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Abstract

Researchers are often interested in the relationship between two variables, with no

single data set containing both. A common strategy is to use proxies for the dependent

variable that are common to two surveys to impute the dependent variable into the data

set containing the independent variable. We show that commonly employed regression

or matching-based imputation procedures lead to inconsistent estimates. We offer an

easily-implemented correction and correct asymptotic standard errors. We illustrate

these with empirical examples using data from the US Consumer Expenditure Survey

(CE) and the Panel Study of Income Dynamics (PSID).
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1 Introduction

In empirical research we are often interested in the relationship between two variables, but

no available data set contains both variables. For example, a key question in fiscal policy

and macroeconomics is the effect of income or wealth (or changes in income or wealth)

on consumption. Traditionally, consumption has been measured in dedicated household

budget surveys which contain limited information on income or wealth. Income or wealth,

and particularly changes in income and wealth, are measured in panel surveys with limited

information on consumption.

A common strategy to overcome such problems is to use proxies for the dependent variable

that are common to both surveys and impute that dependent variable into the data set

containing the independent variable. In the first stage the dependent variable is regressed

on the proxies in the donor data set. In the second stage, the coefficients, and possibly

residuals, from the donor data set are combined with observations on the proxies in the

main data set to generate an imputed value of the missing dependent variable in the main

data set. Hereafter we refer to this as the RP procedure (for “regression prediction”).

The addition of residuals to the regression prediction seeks to give the imputed variable a

stochastic component and mimic the dispersion of the missing variable, and we refer to this

as the RP+ procedure. For example, in a well-known paper, Skinner (1987) proposed using

the U.S Consumer Expenditure Survey (CE) and the RP procedure to impute a consumption

measure into the Panel Study of Income Dynamics (PSID).1 In this paper we consider the

consequences of estimating a regression with an imputed dependent variable, and how those

1For panel data on consumption, an alternative approach is to invert the inter-temporal budget constraint
and calculate spending as income minus saving where the latter is often approximated by changes in wealth.
This was initially suggested by Ziliak (1998) for the PSID, but has more recently been adopted for adminis-
trative (tax) data on income and wealth (Browning et al., 2003). While attractive this procedure has several
drawbacks. First it identifies only total household spending, and in many applications the distinctions be-
tween consumption spending, nondurable consumption and household investment spending are important.
Second, in the case of our motivating example, this procedure results in income or wealth being on both the
right and left-hand side of the equation so that any measurement error in income or wealth can cause quite
serious problems (Browning et al., 2014). Baker et al. (2018) show that even with administrative data on
income and wealth there can be significant measurement error in implied spending.

1



consequences depend on the imputation procedure adopted. We show that the RP procedure

introduces a Berkson measurement error into the dependent variable, leading to inconsistent

estimates of the regression coefficients of interest, as does the RP+ procedure. Under mild

assumptions, the asymptotic attenuation factor is equal to the population R2 on the first

stage regression of the variable to be imputed on the proxy or proxies. This leads us to

suggest a “rescaled-regression-prediction” (hereafter RRP) procedure. We then show that,

in the case a single proxy variable is used, the RRP procedure is numerically identical to a

procedure developed by Blundell et al. (2004, 2008) (hereafter BPP after the authors), also

for imputing consumption, in which the first stage involves, in contrast to RP, regressing

the proxy on the variable to be imputed, and then inverting. Relative to BPP our proposed

RRP approach has the advantage that it can more flexibly incorporate multiple proxies.

Both RP and BPP are currently used to impute dependent variables. However, the

choice of imputation methods used in different papers appears to be ad hoc. BPP do not

give explicit reasons for favouring their imputation method over others, and on occasion the

same authors have switched from using BPP to RP in later papers. Examples of papers

using versions of RP include Mulligan (1999); Browning et al. (2003); Meyer and Sullivan

(2003); Attanasio and Pistaferri (2014); Charles et al. (2014); Arrondel et al. (2015); Fisher

et al. (2016) and Kaplan et al. (2020). Examples of papers using BPP include Schulhofer-

Wohl (2011); Guvenan and Smith (2014) and Attanasio et al. (2015). Some studies have

observed that, empirically, RP imputation seems to lead to biased estimates in specific

contexts. However, they neither offer an explanation nor realise that the problem is a

general one. For example, Charles et al. (2014) note that the intergenerational elasticity of

consumption spending is lower when RP is used to impute consumption to the PSID than

when true consumption data is used. Palumbo (1999) also obtains lower estimates of risk

aversion when using RP to impute consumption than when using a version of BPP. We

account for these findings by formally setting out the nature of the biases associated with

RP, by demonstrating that it specifically leads to an attenuation bias, and by offering a bias
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correction.

In the next section we lay out our basic framework, and derive the main results. We

also relate our results to the prior literature, including Lusardi (1996), who combines CE

consumption data with PSID income data using the 2-sample IV approach proposed by

Klevmarken (1982) and Angrist and Krueger (1992). We clarify the relationship between

that approach and the imputation procedures we study.

Section 3 takes up the question of inference. We show that the usual OLS standard

errors from a regression of an imputed dependent variable, derived from the RRP or BPP

procedures, are too small (a point that the literature also seems to have overlooked). We

provide an estimator of the correct asymptotic standards errors of the regression coefficient

of interest. Section 4 illustrates our main points with a Monte Carlo study, and Section 5

provides two empirical examples using the CE and PSID. Section 6 concludes.

2 Set-up And Main Results

Consider the following linear regression model

y = Xβ + ε (1)

where β is the K×1 parameter vector of interest. To make things concrete, the n×1 vector y

could be consumption (or nondurable consumption), and the n×K matrix X would include

income or wealth and other determinants of consumption. To keep the notation compact,

variables have been de-meaned so there is no constant, but the addition of constants (and

non-zero means) is not important for the analysis that follows.

We assume that for any random sample i = 1, ..., n of {yi, X
′
i}ni=1 from the population

the following hold:

A1 E(X ′iXi) = ΣXX is finite and non-singular, and E (X ′iεi) = 0
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This means that given such a sample, an unbiased and consistent estimate of β can be

obtained by OLS on Equation (1).

Suppose however that we have no such data on {yi, X
′
i}. In this case there are conditions

under which we can consistently estimate β given a proxy for y, denoted Z, and samples

where y and Z (but not X), and Z and X (but not y) are observed.

Let subscripts 1 and 2 denote whether variables correspond to sample 1 or sample 2; from

here forward, the absence of a sample subscript indicates a population quantity. Using this

notation, we would have a sample data on {y1i, Z
′
1i} for i = 1, ..., n1 and a second sample of

data on {X ′2j, Z ′2j} j = 1, ..., n2. Zm is an L× nm matrix of proxies (l = 1, ..., L) for y from

sample m; if we have only a single proxy (a vector) we denote it by zm. Similarly, when

K = 1 we refer to X as x. In our consumption example z is often food spending. Food

spending is captured in many general purpose surveys, and is thought to be well-measured.

To derive asymptotic results for different estimators of β that impute y using Z, we make

the following additional assumptions:

A2 {y1i, Z
′
1i}

n1
i=1 and {X ′

2j, Z
′
2j}

n2
j=1 are i.i.d random samples from the same population, with

finite second moments and which are independent.

A3 E (Z ′1iZ1i) = ΣZZ . ΣZZ is non-singular. E
(
X ′2jX2j

)
= ΣXX (when K = 1, E

(
x2

2j

)
=

σxx > 0) and E(y2
1i) = E(y2

2j) = σyy > 0.

These assumptions guarantee the existence of linear projections of Z onto y and of y onto

Z.2

Z1i = y1iγ + u1i (2)

where γ is 1× L and u1i is n1 × L.

2In the derivations below we do not need to impose that E
(
Z ′
2jZ2j

)
= ΣZZ or that E (X ′

1iX1i) = ΣXX

as it is never ambiguous as to which samples are being used to calculate these objects. These equalities are
however guaranteed by Assumptions A2 and A3.
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y1i = Z1iζ + ξ1i (3)

The residuals u1i and ξ1i satisfy the conditions for equations (2) and (3) to be linear

projections (i.e. E(y′1iu1i) = 0 and E(Z ′1iξ1i) = 0). However note that this is completely

general in that we are not making any structural assumptions about the joint distributions

of y1i and Z ′1i; the orthogonality of y and Z variables with the error terms u and ξ arise by

construction. In addition, no homoscedasticity assumptions are placed on u or ξ.

We also assume that:

A4 lim
n2→∞

n2

n1
= α for some α > 0.

This ensures that as n1 tends to infinity, n2 does as well.

The key assumptions that we make to allow consistent estimation of β are:

A5 E (Z ′1iy1i) = E
(
Z ′2jy2j

)
= ΣZy which has at least one non-zero entry.

A6 E
(
X ′2ju2j

)
= 0.

A5 ensures that the proxies Z1 have information about y (that the slope of the linear pro-

jections in equations (2) and (3) are not zero.) Assumption A6 will be discussed further

below.

Assumptions A1-A3 and A5 allow us to define the population R2 from a regression of y on

Z, φy,Z ≡ ΣyZΣ−1
ZZΣZy/

(
σεε + β

′
ΣXXβ

)
, and to guarantee that 0 < φy,Z ≤ 1. Assumption

A3 is necessary to ensure that this quantity is defined. Assumption A5 ensures that it is

strictly positive and thus that its reciprocal is also defined.

To compute variances for different estimators allowing for general forms of heteroscedas-

ticity, we make the following further assumptions:

A7 E(Z1iξ1iξ
′
1iZ
′
1i) = ΩZξ which is finite and positive semi-definite.

A8 E(X2jδ2jδ
′
2jX

′
2j) = ΩXδ which is finite and positive semi-definite. δ2 are residuals from

a regression of Z2/φy,Z on X2.
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A9 {y1i, Z
′
1i}

n1
i=1 and {X ′

2j, Z
′
2j}

n2
j=1 have finite fourth moments.

Finally, in what follows we also make use of the following definitions and notation:

D1 E
(
X ′2jy2j

)
= ΣXy and E

(
X ′2jZ2j

)
= ΣXZ . When K = 1, E (x2jy2j) = σxy.

D2 We define for instance Σ′Zy = ΣyZ .

D3 E (u′1iu1i) = Σuu which under A2 is finite and positive semi-definite and E
(
ε22j
)

=

σεε ≥ 0. With a single proxy, E (u2
1i) = σuu ≥ 0.

D4 R2
y1,Z1

is the sample analog of φy,Z (taken from sample 1).

D5 E(y1i) = µy

2.1 Alternative Imputation Strategies

Skinner (1987) suggested regressing y1 on Z1 in the CE and using the resulting coefficients

to predict ŷ2 in the PSID (and then regressing ŷ2 on X2), which we call the RP procedure.

Note that with a single spending category as the proxy, the first stage linear projection here

resembles an “inverse” Engel curve. Alternatively, Blundell et al. (2004, 2008), again using

the CE and PSID, first regress z1 (food spending) on y1 then predict ŷ2 = z2
1
γ̂

(the BPP

procedure). That is, they estimate an Engel curve and then invert it to predict consumption.

A third alternative is to not impute consumption at the household level at all, but to recover

the parameter of interest (β) from a combination of moments taken from the two surveys.

This was first suggested (for a different application) by Arellano and Meghir (1992) (hereafter

AM). Here, (again with a single proxy) one could regress z1 on y1 to get γ̂, then regress z2

on X2 to get β̂γ, and take ratio of the two to estimate β.3

3Kaplan et al. (2020) use a imputation approach similar to the RP method. They regress county-level
consumption spending on local house prices in the US. Since data on total nondurable consumption is
not available at county level, they use county-level data on a subset of nondurable expenditures (grocery
spending) from the Kilts-Nielsen Retail Scanner Dataset (KNRS) as their dependent variable, and then scale
up their coefficients using household-level data on the relationship between grocery and total spending from
the CE Survey. This is analogous to our set-up in a case where the regression of interest is yc = Xcβ + εc
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We first consider the RP procedure (with possibly multiple proxies). Regression of ŷRP2

on X does not, in general, give a consistent estimate of β.

Proposition 1. Given assumptions A1 - A5, Regression of ŷRP2 on X yields inconsistent

estimates of β unless (i) X is contained within the span of Z (ii) y is contained within the

span of Z or (iii) ΣXy = ΣXZ = 0.

Proof.

plim
(
β̂RP

)
= plim

{(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

}

= plim

{(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1(Z1iζ + ξ1i)

n1

}

= plim

{(
X

′
2X2

n2

)−1
X

′
2Z2ζ

n2

}
= plim

{(
X

′
2X2

n2

)−1
X

′
2(y2 − ξ2)

n2

}

= β − plim

{(
X

′
2X2

n2

)−1
X

′
2ξ2

n2

}

= β − plim

{(
X

′
2X2

n2

)−1
(X

′
2y2 −X

′
2Z2(Z

′
2Z2)−1Z

′
2y2)

n2

}

Given Assumption A5, the 2nd term will be zero if and only if (i) ΣZy = ΣXZ = 0 or (ii) ∃

some finite, non-zero L ×K matrix φ s.t X = Zφ or (iii) ∃ some finite, non-zero L -vector

λ s.t y = Zλ.

If (i) holds both parts of the bias term are zero but note that this would imply that β = 0

so that the estimator is consistent at only one point in the parameter space. If (ii) or (iii)

hold, the two parts of the bias term are equal (and so cancel). Note though that (iii) implies

that the first stage R2 is one, and if (ii) holds there is no need for data combination. Thus

the RP procedure only consistently estimates β in extreme cases.

(where the subscript c denotes county), the first stage regression is yh = ζzh + ξh (where h denotes a
household), and where the researcher takes the additional step of projecting zh onto a set of county dummies
to obtain zc (and then proxying yc using an estimate of ζzc).
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The source of the problem is that regression prediction results in a prediction, ŷRP2 , that

differs from y2 by a prediction error or Berkson measurement error, ξ2 that is uncorrelated

with z2 but not uncorrelated with y2 and, in general, not uncorrelated with X2. As is well

known, classical measurement in an independent variable causes bias in linear regression, but

classical measurement errors in the dependent variable does not. This is because classical

measurement errors in y are by assumption (and in contrast to Berkson errors) uncorrelated

with y and X. It is also widely recognized that Berkson errors in an independent variable

does not cause bias in a linear region (Berkson, 1950; Wansbeek and Meijer, 2000). What is

less frequently recognized is that Berkson errors in a dependent variable do cause bias.

Figure 1 gives a geometric intuition for the problem. The solid lines represent the vectors

y, z and X. The dashed lines illustrate orthogonal projections. The orthogonal projection

of y onto X (which would be obtained by regression with complete data) is labelled Xβ.

The RP procedure first projects the y onto z, giving ŷ = zγ, and then projects this vector

onto X giving XβRP . Note that XβRP 6= Xβ.

[FIGURE 1 HERE]

The same problem arises with the RP+ procedure. The true value of (unobserved) y2j

can be decomposed into its projection onto Z and an orthogonal error

y2j = ŷj + ξ̂2j (4)

Consider then drawing a random residual from the first stage regression (ω1j) to create a

stochastic imputation

ˆ̂y2j = ŷj + ω̂1j = y2j − ξ̂2j + ξ̂1j (5)

Then ˆ̂y2 differs from y2 by the error ξ̂1 − ξ̂2 which is by construction orthogonal to Z1, but

not y2 or X2.4

4Note that, because it is randomly drawn from a separate random sample, ω̂1 is orthogonal to y2. The
problem with the composite error ω̂1 − ω̂2 lies in the prediction error ω̂2.

8



The proof of Proposition 1 notes that, given Assumptions A1-A5, E(X
′
2ξ2) = 0 can hold

only in extreme cases. The same is not true of the alternative projection error, u2, associated

with (2). The next proposition shows that the further assumption A6 (E(X
′
2u2) = 0) implies

a bias in β̂RP that takes a simple form.

Proposition 2. Given assumptions A1 - A6,

plim
(
β̂RP

)
= βφy,Z (6)

Proof. See Appendix.

Thus, with A6, β̂RP is attenuated and the degree of attenuation depends on the first

stage population R2 (φy,Z).5 It is important to note that we are working with de-meaned

versions of the variables: More generally, R2
y1,Z1

is the centered sample R2, φy,Z is the centered

population R2 and the result holds without demeaning the data. In our motivating example,

R2s for food Engel curves are typically between 50 and 70%, implying inflation factors of

between 1.4 and 2 (or attenuation of between 30 and 50%).

In A6, note that u2 is not observed so this condition is not empirically verifiable. It states

that X should not affect Z independently of Y .

This condition has analogies with the exclusion restriction imposed in instrumental vari-

able procedures (discussed further below). However, in many settings it is likely that suitable

proxies will be easier to identify than suitable instruments. This is because we have already

assumed that X is uncorrelated with other determinants of y (ε) (A1), and by construction

u is uncorrelated with y. That is, if X is indeed exogenous, the imputation error u would

have to be correlated with X despite being uncorrelated with y.

Moreover, the reason it may often be possible to find proxies for which E(X ′2iu2i) = 0,

whereas E(X ′2ixi2i) = 0 can only be satisfied in very special cases follows from the fact that

5A6 and A1 are in fact sufficient but not necessary for the proof of Proposition 2. If E(X ′
2jεj) 6= 0 and

E(X ′
2ju2j) 6= 0 but E(X ′

2j(ε2jγ + u2j)) = 0 we would still be able to obtain consistent estimates of βγ by
regressing Z on X. This is all that is needed for the proof of Proposition 2 below.
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y and ξ are correlated by construction while y and u are by construction uncorrelated.

As the attenuation in the RP procedure is an estimable quantity, the bias can be cor-

rected. One can rescale ŷRP by the estimated first stage (centered) R2
y1,Z1

, or, equivalently,

rescale β̂RP by the estimated first stage (centered) R2
y1,Z1

. We refer to this procedure as

“Re-scaled Regression Prediction” (RRP), with the rescaled impute of y2 denoted ŷRRP2

and the resulting estimate of β denoted β̂RRP . The consistency of β̂RRP , is a consequence of

Proposition 2.

Corollary.

plim
(
β̂RRP

)
= plim

(
β̂RP

R2
y1,Z1

)
= β.

Finally, consider the BPP and AM procedures, with resulting estimates β̂BPP and β̂AM .

Proposition 3. If and only if there is a single proxy z (a vector) β̂RRP , β̂BPP and β̂AM are

numerically identical.

Proof. See Appendix.

Consistency of β̂AM follows either directly from the Slutsky theorem or by numerical

equivalence to β̂RRP and β̂BPP .

An attraction of the RRP procedure over BPP and AM is that extends naturally

to multiple proxies. Applied researchers may also be more comfortable with a two-step

regression based approach.

It is useful also to think about other moments, as these imputation procedures have been

used to study dispersion as well as regression coefficients. For example, Blundell et al. (2008),

Attanasio and Pistaferri (2014) and Fisher et al. (2016) study consumption inequality. There

are a number of reasons why one might wish to impute y from some other sample to calculate

means, variances and covariances rather than calculating them directly in the initial sample.

For example, one might want to calculate variances among subsets of the population that

cannot be defined in the first sample but can be defined in the second. In addition, we
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might be interested in the growth of y among particular individuals along with variances

and covariances for these growth rates from panel data, but may only directly observe y in

cross-sectional data. For instance Blundell et al. (2008) calculate variances of growth rates in

total consumption expenditures for households in the PSID, and covariances of these growth

rates with the growth in incomes, where total consumption is imputed to the PSID from the

cross-sectional CE.

We continue with the case of a single proxy to allow comparison of BPP to RP and

RRP, and consider the case of a single x variable for ease of exposition (though the results

extend naturally to a vector X). AM recovers β directly, and does not generate unit level

estimates of y. The imputes ŷRP and ŷRRP are numerically different,

ŷRP = z2(z′1z1)−1z′1y1, (7)

ŷRRP = z2(z′1z1)−1z′1y1/R
2
y1,z1

(8)

Algebra analogous to the proof of Proposition 3 shows that ŷRRP and ŷBPP are numer-

ically identical for the case when all variables have been de-meaned. They will differ by an

additive constant in the event a non-zero intercept shift is present in equation (2).

Denote sample moments based on ŷRP by sRPyy and sRPyx ; and analogously for ŷRRP and

ŷBPP ,

sRPyy =
1

n2

ŷRP
′
ŷRP =

1

n2

z′1y1(z′1z1)−1z′2z2(z′1z1)−1z′1y1, (9)

plim
(
sRPyy

)
=

(γσyy)
2

γσyy + σuu
= σyy × φy,z, (10)

where again φy,Z is the population R2 from the first stage regression. The sample variance

of ŷRP underestimates the population variance of y. A similar calculation gives:

plim
(
sRPyx

)
= σyx × φy,z. (11)
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Note that with a scalar x the OLS estimate of β is just sRPyx /s
RP
yy and this gives an additional

intuition for the inconsistency of β̂RP as an estimator of β: sRPyx is not a consistent estimator

of σyx. Moreover, adding a residual to ŷRP , (the RP+ procedure) does not correct this.

For the rescaled impute ŷRRP , it follows from Equations (10) and (11) and the definition

of ŷRRP that

plim
(
sRRPyy

)
= σyy/φy,z (12)

and

plim
(
sRRPyx

)
= σyx. (13)

Continuing with the bivariate regression intuition, the RRP procedure is consistent for β

because it is consistent for σyx.

Finally, simple algebra establishes that

sRRPyy = sBPPyy (14)

and

sRRPyx = sBPPyx , (15)

This follows from the numerical equivalence of the de-meaned values of ŷRRP and ŷBPP . Thus

plim sBPPyy = plim sRRPyy > σyy > plim sRPyy . Turning again to our motivation consumption

example, Attanasio and Pistaferri (2014) show that trends in sBPPyy and syy (where y is

observed) are similar, but that there is a level difference. The similarity in trends suggests

that the first stage R2
y1,Z1

is roughly constant across years in their data. We confirm this in

our empirical example below.

For completeness we can also consider means. Had we not de-meaned the data, then it is

straightforward to show that the sample of ŷRP gives an consistent (and unbiased) estimate

of the population mean of y. However, if the RPP procedure is implemented by rescaling

ŷRP (rather than rescaling βRP ), it then immediately follows that the mean of this rescaled
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prediction of y is not a consistent estimator of the mean of y. One implication is that

a Statistical Agency aiming to add an imputed ŷ to a data release could not add a single

variable that would be appropriate both for use as a regressand and for estimating quantities

that depend on the first moment of y (poverty rates, for example).

Table 1: Summary of Imputation Methods (Consistency)

µy σyy β
Regression Prediction (RP) X × ×
Regression Prediction + ê (RP+) X X ×
Rescaled Regression Prediction (RRP) × × X
Blundell et al., 2004; 2008 (BPP) X × X
Arellano and Meghir, 1992 (AM) - - X

Notes: a Xindicates that the procedure given by the row leads to a consistent
estimate of the population parameter given by the column (µy , σyy or β). A
× indicates that the procedure leads to an inconsistent estimate of the relevant
parameter, and a dash indicates that the procedure does not provide an estimate
via the analogous sample moment. The table assumes that the RPP procedure
is implemented by rescaling ŷRP (rather than rescaling βRP ).

Table 1 summarizes these consistency results. For the case of a single proxy any of the

RRP, BPP and AM procedures give a consistent estimate of a regression coefficient β, but

for estimating unconditional moments, imputations from RP, BPP and especially RP+

are preferable.

2.2 Matching and Hot-deck Imputation

However, the problem we highlight with regression prediction extends to several related im-

putation procedures. In particular, Lillard et al. (1986) and David et al. (1986) note that

commonly employed hot-deck imputation procedures can be interpreted as regression pre-

diction plus an added residual. Such procedures draw a matched observation, y1i, of the

missing variable y2j, from a cell in the donor data set. Cells are defined by categorical

variables derived from Z. This replacement of the missing y2j with y1i from an donor obser-

vation matched on Z can be viewed as a prediction using the coefficients from a saturated

first stage regression on those categorical indicators for Z, plus a residual from the first stage

regression, and so is an example of the RP+ procedure, and our results apply.
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2.3 Practicalities

The analysis above is trivially extended to handle additional covariates. If additional co-

variates W are added to both the first stage regression and regression of interest, then the

results above hold by straightforward application of the Frisch-Waugh-Lovell theorem (y, X

and Z can be “residualized” and then the results apply directly to the residualized variables).

There are two points to note: First, the additional covariates W must be added to both the

first stage regression and regression of interest. Second, if covariates are added, then the

relevant first stage R2 is the partial R2 associated with Z.

Often a researcher will want to estimate a panel version of Equation (1): ∆y = ∆Xβ+∆ε

where ∆y = y1−y0 and superscripts denote time (and similarly for X and ε). As before β is

the main object of interest and could be estimated consistently by OLS if we had complete

data (that is, E(∆Xi × ∆εi) = 0). Suppose we have no data from which to compute

1
n

∑
∆yi ×∆Xi, but do have have some data on {y1

1, Z1}, {y0
2, Z2}, and a third sample with

{∆X3, Z3}. In our running example, one often wants to estimate the effect of income or

wealth changes on consumption and the available data would be a repeated cross-sectional

household budget survey combined with a panel survey on income or wealth. Then y3 can

be imputed year by year. It is straightforward extension of the results above to show that

β̂RRP is consistent in this case, and with one proxy β̂BPP remains numerically identical to

β̂RRP .

2.4 Related Literature

In this paper we study the use of proxies to predict a dependent variable.6 Regression pre-

diction of a dependent variable induces a prediction or Berkson measurement error. Berkson

measurement errors in a dependent variable cause bias in a linear regression, and this seems

to be much less noted than innocuous cases of Berkson measurement error in an independent

6Wooldridge (2002) contains an excellent overview of the use of proxies for independent variables and
Lubotsky and Wittenberg (2006) and Bollinger and Minier (2015) are recent papers on the optimal use of
multiple proxies for an independent variable.
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variable, or classical measurement error in a dependent variable.7 Two exceptions are Hys-

lop and Imbens (2001) and Hoderlein and Winter (2010). Hyslop and Imbens (2001) show

attenuation bias in a regression of ŷ on X where ŷ is an optimal linear prediction generated

by a survey respondent (not the econometrician). Relative to the imputation problem we

study, key differences include the fact that it is the survey respondent doing the prediction

and the assumption that the respondent’s information set includes Z, β and E(X). They

also assume (in our notation) that Z = y + u; (γ = 1). Hoderlein and Winter (2010) study

a similar problem, but in a nonparametric setting. Again, in their model it is the survey

respondent, rather than the econometrician, doing the predicting.8

Dumont et al. (2005) study corrected standard errors in a regression with a “generated

regressand”. Their work is motivated by the two-stage procedure for mandated-wage re-

gression proposed by Feenstra and Hanson (1999). In this paper, domestic prices are first

regressed on some structural determinants (trade and technology variables). The estimated

contributions of these variables to price changes are then in turn regressed on factor shares

to identify the changes in factor prices ‘mandated’ by changes in product prices.

In this context the first stage is

zi = Yiγ + ui (16)

and the second stage is not (1) but rather

Y k
i γ

k = Xiβ
k + εki (17)

where the k superscript denotes the kth element of a vector. Here Y k
i γ

k is not observed and

so is replaced by the first stage estimate Y k
i γ̂

k. Of course the vector γ̂ differs from γ by an

estimation error (Y ′Y )−1Y ′û, but, given the set-up, the stochastic element û is orthogonal

7Berkson measurement error in an independent variable is also a problem in nonlinear models. See for
example Blundell et al. (2019).

8They illustrate their results using self-reported data on consumption expenditure.
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to Y , and so also X, and thus causes problems for inference but not bias. Although the

motivation and second-stage regressand are different, this procedure essentially regresses z

on Y , analogously to the BPP procedure, rather than y on Z as in the RP procedure, so

the Berkson measurement error problem does not arise.

Finally, it is also useful to contrast the imputation procedures studied in this paper with

the 2-sample IV (2SIV) and 2-sample 2SLS approaches (Klevmarken (1982), Angrist and

Krueger (1992), Inoue and Solon (2010) and Pacini and Windmeijer (2016)) applied to the

combination of CE consumption data and PSID income data by Lusardi (1996).

Starting from (1), suppose we consider the linear projection of X2 on Z2:

X2j = Z2jθ + ν2j (18)

Note that E(Z ′2jν2j) = 0 by definition. Then replace assumptions with A5 and A6 with

parallel assumptions:

A11 E (Z ′1iX1i) and E
(
Z ′2jX2j

)
both have rank K.

A12 E (Z ′1iε1i) = 0.

Then the 2-sample-2SLS estimator:

β̂2S2SLS = (X̂1
′
X̂1)−1X̂1

′
y1 (19)

where X̂1 = Z1(Z
′
2Z2)−1Z

′
2X2 is consistent for β.

This approach is typically taken where Z is a grouping variable or variables (e.g., birth

cohort, occupation, birth cohort × education). The key assumption is that Z is linearly

independent of y given X, which is the polar opposite to the assumption that Z is a proxy

or proxies: a useful proxy must have information about y over and above the information in

X). To see this, considering the combination of equations (1) and (2):
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Z1i = X1iβγ + ε1iγ + u1i (20)

Given A5, then A12 can only hold in a knife-edge case.9

With 2-sample 2SLS, we use Z to impute X (and as the resulting prediction or Berkson

error is in an independent variable, this two-stage procedure does not cause inconsistency).10

An additional virtue of this procedure is that inherent measurement error in y poses no

additional difficulties as long as that measurement error is uncorrelated with Z. However, it

is important to note that, as the key assumption that supports the use of Z as an instrument

in general contradicts the assumption required to use Z as a proxy (and vice-versa), a variable

may be a plausible instrument or a plausible proxy, or neither; but not both.11

3 Inference and Precision

3.1 Asymptotic Standard Errors - One Proxy, Homoscedastic Case

If we strengthened the assumptions listed in Section 2 to include homoscedasticity (E (ε2i |Xi) =

ψεiεi > 0) and conditional independence of the error term (E(εi|Xi) = 0), then direct esti-

mation of (1) on complete data would result in an asymptotic variance for β̂ of (ΣXX)−1 ψεε.

When we impute ŷ from one data set to another, there are two losses of precision resulting

from (i) imputation and (ii) the combination of two different samples of the underlying pop-

ulation. Moreover, applying the usual OLS standard error formula the regression of ŷ on X

results in standard errors that are too small. We use the one-proxy (and single X variable),

and homoscedastic case to illustrate these points, and then give a correct formula for the

9Given equations (1) and (2), E(Z ′
1iε1i) = E ((X1iβγ + γε1i + u1i)

′ε1i) = 0. Given A1 this implies
E ((γε1i + u1i)

′ε1i) = 0 which can only be true if E ((γε′1iε1i) = −E(u′1iε1i) (note also that A5 implies that
γ 6= 0).

10Inoue and Solon (2010) show that 2SIV is not in general efficient because it does not take account of
fact that Z1 and Z2 will be different in finite samples. They suggest the 2-Sample Two-Stage Least Squares
procedure is therefore preferred.

11A similar point is made with respect to proxy and IV approaches to an “omitted variable” (a missing
independent variable) in Wooldridge (2002).
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asymptotic standard errors with possibly multiple proxies and heteroscedastic errors.

With a single proxy, β̂AM , β̂RRP and β̂BPP are numerically identical, so we derive the

asymptotic variance from the AM approach. The first stage (2) and reduced form (20) give

two moments

E (y′1i(z1i − γy1i)) = E (y′1iu1i) = 0,

E
(
x′2j(z2j − γx2jβ)

)
= E

(
x′2j(γε2j + u2j)

)
= 0

which identify the parameters γ and β.

It is informative to first consider implementing β̂AM (or equivalently β̂BPP or β̂RRP ) on

a single sample, containing all of y, z, x (of course, a researcher would have no reason to do

this, but it delivers a useful intuition). In this one-sample case, given the further assumptions

E (u2
i |yi) = ψuu and E(ui|yi) = 0, the asymptotic variance-covariance matrix of the moments

is

F =

 ψuuσyy ψuuσXXβ

ψuuσXXβ (γ2ψεε + ψuu)σXX

 (21)

where the off-diagonal terms are not zero because the moments come from the same random

sample. The asymptotic variance covariance matrix of (β, γ) is (G′F−1G)
−1

where G is the

gradient of the moments with respect the parameters. The asymptotic variance of γ̂ is of

course σ−1
yy ψuu. The asymptotic variance of β̂ is

Asymp V ar(β̂) =
(σXX)−1 ψεε

φy,Z
. (22)

Thus the loss of asymptotic precision due to imputation (relative to the direct estimation

of (1)), is inversely related to the first stage population R2 (φy,Z). Note the similarity of

this precision loss to the precision loss in the case of linear IV estimation (relative to OLS),

which is related to a first stage R2 in the same way(Shea, 1997).

Turning now to the realistic two-sample case, the asymptotic variance-covariance matrix
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of the moments becomes

F =

 αψuuσyy 0

0 (γ2ψεε + ψuu)σXX


where note that the off-diagonal terms are now zero because the moments come from in-

dependent random samples. The asymptotic variance covariance matrix of (β, γ) is again

(G′F−1G)
−1

where G is the gradient of the moments with respect the parameters. The

asymptotic variance of γ̂ is the same as before (though now multiplied by the term α).

α (σyy)
−1 ψuu. The asymptotic variance of β̂ is

Asymp V ar(β̂) = (σXX)−1 (ψεε + γ−2ψuu
)

+ ασ−1
yy β

2γ−2ψuu

= (σXX)−1 ψεε + γ−2 (σXX)−1 ψuu + αβ2γ−2σ−1
yy ψuu.

This can be written as

Asymp V ar(β̂) =
(σXX)−1 ψεε

φy,Z
+ (1 + α)β2

(
1− φy,Z
φy,Z

)
(23)

The second term inside the brackets represents the loss of asymptotic precision, due to

the use of two different samples. Precision is greater in (22) because the covariances between

moments in equation (21) have a stabilising influence on the estimates β̂. These covariance

terms are zero in the two sample case.

Finally, the usual OLS standard errors from a regression of an imputed dependent variable

(derived from the RRP or BPP procedures) are incorrect, but can easily be corrected. The
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OLS standard errors (as produced by standard software packages) are

V̂ OLS(β̂BPP ) = (x2x2)−1
(
ŷ2 − x2β̂

)′ (
ŷ2 − x2β̂

)
= (x2x2)−1 (ŷ′2ŷ2 − ŷ′2x2(x′2x2)x′2ŷ2)

= (x′2x2)−1
[
y′1y1(z′1y1)−1z′2z2(z′1y1)−1y′1y1 − y′1y1(z′1y1)−1z′2x2(x′2x2)x′2z2(z′1y1)−1y′1y1

]
.

With some algebra, it is straightforward to show that

plim
(
V̂ OLS(β̂)

)
=

(σXX)−1 ψεε
φy,Z

+ β2

(
1− φy,Z
φy,Z

)
= Asym V ar(β̂)− αβ2

(
1− φy,Z
φy,Z

)
. (24)

So, the usual OLS standard errors are too small, by αβ2
(

1−φy,Z
φy,Z

)
. Given assumption A9,

the OLS standard errors can be corrected using available consistent estimates of α, β and

φy,Z , n2

n1
, β̂ and R2

y1,Z1
.

3.2 Asymptotic Standard Errors - General Case

If there is more than one proxy β̂RRP 6= β̂AM . Here we derive the asymptotic variance

of β̂RRP and relate it to uncorrected, ‘naive’ estimates of the standard errors one would

obtain from the second stage RRP regression (of ŷ on X). Our formula allows for possibly

heteroscedastic errors and can, for example, straightforwardly be extended to provide cluster-

robust standard errors.12

Proposition 4. Given assumptions A1 - A8, β̂RRP has asymptotic variance

Asymp V ar(β̂RRP ) = Σ−1
XX

[
ΩXδ + α

ΣXZ

φy,Z
Σ−1
ZZΩZξΣ

−1
ZZ

ΣZX

φy,Z

]
Σ−1
XX

Proof. See Appendix.

12Our approach closely follows that of Pacini and Windmeijer (2016) who provide robust standard errors
for 2 sample 2SLS.
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Given the further assumption A9, this formula can be estimated using sample analogs of

ΣXX , φy,z, ΣXZ , α, ΩZξ and ΩXδ. It can also be written as

Asymp V ar(β̂RRP ) = VOLS(β̂) + αΣ−1
XX

ΣXZ

φy,Z
VOLS(γ̂)

ΣXZ

φy,Z
Σ−1
XX

which can be used to adjust robust estimates for the variances of coefficients in the first and

second stage regressions that are provided by Stata and other software packages. A Stata

package that implements the RRP procedure and provides the correct standard errors is

available from the authors at https://github.com/spoupakis/rrp. The results in Propo-

sition 4 can straightforwardly be extended to situations where we impute the dependent

variable into panel data and where we use instrumental variables for X.

4 Monte Carlo Experiments

To demonstrate the points made above in finite samples we first present a small Monte

Carlo study. The baseline data generating process is as follows. There is a single regressor

x ∼ N(0, 2). The dependent variable of interest is y = 1 + β × x + ε with σεε = 1. The

parameter of interest is β = 1. We cannot regress y2 on x2 directly, because information

on these quantities is collected in separate surveys (We only observe y1 and x2, so that we

cannot calculate the empirical covariance, 1
n1

∑
y1 × x1 or 1

n2

∑
y2 × x2). However, both

surveys contain a potential proxies for y. We begin with the case of a single proxy, z, which

we generate as follows,

z1 = 1 + 0.5× y1 + u1 and z2 = 1 + 0.5× y2 + u2

with u1, u2 ∼ N(0, σuu). We consider the case where σuu = 1 and a first stage R2 of 0.56.

We simulate this population multiple times, each time drawing two data sets (y1, z1) and

(x2, z2), and implementing the RP, RP+, RRP, BPP and AM procedures. Sample size
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is 500 for both samples (so that n2

n1
= 1) and we perform 10,000 replications.

The results are presented in Table 2. The first column shows the case of complete data

(OLS on a data set with both y and x); the remaining columns display results for different

imputation procedures. The first row gives the mean over 10,000 replications of the estimate

of β. With complete data OLS is unbiased for β. The RP and RP+ procedures are

systematically biased and the mean attenuation factor is equal to the population first stage

R2 of 0.56. The RRP, BPP and AM procedures (which are numerically identical here) are

approximately unbiased for β.

Table 2: Monte Carlo Experiment: One proxy

FULL RP RP+ RRP BPP AM

Mean of β̂ 1.000 0.556 0.555 1.002 1.002 1.002

Std. Dev. of β̂ 0.022 0.036 0.049 0.065 0.065 0.065

Mean of SE(β̂) 0.022 0.028 0.043 0.050 0.050

Mean of Corrected SE(β̂) 0.064
Mean of 1

n

∑
ŷi 1.000 1.000 0.999 1.805 1.000

Mean of 1
n−1

∑
(ŷi − ¯̂y)2 4.999 2.784 5.000 9.048 9.048

Note: Results based on 10,000 replications, n1 = n2 = 500, β = 1, E(yi) = 1, σyy = 5.

Rows two through four show the standard deviation of β̂ across replications along with the

mean of the OLS standard error across replications and (in the case of the RRP procedure)

the mean of the corrected standard error. When regressing an imputed y on x, the usual

OLS variance formula leads to a standard error that is too small, but the corrected standard

error correctly captures the variation of β̂ in repeated sampling.

Finally, rows five and six consider estimating the first two unconditional moments of y.

The mean of imputed ŷ from the RP procedure is unbiased for the population mean of

y but of course the variance of ŷ from this procedure is not unbiased for the population

variance. Adding a stochastic residual from the first stage (the RP+ procedure ) corrects

this. Because the RRP and BPP procedures amount to an upward rescaling of ŷ, the

variances of the resulting imputations are quite biased estimates of the population variance

of y. However, in the case of BPP, there is no bias in the mean.
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Table 3 illustrates the case when there are two proxies available, A and B. We generate

these as:

za,1 = 1 + γA × y1 + uA,1

zb,1 = 1 + γB × y1 + uB,1

and
za,2 = 1 + γA × y2 + uA,2

zb,2 = 1 + γB × y2 + uB,2

where γA = 0.4, γB = 0.3 and uA, uB ∼MVN(0,Σuu) with covariance Σuu =

 1 −0.5

−0.5 1

.

Table 3: Monte Carlo Experiment: Two proxies

FULL RP RP+ RRP AM

Mean of β̂ 1.000 0.712 0.712 1.000 1.001

Std. Dev. of β̂ 0.022 0.034 0.044 0.048 0.048

Mean of SE(β̂) 0.022 0.028 0.039 0.039

Mean of Corrected SE(β̂) 0.048

Note: Based on 10,000 replications, n1 = n2 = 500, β = 1, E(yi) = 1, σyy = 5.

The key points are that the RRP and AM procedures remain approximately unbiased

for β, and that the additional proxy improves precision.

The simulation study of two proxies is repeated for different values for the variance of

the error term of the proxy B equation, with Σuu[2, 2] equal to 1, 2 and 4. Table 4 reports

the standard deviation of β̂. This illustrates that in finite samples, the RRP procedure can

be more efficient than AM.

Table 4: Monte Carlo Experiment: Two proxies, varying σu,B

Mean of β̂ FULL RP RP+ RRP AM
For σu,A = 1 and σu,B = 1 0.022 0.034 0.044 0.048 0.048
For σu,A = 1 and σu,B = 2 0.022 0.036 0.048 0.060 0.066
For σu,A = 1 and σu,B = 4 0.022 0.036 0.050 0.067 0.089

Note: Based on 10,000 replications, n1 = n2 = 500, β = 1, E(yi) = 1, σyy = 5.

Finally, Table 5 considers a hot-deck imputation. Here z1 and z2 are partitioned into

bins, and the missing y2 is imputed by drawing a y1 from the relevant z-bin. As noted

above, this is formally equivalent to RP+. The results are in column 2 (titled “Hot-deck”).

As expected, estimates of β are significantly attenuated, with bias equal to the first stage

23



R2. Estimates of the unconditional mean and variance are unbiased. In column 3 we rescale

the donated y1 by the first stage R2 (from a regression on bin indicator variables), and refer

to this a “rescaled hot-deck” (RHD). As expected, the result is very limited empirical bias

in estimates of β but significant bias in estimates of the unconditional mean and variance.

Table 5: Monte Carlo Experiment: Hot-deck Imputation

FULL Hot-deck (HD) RHD

Mean of β̂ 1.000 0.532 0.986

Std. Dev. of β̂ 0.022 0.049 0.088
Mean of 1

n

∑
ŷi 1.000 1.001 1.858

Mean of 1
n−1

∑
(ŷi − ¯̂y)2 4.999 4.990 17.218

Note: Based on 10,000 replications, n1 = n2 = 500, β = 1, E(y) = 1,
V (y) = 5. The imputation is based on 1 proxy, partitioned into 10 bins.

5 Empirical Illustrations

In this section we illustrate the our results with two empirical examples using the PSID

(Panel Study of Income Dynamics, 2019) and the CE Interview Survey.

5.1 Housing Wealth Effects

We begin with an exercise similar to that of Skinner (1989) (making use of the imputation

procedure set out in Skinner (1987)). This is to estimate the elasticity of consumption

spending with respect to changes in housing wealth by regressing nondurable consumption

spending on demographics, lags and leads of total family income and house values. We

do this using the 2005-2013 waves of the PSID when a more-or-less complete measure of

nondurable expenditures is available. Following the approach taken by Skinner (1989) for an

earlier period when spending data was only available for a subset of goods, we also impute

nondurable consumption spending from the CE Survey into the PSID.13 This allows us to

13Prior to 1999 the PSID only included food and utility spending, which was then broadened to include
health expenditures, gasoline, car maintenance, transportation, child care and education. In 2005, additional
categories for clothing and entertainment were added.
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compare results from different imputation procedures with the complete data case (using

the PSID’s own consumption measures). In this respect our exercise is similar to that used

in Attanasio and Pistaferri (2014) who assess the accuracy of the imputed consumption

measures they use in the early years of the PSID with those available in the PSID in later

years.

Our measure of nondurable consumption is the sum of spending on food at home, food

away from home, utilities (including gas and electricity), gasoline, car insurance, car repairs,

clothing, vacations and entertainment. For proxies we use the log sum of total food spending

(whether at home or away from home), log utility spending and the number of cars owned

by the household (up to a maximum of two). Our demographics controls are the size of the

household, age, age squared, the log earnings of the household head (set to zero for those

with zero earnings), and a dummy for having zero earnings. We annualise consumption

measures and then take logs in both surveys.

Our sample selection choices in the PSID are chosen to mirror those used in Skinner

(1989). In particular we take a sample of homeowners, who are observed in all waves from

2005-2013, who do not move, are not observed with zero incomes and who are not observed

renting over the sample period. To prevent our results being driven by extreme values, we

also exclude those with incomes or house values in the top and bottom 1% of the PSID

sample.

In the CE Interview Survey we take a sample of homeowners. The CE Interview Survey

aims to interview households over a four quarters, asking retrospective consumption ques-

tions over the previous three months in each interview. We take only those individuals who

were observed in all four interviews, and whose final interview was held a year coinciding

with the biennial PSID survey waves from 2005-2013. We then average spending over each of

the previous four quarters they were observed and keep only one observation per household.

By averaging over multiple waves we reduce measure error in consumption and get consump-

tion values which are more in the spirit of the questions households are asked in the PSID
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(households in the PSID are asked about their spending over the previous year, or ‘usual’

spending in an average week or month). We run our imputation regressions separately in

each year, which would for example allow for the fact that changes in relative prices might

change the relationship between food and total spending from one period to the next.14

Table 6 shows the results from our first stage imputation regressions. We note that the

relationships between the proxy variables and total nondurable consumption and the fit of

the imputation regressions remain very stable across the different survey years. Column (6)

shows results pooling across all years (2005, 2007, 2009, 2011 and 2013).

Table 6: Imputing nondurable consumption spending using CES

(1) (2) (3) (4) (5) (6)

2005 2007 2009 2011 2013 All years

log Food 0.562*** 0.545*** 0.541*** 0.549*** 0.555*** 0.549***

(0.012) (0.008) (0.008) (0.008) (0.008) (0.004)

log Utilities 0.377*** 0.382*** 0.410*** 0.384*** 0.389*** 0.389***

(0.015) (0.010) (0.011) (0.010) (0.011) (0.005)

Cars 0.035*** 0.036*** 0.027*** 0.042*** 0.031*** 0.034***

(0.005) (0.004) (0.003) (0.004) (0.004) (0.002)

Partial R2 0.728 0.755 0.751 0.761 0.753 0.751

N 1,590 2,896 2,759 2,668 2,470 12,383

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors in parentheses. Additional controls
for age, age squared, family size, log of head’s earnings (set to zero if earnings are zero), a dummy for
head’s earnings being greater than zero, and (in the pooled regression) year dummies. “Cars” refers to
the number of cars capped at a maximum of two. The partial R2 reported here is obtained by regressing
our dependent variables on our proxies after partialling out the effects of other covariates in an inital
regression.

Table 7 shows the results from regressions of consumption spending on income variables

and house values in the PSID. The first column shows results using the consumption measure

14Our approach differs from the approach used in Skinner (1989) in two key respects. First, Skinner (1989)
imputes the absolute level of consumption using the absolute levels of food and utilty spending before taking
logs of the imputed values in the PSID, while we use the log of nondurable consumption, food and utility
spending throughout. To avoid the need to throw out observations who do not report spending on food
away from home, we combine food at home and food away from into a food spending variable. Second, we
use a measure of nondurable consumption that is narrower than that used in Skinner (who takes the sum of
all spending, less mortgage interest, furniture and automobiles and including imputed spending on owner-
occupied housing). This allows us to compare the results we obtain without imputed spending measures
with those in the PSID.
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available in the PSID. This is the complete data case. The second column shows results using

the RP procedure employed by Skinner, and the third column shows results using the RRP

approach we set out above.

Table 7: Empirical Example: Log nondurable consumption on house values

(1) (2) (3)

PSID CE (RP) CE (RRP)

log Incomet−3 0.047** 0.036* 0.048*

(0.017) (0.016) (0.021)

log Incomet−2 0.064*** 0.043** 0.057**

(0.016) (0.014) (0.018)

log Incomet−1 0.040** 0.024 0.032

(0.015) (0.014) (0.019)

log Incomet 0.109*** 0.080*** 0.107***

(0.022) (0.020) (0.026)

log Incomet+1 0.105*** 0.074*** 0.099***

(0.016) (0.015) (0.020)

log House value 0.114*** 0.083*** 0.111***

(0.016) (0.015) (0.020)

N 5,406 5,406 5,406

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors
in parentheses. Standard errors are clustered at the individual level.
Additional controls for age, age squared, family size, log of head’s
earnings (set to zero if earnings are zero), a dummy for head’s earnings
being greater than zero, and year dummies. Column (1) shows results
using the measures of nondurable consumption contained in the PSID
as the dependent variable. Column (2) uses the unscaled regression
prediction (RP) procedure to impute consumption spending into the
PSID from the CE survey. Column (3) shows results when nondurable
consumption is imputed to the PSID from the CE using the re-scaled
regression prediction (RRP) procedure.

The complete data results from the PSID suggests that each 10% increase in house values

is associated with a 1.14% increase in consumption spending. When we impute consumption

using the RP procedure, we underestimate the effects of housing wealth on consumption

(with the estimated effect falling to 0.83%). Using the RRP procedure, we obtain a value

of 1.11% which is very similar to that obtained using the complete data in the PSID. This

illustrates the theoretical results of Section 2. There we argued that the exclusion restriction
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A6 was very weak. These results suggest that it holds in these data, and moreover, that our

demographic covariates adequately control for any sample differences between the PSID and

the CE Interview Survey.

5.2 Consumption Inequality

As a second exercise we examine the evolution of consumption inequality using actual and

imputed nondurable consumption measures. This is in the spirit of the longer-run analysis

of consumption and inequality carried out in Attanasio and Pistaferri (2014).

To do this we impute consumption measures for all households in the PSID (this time

including non-homeowners) and plot the standard deviation over time for imputed consump-

tion from the RP procedure and from the RRP procedure. We then compare this with the

standard deviation of nondurable consumption spending as measured in the PSID. To pre-

vent this measure being unduly influenced by extreme values, we also trim the top and

bottom 1% of consumption spending in the PSID. The results are shown in Figure 2.

[FIGURE 2 HERE]

The standard deviation of consumption spending shows similar trends in all three series.

The fact that imputed and observed consumption move in similar ways over time is consis-

tent with the findings of Attanasio and Pistaferri (2014) who use the latter as a check for

the former in their analysis. The link between movements in the RP and RRP imputed

measures reflects the stability of the first stage R2 over time.

We also note that the RP measure tends to understate the level of consumption inequal-

ity, while the re-scaled (RRP) procedure tends to overstate it. This was shown analytically

in Section 2. This example reinforces the point made in Table 1 that while the RRP

procedure does not lead to biased estimates of regression coefficients, it does lead to biased

estimates of the unconditional population mean and variance. When we apply the correction

implied in equation (12) to the RRP estimate of the standard deviation we obtain roughly
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the correct standard deviation. Once again, this suggests that the key assumption (A6) is

appropriate in this application.

6 Summary and Conclusion

Although using regression prediction to impute the dependent variable in a regression model

induces measurement errors “on the left”, it is not necessarily innocuous. We have shown

that the resulting Berkson errors in the dependent variable result in inconsistent estimates

of the regression slope. This procedure has been much used to impute consumption to data

sets with income or wealth, following a suggestion by Skinner (1987). This inconsistency

can be overcome by rescaling by the first stage (imputation) R2 (the RRP procedure) or

by employing reverse regression in the first stage (the BPP procedure). Even then, we have

shown that the usual OLS standard errors are not correct, but they can be corrected with

estimable quantities.

Our results have use beyond the applications we demonstrate. For example, suppose a

researcher has data with which to estimate a regression, but the suspects that the dependent

variables is measured with error. The researcher also has a validation sample including

the same dependent variable and a ‘gold-standard’ measure of the dependent variable (for

example from administrative data). Then our analysis points to how to use this validation

sample to estimate the regression model of interest (treating the original measure of the

dependent variable as the proxy, z, and the ‘gold-standard’ measure as y.)

Our analysis demonstrates that the preferred method of imputation may depend on the

intended application. This poses a challenge to data providers who may wish to include

imputed variables in a standardized data set for multiple users.

Imputation of a dependent variable from a complimentary data set is a potentially useful

part of the applied econometrician’s toolkit, but it must be done with care.

29



Figures

Figure 1: RP Imputation Procedure as Projections
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Figure 2: Standard deviation of log consumption
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Note: Authors’ calculations using the PSID. Lines show the standard deviation of log nondurable spending in the PSID
(“Actual”), the standard deviation of imputed log consumption using regression prediction (“Imputed (RP)”), the standard
deviation of imputed log consumption using re-scaled regression prediction (“Imputed (RRP)”), and the standard deviation of
log consumption using re-scaled regression prediction corrected using the relationship in equation (12) (“Imputed and corrected
(RRP)”).

Appendices

A Proofs of propositions

Proof of Proposition 2

Proof.
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Proof of Proposition 3

Proof. We have

β̂RRP = (X
′

2X2)−1(X
′

2z2)(z
′

1z1)−1(z
′

1y1)
[
(y

′

1z1)(z
′
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′

1y1)
]−1

y
′

1y1

= (X
′

2X2)−1X
′

2z2(y
′

1z1)−1y
′

1y1 = β̂BPP . (25)

Thus, under the assumptions listed in Proposition 2, β̂BPP is also consistent.

The AM procedure takes the ratio of β̂γ = (X
′
2X2)−1X

′
2z2 and γ̂ = (y

′
1y1)−1y

′
1z1, to give

β̂AM = β̂γ/γ̂.
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′
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′

2z2

[
(y

′

1y1)−1y
′

1z1

]−1

= (X
′

2X2)−1X
′

2z2(y
′

1z1)−1y
′

1y1 = β̂RRP = β̂BPP . (26)

Proof of Proposition 4

Proof. Consider the second stage regression
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This implies that

Z2j ζ̂

R2
y1,z1

= X2jβ + δ2j + Z2j

(
ζ̂

R2
y1,z1

− ζ

φy,z

)
(28)

Our estimate of β is
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β̂RRP = (X ′2X2)−1X ′2
Z2ζ̂
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y1,z1

(29)

Combined with (28) this gives

β̂ − β = (X ′2X2)−1X ′2δ2 + (X ′2X2)−1X ′2Z2
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(30)

Given our assumptions, this implies that

√
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where
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