different (weaker) alternatives deliver more empirically testable restrictions on observed

behavior in the case of three states than in the case of two states. However, for most

subjects there is only a small (or no) difference between FOSD-rationalizability (e∗∗) and

EUT-rationalizability (e∗∗∗), which implies that there is little scope for existing non-EUT

alternatives to explain observed behavior.
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Looking ahead, we note that an important advantage of our methods and analyses is that

they can be transported, with relative ease, to different decision domains. The experiment

reported in this paper considers decision making under risk. In related ongoing work, we

study decision making under uncertainty/ambiguity, and also intertemporal choice.

The rest of the paper is organized as follows. The next section provides more background

and motivation. Section 3 describes our tests of rationalizability, experimental procedures,

and the power of the experiment. Section 4 summarizes the experimental results. Section 5

describes how the paper is related to the literature, focusing on recent revealed preference

papers on choice under risk. Section 6 outlines what we think theorists, experimentalists, and

other economists should take away from the paper. In the interests of brevity, all technical

details that are not essential for understanding the results are relegated to the Appendix.

2 Background and Motivation

Much of the experimental literature on choice under risk is directed towards finding violations

of EUT. To understand the role of each of the axioms on which EUT is based, suppose that

there are three mutually non-indifferent outcomes xh � xm � xl and consider the probability

triangle depicted in Figure 2. Each point in the triangle represents a lottery (πh, πm, πl) over

the outcomes (xh, xm, xl), where πh = 0 on the horizontal edge, πm = 0 on the hypotenuse

(because πh + πl = 1), and πl = 0 on the vertical edge.3

Monotonicity with respect to FOSD implies that preferences are increasing from right to

left along horizontal lines, from bottom to top along vertical lines, and from bottom-right

to top-left along lines parallel to the hypotenuse (Figure 2a). Ordering (completeness and

transitivity) plus continuity imply that there exists a map of (non-intersecting) indifference

curves. Assuming that these axioms hold, independence then implies that preferences admit

an expected utility representation, so that the indifference curves in the triangle are parallel

straight lines (Figure 2b). Viewed within the context of the triangle, independence is a

strong requirement, leaving only the slope of the indifference lines undetermined (steeper

lines imply higher risk aversion).

3The probability triangle was introduced by Marschak (1950) and popularized by Machina (1982) as a
way of representing the choice space over lotteries.
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(a) Lottery Space (b) Expected Utility

(c) Allais Paradox (d) Weighted Expected Utility

(e) Rank-Dependent Utility

Figure 2: Probability Triangles

The probability triangle depicts the lottery space as a set of probability weights (πh, πm, πl) over three
fixed outcomes (xh, xm, xl). (a) Ordering (completeness and transitivity) plus continuity guarantee
non-intersecting indifference curves; monotonicity (with respect to FOSD) guarantees that preferences
are increasing as shown (see arrows). (b) Adding independence gives rise to EUT, characterized by
indifference curves that are parallel straight lines. (c) The Allais paradox arises because EUT requires
a � b and a′ � b′, but experimental subjects often make choices revealing that a � b but b′ � a′.
Alternatives to EUT like (d) weighted expected utility and (e) rank-dependent utility often avoid the
Allais paradox by relaxing independence while adhering to ordering and monotonicity.
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An example of the famous Allais (1953) paradox can be illustrated by a pair of binary

choices—between lotteries a and b and between lotteries a′ and b′ (Figure 2c). The imag-

inary straight lines connecting lotteries a and b and lotteries a′ and b′ are parallel to each

other and flatter than the indifference curves so a � b and a′ � b′. But experimental sub-

jects often make choices revealing that a � b and b′ � a′ (or b � a and a′ � b′), which is

commonly taken as evidence against independence. This persistent finding has led to a large

literature with the objective of developing new models of choice under risk that weaken the

independence axiom.4

In weighted expected utility (Dekel, 1986; Chew, 1989), for example, all indifference

curves are again straight lines but they typically “fan out”—that is, they become steeper

(corresponding to higher risk aversion) when moving northwest in the triangle (Figure 2d).5

Or in rank-dependent utility (Quiggin, 1982, 1993) and prospect theory (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992) the indifference curves are not straight lines

and they can “fan out” or “fan in”, especially near the triangle boundaries (Figure 2e).

Each of the conventional alternatives to EUT gives rise to indifference curves with distinctive

shapes in the triangle, but with the common feature that they avoid the Allais paradox.

In most experimental studies, the criterion used to evaluate a theory is the fraction of

choices that it correctly predicts. A few studies have also estimated parametric utility func-

tions for individual subjects. Generally speaking, these experiments involve collecting a small

number of decisions from each subject, with the decisions involving very specific choices that

are narrowly tailored to discover violations of independence and its various generalizations.

There is less emphasis on ensuring that these decision problems are representative, both in

the statistical sense and in the economic sense. As a result, the accumulated experimental

evidence against independence that has prompted theorists to develop formal alternatives

to EUT consists primarily of Allais-type behaviors—choices inconsistent with linear indiffer-

ence curves in the probability triangle. Such an approach is unsurprising, given the focus on

4Interestingly, while violations of the independence axiom appear to be widespread, in a recent survey
on the experimental robustness of the Allais paradox across 83 experiments and 30 studies, Blavatskyy,
Ortmann, and Panchenko (2021) concludes that the Allais paradox is a somewhat fragile empirical finding.
This survey’s conclusion is compatible with our main message.

5The indifference curves corresponding to disappointment aversion (Gul, 1991) are also straight lines but
“fan in” for lotteries better than xm (top part of the triangle) and “fan out” for lotteries worse than xm
(bottom part of the triangle). See Gul (1991), Figure 2 (p. 679).
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the independence axiom and that, apart from a few notable exceptions,6 non-EUT models

have relaxed the independence axiom while maintaining ordering and monotonicity with re-

spect to FOSD. However, our basic contention is that we ought to have a wider view of the

performance (or underperformance) of EUT and therefore that all of the assumptions which

underpin the model deserve closer scrutiny.

In this paper, we develop tests of rationalizability that are comprehensive, in the sense

that we check whether a given model—taken as a whole—succeeds or fails in explaining the

data, rather than focusing on specific individual axioms. Furthermore, by evaluating the

performances of progressively restrictive models using a common measure of model perfor-

mance, we can compare the relative impact of the different axioms which make up EUT.

Another important feature of our tests is that they are nonparametric, in the sense that we

make no auxiliary functional form assumptions on the utility function. The overall objective

of our experiment and analysis is to provide a positive account of choice under risk in natural

economic environments.

3 Framework for Analysis

In this section, we describe the theory on which the experimental design is based, the design

itself, and the power of the experiment. All technical details that are not essential for the

experimental results are relegated to Appendix I.

3.1 Rationalizability

We consider a portfolio choice framework with S states of nature, each state denoted by

s = 1, . . . , S. For each state s, there is an Arrow (1964) security that pays one in state s

and zero in the other state(s). Let xs > 0 denote the demand for the security that pays off

in state s and ps > 0 denote the corresponding price, so that x = (x1, . . . , xS) is a demand

allocation and p = (p1, . . . , pS) is a price vector. Let D := (pi,xi) be the data generated by

a subject’s choices from linear budget sets, where pi denotes the i-th observation of the price

vector and xi denotes the associated allocation. We say that a data set D is rationalizable

6For generalizations of EUT that allow for nontransitivity, see, for example, Bell (1982), Fishburn (1982),
and Loomes and Sugden (1982).
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if there is a utility function U : RS
+ → R such that U(xi) > U(x) for all

x ∈ Bi = {x ∈ RS
+ : pi · x 6 pi · xi}.

In other words, the utility of xi is weakly higher than that of any alternative that is weakly

cheaper at the price vector pi.

Note that rationalizability, as defined, has no empirical content, since any dataset D

can be rationalized by a constant utility function. For this concept to be meaningful, some

restriction has to be imposed on U . A well-known result, due to Afriat (1967), tells us that

D can be rationalized by a well-behaved (in the sense of being continuous and increasing)

utility function if and only if the data satisfy the Generalized Axiom of Revealed Preference

(GARP). GARP is an intuitive and (more importantly from the perspective of empirical

application) easy-to-check condition on D.

To account for data that are not exactly rationalizable, Afriat (1972, 1973) proposes the

notion of the Critical Cost Efficiency Index (CCEI). Given a number e ∈ (0, 1], a dataset D

is said to be rationalizable at cost efficiency e if there is a well-behaved utility function U

such that U(xi) > U(x) for all

x ∈ Bi(e) = {x ∈ RS
+ : pi · x 6 epi · xi}.

Clearly, approximate rationalizability weakens the notion of rationalizability since Bi(e) is

a subset of Bi. As Afriat (1973) notes, this definition captures the idea that while the

consumer “has a definite structure of wants,” she “programs at a level of cost-efficiency e.”

The approach is otherwise agnostic about the deeper nature of the “errors” which may arise

in individual choices.

It is not difficult to see that every datasetD could be rationalized by a well-behaved utility

function at an efficiency level e for some e ∈ (0, 1] that is sufficiently close to zero. The CCEI,

denoted by e∗, of a dataset D is the greatest e for which D is rationalizable. For example, if

e∗ = 0.95, then we can find U such that U(xi) is greater than U(x) for any bundle x that is

more than 5 percent cheaper than xi at the prevailing prices pi. Alternatively, the decision

maker is effectively “wasting” as much as 5 percent of his income by making “irrational”
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choices. Just as GARP characterizes rationalizabilty by a well-behaved utility function, so

too is there a modified version of GARP that can be used to check whether a dataset is

rationalizable by a well-behaved utility function at some efficiency level e. It follows that

one could easily obtain e∗.

Afriat’s Theorem is just the first of a long list of results developed by various authors

with the following pattern: D is rationalizable by a well-behaved utility function belonging

to some family if and only if D obeys some property. For our purposes, two families are

particularly important.

The first is the family of well-behaved utility functions that are monotone with respect

to FOSD. In our framework, the probability of state s is commonly known to be πs > 0, so

that π = (π1, . . . , πS) is a vector of probability weights with π1 + · · · + πS = 1. Then we

say that U is monotone with respect to FOSD if U(x′′) > U(x′) whenever x′′ (considered

as a distribution through π) first-order stochastically dominates x′ (with the inequality

being strict if the dominance is strict).7 It is straightforward to check that, in the case

where the states are equiprobable (as in our experiment), a well-behaved utility function is

monotone with respect to FOSD if and only if it is symmetric. A dataset D is said to be

FOSD-rationalizable (with respect to a given π) if it can be rationalized by a utility function

that is well-behaved and monotone with respect to FOSD. Relying on Nishimura, Ok, and

Quah (2017), we provide an easy-to-implement (necessary and sufficient) test of whether D

is FOSD-rationalizable; furthermore, one could also check whether D can be rationalized

at cost efficiency e by a utility function in this family and thus the corresponding CCEI,

denoted by e∗∗, can easily be calculated. Since this family of utility functions is contained

within the family of well-behaved utility functions, it must be the case that e∗∗ 6 e∗.

The second important family is the family of well-behaved utility functions that satisfy

expected utility. These are utility functions U taking the form

U(x) = π1u(x1) + · · ·+ πSu(xS),

7A utility function U that is monotone with respect to FOSD is increasing (in the sense that U(x′′) >
U(x′) whenever x′′ > x′) but the converse is not true. Suppose that there are just two equiprobable states.
Then U(1, 3) > U(2, 1) if U is monotone with respect to FOSD because (1, 3) first-order stochastically
dominates (2, 1), but no relationship between U(1, 3) and U(2, 1) is implied by U being increasing.
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where the Bernoulli index u : R+ → R is continuous and increasing. Recently, Polisson,

Quah, and Renou (2020) have developed a procedure called the Generalized Restriction of

Infinite Domains (or GRID) method that could be employed to test whether a dataset is

rationalizable (at cost efficiency e) by a well-behaved expected utility function, or EUT-

rationalizable. Using this method, one could also calculate e∗∗∗, the CCEI corresponding to

EUT-rationalizability. Since this family of utility functions is contained within the family of

well-behaved utility functions which respect FOSD, it must be the case that e∗∗∗ 6 e∗∗.

To recap, given any dataset D we could calculate three rationalizability scores corre-

sponding to three nested models, with

1 > e∗ > e∗∗ > e∗∗∗ > 0.

There are, of course, other families of utility functions besides these three, and there will be

rationalizability scores corresponding to those families as well. In particular, specific families

of utility functions (such as rank-dependent utility) which generalize expected utility and

respect FOSD will necessarily have rationalizability scores between e∗∗ and e∗∗∗.

The great advantage of measuring—on the same scale—a dataset’s consistency with three

increasingly stringent models is that it allows us to determine the source of the departure

from EUT. A subject who is perfectly EUT-rationalizable will have 1 = e∗ = e∗∗ = e∗∗∗.

More generally, e∗∗∗ will be strictly less than one, and the corresponding values of e∗ and

e∗∗ will then allow us to say something about why that has occurred. For example, if

1 = e∗ = e∗∗ > e∗∗∗, then it would be plausible to believe that the subject is indeed violating

the independence axiom and her behavior could potentially be explained by a utility model

that relaxes the independence axiom, while retaining monotonicity with respect to FOSD. On

the other hand, a subject for whom 1 = e∗ > e∗∗ = e∗∗∗ could be utility-maximizing, but her

choices could only be explained by a model that departs from monotonicity with respect to

FOSD. Last but not least, the choice behavior of a subject with 1 > e∗ is not consistent with

the maximization any utility function; she may or may not also be violating the independence

axiom, but understanding her behavior would require a more radical departure from the

classical framework.
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In Appendix I, we provide more details on GARP and the other conditions for checking

rationalizability (or rationalizability at a given cost efficiency) with respect to specific families

of utility functions.

3.2 Experiment

In this paper, we employ the same experimental methodology as in Choi et al. (2007a, 2014)

and Halevy, Persitz, and Zrill (2018), except that instead of having just two states of nature

(S = 2) and two associated Arrow securities, the new experiment incorporates three states

(S = 3) and three associated Arrow securities, with a price for each security. Choices from

three-dimensional budget sets provide more rigorous tests of rationalizability than choices

from two-dimensional budget sets, in particular when it comes to testing EUT (see more on

this below in our discussion of the power of the experiment).

We conducted the experiment at UC Berkeley and UCLA. The subjects in the experiment

were recruited from undergraduate classes at these institutions. In the experiment, subjects

choose an allocation from a three-dimensional budget set presented using the graphical in-

terface introduced by Choi et al. (2007b). Subjects make choices by using the computer

mouse to move the pointer on the computer screen to the desired point, and are restricted

to allocations on the budget constraint. The full experimental instructions, including the

computer program dialog windows, are reproduced in Appendix II.8

The experimental procedures described below are identical to those described by Choi

et al. (2007b) and used by Choi et al. (2007a) to study a portfolio choice problem with two

risky assets, except that each choice involved choosing a point on a three-dimensional (instead

of two-dimensional) graph representing the set of possible allocations. In the experimental

8We are building on the expertise that we have acquired in previous work using the experimental method
across different types of individual choice problems. Choi et al. (2014) introduces the graphical interface of
Choi et al. (2007b) into a nationally representative sample. The datasets of Choi et al. (2007a, 2014) have
been analyzed in many papers, including Halevy, Persitz, and Zrill (2018), Polisson, Quah, and Renou (2020),
de Clippel and Rozen (2021), and Echenique, Imai, and Saito (2021). Fisman, Kariv, and Markovits (2007),
Fisman et al. (2015), Fisman, Jakiela, and Kariv (2015, 2017), and Li, Dow, and Kariv (2017) employ a
similar experimental methodology to study social preferences across a number of different samples, including
a nationally representative sample. Three-dimensional budget sets have been used by Fisman, Kariv, and
Markovits (2007) to study preferences for giving, and also by Ahn et al. (2014) to study ambiguity aversion,
but so far have not been used to study risk. Other related work by Zame et al. (2020) develops theoretical tools
and experimental methods for testing the linkages between preferences for personal and social consumption
and attitudes toward risk and inequality.
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task, there are three equally likely states denoted by s = 1, 2, 3 and three associated securities,

each of which promises a payoff of one token (the experimental currency) in one state and

nothing in the others. Recall that xs > 0 denotes the demand for the security that pays off

in state s and ps > 0 denotes the corresponding price. Without loss of generality, we assume

that the budget is normalized to 1. The budget set is then given by B = {x : p · x = 1},

where x = (x1, x2, x3) denotes the portfolio of securities and p = (p1, p2, p3) denotes the

vector of security prices.

Each experimental subject faced 50 independent decision rounds. For each subject, the

computer selected 50 budget sets randomly from the set of planes that intersect at least one

axis at or above the 50 token level and intersect all axes at or below the 100 token level.

The budget sets selected for each subject in his/her decision problems were independent of

one another and of the budget sets selected for other subjects in their decision problems.

Subjects were not informed of any state that was actually realized until the end of the

experiment. This procedure was repeated until all 50 rounds were completed. At the end of

the experiment, the computer randomly selected one of the 50 decision rounds to carry out

for payoffs, and token allocations were converted into dollars. The round selected depended

solely on chance.

3.3 Power

To show that the three-dimensional budgetary experiment is more powerful than the two-

dimensional experiments previously used in the literature—and specifically that it is suffi-

ciently powerful to detect whether or not EUT is the right model of choice under risk—we

start by building on the test designed by Bronars (1987) which employs as a benchmark

the choices of a simulated subject who randomizes uniformly among all allocations on each

budget set. The simulated subject makes 50 choices from randomly generated budget sets,

in the same way as do the human subjects.

To focus on EUT-rationalizability, each choice is drawn independently from the uniform

distribution over all allocations on the budget set, subject to keeping the data perfectly

compatible with FOSD-rationalizability, that is e∗∗ = 1. Figure 3 provides a clear graphical

illustration by comparing the distributions of e∗∗∗ generated by such simulated subjects in

14



Figure 3: Power of EUT-Rationalizability

The three-dimensional (3D) budgetary experiment is more powerful than the two-dimensional (2D)
experiment in detecting violations of EUT. We compare the distributions of EUT-rationalizability
scores (e∗∗∗) in 2D and 3D for simulated subjects who choose randomly conditional on perfect FOSD-
rationalizability (e∗∗ = 1). The proportion of simulated subjects that have e∗∗∗ above 0.9 (conditional
on e∗∗ = 1) is over 80 percent in the 2D experiment but just over 20 percent in the 3D experiment.

the two- and three-dimensional budgetary experiments. The horizontal axis shows the value

of e∗∗∗ and the vertical axis measures the fraction of simulated subjects corresponding to

each level. If we choose e∗∗∗ = 0.9 as our critical value, we find that more than 80 percent

of simulated subjects have e∗∗∗ above 0.9 in the two-dimensional experiment, while just over

20 percent have e∗∗∗ above 0.9 in the three-dimensional experiment.

Another benchmark against which to compare the power of the two- and three-dimensional

designs involves the choices of a simulated subject who maximizes a non-EUT utility func-

tion. To illustrate such preferences when there are three states (S = 3), consider the rank-

dependent utility function:

U(x̃) = βLu(xL) + βMu(xM) + βHu(xH),

where βL, βM , βH > 0 are decision weights that sum to unity, x̃ = (xL, xM , xH) is a rank-

ordered portfolio with payoffs xL 6 xM 6 xH , and u is the Bernoulli index. This formulation

encompasses a number of non-EUT models and reduces to EUT when βL = βM = βH (since

each state has an equal likelihood of occurring).9 When there are two states of nature

9As Starmer (2000) points out, although the number of so-called non-EUT models “is well into double
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(S = 2), the rank-dependent utility function takes the simpler form

U(x̃) = βLu(xL) + βHu(xH),

where βL, βH are the decision weights and x̃ = (xL, xH) is the rank-ordered portfolio with

payoffs xL 6 xH . The rank-dependent formula for the rank-ordered portfolio x̃ can be

expressed in terms of the probability weighting function w (see more on this below) as follows:

βL = 1− w
(
2
3

)
,

βM = w
(
2
3

)
− w

(
1
3

)
,

βH = w
(
1
3

)
,

for three states (S = 3), and

βL = 1− w
(
1
2

)
,

βH = w
(
1
2

)
,

for two states (S = 2). That is, the cumulative distribution function of the induced lottery

assigns to each monetary payoff the probability of receiving that payoff or anything less.10

In order to draw a comparison across the two- and three-dimensional experiments using

simulated subjects maximizing a rank-dependent utility function, we hold the weighting fixed

using the weighting function suggested by Tversky and Kahneman (1992), which distorts

each probability π ∈ (0, 1) according to

w(π) =
πγ

[πγ + (1− π)γ]1/γ
.

figures,” the preferences generated by rank-dependent utility Quiggin (1982, 1993) is the leading contender.
Machina (1994) concludes that rank-dependent utility is “the most natural and useful modification of the
classical expected utility formula,” and Starmer (2000) argues that “if one is looking to organize the data from
the large number of triangle experiments, then the decision-weighting models are probably the best bet.”
Yaari (1987), Segal (1990), Wakker (1994), and Abdellaoui (2002), among others, provide axiomatizations
of rank-dependent utility, and Diecidue and Wakker (2001) discusses its underlying intuition.

10The weighting function w, which is increasing and satisfies w(0) = 0 and w(1) = 1, transforms the
distribution function into decision weights. By definition, the decision weight βH is equal to w

(
1
3

)
in the

case of three states and to w
(
1
2

)
in the case of two states.
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This formulation takes the familiar (inverted) s-shaped form for 0 < γ < 1, and any γ > 0.279

guarantees that w is increasing.11 When γ = 1 we have w(π) = π, and so we get the

standard EUT representation. In our numerical simulation, we set γ = 0.5 (in order to

generate sufficient “pessimism”) and we specify u(x) = log(x). Clearly, for these simulated

subjects 1 = e∗ = e∗∗ since their choices are FOSD-rationalizable by construction. However,

as a simple indication, while all of the simulated subjects have e∗∗∗ above 0.95 in the two-

dimensional experiment, none have e∗∗∗ above 0.95 in the three-dimensional experiment.

Despite the advantages of the three-dimensional design, we nevertheless complement our

analysis of these data by analyzing observations collected from a further 956 subjects, each

making 50 choices over two-dimensional budget lines. (These experiments are identical to the

(symmetric) risk experiment of Choi et al. (2007a).) We discuss these results in Section 4.3;

the bottom line is that the major findings in the three-dimensional experiment are replicated

across the two-dimensional experiments.

4 Experimental Results

In this section, we present the experimental results. The data from the experiment contain

observations on 168 individual subjects. For each subject, we have a set of 50 observations

D := (pi,xi)50i=1, where pi = (pi1, p
i
2, p

i
3) denotes the i-th observation of the price vector and

xi = (xi1, x
i
2, x

i
3) denotes the associated allocation. The experiment provides a large set of

data consisting of many individual decisions over a wide range of three-dimensional budget

sets. This is an important point, because as our power analysis shows, a large number of

individual decisions over three-dimensional instead of two-dimensional budget sets is crucial

in order to provide a sufficiently powerful test of the entire set of axioms underlying EUT.

4.1 Illustrative Subjects

In the Introduction, we provide an overview of the important aggregate features of our

experimental data, which we summarize by reporting the distributions of our indices of

rationalizability (e∗), FOSD-rationalizability (e∗∗), and EUT-rationalizability (e∗∗∗). But the

11The other widely-used (single parameter) probability weighting function was proposed by Prelec (1998).
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aggregate data tell us little about the choice behavior of individual subjects. To get some

idea of the wide range of observed behaviors, we present in Figure 4 scatterplots depicting all

50 choices for five illustrative subjects. We have chosen subjects whose behavior corresponds

to one of several prototypical choices and illustrates the striking regularity within subjects

and heterogeneity across subjects that is characteristic of our data.

Figure 4 depicts the choices in terms of token shares for the three securities as points in

the unit simplex. For each allocation xi = (xi1, x
i
2, x

i
3), we relabel the states s = 1, 2, 3 so

that pi1 < pi2 < pi3 and define the token share of the security that pays off in state s to be the

number of tokens payable in state s as a fraction of the sum of tokens payable across states

x̄is =
xis

xi1 + xi2 + xi3
,

and x̄i = (x̄i1, x̄
i
2, x̄

i
3) is the vector of token shares corresponding to the allocation xi. Each

panel of Figure 4 contains a scatterplot of the token share vectors corresponding to the 50

allocations chosen by one of the five illustrative subjects. The vertices of the unit simplex

correspond to allocations consisting of one of the three securities, and each point in the

simplex represents an allocation as a convex combination of the extreme points.

The behaviors of the first three subjects are roughly EUT-rationalizable. In the scatter-

plot for subject ID 101 (Figure 4a), all of the vectors of token shares lie near the center of

the simplex where x̄i =
(
1
3
, 1
3
, 1
3

)
; this behavior is consistent with infinite risk aversion. In

the scatterplot for subject ID 913 (Figure 4b), the token shares are all concentrated on (or,

in a few cases, adjacent to) the top vertex of the simplex where x̄i = (1, 0, 0); this behavior is

consistent with risk neutrality. A more interesting behavior is illustrated in the scatterplot

for subject ID 1001 (Figure 4c). The choices of this subject roughly equalize expenditures

pi1x
i
1 = pi2x

i
2 = pi3x

i
3, rather than tokens, across the three securities; this behavior is consistent

with maximizing a logarithmic von Neumann-Morgenstern expected utility function.

The next two subjects are not EUT-rationalizable. In the scatterplot for subject ID 1003

(Figure 4d), all token shares lie roughly along the bisectors of the angles of the simplex where

x̄i1 = x̄i2 or x̄i2 = x̄i3; this behavior—equalizing the demands for two out of the three securities

for a non-negligible set of price vectors—is FOSD-rationalizable (because x̄i1 > x̄i2 > x̄i3
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(a) ID 101 (b) ID 913

(c) ID 1001 (d) ID 1003

(e) ID 1105

Figure 4: Subject Behavior

Each plot shows all 50 choices for a single subject in terms of token shares. Each vertex of the unit
simplex corresponds to a full allocation to one of the three securities. Some subjects are roughly EUT-
rationalizable: (a) ID 101 is consistent with infinite risk aversion; (b) ID 913 is consistent with risk neu-
trality; (c) ID 1001 is consistent with the maximization of logarithmic von Neumann-Morgenstern ex-
pected utility. Some subjects are distinctly not EUT-rationalizable: (d) ID 1003 is FOSD-rationalizable
and could be explained by rank-dependent utility; and (e) ID 1105 is not FOSD-rationalizable.
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where pi1 < pi2 < pi3) but not EUT-rationalizable. As we explain in Appendix I, preferences

generated by rank-dependent utility (Quiggin, 1982, 1993) could give rise to such choices.

Finally, in the scatterplot for subject ID 1105 (Figure 4e), the token shares are not confined

to the top left subset of the simplex where x̄i1 > x̄i2 > x̄i3; this behavior is not FOSD-

rationalizable (and thus also not EUT-rationalizable). We have obviously shown just a small

subset of our full set of subjects, and these are of course special cases where regularities in

the data are very clear.12

4.2 Rationalizability Scores

As a first basic check on the rationalizability (e∗), FOSD-rationalizability (e∗∗), and EUT-

rationalizability (e∗∗∗) of individual subjects, Figure 5 shows scatterplots of e∗ against e∗∗

(Figure 5a) and of e∗∗ against e∗∗∗ (Figure 5b). By definition, e∗ > e∗∗ > e∗∗∗ so all points

in both scatterplots must lie on or below the 45-degree lines. An individual subject who is

perfectly EUT-rationalizable will have 1 = e∗ = e∗∗ = e∗∗∗. When e∗∗∗ is strictly less than

one, the corresponding values of e∗ and e∗∗ will then allow us to isolate the source of the

subject’s departure from EUT.

Out of our 168 subjects, the choices of only 27 subjects (16.1 percent) are perfectly ratio-

nalizable (e∗ = 1), but the choices of none of our subjects are perfectly FOSD-rationalizable

(e∗∗ = 1), and hence perfectly EUT-rationalizable (e∗∗∗ = 1). Most interestingly, only 11

subjects (6.5 percent) fall along the 45-degree line in the scatterplot of e∗ against e∗∗ (Figure

5a); the choices of these subjects are not necessarily perfectly rationalizable but they are not

less FOSD-rationalizable than they are rationalizable (e∗ = e∗∗). By contrast, 65 subjects

(38.7 percent) fall along the 45-degree line in the scatterplot of e∗∗ against e∗∗∗ (Figure 5b);

the choices of these subjects are not perfectly FOSD-rationalizable but they are not less

EUT-rationalizable than they are FOSD-rationalizable (e∗∗ = e∗∗∗). Only 3 subjects (1.8

percent), fall along the 45-degree line in both scatterplots; the choices of these subjects are

not less EUT-rationalizable than they are rationalizable (e∗ = e∗∗ = e∗∗∗).

Our rich individual-level data also allow us to make statistical comparisons of rational-

12There are many subjects for whom the behavioral regularities are much less clear. However, a review
of the full raw dataset reveals both regularities within subjects and heterogeneity across subjects. The
scatterplots for the full set of subjects are available upon request.

20



(a) e∗ versus e∗∗ (b) e∗∗ versus e∗∗∗

Figure 5: Scatterplots of Rationalizability Scores

The plots depict rationalizability scores for individual subjects. By definition, e∗ > e∗∗ > e∗∗∗ so
all points in both scatterplots must lie on or below the 45-degree lines. (a) All individual-level dif-
ferences between e∗ and e∗∗ are statistically significant at the 1 percent significance level (red). (b)
The individual-level differences between e∗∗ and e∗∗∗ are statistically significant for 75.0 percent of the
sample (red), but there is also a sizeable minority of subjects for whom this is not the case (blue).

izability (e∗) versus FOSD-rationalizability (e∗∗) and of FOSD-rationalizability (e∗∗) versus

EUT-rationalizability (e∗∗∗) using a purely nonparametric econometric approach. To this

end, for each subject, we split the 50 observations into two non-overlapping partitions of

25 observations, generating paired subsamples of observations. Clearly, we cannot examine

all
(
50
25

)
> 1014 possible paired subsamples of the observed individual-level data; instead we

draw 1,000 such paired subsamples at random for each subject and construct the sampling

distributions of e∗ and e∗∗∗ on one subsample and the sampling distribution of e∗∗ on the

other. Note that given the non-overlapping partitions, the orderings e∗ > e∗∗ and e∗∗ > e∗∗∗

are no longer guaranteed. We can then straightforwardly test whether the mean difference

between the pairs of e∗ and e∗∗ and of e∗∗ and e∗∗∗ are zero (or not) using a paired t-test.

In Figure 5, individual subjects are depicted in red if the two scores—either e∗ and e∗∗

(Figure 5a) or e∗∗ and e∗∗∗ (Figure 5b)—are statistically distinguishable at the 1 percent

significance level and depicted in blue otherwise. All individual-level differences between

e∗ and e∗∗ (Figure 5a) are statistically significant, including for those 11 subjects (6.5 per-

cent) falling along the 45-degree line (for whom e∗ = e∗∗ across all 50 observations). The

21



Figure 6: Scatterplot of Score Differences

The plot depicts rationalizability score differences for individual subjects. For the vast majority of
subjects, the difference between FOSD-rationalizability and EUT-rationalizability (e∗∗ − e∗∗∗) is small
(or non-existent), while the difference between perfect rationalizability and FOSD rationalizability
(1−e∗∗) is much larger: 85.1 percent of subjects fall below the 45-degree line, and of those 45.5 percent
fall along the horizontal axis (e∗∗ = e∗∗∗). This difference in differences is statistically significant for
97.6 percent of subjects (red) at both the 1 and 5 percent significance levels.

individual-level differences between e∗∗ and e∗∗∗ (Figure 5b) are statistically significant for

126 subjects (75.0 percent), including for 25 of the 65 subjects (38.5 percent) falling along

the 45-degree line (for whom e∗∗ = e∗∗∗ across all 50 observations). If instead we evalu-

ate at the 5 percent significance level, the individual-level differences between e∗∗ and e∗∗∗

are statistically significant for 134 subjects (79.8 percent). Hence, for the majority of sub-

jects the difference between FOSD-rationalizability and EUT-rationalizability (e∗∗ − e∗∗∗) is

statistically significant, but there is also a sizeable minority for whom this is not the case.

Furthermore, we compare the magnitudes of differences between scores. Figure 6 shows

a scatterplot of the difference between perfect rationalizability and FOSD-rationalizability

(1 − e∗∗) against the difference between FOSD-rationalizability and EUT-rationalizability

(e∗∗ − e∗∗∗). Out of our 168 subjects, 143 (85.1 percent) fall below the 45-degree line in

the scatterplot (1 − e∗∗ > e∗∗ − e∗∗∗), and of those 65 subjects (45.5 percent) fall along

the horizontal axis (e∗∗ = e∗∗∗). Hence, for the vast majority of our subjects there is only

a small (or no) difference between FOSD-rationalizability and EUT-rationalizability (e∗∗ −

e∗∗∗), whereas the difference between perfect rationalizability and FOSD-rationalizability

(1− e∗∗) is much larger. For these subjects, there is little scope for the most prominent non-
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EUT alternatives, such as weighted expected utility, rank-dependent utility, or reference-

dependent risk preferences, that relax the independence axiom to explain observed behavior,

as they all postulate FOSD-rationalizability (1 = e∗ = e∗∗ > e∗∗∗).13

To provide a statistical test of the difference between 1 − e∗∗ and e∗∗ − e∗∗∗, we again

draw 1,000 paired subsamples of observations for each subject and construct the sampling

distribution of 1 − e∗∗ on one subsample and the sampling distribution of e∗∗ − e∗∗∗ on the

other. We then test whether the mean difference in differences is statistically significant

using a paired t-test. We find that it is significant for 164 subjects (97.6 percent) at both

the 1 and 5 percent significance levels. These subjects are depicted in red in Figure 6; the

other subjects are depicted in blue.

The broad conclusion from our analysis is clear: even for a single subject, the sources of

violation of EUT are variegated; furthermore, for many subjects, violations of ordering and

monotonicity are more prominent and much larger in magnitude than departures from the

independence axiom.

4.3 Two- Versus Three-Dimensional Data

For comparison purposes, in Appendix III we replicate our entire analysis with observations

on 956 subjects making choices from two-dimensional budget lines. For each subject, we

again have a set of 50 observations D := (pi,xi)50i=1 where pi = (pi1, p
i
2) denotes the i-th

observation of the price vector and xi = (xi1, x
i
2) denotes the associated allocation.14 Figure

7 compares the rationalizability scores across the two- and three-dimensional experiments

13Utility functions representing reference-dependent risk preferences (specifically the choice acclimating
personal equilibrium model of Kőszegi and Rabin (2007)) can fail to be increasing if loss aversion is suf-
ficiently high (see Masatlioglu and Raymond (2016)); however, these preferences are always locally locally
nonsatiated and, in our experimental setting, symmetric. For reasons explained in greater detail in Appendix
I, utility functions that are symmetric and locally nonsatiated cannot rationalize any behavior that cannot
also be rationalized by a symmetric and increasing utility function. Thus the rationalizability score for such
preferences cannot improve on e∗∗.

14The data include the (symmetric) data collected by Choi et al. (2007a) and similar data with different
subject pools collected by Zame et al. (2020) and Cappelen et al. (2021) as well as new data. In all of
these experiments, the individual-level data consist of 50 decision problems. We do not include the data of
Choi et al. (2014) which consist of 25, rather than 50, decision problems. Note that 25 individual decisions
provide a rich enough data set to provide a powerful test of GARP. But as our power analysis shows, choices
from two-dimensional budget lines provide a much weaker test of EUT, so we omit datasets with only 25
individual decisions, though this number is still higher than is usual in the literature. See, for examples, Cox
(1997), Sippel (1997), Mattei (2000), Harbaugh, Krause, and Berry (2001), and Andreoni and Miller (2002),
among others.
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(a) Distributions of e∗ (b) Distributions of e∗∗

(c) Distributions of e∗∗∗

Figure 7: Distributions of Rationalizability Scores

The plots depict distributions of rationalizability scores across the two-dimensional (2D) and three-
dimensional (3D) experiments for (a) e∗, (b) e∗∗, and (c) e∗∗∗.

for e∗ (Figure 7a), e∗∗ (Figure 7b), and e∗∗∗ (Figure 7c). Note that the data from three-

dimensional budget sets are at least as rationalizable (e∗) as the data from two-dimensional

budget lines, which is an interesting result in its own right. As a practical note, it suggests

that subjects did not have any difficulties in understanding the procedures or using the

three-dimensional computer program.

On the other hand, the data from three-dimensional budget sets are distinctly less FOSD-

rationalizable (e∗∗) and EUT-rationalizable (e∗∗∗) than the data from the two-dimensional

budget lines. In the three-dimensional experiment, 28.0 (resp. 16.1) percent of the subjects

have e∗∗ (resp. e∗∗∗) scores above the 0.95 threshold, and 48.2 (resp. 36.9) percent have
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values above 0.9. In the two-dimensional experiment (also with 50 choices), the correspond-

ing percentages are 49.9 (resp. 46.4) and 65.0 (resp. 63.4). Finally, statistical tests on

the two-dimensional data show that the individual-level differences between e∗ and e∗∗ are

statistically significant for 859 (89.9 percent) and 866 (90.6 percent) at the 1 and 5 signif-

icant levels, respectively. In contrast, the individual-level differences between e∗∗ and e∗∗∗

are statistically significant for only 215 (22.5 percent) and 268 subjects (28.0 percent). This

comparison suggests that three-dimensional budget sets (relative to two-dimensional budget

sets) considerably improve the power of revealed preference tests of EUT-rationalizability.

In the two-dimensional data, as in the three-dimensional data, the loss of consistency

arising from EUT specifically is small, once we account for ordering and monotonicity. In-

deed, 1 − e∗∗ > e∗∗ − e∗∗∗ for 827 out of 956 subjects (86.5 percent). These differences in

differences are statistically significant for 888 subjects (92.9 percent) and 890 subjects (93.1

percent) at the 1 and 5 percent significance levels, respectively.

5 Related Literature

There is a vast amount of research on decision making under risk and under uncertainty, and

laboratory experiments have provided some key empirical guideposts for the development of

new ideas in these areas. We will not attempt to review the large and growing experimental

literature. Though now somewhat dated, an overview of experimental and theoretical work

can be found in Camerer (1995), while Starmer (2000) provides a review of the risk literature

that focuses on evaluating non-EUT theories.15 Following the seminal work of Hey and Orme

(1994) and Harless and Camerer (1994)), a number of papers have estimated parametric

utility functions. While Harless and Camerer (1994) fits models to aggregate data, Hey and

Orme (1994) uses data derived from decisions over a very large menu of binary choices and

estimates functional forms at the level of the individual subject.

More recently, Choi et al. (2007a) employs graphical representations of budget sets con-

taining bundles of state-contingent commodities in order to elicit preferences; this exper-

15Camerer and Weber (1992) and Harless and Camerer (1994) also summarize the experimental evidence
from testing the various utility theories of choice under risk and under uncertainty. Kahneman and Tversky
(2000) collects many theoretical and empirical papers that have emerged from their pioneering work on
prospect theory.
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imental approach constitutes the foundation of this paper’s contribution as it allows for

the collection of a very rich individual-level dataset. For each subject in their experiment,

Choi et al. (2007a) tests the data for consistency with GARP and estimates preferences in

a parametric model with loss or disappointment aversion (Gul, 1991). This formulation en-

compasses a number of different theories and embeds EUT as a parsimonious and tractable

special case. But testing EUT as a restriction on a non-EUT utility function has an obvious

drawback—it depends on assumptions over functional form and the specification of the error

structure. Indeed, Halevy, Persitz, and Zrill (2018) highlights the distinction between the

non-parametric and parametric recoverability of preferences.

The most basic question that one could ask about individual-level choice data is whether

they are compatible with utility maximization, and classical revealed preference theory

(Samuelson, 1938, 1948, 1950; Houthakker, 1950; Afriat, 1967; Diewert, 1973; Varian, 1982)

provides GARP as a direct test.16 Consistency with GARP is implied by—and guarantees—

choice from a coherent preference over all possible alternatives, but any consistent preference

ordering that is locally nonsatiated is admissible. In particular, choices can be compatible

with GARP and yet fail to be reconciled with the maximization of a utility function that is

monotonic with respect to FOSD, which is not normatively appealing. One is thus naturally

led to go beyond consistency and to ask whether the choices made by a subject are compatible

with a utility function that has some special structure, in particular one which is monotonic

with respect to FOSD and/or adheres to EUT. To answer these questions properly requires

the development of new revealed preference tests.

Originating in the works of Varian (1983a,b, 1988) and Green and Srivastava (1986),

some more recent papers which pursue these questions include Diewert (2012), Bayer et al.

(2013), Kubler, Selden, and Wei (2014, 2017), Echenique and Saito (2015), Chambers, Liu,

and Martinez (2016), Chambers, Echenique, and Saito (2016), Nishimura, Ok, and Quah

(2017), Echenique, Imai, and Saito (2019, 2021), Polisson, Quah, and Renou (2020), and

de Clippel and Rozen (2021). We compare our approach and contribution to existing work

along four dimensions—methods, measures, tests, and power.

16For overviews of the revealed preference literature, see Crawford and De Rock (2014) and Chambers
and Echenique (2016), as well as the papers by Afriat (2012), Diewert (2012), Varian (2012), and Vermeulen
(2012), published in a special issue of the Economic Journal on the foundations of revealed preference.
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Methods. With the exception of the GRID method, all other tests of EUT involve

a concave Bernoulli index. The GRID method, by contrast, neither assumes nor

guarantees concavity. This distinction is by no means cosmetic, since it has empirical

implications. Although concavity of the Bernoulli index, which is equivalent to risk

aversion under EUT, is widely assumed in empirical applications, we avoid imposing

any further requirements that are not, strictly speaking, a part of EUT in our test of

the model.17 This feature of our analysis is an important part of our claim that our

tests are purely nonparametric, with no extraneous assumptions on the parametric

form or shape of the utility function.

Measures. Revealed preference relations generate exact tests while choice data

almost always contain some violations. Given this, any serious empirical investigation

requires an index to measure a model’s goodness-of-fit, or (in other words) the extent

to which a subject’s choices are (in)compatible with the model. In this paper, we use

Afriat’s (1973) CCEI to measure a subject’s consistency with (basic) rationalizability

(e∗), FOSD-rationalizability (e∗∗), and EUT-rationalizability (e∗∗∗). Since the models

are nested, the indices must be ordered for any given subject, with 1 > e∗ > e∗∗ >

e∗∗∗ > 0, where an index of 1 implies exact agreement with a given model.

The use of a common index across different models means that we can perform

a comprehensive test of each relevant model (in which all the axioms of a model

are tested in combination) and at the same time cleanly identify the incremental

impact of additional axioms. We employ the CCEI (rather than some other index)

for several related reasons: we know how to compute it for the three models under

consideration; these computations can be implemented efficiently; and it is the most

17For further discussion of this issue, see Polisson, Quah, and Renou (2020). A subject who maximizes
expected utility will pass our test and be classified as EUT-rationalizable, even if that subject is not globally
risk averse. For an example of choice data that are EUT-rationalizable but only with a non-concave Bernoulli
index, see Section A4 of the Online Appendix in Polisson, Quah, and Renou (2020). (Note that Polisson,
Quah, and Renou (2020) also develops a test for the case where the Bernoulli index is required to be concave.)
This empirical distinction runs in contrast with the Afriat (1967) result on basic rationalizability, where
concavity of the utility function (not necessarily of the expected utility form) is without loss of generality.
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commonly used measure of goodness-of-fit.18,19

de Clippel and Rozen (2021) proposes a different index to measure goodness-of-fit

which is applicable to different families of utility functions; roughly speaking, the

index is based on the size of the departures from the first-order conditions. Building

on the methodology in Echenique, Imai, and Saito (2020) within the context of in-

tertemporal choice, Echenique, Imai, and Saito (2021) proposes essentially the same

index as de Clippel and Rozen (2021) for expected utility, albeit with a somewhat

different motivation. This index (or collection of indices) relies on a first-order (con-

dition) approach, so they are only applicable to models representable by quasiconcave

utility functions (defined on the space of contingent consumption). As such, it is not

ideal for our purposes since we want to avoid imposing a concave Bernoulli index (or,

more generally, a quasiconcave utility function) as a rationality requirement.

Tests. We create individual-level non-parametric permutation (randomization)

tests. The approach builds only on revealed preference techniques and it is purely

nonparametric, making no assumptions about the form of the subject’s underlying

utility function or on the error structure. That is, we obtain the (empirical) distri-

bution functions for the test statistics under the null hypotheses—that choices are as

FOSD-rationalizable as they are rationalizable (e∗∗ = e∗) and as EUT-rationalizable

as they are FOSD-rationalizable (e∗∗∗ = e∗∗)—directly from the individual-level data.

We are not aware of similar statistical tests performed in other work.

Power. A number of recent papers—including Polisson, Quah, and Renou (2020),

de Clippel and Rozen (2021), and Echenique, Imai, and Saito (2021)—analyze the

experimental data from Choi et al. (2014). This experiment is identical to Choi et al.

18A small subset of the many studies using the CCEI includes Harbaugh, Krause, and Berry (2001)
on children’s preferences, Andreoni and Miller (2002) and Fisman, Kariv, and Markovits (2007) on social
preferences, and Choi et al. (2007a, 2014) and Carvalho, Meier, and Wang (2016) on risk preferences.
Recently, Dziewulski (2020) provides a further behavioral interpretation for the CCEI based on a decision
maker’s cognitive inability to distinguish between bundles that are sufficiently similar.

19The index proposed by Varian (1990) is closely related to the CCEI and has been used in some important
work (see, for example, Halevy, Persitz, and Zrill (2018)). There are known methods for calculating this
index for the different models that we consider, but its calculation is much more computationally demanding
than the CCEI (especially in the case of the EUT model) and therefore it is not practically implementable
for us, given the size of our datasets and the scope of our empirical exercise. For more on the computation
of this index to measure rationalizability, FOSD-rationalizability, and EUT-rationalizability, see Polisson,
Quah, and Renou (2020).
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(2007a), except that it consists of 25, rather than 50, decision problems involving

two (equiprobable) states of nature and two associated Arrow securities. Echenique,

Imai, and Saito (2021) also analyzes the experimental data from Carvalho, Meier, and

Wang (2016) and Carvalho and Silverman (2019), which also consist of 25 problems.

The Choi et al. (2007a) data have also been extensively analyzed, including by Halevy,

Persitz, and Zrill (2018) and Polisson, Quah, and Renou (2020). The common thread

in all these experiments is that there are two states and two securities.

The experiment reported in this paper consists of 50 decision problems involv-

ing three (equiprobable) states with three associated Arrow securities. Collecting 50,

or even 25, individual decisions is more than is usual in the experimental literature

on choice under risk and, as Choi et al. (2014) show, it does provide a rich enough

individual-level dataset for a powerful test of (basic) rationalizability. However, our

power analysis indicates that having three states significantly enhances the discrim-

inatory power of the experiment, especially with respect to EUT-rationalizability,

when compared to experiments with two states (and 25, or indeed 50, observations).

Given that the primary purpose of this paper to reach a robust empirical conclu-

sion on the sources of departure from EUT, our use of a more discriminating choice

environment is crucial.

To conclude, Polisson, Quah, and Renou (2020), de Clippel and Rozen (2021), and

Echenique, Imai, and Saito (2021) all develop new methodologies and apply their techniques

to existing experimental data. Echenique, Imai, and Saito (2021) finds that subjects who are

more rationalizable (as measured by the CCEI) are not necessarily more EUT-rationalizable

(as measured by their index). However, these two rationalizability measures are not formally

comparable, so the analysis cannot separate the empirical validity of each of the axioms on

which EUT is based. More closely related to our theme, Polisson, Quah, and Renou (2020)

observes a relatively small gap between FOSD-rationalizability and EUT-rationalizability;

notwithstanding the use of a different measure, de Clippel and Rozen (2021) draws a similar

conclusion. The focus of both Polisson, Quah, and Renou (2020) and de Clippel and Rozen

(2021), however, is methodological rather than empirical and both also rely on existing two-

dimensional datasets in their empirical analyses; as acknowledged by de Clippel and Rozen
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(2021), power issues cast doubts on the robustness of their empirical conclusions. In this

paper, our findings rely on new experimental data with three-dimensional budget sets and

50 observations per subject. A thorough analysis of these data allows us to establish con-

clusively that subjects have multiple sources of EUT violations and, for the vast majority,

violations of ordering and/or monotonicity rather than violations of independence are the

main sources of departure from EUT.

6 Concluding Remarks

The standard model of choice under risk is based on von Neumann and Morgenstern’s (1947)

EUT. It is meant to serve as a normative guide for choice and also as a descriptive model

of how individuals choose. However, much of the experimental and empirical evidence of

“anomalies” in choice behavior suggests that EUT may not the right model. While EUT

embodies three important axioms—ordering, monotonicity (with respect to FOSD), and

independence—independence is the only axiom which the seminal alternatives to EUT relax.

It is thus natural that experimentalists should want to test the empirical validity of

the independence axiom, and the overwhelming body of evidence against independence has

raised criticisms about its status as the touchstone of rationality in the context of decision-

making under risk. In response to these criticisms, various generalizations of EUT have

been developed, and the experimental examination of these theories has led to new empir-

ical regularities in the laboratory. Starmer (2000) calls this the “conventional strategy”—

theories/experiments designed to permit/test violations of independence (and weakened

forms of independence) while retaining the more basic axioms of ordering and monotonicity.20

Combining theoretical tools, experimental methods, and non-parametric econometric

techniques, our study confronts all of the axioms of EUT with individual-level experimental

data that is richer than anything that has heretofore been used. The data are well-suited

to purely nonparametric revealed preference tests which allow for the reality that individual

behavior is not perfectly consistent with well-behaved preferences.

20Bell (1982), Fishburn (1982), and Loomes and Sugden (1982) (simultaneously) propose a model of
nontransitive risk preference. Loomes and Sugden (1987) develop a version of this model that involves
regret with pairwise choice. Starmer (2000) provides an overview of these models and relates them to other
non-EUT alternatives.
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Why does this matter? It matters because choice data cannot be treated as being gener-

ated by a utility function, or by a utility function that is monotone with respect to FOSD,

if there are large deviations from rationalizability or FOSD-rationalizability. In these cases,

the standard approach of postulating some parametric family of utility functions (typically

respecting FOSD), and estimating its parameters leads to model misspecification. As a re-

sult, the estimated preference will not be the true underlying preference, if such a preference

ordering even exists, and positive predictions and welfare conclusions based on these models

will be misleading.21 Our findings also have implications for public policy; for example, in

the practice of light paternalism, which is aimed at steering people toward better choices

(Camerer et al., 2003; Thaler and Sunstein, 2003; Loewenstein and Haisley, 2008). Clearly,

decision-makers that only violate independence merit greater deference from policy-makers

than the more boundedly rational ones that violate ordering and monotonicity because the

choices of the former, unlike the latter, maximize a well-defined utility function and are thus

of a higher quality (Kariv and Silverman, 2013).

To conclude, by applying the latest revealed preference techniques to an experiment

involving three states with three associated securities, we provide strong comprehensive and

nonparametric tests of complete representations of preferences under risk. Our main result

is that while the vast majority of our subjects have statistically significant violations of

independence, for many subjects these violations are minor when compared against violations

of ordering and monotonicity. As EUT lies at the very heart of economics, these results have

important implications for both economic theory and economic policy.

The experimental platform and analytical techniques that we have used are applicable

to many other types of individual choice problems. One important direction is to study

choice under ambiguity. In a separate paper, we apply the GRID method and other revealed

preference techniques to the analogous data of Ahn et al. (2014) which similarly allow for a

rigorous test of individual-level decision-making under ambiguity.

21Halevy, Persitz, and Zrill (2018) parametrically estimates preferences for the dataset collected by Choi
et al. (2007a) involving two states and two associated securities. They find significant quantitative and
qualitative differences between the preferences induced by parametric estimation and the revealed preferences
implied by choices, due to model misspecification.

31



References

Abdellaoui, M. 2002. “A Genuine Rank-Dependent Generalization of the von Neumann-
Morgenstern Expected Utility Theorem.” Econometrica 70(2): 717–736.

Afriat, S. N. 1967. “The Construction of Utility Functions from Expenditure Data.” International
Economic Review 8(1): 67–77.

———. 1972. “Efficiency Estimation of Production Functions.” International Economic Review
13(3): 568–598.

———. 1973. “On a System of Inequalities in Demand Analysis: An Extension of the Classical
Method.” International Economic Review 14(2): 460–472.

———. 2012. “Afriat’s Theorem and the Index Number Problem.” Economic Journal
122(560): 295–304.

Ahn, D., S. Choi, D. Gale, and S. Kariv. 2014. “Estimating Ambiguity Aversion in a Portfolio
Choice Experiment.” Quantitative Economics 5(2): 195–223.

Allais, P. M. 1953. “Le Comportement de l’Homme Rationnel devant le Risque: Critique des
Postulats et Axiomes de l’Ecole Americaine.” Econometrica 21(4): 503–546.

Andreoni, J. and J. Miller. 2002. “Giving According to GARP: An Experimental Test of the
Consistency of Preferences for Altruism.” Econometrica 70(2): 737–753.

Arrow, K. J. 1964. “The Role of Securities in the Optimal Allocation of Risk-bearing.” Review of
Economic Studies 31(2): 91–96.

Bayer, R.-C., S. Bose, M. Polisson, and L. Renou. 2013. “Ambiguity Revealed.” IFS Working
Papers W13/05.

Bell, D. E. 1982. “Regret in Decision Making under Uncertainty.” Operations Research 30(5): 961–
981.

Blavatskyy, P., A. Ortmann, and V. Panchenko. 2021. “On the Experimental Robustness of the
Allais Paradox.” American Economic Journal: Microeconomics Forthcoming.

Bronars, S. G. 1987. “The Power of Nonparametric Tests of Preference Maximization.” Economet-
rica 55(3): 693–698.

Camerer, C. 1995. “Individual Decision Making.” In Handbook of Experimental Economics, edited
by J. H. Kagel and A. E. Roth. Princeton: Princeton University Press, 587–704.

Camerer, C., S. Issacharoff, G. Loewenstein, T. O’Donoghue, and M. Rabin. 2003. “Regulation for
Conservatives: Behavioral Economics for ‘Asymmetric Paternalism’.” University of Pennsylvania
Law Review 151: 1211–1254.

Camerer, C. and M. Weber. 1992. “Recent Developments in Modeling Preferences: Uncertainty
and Ambiguity.” Journal of Risk and Uncertainty 5(4): 325–370.

Cappelen, A. W., S. Kariv, E. Ø. Sørensen, and B. Tungodden. 2021. “The Development Gap in
Economic Rationality of Future Elites.” Unpublished paper.

32



Carvalho, L. and D. Silverman. 2019. “Complexity and Sophistication.” NBER Working Paper
Series Working Paper 26036.

Carvalho, L. S., S. Meier, and S. W. Wang. 2016. “Poverty and Economic Decision-Making: Evi-
dence from Changes in Financial Resources at Payday.” American Economic Review 106(2): 260–
284.

Chambers, C. P. and F. Echenique. 2016. Revealed Preference Theory. Cambridge: Cambridge
University Press.

Chambers, C. P., F. Echenique, and K. Saito. 2016. “Testing Theories of Financial Decision
Making.” Proceedings of the National Academy of Sciences 113(15): 4003–4008.

Chambers, C. P., C. Liu, and S.-K. Martinez. 2016. “A Test for Risk-Averse Expected Utility.”
Journal of Economic Theory 163: 775–785.

Chew, S. H. 1989. “Axiomatic Utility Theories with the Betweenness Property.” Annals of Oper-
ations Research 19(2): 273–298.

Choi, S., R. Fisman, D. Gale, and S. Kariv. 2007a. “Consistency and Heterogeneity of Individual
Behavior under Uncertainty.” American Economic Review 97(5): 1921–1938.

———. 2007b. “Revealing Preferences Graphically: An Old Method Gets a New Tool Kit.” Amer-
ican Economic Review: AEA Papers and Proceedings 97(2): 153–158.

Choi, S., S. Kariv, W. Müller, and D. Silverman. 2014. “Who Is (More) Rational?” American
Economic Review 104(6): 1518–1550.

Cox, J. C. 1997. “On Testing the Utility Hypothesis.” Economic Journal 107(443): 1054–1078.

Crawford, I. and B. De Rock. 2014. “Empirical Revealed Preference.” Annual Reviews 6: 503–524.

de Clippel, G. and K. Rozen. 2021. “Relaxed Optimization: How Close Is a Consumer to Satisfying
First-Order Conditions?” Unpublished paper.

Debreu, G. 1954. “Representation of a Preference Ordering by a Numerical Function.” In Decision
Processes, edited by R. M. Thrall, C. H. Coombs, and R. L. Davis. New York: John Wiley and
Sons, 159–165.

———. 1960. “Topological Methods in Cardinal Utility Theory.” In Mathematical Methods in the
Social Sciences, edited by K. J. Arrow, S. Karlin, and P. Suppes. Stanford: Stanford University
Press, 16–26.

Dekel, E. 1986. “An Axiomatic Characterization of Preferences under Uncertainty: Weakening the
Independence Axiom.” Journal of Economic Theory 40(2): 304–318.

Diecidue, E. and P. P. Wakker. 2001. “On the Intuition of Rank-Dependent Utility.” Journal of
Risk and Uncertainty 23(3): 281–298.

Diewert, W. E. 1973. “Afriat and Revealed Preference Theory.” Review of Economic Studies
40(3): 419–425.

———. 2012. “Afriat’s Theorem and Some Extensions to Choice under Uncertainty.” Economic
Journal 122(560): 305–331.

33



Dziewulski, P. 2020. “Just-Noticeable Difference as a Behavioural Foundation of the Critical Cost-
Efficiency Index.” Journal of Economic Theory 188: 105071.

Echenique, F., T. Imai, and K. Saito. 2019. “Decision Making under Uncertainty: An Experimental
Study in Market Settings.” Unpublished paper.

———. 2020. “Testable Implications of Models of Intertemporal Choice: Exponential Discounting
and Its Generalizations.” American Economic Journal: Microeconomics 12(4): 114–43.

———. 2021. “Approximate Expected Utility Rationalization.” Unpublished paper.

Echenique, F. and K. Saito. 2015. “Savage in the Market.” Econometrica 83(4): 1467–1495.

Fishburn, P. C. 1982. “Nontransitive Measurable Utility.” Journal of Mathematical Psychology
26(1): 31–67.

Fisman, R., P. Jakiela, and S. Kariv. 2015. “How Did the Great Recession Impact Social Prefer-
ences?” Journal of Public Economics 128: 84–95.

———. 2017. “Distributional Preferences and Political Behavior.” Journal of Public Economics
155: 1–10.

Fisman, R., P. Jakiela, S. Kariv, and D. Markovits. 2015. “The Distributional Preferences of an
Elite.” Science 349(6254): 1300.

Fisman, R., S. Kariv, and D. Markovits. 2007. “Individual Preferences for Giving.” American
Economic Review 97(5): 1858–1876.

Green, R. C. and S. Srivastava. 1986. “Expected Utility Maximization and Demand Behavior.”
Journal of Economic Theory 38(2): 313–323.

Gul, F. 1991. “A Theory of Disappointment Aversion.” Econometrica 59(3): 667–686.

Halevy, Y, D. Persitz, and L. Zrill. 2018. “Parametric Recoverability of Preferences.” Journal of
Political Economy 126(4): 1558–1593.

Harbaugh, W. T., K. Krause, and T. R. Berry. 2001. “GARP for Kids: On the Development of
Rational Choice Behavior.” American Economic Review 91(5): 1539–1545.

Harless, D. W. and C. F. Camerer. 1994. “The Predictive Utility of Generalized Expected Utility
Theories.” Econometrica 62(6): 1251–1289.

Hey, J. D. and C. Orme. 1994. “Investigating Generalizations of Expected Utility Theory Using
Experimental Data.” Econometrica 62(6): 1291–1326.

Houthakker, H. S. 1950. “Revealed Preference and the Utility Function.” Economica 17(66): 159–
174.

Kahneman, D. and A. Tversky. 1979. “Prospect Theory: An Analysis of Decision under Risk.”
Econometrica 47(2): 263–291.

Kahneman, D. and A. Tversky, editors. 2000. Choices, Values, and Frames. Cambridge: Cambridge
University Press.

34



Kariv, S. and D. Silverman. 2013. “An Old Measure of Decision-Making Quality Sheds New Light
on Paternalism.” Journal of Institutional and Theoretical Economics 169(1): 29–44.
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Appendix I

Theoretical Framework

Our experimental data are generated by individual subjects solving a series of randomly

generated portfolio-choice problems. In our setting, there are S states of nature, denoted by

s = 1, . . . , S. The probability of state s is commonly known to be πs > 0, with
∑S

s=1 πs = 1,

so that π = (π1, . . . , πS) � 0 denotes the vector of state probabilities.1 For each state s,

there is an Arrow security that pays one token (the experimental currency) in state s and

nothing in the other state(s). The amount of consumption in state s is denoted by xs > 0,

and the portfolio of securities may be written as x = (x1, . . . , xS) > 0.

In the experiment, each subject has a budget of 1, which has to be allocated among the

Arrow securities, with ps > 0 denoting the price of security s. Formally the subject chooses a

portfolio x > 0 among those which satisfy the constraint p ·x = 1, where p = (p1, . . . , pS)�

0 denotes the vector of state prices. The subject can choose any portfolio x satisfying the

budget constraint.

Let D := (pi,xi) be the dataset generated by an individual subject’s choices from these

linear budget sets, where pi denotes the i-th observation of the price vector and xi denotes

the corresponding demand allocation by the subject. The subject’s total expenditure is

fixed at 1 throughout, so pi · xi = 1 for all observations i. The experimental design required

subjects to solve a sequence of 50 decision problems (so D has 50 observations) involving

three-dimensional budget sets (S = 3), and we also compare these results against the results

from otherwise identical experiments involving two-dimensional budget lines (S = 2). In all

of the two- and three-dimensional experiments that we consider, the states are equiprobable,

though the theoretical results which we review below do not hinge on this feature.

Rationalizability (e∗) Recall, from the main paper, that we refer to a utility function

U : RS
+ → R as well-behaved if it is continuous and increasing, where the latter means that

1As a matter of notation, for any x,y ∈ RS , we say that x > y if xs > ys for all s; x > y if x > y and
x 6= y; and x� y if xs > ys for all s.
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U(x′′) > U(x′) if x′′ > x′. A utility function U rationalizes D if U(xi) > U(x) for all

x ∈ Bi = {x ∈ RS
+ : pi · x 6 pi · xi}.

In other words, the utility of xi is weakly higher than that of any alternative that is weakly

cheaper at the price vector pi. When a dataset D can be rationalized by a well-behaved

utility function U , we say that D is rationalizable by a well-behaved utility function, or

simply rationalizable. Afriat’s (1967) Theorem characterizes rationalizable datasets via the

Generalized Axiom of Revealed Preference (GARP).

Let X = {xi} be the set of portfolios observed across all observations i. For any xi,

xj ∈ X , we say that xi is directly revealed preferred to xj (and denote this relation by

xiRD xj) if pi · xi > pi · xj. GARP requires that if xi is revealed preferred to xj (either

directly or indirectly via a sequence of other portfolio choices), then xi must cost at least as

much as xj at the prices prevailing when xj is chosen. To be precise, we define on X the

revealed preference relation, where xi is revealed preferred to xj (denoted by xiRxj) if there

is a sequence of observations i1, i2, . . . , in such that

xiRD xi1 RD xi2 RD · · ·RDxin RD xj.

In other words, the relation R is the transitive closure of the relation RD. We also define

the strict direct revealed preference relation PD, where xi PD xj if pi · xi > pi · xj. GARP

requires that, for any xi,xj ∈ X ,

if xiRxj, then xj PD xi does not hold.

The term “revealed preference” for the relation R is very intuitive, since if a dataset can be

rationalized by some utility function U , then U(xi) > U(xj) if xiRxj. Furthermore, it is

not hard to show that if U is locally nonsatiated, then U(xi) > U(xj) if xi PD xj. It follows

from these observations that if D is rationalizable by a locally nonsatiated utility function

then it must obey GARP, since it impossible for U(xi) > U(xj) and for U(xj) > U(xi) to
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Figure 1: Violation of Rationalizability

hold simultaneously.2 The substantive part of Afriat’s Theorem says that if D obeys GARP

then it is rationalizable by a concave and well-behaved utility function. Notice that the two

statements are not completely symmetric: GARP holds whenever a dataset is generated by

a locally nonsatiated utility function, but whenever GARP holds on a dataset, it can also be

rationalized by a utility function with properties that are stronger than local nonsatiation.

Figure 1 illustrates a simple violation of GARP involving two budget sets p1 =
(
3
9
, 2
9
, 1
9

)
and p2 =

(
1
6
, 1
6
, 1
6

)
, and two portfolio allocations x1 = (1, 2, 2) and x2 = (0, 1, 5). It is clear

that x1 PD x2 and x2 PD x1 since p1 · x1 > p1 · x2 and p2 · x2 > p2 · x1.

GARP provides an exact test of utility maximization (either the data satisfy GARP or

they do not). To account for the possibility of errors, we assess how close a dataset is to

being rationalizable by using Afriat’s (1972, 1973) Critical Cost Efficiency Index (CCEI),

which we shall now explain.

Given a number e ∈ (0, 1], a dataset D is rationalizable at cost efficiency e if there is a

2A utility function U : RS
+ → R is locally nonsatiated if, in any open ball around x ∈ RS

+, there is
some x′ such that U(x′) > U(x). The eagle-eyed reader may notice that in our experiments each subject at

observation i chooses from the budget boundary Bi = {x ∈ RS
+ : pi · x = 1} rather than from the budget

set Bi, so that we ought to check that D satisfies GARP if xi is a utility-maximizing choice from Bi. This
is indeed the case provided that U is continuous and locally nonsatiated; these assumptions on U guarantee
that arg max

x∈Bi U(x) = arg maxx∈Bi U(x) so that U(xi) > U(x) for all x ∈ Bi and U(xi) > U(x) if

x ∈ Bi \ Bi. In particular, this implies that U(xi) > U(xj) if xi Rxj and U(xi) > U(xj) if xi PD xj .
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well-behaved utility function U such that U(xi) > U(x) for all

x ∈ Bi(e) = {x ∈ RS
+ : pi · x 6 epi · xi}.

It is not difficult to see that every dataset D could be rationalized by a well-behaved utility

function at an efficiency level e for some e ∈ (0, 1] that is sufficiently close to zero. Afriat’s

CCEI, denoted by e∗, is the largest value of e associated with the dataset D; formally,

e∗ = sup {e ∈ (0, 1] : D is rationalizable at cost efficiency e}.

A subject with a CCEI of e∗ < 1 makes mistakes, in the sense that there is at least one

observation k for which U(xk) < U(x) for some x ∈ Bk, but the cost inefficiency is bounded

in the sense that p · x > e∗; thus the subject could switch to a bundle x that gives the same

utility as xk and spend less, but the savings is no more than 1− e∗.

The coefficient e∗ can be straightforwardly obtained through a binary search, once there

is a way to check if a dataset is rationalizable at cost efficiency e for any given value of e.

Very conveniently, rationalizability at cost efficiency e can be characterized by a generalized

version of GARP. We define the direct revealed preference relation at efficiency e (denoted

by RD(e)) as follows: xiRD(e)xj if epi · xi > pi · xj. The revealed preference relation R(e)

is the transitive closure of RD(e). Similarly, the strict direct revealed preference relation at

efficiency e (denoted by PD(e)) is defined as follows: xi PD(e)xj if epi ·xi > pi ·xj. e-GARP

requires that, for any xi,xj ∈ X ,

if xiR(e)xj, then xj PD(e)xi does not hold.

It is straightforward to check that if a dataset D can be rationalized at cost efficiency e by a

locally nonsatiated utility function, then it will satisfy e-GARP; conversely, if D satisfies e-

GARP, then it is rationalizable at efficiency e by a concave and well-behaved utility function

(see Afriat (1973)).
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FOSD-Rationalizability (e∗∗) Nishimura et al. (2017) shows that a further modification

of GARP can be used to test whether a dataset D is rationalizable (at cost efficiency e) by

a continuous utility function that is increasing with respect to a given preorder D on the

choice space. This result is convenient for our purposes because for a utility function U to

be monotone with respect to FOSD simply means that it is increasing with respect to the

preorder D, where x′′ D x′ if x′ and x′′ (when considered as distributions given the vector of

state probabilities π) have the property that x′′ first-order stochastically dominates x′. In

our experiments, each state is equally likely; thus, x′′ D x′ if there is some permutation of

the entries in x′′ such that the permuted allocation is entry-by-entry weakly greater than x′.

For example, (1, 0, 1) D (0, 1, 0) since (1, 1, 0) > (0, 1, 0). In this case, a well-behaved utility

function is monotone with respect to FOSD if and only it is symmetric.

We say that a dataset D is FOSD-rationalizable at cost efficiency e if it can be rationalized

at cost efficiency e by a well-behaved utility function that is monotone with respect to FOSD.

The rationalizabily score e∗∗ is given by

e∗∗ = sup {e ∈ (0, 1] : D is FOSD-rationalizable at cost efficiency e}.

The FOSD-rationalizability at cost efficiency e of a dataset D can be characterized by a

generalized notion of GARP which we shall now explain.

We define the direct revealed preference relation at efficiency e (denoted by RD
D (e)) as

follows: xiRD
D (e)xj if there exists some y such that epi · xi > pi · y and y D xj. The

revealed preference relation RD(e) is the transitive closure of RD
D (e). Similarly, the strict

direct revealed preference relation at efficiency e (denoted by PD
D (e)) is defined as follows:

xi PD
D (e)xj if there exists some y such that epi ·xi > pi ·y and y D xj but xj 6D y (in other

words, y strictly first-order stochastically dominates xj). e-GARP(D) requires that, for any

xi,xj ∈ X ,

if xiRD(e)xj, then xj PD
D (e)xi does not hold.

A dataset D satisfies e-GARP(D) if and only if it is FOSD-rationalizable at efficiency e.

To illustrate in simple terms how the test works, Figure 2 depicts the same two budget

sets as in Figure 1, p1 =
(
3
9
, 2
9
, 1
9

)
and p2 =

(
1
6
, 1
6
, 1
6

)
, with the portfolio allocations x1 =

5



Figure 2: Violation of FOSD-Rationalizability

(1, 2, 2) and x2 = (0, 5, 1). These choices are rationalizable but not FOSD-rationalizable

(with equiprobable states) because x1 PD
D (1)x2 and x2 PD

D (1)x1. It is clear that p2 · x2 >

p2 · x1, but it is also the case that p1 · x1 > p1 · y where y = (0, 1, 5) D (0, 5, 1) = x2.

Violations of FOSD could be regarded as errors, regardless of the agent’s risk attitude—

that is, they represent the agent’s failure to account for the fact that some allocations give

payoff distributions with unambiguously lower returns than others. As a result, the most

prominent non-EUT models have been constructed/amended to avoid violations of FOSD.

There are, however, some notable exceptions. For example, Kőszegi and Rabin’s (2007)

reference-dependent risk preferences may violate FOSD due to (excessive) loss aversion — see

Masatlioglu and Raymond’s (2016) characterization. However, the Kőszegi and Rabin (2007)

utility function U is locally nonsatiated and, in the case where states are equiprobable (as

in our experiments), it must respect symmetry. It is straightforward to check that a subject

who maximizes a symmetric and locally nonsatiated utility function at cost efficiency e would

generate a dataset D satisfying e-GARP(D) (with D being the preorder corresponding to

equiprobable states) and thus D is FOSD-rationalizable at cost efficiency e. In other words,

in the context of our experiments, reference-dependent risk preferences cannot do better

in explaining a subject’s data than the family of utility functions that are monotone with

respect to FOSD.
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EUT-Rationalizability (e∗∗∗) Polisson et al. (2020) develops a revealed preference method

to test whether choice data under risk are consistent with maximizing a utility function that

has some special structure. The method restricts an infinite choice set to a finite grid, and

is thus called the method of Generalized Restriction of Infinite Domains (GRID). GRID

tests are mechanically distinct from GARP tests (in the sense that they do not involve

constructing revealed preference relations and checking for strict cycles), but they are fully

nonparametric (within the specified class of utility functions) and can also be used to measure

inconsistencies. This is the approach that we use to test expected utility.

We say that a dataset D is EUT-rationalizable at cost efficiency e if it can be rationalized

at cost efficiency e by a well-behaved utility function U taking the expected utility form,

i.e., if there is a continuous and increasing Bernoulli index u : R+ → R such that U(x) =∑S
s=1 πsu(xs). Following Polisson et al. (2020), let Y be the set that contains any demand

level observed in a given dataset D plus zero, that is

Y := {x ∈ R+ : x = xis for some (i, s)} ∪ {0}.

We then form the finite grid G = YS ⊂ RS
+ which is a restriction of the choice space RS

+

to allocations comprised of demand levels that have been observed in the dataset D. We

claim that EUT-rationalizability at cost efficiency e requires the existence of a real number

ū(y) associated with each y ∈ Y , with ū(y′) > ū(y) whenever y′ > y, such that at each

observation of (pi,xi)

S∑
s=1

πsū(xis) >
S∑

s=1

πsū(xs) for any x such that pi · x 6 epi · xi and x ∈ G,

S∑
s=1

πsū(xis) >
S∑

s=1

πsū(xs) for any x such that pi · x < epi · xi and x ∈ G.

Indeed, if a dataset D can be EUT-rationalized at cost efficiency e by a continuous and

increasing Bernoulli index u, then these conditions must hold if we choose ū(y) = u(y) for

each y ∈ Y since, in the case of the first condition, x is in Bi(e) and in the case of the

second condition, x is in the interior of Bi(e). An important application of the main result

of Polisson et al. (2020) is that these conditions are also sufficient for EUT-rationalizality
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Figure 3: Violation of EUT-Rationalizability

at cost efficiency e. Note that the conditions constitute a finite set of linear inequalities and

ascertaining whether or not it has a solution is computationally straightforward. This gives

us a way of determining whether a dataset D is EUT-rationalizable at cost efficiency e and

thus allows us to calculate its rationalizability score

e∗∗∗ = sup {e ∈ (0, 1] : D is EUT-rationalizable at cost efficiency e}.

To illustrate, Figure 3 depicts the same two budget sets as in Figures 1 and 2, p1 =(
3
9
, 2
9
, 1
9

)
and p2 =

(
1
6
, 1
6
, 1
6

)
, with the portfolio allocations x1 = (1, 2, 2) and x2 = (3, 1, 2).

Assuming that the three states are equiprobable, it is easy to verify that these choices

are FOSD-rationalizable, but we claim that they are not EUT-rationalizable. To see this,

consider the portfolio allocations y = (1, 1, 3) and z = (2, 2, 2) and notice that

p1 · x1 > p1 · y and p2 · x2 = p2 · z.

But EUT-rationalizability requires that

1
3
u(1) + 1

3
u(2) + 1

3
u(2) = U(x1) > U(y) = 1

3
u(1) + 1

3
u(1) + 1

3
u(3),
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1
3
u(3) + 1

3
u(1) + 1

3
u(2) = U(x2) > U(z) = 1

3
u(2) + 1

3
u(2) + 1

3
u(2),

implying that 2u(2) > u(1) + u(3) and u(3) + u(1) > 2u(2), a contradiction. The GRID

procedure would also reveal this violation of EUT-rationalizability. To see this, note there

must exist real numbers ū(1) < ū(2) < ū(3) satisfying

2ū(2) > ū(1) + ū(3) and ū(3) + ū(1) > 2ū(2),

which is an impossibility.
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Appendix II

Experimental Instructions

Introduction This is an experiment in decision-making. Research foundations have pro-

vided funds for conducting this research. Your payoffs will depend partly only on your

decisions and partly on chance. It will not depend on the decisions of the other participants

in the experiments. Please pay careful attention to the instructions as a considerable amount

of money is at stake.

The entire experiment should be complete within an hour and a half. At the end of the

experiment you will be paid privately. At this time, you will receive $5 as a participation

fee (simply for showing up on time). Details of how you will make decisions and receive

payments will be provided below.

During the experiment we will speak in terms of experimental tokens instead of dollars.

Your payoffs will be calculated in terms of tokens and then translated at the end of the

experiment into dollars at the following rate:

2 Tokens = 1 Dollar

A decision problem In this experiment, you will participate in 50 independent decision

problems that share a common form. This section describes in detail the process that will

be repeated in all decision problems and the computer program that you will use to make

your decisions.

In each decision problem you will be asked to allocate tokens between three accounts,

labeled x, y and z. Each choice will involve choosing a point on a three-dimensional graph

representing possible token allocations, x / y / z. The x account corresponds to the x-axis,

the y account corresponds to the y-axis and the z account corresponds to the z-axis in a

three-dimensional graph. In each choice, you may choose any combination of x / y / z that

is on the plane that is shaded in gray. Examples of planes that you might face appear in

Figure 1.

Each decision problem will start by having the computer select such a plane randomly
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from the set of planes that intersect with at least one of the axes (x, y or z) at 50 tokens

or more but with no intercept exceeding 100 tokens. The planes selected for you in different

decision problems are independent of each other and independent of the planes selected for

any of the other participants in their decision problems.

For example, as illustrated in Figure 2, choice A represents an allocation in which you

allocate approximately 20 tokens in the x account, 21 tokens in the y account, and 30 tokens

in the z account. Another possible allocation is B, in which you allocate approximately 40

tokens in the x account, 17 tokens in the y account, and 11 tokens in the z account.

To choose an allocation, use the mouse to move the pointer on the computer screen to the

allocation that you desire. On the right hand side of the program dialog window, you will

be informed of the exact allocation that the pointer is located. When you are ready to make

your decision, left-click to enter your chosen allocation. After that, confirm your decision by

clicking on the Submit button. Note that you can choose only x / y / z combinations that

are on the gray plane. To move on to the next round, press the OK button. The computer

program dialog window is shown in Figure 3.

Your payoff at each decision round is determined by the number of tokens in each account.

At the end of the round, the computer will randomly select one of the accounts, x, y or z.

For each participant, account x will be selected with 1/3 chance, account y will be selected

with 1/3 chance and account z will be selected with 1/3 chance. You will only receive the

number of tokens you allocated to the account that was chosen.

Next, you will be asked to make an allocation in another independent decision. This

process will be repeated until all 50 rounds are completed. At the end of the last round, you

will be informed the experiment has ended.

Earnings Your earnings in the experiment are determined as follows. At the end of the

experiment, the computer will randomly select one decision round from each participant to

carry out (that is, 1 out of 50). The round selected depends solely upon chance. For each

participant, it is equally likely that any round will be chosen.

The round selected, your choice and your payment will be shown in the large window

that appears at the center of the program dialog window. At the end of the experiment,

2



the tokens will be converted into money. Each token will be worth 0.50 Dollars. Your final

earnings in the experiment will be your earnings in the round selected plus the $5 show-up

fee. You will receive your payment as you leave the experiment.

Rules Your participation in the experiment and any information about your payoffs will

be kept strictly confidential. Your payment-receipt and participant form are the only places

in which your name and social security number are recorded.

You will never be asked to reveal your identity to anyone during the course of the exper-

iment. Neither the experimenters nor the other participants will be able to link you to any

of your decisions. In order to keep your decisions private, please do not reveal your choices

to any other participant.

Please do not talk with anyone during the experiment. We ask everyone to remain silent

until the end of the last round. If there are no further questions, you are ready to start. An

instructor will approach your desk and activate your program.
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Figure 1
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Figure 2

Choice A

Choice B
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Figure 3
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Appendix III

Two-Dimensional Results

Figure 1: Distributions of Rationalizability Scores

(a) e∗ versus e∗∗ (b) e∗∗ versus e∗∗∗

Figure 2: Scatterplots of Rationalizability Scores
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Figure 3: Scatterplots of Score Differences
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