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Abstract

The ‘curse of dimensionality’ is a common problem in the estimation of dynamic models:
as models get more complex, the computational cost of solving these models rises exponen-
tially. Keane and Wolpin (1994) proposed a method for addressing this problem in finite-
horizon dynamic discrete choice models by evaluating only a subset of state space points
by Monte Carlo integration and interpolating the value of the remainder. This method was
widely used in the late 1990s and 2000s but has rarely been used since, as it was found to be
unreliable in some settings. In this paper, we develop an improved version of their method
that relies on three amendments: systematic sampling, data-guided selection of state space
points for Monte Carlo integration, and dispensing with polynomial interpolation when
a multicollinearity problem is detected. With these improvements, the Keane and Wolpin
(1994) method achieves excellent approximation performance even in a model with a large
state space and substantial ex ante heterogeneity.
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1 Introduction

Many economic models are dynamic in the sense that current choices affect not only current

but also expected future returns. A common problem in the estimation of these models is

the ‘curse of dimensionality’: as models get more complex, the computational cost of solving

them rises exponentially with the dimensionality of the state space. Keane and Wolpin (1994)

(hereafter KW94) proposed a very general method for addressing this problem for the subclass

of dynamic models where agents repeatedly choose from a discrete set of options and the time

horizon is finite. Models with this structure are common in labour economics, where they have

been used to study career choice and labour supply.

The KW94 method works backwards from the final period. A subset of state space points

is evaluated by Monte Carlo integration each period. The value of the remaining points is

imputed using a polynomial interpolation method. This saves computation time relative to

a full solution, where all state space points are evaluated using Monte Carlo integration. The

method was widely used in empirical work in the late 1990s and 2000s.1 However, it has rarely

been used since, as it was found to be unreliable in some settings.2

In this paper, we develop an improved version of the KW94 method. Using two versions of

the KW94 model as test cases, we show that the improved KW94 method performs very well,

both in Monte Carlo simulations at the true parameter values and when the model parameters

are estimated from simulated data. Holding the number of integral simulation draws con-

stant, simulated choices of individuals when the improved KW94 approximation is used are

nearly as close to ‘true’ simulated choices as when the full solution is used. When the model

is estimated from simulated data, this translates into accurate parameter estimates and precise

predictions in a simple policy experiment, again in line with the full solution. These results

obtain both in the canoncial KW94 model and in a variation of this model with a larger state

space and substantial ex ante heterogeneity, where the traditional version of the KW94 method

is unreliable.

At the same number of integral simulation draws, our improved KW94 approximation

1Important papers in labour economics using the method include Keane and Wolpin (1997), Keane and Wolpin
(2001), Imai and Keane (2004), Blau and Gilleskie (2006), Lee and Wolpin (2006), Van der Klaauw and Wolpin (2008),
Lee and Wolpin (2010) and Keane and Wolpin (2010). It has also been applied in other fields, including marketing
science (Erdem and Keane, 1996), health economics (Crawford and Shum, 2005) and development economics (Todd
and Wolpin, 2006).

2Nevertheless, there is enduring interest in the KW94 approach: in a recent contribution, Eisenhauer (2019)
reproduces the results in KW94 and provides an open-source Python package for implementing the method.
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is much faster to compute than a full solution; in the two versions of the KW94 model we

look at in this paper, the difference is around an order of magnitude. When we instead hold

computation time constant, the improved KW94 method is nearly always more accurate than

the full solution except at very high computation times. The reason is that our improved KW94

method focuses computational resources on the most important state space points, which is

generally preferable to spreading resources equally. This substantially improves the trade-off

between model complexity, accuracy, and computation time for applied researchers.

Our improved version of the KW94 method is based on three amendments to the tradi-

tional method. First, we use a systematic sampling method instead of simple random sampling

for Monte Carlo integration. Systematic sampling reduces the error in integral simulation for

the random subset of state space points that are evaluated by Monte Carlo integration. It also

indirectly leads to more accurate interpolation, as the parameters of the interpolation polyno-

mial can be more precisely estimated.

Second, taking a data-guided approach to selecting state space points for evaluation by

Monte Carlo integration is preferable to the approach recommended in KW94 of selecting them

at random. In particular, drawing state space points for Monte Carlo evaluation from the

subset of points that agents reach in the data — with the probability of any particular state

space point being evaluated proportional to the number of agents reaching that point — can

allow for a degree of accuracy comparable to a full model solution even with a very small

number of state space points evaluated. Especially when combined, these two improvements

can lead to large reductions in required computation time for a desired level of accuracy.

Third, even with these two amendments, the KW94 method can still be unreliable for mod-

els with substantial ex ante heterogeneity unless a large number of state space points is eval-

uated by numerical integration. The reason is that unlike in the canonical KW94 model, the

estimation of the interpolation polynomial in these models frequently suffers from a multi-

collinearity problem. We show that a simple and effective solution to this problem is to dis-

pense with the interpolation step if a substantial multicollinearity problem is detected. Instead,

it is better to rely solely on an approximation provided by Jensen’s Inequality in these cases.

We conclude that the KW94 method, thus improved, is still a useful tool for applied re-

searchers seeking to estimate finite-horizon discrete choice dynamic programming models

with large state spaces. It is especially valuable in cases where the model structure precludes

the use of the Conditional Choice Probability (CCP) approach of Hotz and Miller (1993) and
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Arcidiacono and Miller (2011). This is commonly the case in labour economics, as the CCP

approach generally requires error terms to be additive. Models with non-additive error terms

include KW94 and Keane and Wolpin (1997).

The rest of the paper is structured as follows. Section 2 briefly lays out the canonical model

of KW94. Section 3 outlines our improvements to the KW94 method and provides Monte Carlo

evidence of the gains in approximation performance associated with them in the KW94 model.

Section 4 shows that these differences in approximation performance translate into differences

in the accuracy of parameter estimates and counterfactual predictions. Section 5 introduces

ex ante heterogeneity into the KW94 model and investiagates the performance of the different

versions of the KW94 method relative to the full solution in that setting. Section 6 concludes.

2 A canonical model

The model of KW94 is a model of occupational choice. In each of T = 40 discrete periods

of time, agents choose between K = 4 different options: blue-collar work, white-collar work,

education, and home production. The per-period utility functions are

u1t = w1t = exp(α10 + α11st + α12x1t − α13x2
1t + α14x2t − α15x2

2t + ε1t) (1)

u2t = w2t = exp(α20 + α21st + α22x2t − α23x2
2t + α24x1t − α25x2

1t + ε2t) (2)

u3t = β0 − β1 I(st ≥ 13)− β2(1− d3,t−1) + ε3t (3)

u4t = γ0 + ε4t (4)

w1t and w2t are the agent’s (latent) wages in occupation one and two. st is the number of

periods of schooling accumulated by the beginning of period t. x1t and x2t are an individual’s

total periods of work experience at the beginning of period t in occupation one and two, re-

spectively. dt is a vector of indicator variables, where for each element dkt = 1 if option k is

chosen in period t and dkt = 0 otherwise. Hence d3,t−1 is an indicator variable of whether

schooling was chosen in the previous period. εt ∼ N(0, Σ) is a vector of serially uncorrelated

shocks, where Σ is parameterized by the parameter vector a. εt is known to the agent at the

beginning of period t but not before. θ = {α1,α2,β,γ,a} is the full parameter vector of the

model.
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Individuals have perfect knowledge of the true model and rational expectations about the

future. Let St = {st, x1t, x2t, d3,t−1, εt} be the vector of state variables, and denote the vector of

pre-determined state variable by St = {st, x1t, x2t, d3,t−1}. The vector of pre-determined state

variables evolves deterministically given the previous period’s choices: x1,t+1 = x1,t + d1,t,

x2,t+1 = x2,t + d2,t, st+1 = st + d3,t, and d3,t−1 is simply the previous period’s choice. Initial

conditions are x11 = x21 = 0 and s1 = 10. All agents are ex ante homogenous; different choices

arise only due to different draws of εt.3

Then the agent’s decision problem in period t can be written recursively as

argmax
k≤K

Vkt(St) (5)

where

Vkt(St) =


ukt(St) + δ E

[
maxj≤K Vj,t+1(St+1)|St, dkt = 1

]
if t < T

ukt(St) if t = T
(6)

is the alternative-specific value function. E denotes the mathematical expectations operator. The

discount factor δ is fixed at δ = 0.95.

3 Numerical solution of the canonical model

The agent’s problem in this model can be solved by backward recursion using (5) and (6).

The key challenge is the evaluation of the conditional expectation in (6), which is often called

‘EMAX’, as it is an expectation of a maximum. This expectation is taken over the joint distri-

bution of εt and takes the form:

E
[

max
k≤K

Vkt(St)

]
︸ ︷︷ ︸

EMAX

=
∫

max
k≤K

Vkt(St, εt)dΦ(εt) (7)

where Φ is the (multivariate normal) cdf of εt and St is written as (St, εt) to emphasize the

dependence on εt.

As there is in general no analytical solution for this integral, it usually has to be evaluated

using numerical integration methods at considerable computational cost. It is commonly eval-

uated using crude Monte Carlo integration. In particular, each expectation is replaced by the

3A version of this model that features ex ante heterogeneity in the form of different per-period utility functions
for different types of agents is introduced in Section 5.
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consistent and unbiased estimator:

Ê
[

max
k≤K

Vkt(St)

]
︸ ︷︷ ︸

ÊMAX

=
1
D

D

∑
d=1

max
k≤K

Vkt(St, εd
t ) (8)

where the random vectors εd
t are drawn from their assumed distribution in the model and

D is the number of simulation draws. This procedure is computationally demanding, as a

large number of draws have to be evaluated to ensure reasonable accuracy of the numerical

integration procedure, and 163, 409 expectations need to be evaluated in total.4 While modern

computers can perform this operation in seconds, computational speed is still an important

concern, as the estimation of model parameters typically requires the model to be solved many

thousands of times at different parameter values.

KW94 offer a method for speeding up the solution of models of this type. They propose

evaluating only a random subset of expectations in each period by Monte Carlo integration.

All other expectations are approximated by

Ẽ[max
k≤K

Vkt(St)]︸ ︷︷ ︸
ẼMAX

= max
k≤K

E [Vkt(St)]︸ ︷︷ ︸
MAXE

+g
(
Ṽ1t, . . . , ṼKt

)
(9)

where ‘MAXE’ is obtained by exchanging the order of the expectation and max operators, g is

an interpolation function, and

Ṽjt(St) = max
k≤K

E [Vkt(St)]︸ ︷︷ ︸
MAXE

−E
[
Vjt(St)

]
for j = 1, . . . , K. (10)

As recommended in KW94, it is natural to impose g(.) ≥ 0, since by Jensen’s Inequality,

maxk≤K E [Vkt(St)] (‘MAXE’) is a lower bound for E [maxk≤K Vkt(St)] (‘EMAX’).5

In KW94’s preferred specification, the interpolation function g is parameterized as

g
(
Ṽ1t(St), . . . , ṼKt(St)

)
= π0 +

K

∑
k=1

πkṼkt(St) +
K

∑
k=1

πK+k

√
Ṽkt(St). (11)

4This number reflects the total number of possible combinations of state variables, added up over 39 periods
(t = 2 to t = 40), and taking into account that the maximum permissible number of years of schooling is smax = 20,
and that it is not possible to have d3,t−1 = 1 and st = s0 or d3,t−1 = 0 and st = s0 + t− 1.

5Intuitively, MAXE represents the value of a ‘Plan A’, whereas EMAX takes into account the value of ‘Plans B to
D’. As shown in Appendix B, tighter analytical bounds for EMAX are available, but imposing them leads to minor
gains at best.
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The parameters of this interpolation function are estimated from the subset of expectations

evaluated by Monte Carlo integration in each period of the recursion. They are obtained by

OLS regression, with

y(St) = Ê[max
k≤K

Vkt(St)]︸ ︷︷ ︸
ÊMAX

−max
k≤K

E [Vkt(St)]︸ ︷︷ ︸
MAXE

as the dependent variable.6

As shown in KW94 and confirmed in section 3.4, this method generally provides a good

approximation to the full model solution at much lower computational cost. However, the

accuracy of the approximation deteriorates substantially as the number of state space points

evaluated by Monte Carlo integration is reduced. The method can also be unreliable in some

settings; an important case is the estimation of models that feature substantial ex ante hetero-

geneity.

We propose three amendments to the method that address these issues. The first is to use a

systematic sampling method for Monte Carlo integration instead of simple random sampling.

The second is to select expectations to be evaluated by Monte Carlo integration not at random

but based on the part of the state space that agents actually reach in the data. The third detects

and avoids multicollinearity problems in the interpolation regression. Together, these changes

dramatically improve the approximation performance of the KW94 method, as we show in the

remainder of this paper.7

3.1 Improvement 1: systematic sampling

The use of systematic sampling can lead to large improvements in the approximation perfor-

mance of the KW94 method.8 Systematic sampling guarantees better coverage of the integrals

evaluated using Monte Carlo simulation. As a result, the approximation error is generally

O(D−1) instead of Op(D−1/2) for simple random sampling, where D is the number of simula-

ton draws (Geweke, 1996). This increases the efficiency not only of the Monte Carlo simulator

6More specifically, π = (X ′X)−1X ′y where X is the data matrix corresponding to (11), with the number of
rows of X equal to the number of state space points evaluated by Monte Carlo integration. This presupposes that
X ′X is invertible, which is not guaranteed. The case whenX ′X is (near-)singular is especially relevant in models
with ex ante heterogeneity, and is discussed in section 3.3. In the canonical model, (near-)singular moment matrices
X ′X almost never occur outside periods t = 2 and t = 3 at the true parameters. In those early periods, the number
of possible state space points is low enough for all to be evaluated by Monte Carlo integration, obviating the need
for interpolation.

7Appendix C shows that our improved KW94 method is also preferable to various other methods for approxi-
mating EMAX that use the MAXE approximation.

8As shown in Appendix D.2, it can also substantially improve the performance of the full solution method.
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ÊMAX given by (8), but also of the interpolation estimator ẼMAX given by (9), as the depen-

dent variable of the interpolation regression will be subject to less error.

The systematic sampling algorithm used in the rest of the paper is:

1. Draw ukt from the standard uniform distribution for each k ≤ K and t ∈ [2, T].

2. Calculate (
ηd

kt

)D

d=1
= Φ−1

(
d− ukt

D

)
for each k ≤ K and t ∈ [2, T].

3. Randomly permute the elments of each
(
ηd

kt

)D
d=1 to obtain

(
η̃d

kt

)D
d=1

4. Obtain εd
t = Aη̃d

t , whereA is the lower triangular Cholesky decomposition of Σ.

Other variance reduction techniques are likely to have similar positive effects on approx-

imation performance. In particular, as we show in Appendix D, using Halton (1964) draws

instead of our systematic sampling scheme even leads to slightly better performance. The

advantages of our simple scheme are, first, that it is guaranteed to be unbiased, second, that

draws are guaranteed to be uncorrelated across both options and periods, and third, that the

algorithm is simple to implement for any number of options and periods. The comparison

with Halton draws suggests that the cost of these advantages in terms of approximation per-

formance is small.9

3.2 Improvement 2: data-driven selection of points for Monte Carlo integration

Our second amendment to the KW94 method is the data-driven selection of state space points

to be evaluated using Monte Carlo integration. The method for selecting nodes that we have

found to work best is to select nodes for numerical integration that agents actually reach in the

data, with more commonly reached nodes selected with a higher probability. Intuitively, the

value of nodes that are commonly reached in the data is likely to be more important than that

of nodes that are never actually chosen, some of which may not be “real options” given the

payoff structure of the model.

A number of different selection schemes will achieve this basic objective. The particular

algorithm used in the rest of the paper is:

9For an intuitive discussion of how systematic sampling and other variance reduction techniques improve on
simple random sampling, see Section 9.3 in Train (2009).
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1. Permute the data so that individuals appear in random order.

2. In each period, evaluate the nodes reached in the data, working in the order that individ-

uals appear in the data. Continue until all nodes reached in the data have been evaluated,

or the maximum number of nodes per period to be evaluated by Monte Carlo integration

has been reached.

3. In the former case, draw additional nodes to be evaluated by Monte Carlo integration at

random from the remaining set.10

Figure 1: State space map for a model with K = 2 and T = 5

x4 = 0

x3 = 0

x2 = 0 x4 = 1

x1 = 0 x3 = 1

x0 = 0 x2 = 1 x4 = 2

x1 = 1 x3 = 2

x2 = 2 x4 = 3

x3 = 3

x4 = 4

H

WH

WH

W

H

WH

W

H

WH

W

H

WH

W H

W

Notes. This graph illustrates the proposed algorithm for selecting state space points for Monte Carlo integation
using a minimal example. An explanation is given in the text.

To illustrate this algorithm, consider how it might be applied to a simple dynamic labour

force participation model in the spirit of Eckstein and Wolpin (1989) with T = 5 periods and

a binary choice (so K = 2) between market work (‘W’) and home production (‘H’). Suppose

10Like the systematic sampling algorithm, this algorithm was primarily chosen for its simplicity; it is unlikely to
be the optimal choice.
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there is only one state variable that persists across periods: work experience. The stock of

work experience is equal to the number of periods spent in market work. The econometrician

observes a balanced panel of choices dit ∈ {W, H} for each individual i and time period t ≤ T.

Figure 1 maps out the state space for this model. There are a total of 15 state space points:

in each period t, the stock of work experience up to t can take t different values between xt = 0

(market work in no previous period) and xt = t− 1 (market work in every previous period).

Agents can move between state space points as indicated by the arrows. The expected value

of being at each state space point can be obtained by backward recursion as in the canonical

KW94 model.

Now suppose an approximate solution of this model were to be obtained using the approx-

imation method of KW94, with a maximum of M = 3 state space points per period evaluated

using Monte Carlo integration, and the rest using an interpolation procedure as outlined. As-

sume further that in fact most agents work in most periods, so state space points towards the

bottom of Figure 1 are reached much more frequently than those near the top, as indicated by

the outline thickness. In particular, suppose that all agents in the data have gained at least one

year of work experience when they reach period t = 4, so the state space points where x3 = 0

and x4 = 0 are never reached (indicated by dashed lines).

Our data-driven selection scheme ensures that nodes that are commonly reached (such as

those along the bottom edge of Figure 1) are evaluated with high probability. The intuition

behind this procedure is that higher precision is crucial for nodes that are on or near the opti-

mal path for most agents, but less important for those that are not. By evaluating state space

points along ‘popular’ paths, our selection scheme thus achieves a more efficient allocation of

computational resources.

The shading in Figure 1 marks the state space points that might be selected for Monte Carlo

integration by our procedure in this example. In periods t = 2 and t = 3, all state space points

are evaluated, as M = 3 is larger than or equal to the total number of state space points that

can be reached.11 In period t = 4, all nodes that are reached in the data will be evaluated. In

period t = 5, the number of state space points reached in the data is greater than M, so the

outcome of the selection algorithm depends on the random ordering of individuals in step 1;

one possible outcome is shown.

11The expected value of x0 = 0 need not be evaluated, as it is irrelevant for agents’ choices.
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3.3 Improvement 3: no interpolation when multicollinearity is detected

As the regressors in the interpolation regression (11) are (square roots of) the differences be-

tween the option with the highest expected value and the expected value of each option, the

value of the regressors relating to the option with the highest expected value is in each case

zero. If in a given period one option nearly always has the highest expected value, regardless of

an agent’s previous path through the model, the interpolation regression will therefore suffer

from a multicollinearity problem. This problem is particularly acute in models with substan-

tial ex ante heterogeneity, as an agent’s type in these models may to a large extent determine

their path through the model.

As a result, the moment matrix X ′X can be singular or nearly singular. In the former

case, the matrix will not be invertible, so it will not be possible to perform the interpolation

regression at all. In the latter case, interpolation will be possible, but the parameters will be

very sensitive to the values for the small number of nodes where the dominant option does

not have the highest expected value.

For the approximation results below, we always set g(.) = 0 when the moment matrix

X ′X is singular. However, this leaves two problems. First, in cases where X ′X is nearly

singular, the approximation can still go badly awry, resulting in a low proportion of correct

choices and very poor fit, as approximation errors in one period affect choices in all earlier

periods. Second, dispensing with the interpolation regression when X ′X is singular creates

discontinuous jumps in the objective surface at the boundary between singularity and near-

singularity, potentially impairing estimation. Our third suggestion for applied researchers,

therefore, is to set g(.) = 0 in cases where X ′X is nearly singular as well, and smoothly

interpolate between that case and the regular interpolation regression.12

One way to accomplish this is to use the (1-norm) condition number for inversion of X ′X ,

κ(X ′X). We call X ′X “nearly singular” if and only if κ(X ′X) > 1/ε, where ε = 2−52 ≈

2.2× 10−16 is the machine epsilon for floating point arithmetic on 64-bit computer systems.

For smooth interpolation, we define the polynomial smoothing kernel:

12An alternative approach would be to regularize the least squares problem using ridge regression (Hoerl and
Kennard, 1970).
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K(v) =



0 for v < 0

v2

2φ2 for 0 ≤ v < φ

− v2

2φ2 +
2v
φ − 1 for φ ≤ v < 2φ

1 for v ≥ 2φ

(12)

where φ is a smoothing parameter that we set to φ = 50.13 We then set v = 1
εκ(X ′X)

− 1 and

replace (9) by

Ẽ[max
k≤K

Vkt(St)]︸ ︷︷ ︸
ẼMAX

= max
k≤K

E [Vkt(St)]︸ ︷︷ ︸
MAXE

+K(v)g
(
Ṽ1t(St), . . . , ṼKt(St)

)
. (13)

3.4 Monte Carlo evidence: approximation performance

We evaluate the performance of different approximation methods using Monte Carlo simula-

tions. All simulations are based on the same parameter values as the main results in KW94.14

We first simulate 500 balanced panels of N = 10, 000 individuals, recording their choices (and

wages, in case a market work option is chosen) in each period. All of these simulations rely on

the same ‘true’ model solution, obtained by fully solving the model by Monte Carlo integra-

tion using D = 80, 000 simple random draws. We then compare these 500 simulated datasets

to 500 datasets obtained using different approximation methods.

We use two different metrics to assess the performance of different methods. The first is

the share of choices in the simulated datasets based on each approximation method that are

the same as in the datasets simulated using the ‘true’ model solution, holding the sequence of

realized shocks (εit)
T
t=1 constant for each individual i. As realized shocks are held constant,

any difference in agents’ choices will be the result of approximation errors.

Our second metric is the weighted sum of squared deviations from key moments of the

simulated data: the share of individuals choosing each option in each period, the mean log

wage in each market occupation in each period and the variance of log wages in each occupa-

tion in each period.15 The weight matrix is the inverse of the diagonal of the variance matrix

13A similar polynomial kernel is recommended in Hajivassiliou, McFadden and Ruud (1996).
14More specifically, these are the parameter values corresponding to their ‘data set one’. For individual parameter

values, see Appendix E of this paper or Table 1 of KW94.
15Some choice shares are excluded to avoid linear dependence.
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of the vector of data moments. Formally, our measure of model fit ϕ is given by

ϕ(θ) = (m− m̂)′(diag(V̂ ))−1(m− m̂) (14)

wherem is the vector of moments and V̂ is the sample variance matrix ofm.16

Figure 2: Approximation performance of different versions of the Keane and Wolpin method
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth
selected using Silverman’s Rule. In each case, the kernel density is calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, a maximum of M = 500 nodes were evaluated each period,
D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices were simulated.
The two panels show our two different metrics of approximation performance. Realized shocks (εit)

T
t=1 are held

constant only for the evaluation of the proportion of correct choices (left panel).

For this second metric, not only the approximation draws but also the realized shocks

(εit)
T
t=1 are allowed to vary. While this measure is less straightforward to interpret than the

share of correct choices, it is a more dependable metric of the distance in simulation outcomes

between the true model and different approximations, as it does not rely on knowledge of

16This weight matrix is commonly used in empirical work. Examples include Blundell et al. (2016), Morten (2019)
and Blundell et al. (2021).
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unobservables (the realized shocks (εit)
T
t=1).17

Figure 2 shows how our amendments improve the KW94 method when a moderate num-

ber of state space points (M = 500) is evaluated each period. In all cases, D = 2000 draws

were used for Monte Carlo integration, and N = 10, 000 individuals’ choices were simulated.

The two panels show our two metrics of approximation performance.

The traditional KW94 method performs well on the whole, but the fit varies substantially

across approximations run. The share of ‘correct’ choices varies roughly between 90 percent

and 98 percent (disregarding outliers). The model fit measured by weighted squared devia-

tions also varies substantially between approximation runs (more than an order of magnitude),

even if outliers are disregarded.

Both the use of systematic sampling and the evaluation of chosen nodes substantially im-

prove performance on their own. Our third improvement has little effect on approximation

performance in the KW94 model at the true parameters, as (near-)singular moment matrices

X ′X typically only occur in periods t = 2 and t = 3 when the number of possible state space

points is low enough for all expectations to be evaluated by Monte Carlo integration. The

combination of all amendments is much better still. For the variation combining all changes,

the proportion of correct choices is always above 97 percent. The median weighted sum of

squared deviations from true moment values is roughly an order of magnitude lower in the

variation with all changes than using the traditional KW94 method.

Figure 3 shows how our changes to the KW94 method affect the trade-off between accuracy

and computation time. For each series, the four data points shown represent, from left to right,

the KW94 method with M = 250, M = 500 and M = 2000 evaluation points, and the full

solution. Again, the two panels show our two metrics of approximation performance.18

Our improvements fundamentally change the nature of the trade-off between accuracy and

computation time for the KW94 method. In the traditional version, the trade-off is quite steep

even with a large number of nodes evaluated using Monte Carlo simulation. In contrast, when

evaluation nodes are selected systematically, the trade-off essentially disappears for moderate

numbers of nodes evaluated by Monte Carlo integration. With all improvements, excellent

approximation performance is achieved even when at most M = 250 nodes are evaluated each

17Importantly, using this second metric, we can assess whether the advantage of evaluating nodes chosen in the
data depends on assuming the same realized shocks.

18The apparent difference in the shape of the trade-off across the two measures is mainly a result of the higher
sensitivity to outliers of the average sum of weighted squared deviations compared to the average share of correct
choices.
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period.

Figure 3: Trade-off between accuracy and computation time
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Notes. In each case, the mean over 500 approximation runs with different shocks and approximation draws is
shown. In all cases, D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices
were simulated. For each series, the four data points shown represent, from left to right, the KW94 method with
M = 250, M = 500 and M = 2000 evaluation points, and the full solution. The two panels show our two different
metrics of approximation performance. Realized shocks (εit)

T
t=1 are held constant only for the evaluation of the

proportion of correct choices (left panel).

Figure 4 compares our improved KW94 method with M = 500 evaluation points to the

full solution, with the number of draws adjusted to achieve comparable computation times.

At nearly all levels of computational expense, the improved KW94 method delivers superior

approximation accuracy, with a larger lead at shorter computation times. The full solution

reaches similar accuracy only at computation times larger than around one minute.

4 Estimation of the canonical model

This section shows that these gains in approximation performance for a known set of parame-

ters translate into similar gains in estimation performance when the parameters are unknown
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and need to be estimated from observed data. Using the improved KW94 method, the param-

eters of the canonical model can be estimated with a high degree of accuracy even when only

a small number of nodes are evaluated using Monte Carlo integration. This in turn translates

into more accurate predictions in a simple policy experiment.

Figure 4: Trade-off between accuracy and computation time: comparison to full solution
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Full Solution Improved KW (M = 500)

Notes. In each case, the mean over 500 approximation runs with different shocks and approximation draws is
shown. In all cases, N = 10, 000 individuals’ choices were simulated. For the full solution, the six data points
shown represent, from left to right, the solution with D = 50, D = 100, D = 200, D = 500, D = 2000 and D = 5000
draws. For the improved KW94 method, the five data points shown represent, from left to right, the solution with
D = 500, D = 1000, D = 2000, D = 5000, and D = 20, 000 draws. Filled symbols indicate D = 2000, the number
of Monte Carlo draws used in other graphs. The two panels show our two different metrics of approximation
performance. Realized shocks (εit)

T
t=1 are held constant only for the evaluation of the proportion of correct choices

(left panel). For comparability, systematic sampling was used for both methods.

These results obtain regardless of whether the model is estimated using Simulated Maxi-

mum Likelihood as in the original KW94 contribution and much of the literature at the time,

or using a simple Simulated Method of Moments or Indirect Inference method, as has become

more popular recently. Simulated Maximum Likelihood can provide more accurate results,

but this typically comes at the cost of higher computation time, as numerical integration is
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required to evaluate the likelihood function.19 We present Simulated Maximum Likelihood

results below; analogous Simulated Method of Moments results are presented in Appendix A.

As in KW94, all of the results in this section are presented for a fixed (maximum) num-

ber of nodes evaluated by Monte Carlo integration, a fixed number of numerical integration

draws for both solution and estimation, and with the smoothing parameter held constant. The

motivation for this is that it makes our method more transparent and the results easier to in-

terpret. In actual estimation, it would be advisable to increase the number of nodes evaluated

by Monte Carlo integration, increase the number of integration draws, and reduce the amount

of smoothing as the algorithm converges.20

In order to avoid spuriously positive results, we start the estimation procedures not at

the true values but at a set of values that an empirical researcher without knowledge of the

true parameter values might reasonably have picked as starting values. In particular, for the

wage parameters, we use the parameters of two separate bivariate sample selection models

estimated from the data.21 We further set the value of home production γ0 to one standard

deviation below the median blue collar wage, and the standard deviation of the non-wage

options to the average estimated standard deviation of the market-work options. All other

parameters are set to zero.

Our Simulated Maximum Likelihood procedure closely follows KW94. The log-likelihood

function takes the form

l(θ) =
N

∑
i=1

[
log f (di1, wi1) +

T

∑
t=2

log f (dit, wit|{di,s}s=t−1
s=1 )

]
. (15)

where f (dit, wit) is the joint density of agent i’s choice in period t and the corresponding ob-

served wage. If no wage is observed, because the agent chose schooling (k = 3) or home pro-

duction (k = 4), f (dit, wit) is simply the probability of the observed choice P(dit) conditional

19See Eisenhauer, Heckman and Mosso (2015) for a comparison of the two approaches in the context of dynamic
discrete choice models.

20One way of implementing this would be as a two-step procedure, where (at least) one final step of a (Quasi-
)Newton algorithm would be performed using the full solution, a higher number of draws, and less smoothing.
This would likely yield additional accuracy gains at little computational cost. For theoretical arguments in favour
of this two-step approach, see section 3.1 of Hajivassiliou (2000) and Kristensen and Salanié (2017). Kristensen and
Salanié (2017) and Bruins et al. (2018) present Monte Carlo evidence suggesting that this approach also works well
in pratice.

21Two natural exclusion restrictions arise from the full model: it is known that which period an individual is in
and whether school was chosen in the previous period can both affect continuation values and thus choices but
not wages. We estimated the selection models using Maximum Likelihood (assuming normally distributed errors).
Using the Heckman (1979) two-step method would have resulted in starting values at a similar distance from the
the true parameters.
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on past choices.

Figure 5: Root mean square error of parameter estimates relative to full solution
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Notes. The diagram shows the relative root mean squared error for all model parameters. Root mean squared
errors obtained using the full solution are normalized to unity as indicated by the grey vertical line. For each
approximation method, root mean squared errors were calculated over 24 sets of estimated parameters. These were
obtained by estimating the model parameters 30 times from different simulated datasets; the 6 estimated parameter
sets (20%) with the lowest simulated likelihood were dropped to guard against the effects of outliers and numerical
problems. Each simulated dataset used for estimation was a balanced panel of N = 2, 000 individuals. D = 2000
solution draws were used in model solution. For each estimation run, 15 steps of the BHHH algorithm were
performed. For each observation, 200 Halton draws were used to simulate the likelihood. Likelihood simulation
draws were held constant across estimation runs in order to minimize statistical noise unrelated to the different
approximation methods.

We evaluate the density f (dit, wit) using Monte Carlo integration. The probabilities that en-

ter the likelihood function are smoothed using the smoothed-logit simulator first proposed by

McFadden (1989).22 This is necessary to avoid numerical problems related to simulated prob-

abilities of zero; it has the important added advantage that it leads to a smooth log-likelihood

function and thus permits the use of fast and easily parallelized gradient-based optimization

routines.23

22Like KW94, we use a tuning parameter of 500.
23We use the BHHH algorithm (Berndt et al., 1974), as extensive experimentation has shown this algorithm to be

much more efficient than other commonly used algorithms such as Simplex, Simulated Annealing, or BFGS.
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Estimation performance. Figure 5 shows the root mean squared error of all estimated model

parameters, relative to the root mean squared error when the full solution with the same num-

ber of draws is used. Thirty estimation runs were performed with different simulation draws

for the model solution, but with the likelihood simulation draws held constant in order to

minimize statistical noise unrelated to the different approximation methods. The six estima-

tion runs (20 percent) with the lowest simulated likelihood at the estimated parameters were

dropped to guard against outliers and numerical problems.24 In each case, the parameters

were estimated from a balanced panel of N = 2000 people that was simulated from the ‘true’

model. D = 2000 solution draws were used in model solution and each density f (dit, wit)

was simulated using 200 Halton draws.25 For each estimation run, 15 steps of the BHHH al-

gorithm were performed; further iterations were found not to change estimated parameter

values substantially regardless of the solution method. The root mean squared error was cho-

sen as a measure of accuracy as it captures both bias in the estimated parameter values and

their variability.26

The root mean squared errors for the improved version of the KW94 method are very close

to the root mean squared errors for the full solution, even when at most M = 250 state space

points are evaluated per period. Root mean squared errors are mostly slightly higher for the

traditional version of the KW94 method with M = 500 and much higher with M = 250.

Policy experiment. In order to gauge the economic significance of these differences in esti-

mation performance, we follow KW94 and perform a simple policy experiment: we investigate

the impact of a $500 tuition subsidy on time spent in each occupation. We simulate two bal-

anced panels from the model for each of the 24 sets of estimated parameters (with and without

the subsidy). Each dataset contained N = 10, 000 individuals, and D = 2, 000 draws were

used in Monte Carlo Integration. We used new draws for both realized shocks and numerical

integration. In all cases, simulations were performed using the full solution method.

24Estimation failures, marked by a numerical derivative of zero or estimated parameter values implausibly far
away from the starting values, were assigned a likelihood of negative infinity (the number of such failures was
never higher than six, the number of dropped estimation runs).

25The same draws were used for all individuals, and only varied across period t and option k. Halton draws
were used to maximize accuracy at a given computational cost.

26The relative rather than absolute root mean squared error is shown, as the parameters have very differents scales.
For separate results for bias and standard deviation (comparable with Keane and Wolpin, 1994), see Appendix E.
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Table 1: $500 tuition fee subsidy: Simulated Maximum Likelihood

Truth Starting Full KW250 KW250 New KW500 KW500 New

Blue Collar -3.34 -.126 -3.621 -2.31 -3.596 -3.575 -3.595
(.119) (.010) (.193) (1.652) (.213) (.359) (.180)

White Collar 2.079 -.235 2.282 1.387 2.257 2.376 2.256
(.109) (.013) (.180) (1.291) (.194) (.402) (.170)

School 1.461 .408 1.535 1.061 1.532 1.399 1.533
(.026) (.005) (.042) (.456) (.045) (.043) (.037)

Home -.199 -.048 -.195 -.138 -.192 -.199 -.194
(.011) (.003) (.015) (.082) (.017) (.032) (.014)

Notes. Estimated impact of a $500 tuition subsidy on average years spent in each occupation. Two
balanced panels were simulated from the model for each of 24 sets of estimated parameters (with and
without the subsidy). Sample standard deviations are given in parenthesis. Each dataset contains N =
10, 000 individuals, and D = 2, 000 draws are used in Monte Carlo Integration. Both realized shocks and
draws for numerical integration were different from those used in estimation. In all cases, simulations
were performed using the full solution method.

Table 1 shows the estimated effect of the subsidy on the average time spent in each oc-

cupation. At the true parameters, the subsidy leads to a rise in the average number of years

individuals spend in education and white-collar work, and a fall in the number of years spent

in blue-collar work and home production. The column labelled ‘Starting’ shows the simulated

effect when the starting parameters are used instead; even though these parameters are in the

vicinity of the true parameters, the simulated effect is very different compared to the simulated

effect when the true parameters are used, underlining the importance of accurately estimated

parameters.

Simulation based on parameters estimated using the full solution comes close to simula-

tion results obtained using the true parameters, but the maginitude of the effect is slightly

overestimated on average. Using the traditional KW94 approximation method with M = 500

evaluated nodes and the improved method with M = 250 and M = 500 nodes, similar simula-

tion values are obtained on average. However, crucially, the improved method leads to much

lower standard deviations of the simulated effect. The difference is especially dramatic when

at most M = 250 nodes are evaluated by Monte Carlo integration each period: in that case, the

improved method still comes close to the results using the full solution, whereas the traditional

method yields very inaccurate results, echoing the findings for the root mean squared error of

the parameter estimates.
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5 A model with unobserved heterogeneity

This section introduces unobserved ex ante heterogeneity across individuals into the KW94

model and evaluates the performance of both the traditional KW94 approximation method and

our improved version in that setting. The motivation is that such heterogeneity is a standard

assumption of nearly all applied work in labour economics that uses dynamic discrete choice

models.27 As shown below, the extent of ex ante heterogeneity can have a large impact on

the performance of different approximation methods. In particular, the traditional method of

KW94 can be unreliable when ex ante heterogeneity is large. This has likely been a key reason

for the recent decline in the use of this method among applied researchers.

We modify the canonical model of KW94 to allow for two different types of agent, where

the type is known to the agent but not to the econometrician. An agent’s type influences their

payoffs from market work as follows:

u1t = w1t = exp(α10 + ζ11(τi = 1) + α11st + α12x1t − α13x2
1t + α14x2t − α15x2

2t + ε1t) (16)

u2t = w2t = exp(α20 + ζ21(τi = 2) + α21st + α22x2t − α23x2
2t + α24x1t − α25x2

1t + ε2t) (17)

where τi is agent i’s type and 1(.) is the indicator function. We set ζ1 = 0.05 and ζ2 = 0.1;

all other parameters are unchanged. This implies that type 1 agents enjoy a wage premium of

roughly 5% in blue-collar work, and type 2 agents enjoy a wage premium of around 10% in

white-collar work. The share of each type is held fixed at one half.28

5.1 Approximate solution

One difference arising from the introduction of unobserved heterogeneity into the model is

that the state space is now twice as large, as the model now needs to be solved separately

for each type. This roughly doubles the computation time required for solving the model

regardless of which method is used. As discussed in section 3.3, a particular challenge for the

KW94 method in models with ex ante heterogeneity is that multicollinearity problems in the

interpolation regression are especially likely to occur.

27Notably, this includes Keane and Wolpin (1997), which first applied the KW94 method in empirical work.
28We fix the type share here to avoid identification challenges that are unrelated to the argument in this paper.

When simulating data from the model, we assigned types to each individual according to τi = 1 + 1(ui > 1/2),
where ui is drawn from the standard uniform distribution.
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Figure 6: Approximation performance: model with heterogeneity
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth
selected using Silverman’s Rule. In each case, the kernel density was calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, a maximum of M = 500 nodes were evaluated each period,
D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices were simulated. The
two panels show our two different metrics of approximation performance. Realized shocks (εit)

T
t=1 and types are

held constant only for the evaluation of the proportion of correct choices (left panel).

We evaluate the performance of the different varieties of the KW94 method using the same

metrics as above. Figure 6 shows the results when at most M = 500 nodes are evaluated by

Monte Carlo integration. On the whole, the KW94 method works exceptionally well in the

model with unobserved heterogeneity. Even using the basic method, around 99 percent of

choices are the same in the approximately solved model in most cases. However, in a minority

of cases, the basic KW94 approximation — as well as the variations with systematic sampling

and data-guided node selection — can go badly awry, resulting in a low proportion of correct

choices and very poor fit.

Virtually all of these ‘approximation failures’ appear to be due to multicollinearity in the

interpolation regression. Dispensing with interpolation when the moment matrix X ′X is

nearly singular removes almost all of them. The version of the KW94 method incorporating all
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three improvements achieves excellent fit and a near perfect proportion of correctly predicted

choices. The explanation for this extremely good performance — even compared to the same

method in the model without heterogeneity — is that in the model with heterogeneity, fewer

individuals are on the margin between different options, so the heterogeneity to a large extent

‘pre-determines’ agents’ paths through the model.

Figure 7: Trade-off between accuracy and computation time: model with heterogeneity
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Notes. In each case, the mean over 500 approximation runs with different shocks and approximation draws is
shown. In all cases, D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices
were simulated. For each series, the four data points shown represent, from left to right, the KW94 method with
M = 250, M = 500 and M = 2000 evaluation points, and the full solution. The two panels show our two different
metrics of approximation performance. Realized shocks (εit)

T
t=1 are held constant only for the evaluation of the

proportion of correct choices (left panel).

Figure 7 shows how the mean fit in the model with heterogeneity varies as the number

of points evaluated by Monte Carlo integration is increased. Notably, the full solution pro-

vides essentially perfect fit, whether or not systematic sampling is used for numerical integra-

tion. Evaluating the chosen nodes still substantially flattens the trade-off between accuracy

and computation time. Again the trade-off virtually disappears (for the moderate numbers of
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evaluation points shown) when all three improvements are combined.29

Figure 8: Root mean squared error of parameter estimates relative to full solution: model with
heterogeneity
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Notes. The diagram shows the relative root mean squared error for all model parameters. Root mean squared errors
obtained using the full solution are normalized to unity as indicated by the grey vertical line. For each approxima-
tion method, root mean squared errors were calculated over 15 sets of estimated parameters. These were obtained
by estimating the model parameters 30 times from different simulated datasets; the 15 estimated parameter sets
(50%) with the lowest simulated likelihood were dropped to guard against the effects of outliers and numerical
problems. Each simulated dataset used for estimation was a balanced panel of N = 2, 000 individuals. D = 2000
solution draws were used in model solution. For each estimation run, 30 steps of the BHHH algorithm were per-
formed. For each observation, 200 Halton draws were used to simulate the likelihood. Likelihood simulation
draws were held constant across estimation runs in order to minimize statistical noise unrelated to the different
approximation methods.

5.2 Estimation

One preliminary challenge in estimating this model is that it is only set-identified (in a set

of two elements). The reason is that for any given parameterization, a parameterization in

which type 2 had the same payoffs as type 1 in the given parameterization and vice versa is

empirically equivalent. In particular, it is easy to verify that any two parameterizations a and

29The slightly worse fit in terms of weighted squared deviations when at most M = 500 state space points are
evaluated is due to the influence of a single outlier.
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b are empirically equivalent if ζb
1 = −ζa

1, ζb
2 = −ζa

2, αb
10 = αa

10 + ζa
1, αb

20 = αa
20 + ζa

2, and all

other parameters are identical. We address this challenge by reparameterizing the solution to

the equivalent parameterization if and only if ζ̂1 < 0 and ζ̂2 < 0. The log likelihood function

now takes the form

l(θ) =
N

∑
i=1

log
J

∑
j=1

P(τi = j) f (di1, wi1|τi = j)
T

∏
t=2

f (dit, wit|(di,s)
s=t−1
s=1 , τi = j). (18)

Table 2: $500 tuition fee subsidy: model with heterogeneity

Truth Starting Full KW250 KW250 New KW500 KW500 New

Blue Collar -.141 -.009 -.138 -.374 -.141 -.147 -.137
(.005) (.001) (.007) (.517) (.008) (.013) (.007)

White Collar -.261 -.221 -.268 -.049 -.265 -.279 -.268
(.006) (.005) (.007) (.473) (.006) (.010) (.010)

School .403 .248 .406 .450 .406 .427 .405
(.008) (.005) (.010) (.107) (.010) (.013) (.011)

Home 0 -.018 0 -.027 0 0 0
(0) (.001) (0) (.045) (0) (0) (0)

Notes. Estimated impact of a $500 tuition subsidy on average years spent in each occupation. Two
balanced panels are simulated from the model for each of 15 sets of estimated parameters (with and
without the subsidy). Sample standard deviations are given in parenthesis. Each dataset contains N =
10, 000 individuals, and D = 2, 000 draws are used in Monte Carlo Integration. Both realized shocks and
draws for numerical integration are different from those used in estimation. Simulations are performed
using the full solution method in all cases.

Figure 8 provides a measure of the performance of the different approximation methods

when the model with heterogeneity is estimated using Simulated Maximum Likelihood. Esti-

mation was performed exactly as for the model without heterogeneity, except that 30 (instead

of 15) steps of the BHHH algorithm were performed and half (instead of 20%) of estimates

were dropped to guard against outliers and convergence problems, reflecting the more com-

plex numerical optimization problem.30 As in the model without heterogenity, our three im-

provements lead to more accurate parameter estimates that are roughly comparable to those

obtained using the full solution. However, the results are noisier, which is partly explained by

the lower number of estimation runs used in calculating the root mean squared error.

Table 2 again shows the impact of a $500 tuition subsidy. The relative performance of

the traditional and the new versions of the KW94 method are similar to the canonical model.

Notably, the true effect of the tuition subsidy is much smaller in the model with ex ante hetero-

30The starting vales for the additional model parameters ζ1 and ζ2 reflecting the heterogeneous payoffs for dif-
ferent types were set to zero.
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geneity, even though the choice shares are similar. Again, the reason is that fewer individuals

are on the margin between different options.

6 Conclusion

In this paper, we have suggested three improvements to the KW94 method, which until re-

cently was commonly used by applied researchers to estimate finite-horizon discrete choice

dynamic programming problems. First, systematic sampling substantially improves approx-

imation performance. Second, drawing state space points for evaluation from the subset that

agents reach in the data is much better than choosing them at random. Third, especially in

models with ex ante heterogeneity, it is advisable to check for multicollinearity in the interpola-

tion regression and dispense with polynomial interpolation when multicollinearity is detected.

With these improvements, the KW94 method achieves excellent approximation perfor-

mance even in a model with a large state space and substantial ex ante heterogeneity. This

suggests that the method has been abandoned prematurely. Its flaws are straightforward to

address, and the potential savings in computation time make the effort worthwhile. Hold-

ing computation time constant, these improvements translate into more accurate parameter

estimates and policy simulations; for a given error tolerance, a larger class of models can be

estimated.

Future work is likely to improve on all three of our suggestions. More sophisticated sys-

tematic sampling techniques are likely to offer even larger variance reduction in Monte Carlo

integration. Other systematic ways of choosing state space points to evaluate by numerical

integration may improve on our approach. Other procedures for dealing with multicollinear-

ity may also be superior to our technique; a particularly promising approach may be ridge

regression (Hoerl and Kennard, 1970). Most importantly, it will be crucial to test our methods

in other contexts besides the canonical KW94 model and its close cousins.
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Appendix

A Canonical model: Simulated Method of Moments estimation

It is increasingly popular for applied researchers to estimate dynamic discrete choice models

using the Simulated Method of Moments.31 This can be advantageous, for example, when very

large datasets are used, multiple datasets are combined, or evaluation of the likelihood is pro-

hibitively complex. As demonstrated in this section, our results apply regardless of whether

Simulated Maximum Likelihood or the Simulated Method of Moments is used.

We implement the Simulated Method of Moments approach using our second measure

of model fit given in (14) as the criterion function.32 Unlike in section 3.4, we do not simulate

whole paths through the model, but in each period update the parameter vector with observed

choices in the data. As a result, individuals in the simulated dataset will in each period have

the same vector of pre-determined state variables St as individuals in the ‘true’ dataset, as

the vector of pre-determined state variables in the canonical KW94 model only depends on

observed choices. This approach has the computational advantage that small changes in model

parameters typically only affect an individual’s decision in a single period rather than in all

subsequent periods, as future state variables are unaffected.33 It is further useful to replace

the simulated choices by smooth analogues in order to obtain an entirely smooth objective

surface.34 Then fast and easily parallelized gradient-based optimization routines can be used.35

Estimation performance. Figure 9 shows the estimation performance of different versions

of the KW94 method relative to the full solution when the Simulated Method of Moments is

used in estimation. Again estimation performance is measured by the root mean squared error

relative to the full solution. Only the traditional KW94 method with M = 250 draws is clearly

inferior to the full solution, with all other methods offering comparable performance.

31Important recent papers using this method include Altonji, Smith Jr and Vidangos (2013), Blundell et al. (2016),
Llull (2018), Ulyssea (2018), Morten (2019) and Abaluck and Adams-Prassl (2021).

32In addition to the moments listed in section 3.4, we also include the entries of transition matrices between
choices in each period as moments to aid identification.

33Skira (2015) takes a similar approach.
34As shown by Bruins et al. (2018), the SMM estimator will still be consistent as the smoothing parameter goes

to zero.
35We have found the Levenberg-Marquardt algorithm to be the most efficient.
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Figure 9: SMM: root mean squared error relative to full solution
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Notes. The diagram shows the relative root mean squared error for all model parameters. Root mean squared
errors obtained using the full solution are normalized to unity as indicated by the grey vertical line. For each
approximation method, root mean squared errors were calculated over 24 sets of estimated parameters. These were
obtained by estimating the model parameters 30 times from different simulated datasets; the 6 estimated parameter
sets (20%) with the lowest simulated likelihood were dropped to guard against the effects of outliers and numerical
problems. Each simulated dataset used for estimation was a balanced panel of N = 10, 000 individuals. D =
2000 solution draws were used in model solution. For each estimation run, 15 steps of the Levenberg-Marquardt
algorithm were performed.

Table 3: $500 Tuition Fee Subsidy: Simulated Method of Moments

Truth Starting Full KW250 KW250 New KW500 KW500 New

Blue Collar -3.34 -.126 -3.604 -2.624 -3.634 -3.58 -3.662
(.119) (.010) (.178) (1.315) (.206) (.314) (.164)

White Collar 2.079 -.235 2.243 1.79 2.257 2.355 2.298
(.109) (.013) (.173) (.884) (.181) (.366) (.166)

School 1.461 .408 1.552 .984 1.57 1.424 1.56
(.026) (.005) (.054) (.536) (.061) (.063) (.034)

Home -.199 -.048 -.191 -.150 -.193 -.199 -.195
(.011) (.003) (.015) (.087) (.015) (.027) (.018)

Notes. Estimated impact of a $500 tuition subsidy on average years spent in each occupation. Two
balanced panels are simulated from the model for each of 24 sets of estimated parameters (with and
without the subsidy). Sample standard deviations are given in parenthesis. Each dataset contains N =
10, 000 individuals, and D = 2, 000 draws are used in Monte Carlo Integration. Both realized shocks and
draws for numerical integration are different from those used in estimation. In all cases, simulations were
performed using the full solution method.
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Policy experiment. Table 3 shows how these estimation results translate into performance

in a simple policy experiment. As when parameters are estimated by Simulated Maximum

Likelihood, simulation based on parameters estimated using the full solution comes close to

simulation results obtained using the true parameters, although there is again a small bias that

is very similar in magnitude and direction to the bias obtained when using Simulated Maxmi-

mum Likelihood. The relative performance of the improved and traditional KW94 methods is

similar to Simulated Maximum Likelihood.

B Further analytical bounds for the Keane and Wolpin method

While there is in general no analytical solution available for the continuation values in finite-

horizon discrete choice dynamic programming models, it is generally possible to establish a

lower bound. A basic lower bound that forms the basis of the KW94 approximation method is

Jensen’s Inequality. In the notation of section 3.4, imposing this bound is the same as requiring

that g(.) ≥ 0.

Further analytical bounds are often available. One avenue for deriving tighter bounds

relies on the properties of the max function combined with Jensen’s Inequality. For instance,

E [max(V1, V2, V3, V4)] = E [max [max(V1, V2), max(V3, V4)]]

≥ max [E [max(V1, V2)] , E [max(V3, V4)]] .
(B.1)

The lower bound in the second line of (B.1) is weakly tighter than the bound provided by

Jensen’s inequality. This is helpful because it is often possible to derive an analytical form

or a tighter bound for the expectation of the maximum of two options. In the canonical

model of KW94, an analytical form is available for E [max(V3, V4)] and a tighter bound for

E [max(V1, V2)] (taking future continuation values as given).

The analytical form for E [max(V3, V4)] can be derived from the fact that V3 and V4 are

jointly Normally distributed in the KW94 model. If V3 ∼ N(µ3, σ2
3 ), V4 ∼ N(µ4, σ2

4 ) and the

correlation of V3 and V4 is ρ34, then the expectation of the maximum of V3 and V4 takes the

known form (see e.g. Nadarajah and Kotz, 2008):

E [max(V3, V4)] = µ3Φ
(

µ3 − µ4

θ

)
+ µ4Φ

(
µ3 − µ4

θ

)
+ θφ

(
µ3 − µ4

θ

)
(B.2)
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where θ =
√

σ2
3 + σ2

4 − 2ρ34σ3σ4 and Φ and φ are, respectively, the cdf and the pdf of the

standard Normal distribution.

A tighter bound for E [max(V1, V2)] can be derived from the fact that for k = 1, 2, Vkt can be

decomposed into Vkt = ukt + δ E(Vk
t+1). Hence

E [max(V1t, V2t)] ≥ E [max(u1t, u2t)] + δ min
[
E(V1

t+1), E(V2
t+1)

]
. (B.3)

As there is no continuation value in the final period, the second term drops out and the expres-

sion holds with equality if t = T.

u1t and u2t are jointly lognormally distributed, and there is an analytical form available for

the expectation of the maximum of two correlated lognormal random variables. In particular,

it can be shown that if log u1 ∼ N(µ1, σ2
1 ), log u2 ∼ N(µ2, σ2

2 ) and the correlation of log u1t and

log u2t is ρ12, then the expecation of the maximum of u1t and u2t takes the form:

E [max(u1t, u2t)] = exp
(

µ1 +
σ2

1
2

)
Φ

µ1 − µ2 + σ2
1 − ρ12σ1σ2√

σ2
1 − 2ρ12σ1σ2 + σ2

2


+ exp

(
µ2 +

σ2
2

2

)
Φ

µ2 − µ1 + σ2
2 − ρ12σ1σ2√

σ2
1 − 2ρ12σ1σ2 + σ2

2

 . (B.4)

Figure 10 shows what happens to the simulation accuracy of the traditional KW94 method

when different bounds are imposed. The column labelled “no bounds” shows the fit when no

bounds are imposed at all. “Minimal” shows the effect of imposing the bound that

E[max
k≤K

Vkt(St)]︸ ︷︷ ︸
EMAX

≥ max
k≤K

E [Vkt(St)]︸ ︷︷ ︸
MAXE

,

which follows from a straightforward application of Jensen’s Inequality. “Non-work” addi-

tionally imposes the bound based on the analytical expression for E [max(V3, V4)]. “All” also

imposes the additional bound for E [max(V1, V2)].
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Figure 10: Performance of the KW94 method with different bounds
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth
selected using Silverman’s Rule. In each case, the kernel density is calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, a maximum of M = 500 nodes were evaluated each period,
D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices were simulated. “No
bounds” shows the fit when no bounds are imposed at all. “Minimal” shows the effect of imposing the bounds that
EMAX ≥ MAXE that follows from a straightforward application of Jensen’s Inequality. “Non-work” additionally
imposes the bound based on the analytical expression for E [max(V3, V4)]. “All” also imposes the additional bound
for E [max(V1, V2)]. The two panels show our two different metrics of approximation performance. Realized shocks
(εit)

T
t=1 are held constant only for the evaluation of the proportion of correct choices (left panel).

On the whole, the improvements in fit to be gained from the additional bounds in the

canonical model appear to be minor. Only the “minimal” bound that EMAX ≥ MAXE leads

to a substantial improvement in approximation performance. On the whole, the effect of im-

posing bounds is not unambiguously positive. One reason is likely to be that what counts for

approximation performance is not how closely the approximation reproduces the true EMAX

in absolute terms, but only the differences between the nodes. Hence an increase in the approx-

imated value of some nodes but not others as a result of imposing a tighter lower bound can

be counterproductive. In sum, it may be best for applied researchers to stick to the “minimal”

approach to bounding recommended in KW94.
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C Alternative approximation methods using MAXE

Alternatives to the KW94 approximation method exist and have been used in empirical work.

They can be broadly divided into two groups: those that do and do not rely on the MAXE ap-

proximation. In this appendix, we present evidence on the performance of other methods that,

like the KW94 approximation, rely on the MAXE approximation. Alternative approximation

methods that do not rely on the MAXE approximation include Geweke and Keane (2000) and

Sauer (2015) (also used in Belzil, Hansen and Liu, 2017).36

All methods relying on the MAXE approximation are built around the observation that in

many models, maxk≤K E [Vkt(St)] (‘MAXE’) provides a decent approximation to the actual ex-

pected value of each state space point E [maxk≤K Vkt(St)] (‘EMAX’). At the same time, MAXE

is usually very cheap to calculate, as no numerical integration is required. As a result, these

methods can allow for very fast approximation even when the state space is orders of magni-

tude larger than in the canonical KW94 model.

The most common approach is to simply replace EMAX by MAXE in the computation of

continuation values (e.g. Stock and Wise, 1990). This works well in some contexts, but fails in

the canonical model: on average, not even a third of choices accord with the ‘true’ simulated

choices. The reason is that differences between EMAX and MAXE are a key driver of decisions

in that model, so approximating EMAX by MAXE leads to very different simulated choices.

A potential improvement on this approach resembles the KW94 method. Under this pro-

cedure, one approximates the option value of state space points by introducing an auxiliary

polynomial into the model representing the difference between MAXE and EMAX. In particu-

lar, in the canonical model, we replace each Ê
[
Vt(St)|St, dkt = 1

]
by

Ĕ
[
Vt(St)|St, dkt = 1

]
= max

k≤K
E
[
Vkt(St, εt)

]
+ 1(st < smax)

(
K

∑
j=1

πj

[
max
k≤K

E [Vkt(St)]− E
[
Vjt(St)

]]
+

K

∑
j=1

πK+j

√
max
k≤K

E [Vkt(St)]− E
[
Vjt(St)

])

+ π2K+11(st = smax). (C.1)

The 2K + 1 elements of π are then estimated along with the vector of structural parameters

36A different framework entirely is the Conditional Choice Probability (CCP) approach (Hotz and Miller, 1993;
Arcidiacono and Miller, 2011). This approach generally requires errors in the model to be additive (although see
Kristensen, Nesheim and de Paula, 2015, for arguments why this condition can in principle be relaxed). This is not
the case in either of the models discussed in this paper, as the wage functions take a semi-log form.
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Figure 11: Alternative methods using MAXE: canonical model
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth se-
lected using Silverman’s Rule. In each case, the kernel density is calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, D = 2000 draws were used for Monte Carlo integration,
and N = 10, 000 individuals’ choices were simulated. “Polynomial (reg.)” shows the performance of the alter-
native approach if the auxiliary parameter vector π is estimated using OLS regression, using the ‘true’ values of
E
[
maxk≤K Vkt(St)

]
(‘EMAX’) as the dependent variable and including one observation for each person and pe-

riod in the simulated data. “Polynomial (est.)” shows the fit when π is estimated using the Simulated Method
of Moments with the model fit as the criterion function, holding constant the structural parameters θ at the true
values. “KW (1994)” and “Improved KW (1994)” show the performance of the traditional and the improved KW94
methods with M = 250 nodes evaluated by Monte Carlo integration for comparison. The two panels show our two
different metrics of approximation performance. Realized shocks (εit)

T
t=1 are held constant only for the evaluation

of the proportion of correct choices (left panel).

Figure 11 shows the approximation performance of this method compared to both the tra-

ditional version and our improved version of the KW94 method (with a maximum of M = 250

nodes evaluated to roughly match the other method in terms of computation time). “Polyno-

mial (regression)” shows the performance of the alternative approach if the auxiliary param-

eter vector π is estimated using OLS regression, using the ‘true’ values of E [maxk≤K Vkt(St)]

37Note that we do not include an intercept term or functions of the time period t. As the estimation of π is
solely based on observed choices, these ‘scale’ parameters are — depending on how they are included — either not
identified at all or only very weakly identified as a result of the maximum schooling limit.
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(‘EMAX’) as the dependent variable and including one observation for each person and period

in the simulated data.38 “Polynomial (estimated)” shows the fit when π is estimated using the

Simulated Method of Moments with the model fit as the criterion function, holding constant

the structural parameters θ at the true values.

Figure 12: Alternative methods using MAXE: model with heterogeneity
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth se-
lected using Silverman’s Rule. In each case, the kernel density is calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, D = 2000 draws were used for Monte Carlo integration,
and N = 10, 000 individuals’ choices were simulated. “Polynomial (reg.)” shows the performance of the alter-
native approach if the auxiliary parameter vector π is estimated using OLS regression, using the ‘true’ values of
E
[
maxk≤K Vkt(St)

]
(‘EMAX’) as the dependent variable and including one observation for each person and pe-

riod in the simulated data. “Polynomial (est.)” shows the fit when π is estimated using the Simulated Method
of Moments with the model fit as the criterion function, holding constant the structural parameters θ at the true
values. “KW (1994)” and “Improved KW (1994)” show the performance of the traditional and the improved KW94
methods with M = 250 nodes evaluated by Monte Carlo integration for comparison. The two panels show our two
different metrics of approximation performance. Realized shocks (εit)

T
t=1 are held constant only for the evaluation

of the proportion of correct choices (left panel).

Overall, the alternative approach is no match for the improved KW94 method, even when

the parameters of the auxiliary parameters are estimated from the ‘true’ EMAX values, or hold-

ing constant the structural parameters at their true values (either of which would be impossible
38As scale is not identified (see fn. 37 above), we also include a full set of period dummies in that regression, but

disregard the estimated period effects.
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in practice). However, under these idealized conditions, the alternative approach does offer

better approximation performance at similar computational cost than the traditional KW94

method with at most M = 250 evaluation points. In part, this is because the KW94 method

performs poorly in over half of all cases when only M = 250 nodes are evaluated using Monte

Carlo integration.

Figure 12 is the equivalent figure for the model with heterogeneity. We include the approx-

imation of EMAX by MAXE in this figure, as in the model with heterogeneity, that approxi-

mation also offers acceptable performance. All methods perform much better, as more ex ante

heterogeneity means that the precise continutation value of each state space point matters less

in shaping agents’ decisions.

Figure 13: Performance of the KW94 method with different sampling methods
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D = 2000 draws were used for Monte Carlo integration, and N = 10, 000 individuals’ choices were simulated.
“Simple” refers to simple random sampling, “Systematic” refers to the systemantic sampling algorithm outlined
in section 3.1, and Halton draws are obtained following the algorithm from Halton (1964). The two panels show
our two different metrics of approximation performance. Realized shocks (εit)

T
t=1 are held constant only for the

evaluation of the proportion of correct choices (left panel).
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The improved KW94 method still dominates in terms of approximation performance with

a virtually perfect fit. The method with an auxiliary polynomial again yields better approxi-

mation performance than the traditional KW94 method. The simple MAXE method leads to

a somewhat worse fit, but is much faster to compute. This suggests that in models with ex-

tremely large state spaces and substantial heterogeneity, it might be advisable to estimate the

model using the simple MAXE approximation in an initial step.39

D Comparison of different sampling methods

D.1 KW94 method

Figure 13 shows the influence of different sampling methods on the performance of the tra-

ditional version of the KW94 method in the canonical model with a maximum of M = 500

evaluation points. Simple random draws are compared to the systematic sampling method

outlined in section 3.1 and Halton (1964) systematic draws. Both systematic sampling and Hal-

ton draws lead to large improvements in approximation accuracy. Halton draws are slightly

better than systematic sampling, but the differences are minor.40

D.2 Full solution

Figure 14 shows the influence of different sampling methods on the performance of the full so-

lution method in the canonical KW94 model. Accuracy gains are even larger than when using

the KW94 method, with both systematic sampling and Halton draws offering an excellent fit.

Using the full solution method, the advantage of Halton draws is somewhat larger in relative

terms.41

39Whether the method with an auxiliary polynomial has a useful role to play in some contexts is an interesting
question for futher research.

40Intuitively, the reason that Halton draws perform somewhat better is that they ensure even integral coverage
in multiple dimensions, whereas our systematic sampling method only ensures even coverage in each dimension
individually.

41Intuitively, even integral coverage becomes more important when other sources of approximation error have
been eliminated.
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Figure 14: Performance of the full solution method with different sampling methods
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Notes. The densities shown are kernel densities estimated using an Epanechnikov kernel with the bandwidth
selected using Silverman’s Rule. In each case, the kernel density is calculated over 500 approximation runs with
different shocks and approximation draws. In all cases, D = 2000 draws were used for Monte Carlo integration,
and N = 10, 000 individuals’ choices were simulated. “Simple” refers to simple random sampling, “Systematic”
refers to the systemantic sampling algorithm outlined in section 3.1, and Halton draws are obtained following
the algorithm from Halton (1964). The two panels show our two different metrics of approximation performance.
Realized shocks (εit)

T
t=1 are held constant only for the evaluation of the proportion of correct choices (left panel).

E Bias and standard deviation of estimated parameters

E.1 Canonical model: Simulated Maximum Likelihood

Table 4 shows the average deviation of the estimated parameters from the true parameters.

For the full solution, these average deviations are mostly quite small relative to the scale of

each parameter. The exception are the standard deviations of the non-work options a33 and

a44, which are substantially underestimated. This is a known artefact of Simulated Maximum

Likelihood estimation in this model; the same bias is found in KW94.42 Biases for the improved

42This is likely related to the use of the smoothed-logit simulator (McFadden, 1989), which is known to introduce
bias (cf. the discussion in Keane and Wolpin, 1994). In particular, the smoothed-logit simulator tends to overstate
the likelihood of tail events, which may explain a downward bias in the error variance.
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versions of the KW94 method are generally very close to the full solution. They are mostly

larger for the traditional KW94 method, especially when only a maximum of M = 250 state

space points are evaluated by Monte Carlo integration.

Table 4: Average deviation (bias) of estimated parameters in the canonical model

Average deviation from true parameter

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 .00464 -.00273 .00409 .00512 .00494
α01 .038 -.00012 .00071 -9.5e-05 -9.4e-05 -.00014
α02 .033 -.00034 -.00057 -.0003 -.00039 -.00035
α03 .0005 -9.1e-06 -1.7e-05 -8.4e-06 -1.0e-05 -9.2e-06
α04 0 -.00019 -.0001 -.00017 -.00049 -.00022
α05 0 -5.1e-06 5.0e-05 -3.4e-06 -1.4e-05 -6.1e-06
α10 8.48 .00392 .01703 .0042 .0056 .0042
α11 .07 -.00016 -.00119 -.00021 -.00035 -.0002
α12 .067 -7.3e-05 .00139 4.2e-05 .00011 1.5e-05
α13 .001 8.4e-08 3.7e-05 3.8e-06 4.8e-06 3.0e-06
α14 .022 -.00018 -.00338 -.00025 -.00045 -.00022
α15 .0005 2.1e-06 -.00013 -1.1e-06 -1.5e-05 5.7e-08
β0 0 77.502 -39.536 84.26 -3.8551 90.82
β1 0 31.616 101.55 34.448 27.902 37.208
β2 4000 -131.72 -1500.5 -137.01 -159.78 -131.77
γ0 f 17750 68.271 54.957 67.283 54.334 67.768
a11 .2 -.00107 -.00098 -.00091 -.00099 -.00104
a22 .25 1.2e-05 -.0005 2.8e-05 -9.0e-05 2.7e-05
a33 1500 -372.81 574.77 -371.67 -378.99 -372.13
a44 1500 -246.99 613.65 -252.8 -249.09 -237.67

Notes. The average deviations from the true parameters were calculated over 24 estimation runs
as described in the text, using simulated balanced panels of N = 2000 individuals each. D = 2000
solution draws were used in model solution. For each observation, 200 Halton draws were used
to simulate the likelihood. Likelihood simulation draws were held constant across estimation
runs in order to minimize statistical noise unrelated to the different approximation methods.

Table 5 show the sample standard deviation of the estimated parameters. Sample standard

deviations tend to be of similar orders of magnitude as the average deviation from the true

parameters. Standard deviation methods for all approximation methods are similar to the

full solution, except for the traditional KW94 method with M = 250, which has much larger

standard deviations. This appears to be driven by a minority of estimation runs that do not

converge to parameter values near the true parameters (not shown).
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Table 5: Sample standard deviation of estimated parameters in the canonical model

Sample standard deviation

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 .0081 .01564 .00837 .00869 .00846
α01 .038 .00071 .0016 .00075 .00075 .00073
α02 .033 .00032 .00069 .0003 .00033 .00032
α03 .0005 1.0e-05 2.0e-05 9.8e-06 1.1e-05 1.0e-05
α04 0 .00034 .00112 .00033 .00028 .00034
α05 0 1.7e-05 8.6e-05 1.7e-05 1.6e-05 1.7e-05
α10 8.48 .0041 .01904 .00386 .00428 .00416
α11 .07 .00028 .00143 .00029 .00028 .00027
α12 .067 .00035 .00172 .00037 .00037 .00035
α13 .001 1.1e-05 4.4e-05 1.2e-05 1.2e-05 1.1e-05
α14 .022 .00014 .0038 .00016 .00014 .00014
α15 .0005 1.2e-05 .00015 1.3e-05 1.2e-05 1.2e-05
β0 0 132.63 221.73 133.55 142.38 128.2
β1 0 77.847 279.86 80.672 67.949 78.504
β2 4000 57.199 1713.6 54.389 58.261 55.63
γ0 f 17750 67.211 68.543 64.427 69.477 68.538
a11 .2 .00121 .00126 .00118 .00123 .00121
a22 .25 .00075 .00163 .00076 .00076 .00076
a33 1500 56.649 1369.9 54.182 55.83 55.731
a44 1500 94.477 1209.9 96.81 100.84 94.769

Notes. The sample standard deviations were calculated over 24 estimation runs as described in
the text, using simulated balanced panels of N = 2000 individuals each. D = 2000 solution
draws were used in model solution. For each observation, 200 Halton draws were used to sim-
ulate the likelihood. Likelihood simulation draws were held constant across estimation runs in
order to minimize statistical noise unrelated to the different approximation methods.

E.2 Canonical model: Simulated Method of Moments

Tables 6 and 7 are the same tables for the Simulated method of Moments (SMM) estimation.

Both average deviations from the truth and sample standard deviations are somewhat larger

for SMM, likely reflecting lower efficiency compared to Simulated Maximum Likelihood. The

relative performance of different approximation methods is similar to the maximum likeli-

hood results, with the improved KW94 method performing both better and similar to the full

solution.
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Table 6: Average deviation (bias) of estimated parameters in the canonical model

Average deviation from true parameter

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 -.00401 -.00487 -.00428 -.00337 -.00404
α01 .038 .00041 .00246 .00037 .0005 .0004
α02 .033 -8.1e-05 -.00136 -2.2e-06 -1.6e-05 -7.8e-05
α03 .0005 -2.1e-06 -2.8e-05 -3.1e-07 -8.1e-07 -3.2e-06
α04 0 -2.4e-05 -.00204 -.00025 -.00016 .00013
α05 0 1.0e-06 -6.8e-05 -1.2e-05 3.0e-06 7.8e-06
α10 8.48 -.00284 .02545 -.00204 .00478 -.00326
α11 .07 .00044 -.00053 .00034 -.00029 .00048
α12 .067 -.00027 -.00119 -.00018 .00011 -.00023
α13 .001 -5.8e-06 -2.3e-05 -3.5e-06 4.1e-06 -5.2e-06
α14 .022 9.7e-05 -.00131 -7.6e-06 -.0002 .0001
α15 .0005 3.2e-05 -4.7e-05 1.8e-05 8.2e-06 3.5e-05
β0 0 -69.664 -2378.2 -71.489 10.043 -77.732
β1 0 135.36 -1598.7 81.936 50.341 144.48
β2 4000 -136.09 3561 -156.03 -156.2 -150.1
γ0 f 17750 129.96 -1923.7 171.41 -113.5 132.29
a11 .2 .00024 -.00623 .00065 -.00149 3.2e-05
a22 .25 -.00133 -.00335 -.0011 -.00055 -.00157
a33 1500 -493.64 2968.3 -548.88 -490.34 -528
a44 1500 -645.01 1019.1 -751.39 -143.13 -666.45

Notes. The average deviations from the true paramters were calculated over 24 estimation runs as
described in the text, using simulated balanced panels of N = 10, 000 individuals each. D = 2000
solution draws were used in model solution.

Table 7: Sample standard deviation of estimated parameters in the canonical model

Sample standard deviation

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 .01359 .02088 .01574 .01479 .01782
α01 .038 .00128 .00301 .00142 .00136 .00148
α02 .033 .00042 .00198 .00032 .00032 .00026
α03 .0005 1.4e-05 4.4e-05 9.8e-06 9.5e-06 8.2e-06
α04 0 .00118 .00366 .00074 .00111 .00106
α05 0 6.5e-05 .00014 4.4e-05 5.5e-05 5.4e-05
α10 8.48 .00543 .03507 .00715 .00789 .00631
α11 .07 .00052 .00297 .0007 .00084 .00062
α12 .067 .00033 .00347 .00042 .00047 .00032
α13 .001 1.1e-05 8.6e-05 1.2e-05 1.3e-05 9.4e-06
α14 .022 .00059 .00184 .0005 .00042 .00051
α15 .0005 7.6e-05 .0002 5.7e-05 5.1e-05 6.4e-05
β0 0 240.19 4366.9 268.42 248.55 269.44
β1 0 193 4180.2 195.47 266.82 163.09
β2 4000 101.68 6656.6 88.229 84.553 72.841
γ0 f 17750 235.99 4207.4 188.49 340.39 217.86
a11 .2 .00272 .00816 .00209 .00277 .00227
a22 .25 .00126 .00887 .00143 .0015 .00125
a33 1500 136.79 5370.6 155.29 121.98 105.89
a44 1500 585.27 2280.9 556.62 707.27 619.75

Notes. The sample standard deviations were calculated over 24 estimation runs as described in
the text, using simulated balanced panels of N = 10, 000 individuals each. D = 2000 solution
draws were used in model solution.
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E.3 Model with heterogeneity

Tables 8 and 9 are the analogous tables for the model with heteroegeneity. Both average devi-

ations from the truth and sample standard deviations are comparable to the canonical model.

The heterogeneity parameters ζ1 and ζ2 are precisely estimated. The relative performance of

different approximation methods is similar to the results for the canonical model, with the

improved KW94 method performing both better and similar to the full solution.

Table 8: Average deviation (bias) of estimated parameters in the model with heterogeneity

Average deviation from true parameter

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 .00268 -.04773 .00205 .00648 -.00083
α01 .038 -.00013 .00339 -6.3e-05 -.00027 -4.1e-05
α02 .033 -2.9e-05 .00156 -9.6e-05 -8.0e-06 -9.9e-05
α03 .0005 -1.0e-06 2.7e-05 -2.7e-06 -1.2e-06 -2.7e-06
α04 0 -.00051 .00064 -.00055 -.00057 -.00056
α05 0 -7.3e-06 .00013 -1.4e-05 2.7e-06 -1.6e-05
α10 8.48 -.00294 .01362 -.00363 .00556 -.00249
α11 .07 -.00016 -.00044 -8.6e-05 -.00079 -.00026
α12 .067 .00033 .0013 .00047 .00065 .00038
α13 .001 1.0e-05 3.6e-05 1.5e-05 1.9e-05 1.3e-05
α14 .022 -.00019 -.00373 -.00024 -.00065 -.00013
α15 .0005 -6.3e-06 -9.7e-05 -8.7e-06 -2.0e-05 -7.4e-06
β0 0 20.062 -77.889 -82.077 17.9 -85.364
β1 0 -32.333 -154.04 -87.964 -89.071 -175.31
β2 4000 -42.963 -674.81 -60.823 -90.592 -45.135
γ0 f 17750 53.26 517 54.197 54.645 49.307
a11 .2 8.8e-05 .00239 .00024 4.7e-05 .00017
a22 .25 .00084 8.2e-05 .00111 .00029 .00073
a33 1500 -363.2 299.92 -355.42 -354.28 -354.49
a44 1500 -431.49 -44.401 -405.29 -431.6 -430.73
ζ1 .05 -.00158 -.00449 -.00115 -.00467 .00157
ζ2 .1 .00325 .00216 .00158 .00268 .00422

Notes. The average deviations from the true parameters were calculated over 15 estimation runs
as described in the text, using simulated balanced panels of N = 2000 individuals each. D = 2000
solution draws were used in model solution. For each observation, 200 Halton draws were used
to simulate the likelihood. Likelihood simulation draws were held constant across estimation
runs in order to minimize statistical noise unrelated to the different approximation methods.
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Table 9: Sample standard deviation of estimated parameters in the model with heterogeneity

Sample standard deviation

Parameter True value Full solution KW250 KW250 new KW500 KW500 new

α00 9.21 .01781 .10606 .01772 .03479 .02002
α01 .038 .00112 .00598 .00127 .0023 .00124
α02 .033 .0002 .00186 .00018 .00035 .00025
α03 .0005 4.5e-06 4.1e-05 3.6e-06 8.7e-06 5.6e-06
α04 0 .00042 .00168 .00054 .00064 .0005
α05 0 2.3e-05 .00018 3.7e-05 4.4e-05 3.1e-05
α10 8.48 .00858 .04519 .00768 .0068 .00806
α11 .07 .00043 .00174 .00041 .00067 .00044
α12 .067 .00029 .00127 .00046 .00061 .00036
α13 .001 1.0e-05 3.6e-05 1.5e-05 1.8e-05 1.3e-05
α14 .022 .00023 .00482 .00023 .00039 .00023
α15 .0005 1.6e-05 .00018 1.6e-05 2.0e-05 1.5e-05
β0 0 338.93 773.99 307.36 358.7 332.58
β1 0 330.2 720.72 313.57 386.94 319.6
β2 4000 55.69 910.25 60.284 71.784 56.798
γ0 f 17750 43.798 659.24 54.776 51.562 41.728
a11 .2 .00082 .00777 .00081 .00096 .00087
a22 .25 .00113 .00864 .00087 .0011 .00115
a33 1500 77.369 1034.9 51.414 70.033 81.722
a44 1500 62.034 1077.8 118.4 70.705 60.681
ζ1 .05 .00808 .06834 .00681 .01552 .00973
ζ2 .1 .00601 .06966 .00764 .009 .00572

Notes. The sample standard deviations were calculated over 15 estimation runs as described in
the text, using simulated balanced panels of N = 2000 individuals each. D = 2000 solution
draws were used in model solution. For each observation, 200 Halton draws were used to sim-
ulate the likelihood. Likelihood simulation draws were held constant across estimation runs in
order to minimize statistical noise unrelated to the different approximation methods.
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