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Abstract

This paper examines how farmers adapt, in the short-run, to extreme heat. Using a pro-
duction function approach and micro-data from Peruvian households, we find that high tem-
peratures induce farmers to increase the use of inputs, such as land and domestic labor. This
reaction partially attenuates the negative effects of high temperatures on output. We interpret
this change in inputs as an adaptive response in a context of subsistence farming, incomplete
markets, and lack of other coping mechanisms. We use our estimates to simulate alternative
climate change scenarios and show that accounting for adaptive responses is quantitatively im-
portant.
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1 Introduction

A growing body of evidence suggests that extreme temperatures have negative effects on crop
yields.1 Based on these findings, current estimates suggest that climate change will bring dramatic
shifts in agriculture: a global warming of 2◦C, as in conservative predictions, would reduce agricul-
tural output by almost 25% (IPCC, 2014). Among those exposed to this shock, the rural poor in
developing countries are probably most vulnerable. They are located in tropical areas, where the
changes in climate will occur faster and be more intense, and their livelihoods are more dependent
on agriculture.

Given these potentially disruptive effects, it is extremely important to understand possible
adaptation strategies and scope for mitigation. Some studies suggest that a possible response to
climate change would be re-allocation of economic activity, such as migration, changes in trade
patterns or sectoral employment (Colmer, 2016, Costinot et al., 2016, Feng et al., 2012). Other
studies, based on farmers’ self-stated adaptive strategies, emphasize changes in consumption and
savings as potential temporary responses (Akpalu et al., 2015, Di Falco et al., 2011, Gbetibouo,
2009, Hisali et al., 2011). Less is know, however, about productive adaptations, i.e., changes in
production decisions to attenuate the negative effects of extreme temperatures. Existing studies,
in U.S. and India, find that farmers do not seem to change crop mix or agricultural practices in
response to rising temperatures, and that crop yields are negatively affected by both short-term
weather shocks and long-term changes in climate patterns (Burke and Emerick, 2016, Guiteras et
al., 2015). This finding has been interpreted as evidence that farmers are not engaging in long-run
productive adaptation.

This paper examines how farmers adapt to extreme heat in the context of a developing country.
Our main contribution is to show that an important adaptive response is to increase the use of farm
inputs, such as land and domestic labor. To the best of our knowledge, this margin of adjustment
to extreme temperatures has not been documented before. It has, however, relevant implications
for the quantification of predicted economic losses due to climate change, and for understanding
the potential long-term effects of weather shocks.

To separate the effects of temperature on agricultural productivity, output, and productive
decisions, we use a production function approach, combined with a novel dataset. We match
microdata from Peruvian farming households for 2007-2015 with high-frequency temperature data
obtained from satellite imagery. The granularity of our data allows us to estimate the relationship
between temperature and agricultural outcomes (such as total factor productivity (TFP), yields,
output and input use) using observations at the farm level.2

Our approach has several advantages over existing studies examining the effect of temperature
1See for instance, Burke et al. (2015), Carleton and Hsiang (2016), Chen et al. (2016), Deschenes and Greenstone

(2007), Lobell et al. (2011), Schlenker et al. (2005, 2006), Zhang et al. (2017a).
2A similar approach has been used for manufacturing plants in China in Zhang et al. (2017b).

2



on agriculture using crop yields. First, crop yields capture both biological and human responses,
such as changes in labor and other inputs. However, by construction, they cannot reflect changes
in land use, missing a potentially important margin of adjustment. Second, most of the existing
evidence comes from farmers in the U.S. These farmers engage in mostly intensive, monocropping
agriculture and have access to ex-ante risk coping mechanisms, such as crop insurance. These
features may reduce incentives to adapt to climate change (Annan and Schlenker, 2015). Hence,
their responses may not be informative of adaptation strategies of farmers in other contexts. Finally,
household and satellite data like the one used in this paper are publicly available for most developing
countries. Thus, our analysis can be replicated in contexts that lack rich weather station data.

We find that farmers respond to extreme temperature by increasing use of land and domestic
labor. This occur despite extreme temperatures reducing agricultural productivity. The magnitude
is economically significant and partially offsets the drop in total output associated with lower
productivity. This result is robust to a variety of specification checks, and is not driven by changes
in agricultural prices. This is a surprising finding: in standard production models lower productivity
would weakly reduce input use. However, it is consistent with decisions of consumer-producers
facing incomplete markets, as in agricultural household models (De Janvry et al., 1991, Taylor
and Adelman, 2003). In this view, subsistence farmers, lacking other consumption smoothing
mechanisms, may use their inputs more intensively to attenuate drops in output and consumption.
With this framework in mind, we interpret our results as evidence of productive adaptation, i.e.,
changes in production decisions to reduce the negative effects of extreme temperature.

We then exploit the richness of our data to examine other possible adaptive responses. First,
we document changes in crop mix associated with extreme temperatures: reduction in cereals (such
as rice and corn) and increase in tubers. This response, however, occurs in addition to changes
in land use, and is not enough to offset the drop in productivity. Second, we examine several
ex-post coping mechanisms, already identified in the literature on consumption smoothing, such as
migration, off-farm labor, and disposal of livestock (Bandara et al., 2015, Beegle et al., 2006, Kochar,
1999, Munshi, 2003, Rosenzweig and Wolpin, 1993, Rosenzweig and Stark, 1989). Consistent with
previous studies, we find that households reduce their holdings of livestock after a negative weather
shock, although the evidence is less conclusive regarding other coping mechanisms. Interestingly,
the increase in land as a response to extreme heat only occurs among farmers who do not have
livestock, even though cattle owners do seem to have available land. This result suggests, by a
revealed preferences argument, that adjusting land may be a more costlier strategy than selling
disposable assets.

Our findings have important implications for the quantification of the potential economic costs
of climate change, especially for developing countries. Most current predictions rely on estimates of
the effect on crop yields from studies in developed countries or performed in controlled conditions.
These estimates fail to take into account changes in land use, and thus may overestimate the effects
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of climate change on agricultural output.
To illustrate this point, we use our estimates to simulate the potential effect on yields and output

of evenly distributed increments of 1.5◦C to 3◦C in average daily temperatures.3 We separate the
analysis for the two main climatic regions of Peru, i.e., coast and highlands. Our simulations
produce two important results. First, the effects of increased temperature are heterogeneous.
The coast, with an arid semi-tropical climate, would suffer large losses (between 8-19% of total
output). In contrast, the highlands, with a cooler and wetter climate, would actually slightly
benefit from warmer temperatures. Similar heterogeneous effects have been document for U.S.
agriculture (Deschenes and Greenstone, 2007, Mendelsohn et al., 1994, Schlenker et al., 2006) but
not for a developing country. Second, accounting for farmer adaptation is relevant to quantify
output losses. In the case of the coast, failing to account for adaptive behavior would overestimate
the estimated losses by almost 15%.

The rest of this paper is organized as follows. Section 2 discusses our analytical framework and
empirical strategy. Section 3 presents the main results on productive adaptation and other coping
mechanisms, while Section 4 explores in more detailes changes in land use. Section 5 presents
simulations of climate change scenarios. Section 6 presents a variety of robustness checks. Section
7 concludes.

2 Methods

2.1 Analytical Framework

This section describes a simple framework to analyze farmer’s adaptation to changes in temperature.
We focus on short-run productive adaptation, that is, changes in production choices (such as input
use) as a strategy to attenuate the negative effects of weather shocks.

We start by considering a producer-consumer model in which agricultural output is defined by
production function Y = f(A, T, L), where A is total factor productivity (TFP), T is land and L
is labor. In this framework, a natural way to analyze temperature is through its effects on TFP.
This effect is likely non-linear. Existing studies, in both the biological and economic literature, find
that at moderate levels increases in temperature are beneficial for crop yields. However, at higher
levels, temperature can be harmful.4

How would farmers respond to this shock? In a standard production model, with well-functioning
markets, we could expect that producers adjust to lower productivity by reducing input use. This
reduction in input use would exacerbate the drop in TFP, and lead to a larger drop in agricultural
output.

3These increments are consistent with scenarios RCP2.6 and RCP8.5 of the 4th IPCC Assessment Report. See,
for example, IMF (2017).

4See for example Schlenker and Roberts (2009), Burke and Emerick (2016), Auffhammer et al. (2012), Hsiang
(2010), Hsiang (2016), among others.
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These predictions, however, could be different in a context with incomplete markets. In this
case, we cannot longer separate consumption and production decisions (as discussed in Benjamin
(1992)). Consider, for example, an scenario in which some inputs cannot be traded and households’
consumption is close to subsistence levels.5 This scenario is similar to the environment used in
standard agricultural household models (De Janvry et al., 1991, Taylor and Adelman, 2003). In
this case, a negative productivity shock, and the subsequent drop in agricultural output, could push
household consumption below subsistence levels. In the absence of other coping mechanisms (such
as crop insurance, savings, or access to credit) or limited off-farm opportunities (such as migration
or non-agricultural jobs), the only way to attenuate the drop in output, and avoid an undesirable
reduction in consumption, would be to increase use of non-traded inputs, such as land or domestic
labor. This has been documented recently in a report by Damania (2017). The authors show
how, as a response to shortfall in precipitation of one standard deviation, farmers from Madagascar
expand their productive units into forests, increasing the rate of deforestation by 10% to 20%.

The argument laid out above focuses on a particular type of productive adaptation, i.e., changes
in input use. There are, however, other possible adaptive responses. For instance, recent work on
climate change and adaptation has stressed changes in crop mix as a possible response (Burke and
Emerick, 2016, Costinot et al., 2016). Similarly, an influential literature highlights how households
can smooth consumption by migrating, increasing off-farm work, or selling cattle, among other
strategies (see for instance Rosenzweig and Wolpin (1993) or Kochar (1999)).

With this framework in mind, our empirical analysis examines the effect of extreme heat on
TFP, input use, and agricultural output. We also examine potential heterogeneous responses, as
those with availability of alternative coping strategies may be more likely to use them instead of
changes in input use. Finally, we also examine other productive adaptations, such as changes in
crop mix, and consumption smoothing mechanisms.

2.2 Data

Our empirical analysis focuses on two climatic regions of Peru: the coast and the highlands (see
Figure 1 for a location map).6 The two regions exhibit a rich variety of climatic, socioeconomic
and agronomic characteristics. Similar to other developing countries, modern farming (usually
capital intensive and export-oriented) co-exists with small scale, subsistence farmers. This latter
group encompasses most rural households but has been neglected in previous studies on the effect
of temperature on agriculture. We argue that these features make the Peruvian case an ideal

5These features are certainly present in the Peruvian case: more than 50% of households are poor, only around
10% of farmers rent land, and family members work mostly on the household farm (see Table 1).

6Peru has three main climatic regions: the coast to the west, the Andean highlands, and the Amazon jungle to the
east. The coast is the region from 0 to 500 meters above sea level (masl) on the west range of the Andes. Highlands
range from 500 to almost 7,000 masl, while the jungle is the region of low lands (below 1000 masl) to the east of
the Andes. We drop the jungle due to small sample size and poor quality of satellite data: many observations are
missing due to cloud coverage.
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testing ground of the effect of extreme heat on agriculture. By providing a snapshot of the effects
on different climates and subsistence farmers, it can be informative of potential effects in other
developing countries.

We combine household surveys with satellite imagery to construct a comprehensive dataset
with information on agricultural, socio-demographic, and weather variables at the farm level. The
dataset includes around 55,000 households and spans from 2007 to 2015.7

Figure 1: ENAHO observations 2007-2015

Temperature and precipitation A main limitation in Peru, and other developing countries,
is the lack of high resolution weather data: in the period of analysis there were just 14 stations
in the whole country. This lack of data also introduces a significant measurement error in gridded
products, such as reanalysis datasets, which use weather station data as their main input.8

7We restrict the sample to households with some agricultural activity in each survey year. We drop 282 farmers
reporting land holdings larger than 100 hectares. We also drop observations from the jungle due to small sample size
and poor quality of satellite data: any observations are missing due to cloud coverage.

8Two commonly used examples are the one produced by the European Center for Medium-Range Weather Fore-
casting (ECMWF) and the one by the National Center for Environmental Prediction (NCEP). These products
interpolate weather station data and interpolate it on a global grid using climate circulation models.

6



To overcome these limitations, we use satellite imagery.9 For temperature, we use the MOD11C1
product provided by NASA. This product is constructed using readings taken by the MODIS tool
aboard the Terra satellite. These readings are processed to obtain daily measures of daytime
temperature on a grid of 0.05 × 0.05 degrees, equivalent to 5.6 km squares at the Equator, and is
already cleaned of low quality readings and processed for consistency.10

The satellite data provides estimates of land surface temperature (LST) not of surface air
temperature, which is the variable measured by monitoring stations. For that reason, the reader
should be careful when comparing the results of this paper to other studies using re-analysis data or
station readings. LST is usually higher than air temperature, and this difference tends to increase
with the roughness of the terrain. However, both indicators are highly correlated (Mutiibwa et al.,
2015).

Precipitation data comes from the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) product (Funk et al., 2015). CHIRPS is a re-analysis gridded dataset that combines
satellite imagery with monitoring station data. It provides estimates of daily precipitation with a
resolution of 0.05 × 0.05 degrees.

We combine the weather data with household’s location to obtain daily measures of temperature
and precipitation for each farmer during the last completed growing season.11 We fix the growing
season to months October through March. This period corresponds to the southern hemisphere’s
Spring and Summer. The distribution of temperatures in the relevant locations over the growing
season are shown in Figure 2.

Agricultural and socio-demographic data We use repeated cross sections of the Peruvian
Living Standards Survey (ENAHO), an annual household survey collected by the National Statistics
Office (INEI). This survey is collected in a continuous, rolling, basis. This guarantees that the
sample is evenly distributed over the course of the calendar year. Importantly, the ENAHO includes
geographical coordinates of each primary sampling unit, or survey block.12 In rural areas, this
corresponds to a village or cluster of dwellings. We use this information to link the household data
to satellite imagery. Figure 1 depicts the location of the observations used in this study.

The ENAHO contains rich information on agricultural activities in the 12 months prior to the
interview. We use this information to obtain measures of agricultural output and input use. To
measure real agricultural output, we construct a Laspeyres index with quantity produced of each

9A more extensive discussion on the alternative weather data sources available, as well as their respective advan-
tages and limitations is presented in the Supplementary Data Appendix.

10The satellite estimates are very precise. Validation studies comparing satellite and ground readings find a
discrepancy of only 0.1-0.4◦C (Coll et al., 2005, 2009, Wan and Li, 2008).

11We assign the outcomes for growing season t (October t = 1 through March t), to any household interviewed as
of April t and up to March t+ 1. We believe this approach is conservative since it only assigns weather outcomes to
households once the growing seasons has finished.

12There are more than 3,400 unique coordinate points.
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Figure 2: Distribution of daily average temperature

Notes: Figure depicts the share of days spent in each temperature bin by the farmers in our sample, during
the 2007-2015 growing seasons. The 36◦C threshold indicates the temperature beyond which additional
heat becomes detrimental for agricultural yields (see Figure 3).

crop and local prices.13 Land use is obtained by adding the size of parcels dedicated to seasonal
and permanent crops. We observe the size and use of each parcel, but not which specific crops are
cultivated in each one. Since most farmers cultivate several crops, this prevents us from calculating
crop-specific yields.

We use self-reported wage bill paid to external workers as a measure of hired labor use. Labor
information on household members is available for the week prior to the interview.14 We use this
information to obtain number of household members working in agriculture and an indicator of
child labor.15 We use these variables as proxies for domestic labor.

We complement the household survey with data on soil quality from the Harmonized World Soil
Database (Fischer et al., 2008). This dataset provides information on several soil characteristics
relevant for crop production on a 9 km square grid.16

13As weights, we use the median price of each crop in a given department in 2007.
14Given that interviews can occur after the growing season, these measures of domestic labor could not reflect

actual input use. We address this concern by using only observations interviewed during the growing season.
15Child labor is an indicator equal to one if a child aged 6-14 reports doing any activity to obtain some income.

This includes helping in own farm, selling services or goods, or helping relatives, but excludes household chores.
16The soil qualities include nutrient availability and retention, rooting conditions, oxygen availability, excess salts,
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Table 1 present summary statistics for our sample of farming households. There are several
relevant observations for the empirical analysis. First, most farmers are poor and depend on
agriculture as their main economic activity.17 Poverty and reliance in agriculture as the primary
economic activity are higher in the highlands. Second, farmers have small scale operations (the
average farm size is around 2 ha), and use practices akin to traditional rather than industrial
farming: they rely on domestic labor including child labor, cultivate a variety of crops instead of
monocropping, and leave some land uncultivated. This feature is consistent with fallowing and
crop rotation.

Finally, climatic conditions are drastically different in both regions in the sample. The coast has
a sub-tropical climate with mild to hot temperatures and very little rainfall. Not surprisingly, most
of the agriculture in this region occurs in irrigated lands.18 In contrast, the highlands have cooler
temperatures and more rain during the growing season. These differences do not entail substantially
different results in the key components of our analysis, but have important implications when
thinking in terms of the potential effects of greater temperatures due to climate change.

2.3 Empirical strategy

The aim of the empirical analysis is to examine how farmers adjust their production decisions as
a response to extreme heat. As discussed in Section 2.1, we adopt a producer-consumer approach
and analyze weather shocks as changes in total factor productivity, A. In this framework, extreme
heat reduces A, and through that channel, it can affect input use and agricultural output.

These outcomes can be expressed as reduced forms of A and given parameters (such as local
prices and return to land fallowing). Assuming that A is a function of local weather and other
factors, such as household and district characteristics, we can approximate these reduced forms
using the following log-linear regression model:

ln yijt = g(γ, ωit) + φZi + ρj + ψt + εijt, (1)

where the unit of observation is farmer i in district j during growing season t, and y is an outcome
such as agricultural output, or quantity of input used. g(γ, ωit) is a non-linear function of local
weather conditions (ωit), to be specified later. Zi is a set of household characteristics, and ρj and
ψt are district and year fixed effects.19 We cluster the standard errors at district level to account

toxicity and workability.
17The incidence of poverty in our sample of farmers is around 50%. In comparison, using a similar methodology,

the incidence of poverty in all of Peru during the period of analysis was 21.6%
18Given the potential importance of irrigation as a method to counteract the damage from high temperatures, a

branch of the literature decides to exclude areas with high irrigation coverage, see for instance Schlenker and Roberts
(2009). We keep these observations but control for share of irrigated land.

19A district is the smallest administrative jurisdiction in Peru and approximately half the size of the average U.S.
county. Our sample includes 1,320 districts out of a total of 1,854.
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for spatial and serial correlation in the error term.20 In this baseline specification, we are interested
on γ: the reduced-form estimate of the effect of weather on agricultural outcomes.

Due to data limitations, we do not include other determinants of agricultural outcomes, such as
local prices, endowments, or returns to land fallowing. However, to the extent that these variables
are captured by the set of fixed effects and household controls, these potential endogeneity is less
of a concern. In addition, we check robustness of our results to including a richer set of covariates,
such as input endowments and department-by-growing season fixed effects. We also examine the
effect of weather shocks on local prices.

2.3.1 Estimating the effect on productivity

At the core of our analysis is the assumption that extreme heat affects total factor productivity.
We examine this assumption in two ways. First, we estimate regression (1) using as dependent
variable total output per hectare (Y/T ), a proxy for agricultural yields. This approach is similar
to previous studies in the literature which use crop yields.21

A main limitation of this approach is that yields is a measure of partial productivity which
captures both changes in TFP and relative use of inputs. If inputs are fixed, for instance in lab
conditions, this approach is informative of effects on TFP. However, in the presence of adaptive
responses, it can overestimate the effect on agricultural productivity.

For that reason, we complement our results estimating a production function. Assuming a
Cobb-Douglas production function Yijt = AijtT

α
itL

β
it, taking logs, and using the functional form

assumption of A, we obtain the following regression model:

lnYijt = α lnTit + β lnLit + g(γ, ωit) + φZi + ρj + ψt + εijt, (2)

where Y is agricultural output, and T and L are quantities of land and labor. This model is similar
to equation (1), however, by controlling for input use, γ can now be interpreted as the effect of
weather on TFP.

A potential concern with this specification is that ε does not simply reflect unanticipated shocks
but unobserved determinants of farmer’s productivity. Since output and input use are both affected
by productivity, this would lead to a problem of omitted variables. To address this concern,
we estimate (2) using both OLS and IV models. In the latter case, we use endowments (i.e.,
household size and area of of land owned) as instruments for input use. The motivation to use
these instrument comes from the observation that, in the absence of input markets, the quantity
used of land and domestic labor would be proportional to the household endowment.22 The validity

20Results are robust to clustering standard errors at provincial level (see Table 12). A third alternative often
discussed in the literature is to correct spatial and serial correlation using the procedure suggested by Conley (1999).
However, this approach is not feasible in our case due to conformability errors as described in Hsiang (2016).

21Due to data limitations we are unable to calculate crop-specific yields, except for a small share of farmers.
22With perfect input markets, we would obtain the standard result of separability of consumption and production
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of these instruments would require that endowments affect output only through its effect on input
use, i.e., endowments should not be conditionally correlated to unobserved heterogeneity, εijt.23

2.3.2 Modeling the relation between weather and productivity g(γ, ωit)

Following previous economic and agronomic findings, we model the relation between weather and
agricultural productivity as a function of the farm’s cumulative exposure to heat and water.24

This approach is based on the assumption of time separability, i.e., weather outcomes have the
same impact on output per hectare whenever they occur within a given growing season. Similar
to Schlenker et al. (2006), we construct two measures of cumulative exposure to heat during the
growing seasons: degree days (DD) and harmful degree days (HDD). DD measures the cumulative
exposure to temperatures between a lower bound, usually 8◦C up to an upper threshold τhigh,
while HDD captures exposure to extreme temperature (above τhigh), The inclusion of HDD allows
for potentially different, non-linear, effects of extreme heat.

Formally, we define DD = 1
n

∑
d g

DD(hd), with

gDD(h) =


0 if h ≤ 8

h− τlow if 8 < h ≤ τhigh

τhigh − 8 if τhigh < h,

hd is the average daytime temperature in day d and n is the total number of days in a growing
season. Similarly, HDD = 1

n

∑
d g

HDD(hd), with

gHDD(h) =

0 if h ≤ τhigh

h− τhigh if τhigh < h

We calculate degree days for an average day not for the entire season. This is, however, simply a
re-scaling and does not affect the results. Similarly, we measure exposure to precipitation using the
average daily precipitation (PP) during the growing season and its square.25 With these definitions
in mind, we parametrize the function relating weather to productivity g(γ, ωit) as:

g(γ, ωit) = γ0DDit + γ1HDDit + γ2PPit + γ3PP
2
it. (3)

A key issue is obtaining the value of the upper threshold above which temperature has a negative

decisions and there would be no correlation between endowments and input use (Benjamin, 1992). Empirically, this
would create a problem of weak instruments.

23The interpretation of this IV strategy would be as a local average treatment effect, since the coefficients would
be identified from farmers subject to input market imperfections.

24See, for example Schlenker and Roberts (2006).
25Precipitation and temperature are likely to be correlated, so it is important to include this regressor.
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effect (τhigh). Previous studies in U.S. set this value between 29-32◦C (Deschenes and Greenstone,
2007, Schlenker and Roberts, 2006). These estimates, however, are likely to be crop and context
dependent and hence might not be transferable to our case.26 For that reason, we prefer to use a
data-driven approach.

To do so, we estimate a flexible version of (1) using log of output per hectare as outcome
variable and replacing DD and HDD with a vector of variables measuring the proportion of days
in a growing season on which the temperature fell in a given temperature bin.27 Based on the
distribution of temperatures in the Peruvian case, we define ten bins: < 18◦C, > 41◦C, and eight
3◦C-wide bins in between. Our omitted category is the temperature bin 27-29◦C.

Figure 3: Non-linear relationship between temperature and agricultural yields

Notes: Points represent coefficient estimates of the effect of increasing the share of days in the growing
season in each of the temperature bins, relative to the 27-29◦C bin, on log of output per ha. Dashed lines
represent the 90% confidence interval.

Figure 3 displays the estimated coefficients and their 90% confidence interval. Note that tem-
peratures above 32◦C start having a negative effect on agricultural yields. The effect becomes
statistically significant for temperature bin 36-38◦C. Based on these results, we use a value of τhigh

26In addition to differences in crop mix and agricultural technology, we use a different measure of temperature (i.e.
land surface temperature). These factors make previous estimates not applicable to our case study.

27This specification is similar to the one used by Burgess et al. (2017) to study the effect of weather on mortality.
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equal to 36◦C for the whole sample.28

28We check the robustness of our main results to using a threshold of 32◦C in Section 6.
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Table 1: Summary statistics (ENAHO 2007-2015)

All Coast Highlands
(1) (2) (3)

A. Household characteristics

Poor (%) 50.8 26.2 55.0

Household size 4.33 4.41 4.31

Primary education completed by HH head (%) 51.2 59.0 49.8

Child works (%) 21.5 9.5 23.6

Main job in agriculture (%) 78.4 68.6 80.0

B. Agricultural characteristics

Value of agric. output (Y), 2007 USD 1025.3 3053.0 682.0

Output per ha. (Y/T), 2007 USD 1256.4 2319.3 1077.3

Land used (T), in ha. 2.0 2.4 1.9

No. HH members work on-farm 2.3 2.2 2.3

Hire workers (%) 48.4 55.8 47.1

Uncultivated land (% of land holding) 40.1 12.1 44.8

Irrigated land (% land holding) 36.5 82.3 28.7

Tubers (% total output) 31.4 5.6 35.6

Cereals (% total output) 31.2 30.2 31.4

Legumes (% total output) 10.75 7.82 11.23

Own livestock (%) 76.8 54.6 80.6

Value of livestock, 2007 USD 678.1 450.3 716.7

C. Weather during the last growing season

Average temperature (◦C) 22.9 33.1 21.2

Average DD 14.8 23.8 13.2

Average HDD 0.34 1.37 0.16

% days with HDD 10.3 35.4 6.1

Precipitation (mm/day) 3.1 0.9 3.5

Observations 54,981 7,961 47,020
Notes: Sample restricted to farming households from the coast and highlands. Cereal, tuber
and legumes are the biggest contributors to household agricultural income. Other sources include
garden crops, fruits, and forage.
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3 Results

This section presents our empirical results on farmers’ responses to extreme heat. We begin by
documenting the non-linear effect of temperature on agricultural productivity. Then, we examine
productive adaptations, such as changes in input use and crop mix. Finally, we evaluate other
coping strategies identified in the consumption smoothing literature.

3.1 Temperature and agricultural productivity

Figure 3 sets the scene for our empirical analysis. It provides prima facie evidence of a non-linear
relationship between temperature and agricultural productivity: at moderate levels, temperature
increases output per ha., but at higher levels, the effect is negative.

Table 2 corroborates this finding using our preferred specification with measures of cumulative
exposure to temperature, DD and HDD. Column 1 uses agricultural yields (Y/T ) as a proxy for
productivity. As mentioned above, this approach may not be informative since it confounds changes
in TFP and input use. For that reason, in columns 2 and 3 we estimate a production function, i.e,
output conditional on input use, using an OLS and IV strategy, where input use is instrumented
with household endowments. By controlling for input use, these latter estimates can be interpreted
as the effect of temperature on TFP.

Our estimates suggest that extreme heat has a negative effect on agricultural productivity.29

The magnitude of the effect is economically significant: the most conservative estimate suggests
that an increase of 1◦C in the average growing season temperature above the optimal level would
decrease agricultural productivity by almost 16%. The standard deviation of this HDD variable is
0.8. To put this figure in further context, note that climate change scenarios envisage that, by the
end of this century, average temperatures could increase by 1.5◦C to 3◦C. Assuming a conservative
flat increase of daily average temperatures, these scenarios translate into increases of up to 1.167
average HDD over the growing season in the Peruvian highlands, as we will see in section 5. Similar
negative effects of extreme heat on crop-specific yields have been documented in agronomic field
trials and using aggregated data in U.S., India, and Sub Saharan Africa, among others.30

What happens with total output? Consistent with a drop in productivity, we find that extreme
heat reduces agricultural output (column 4). However, the magnitude of this effect is smaller than
for TFP or yields. The difference is not statistically significant. However, is suggestive that farmers
implement productive adaptations (i.e., changes in production decisions) to attenuate the negative
effect of extreme heat on total output. We examine this hypothesis in detail next.

29The results are similar using the share of days during the growing season with high temperatures (above 36◦C),
as an alternative measure of exposure to extreme heat (See Table A.1 in the Appendix).

30See, for example, Auffhammer et al. (2012), Guiteras et al. (2015), Burgess et al. (2017), Burke et al. (2015),
Burke and Emerick (2016), Schlenker and Roberts (2009), Lobell et al. (2011).
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Table 2: Impacts of HDD on agricultural productivity and output

Y/T TFP Y

Dep. var.: ln(output/ha) ln(output) ln(output) ln(output)
(1) (2) (3) (4)

Average DD 0.009 0.007 0.009 0.006
(0.009) (0.008) (0.008) (0.009)

Average HDD -0.192∗∗∗ -0.164∗∗∗ -0.181∗∗∗ -0.157∗∗
(0.070) (0.063) (0.064) (0.075)

Input controls No OLS IV No

N 54,981 54,972 54,972 54,981
R2 0.241 0.405 0.390 0.244

Notes: Standard errors (in parenthesis) are clustered at the district level. Stars
indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications
include district and climatic region-by-growing season fixed effects, and control for
household head characteristics (age, age2, gender, and level of education); indicators
of soil quality from Fischer et al. (2008) (nutrient availability, nutrient retention,
rooting conditions, oxygen availability, salinity, toxicity and workability) and the share
of irrigated land. Input controls: log of number of household members working
in agriculture, total land used, and amount spent on hiring labor. Instruments for
domestic labor and land used: household size and land owned. First stage F-test is
650.44.

3.2 Productive adaptations: input use and crop mix

Table 3 presents our main results on productive adaptation. We start by examining changes in
input use as a response to extreme heat. We focus on three key agricultural inputs: hired labor,
household labor, and land.

Consistent with lower productivity, we observe that extreme heat has a negative effect on hired
labor (column 1).31 However, the effect on land and household labor is the opposite (columns
2-5).32 Extreme heat increases land used, quantity of household labor used in the farm (measured
both as number of individuals or number of hours), as well as the probability of child labor.33

These are surprising results. In a standard production model, we could expect negative pro-
ductivity shocks to reduce use of variable inputs. These findings, however, are consistent with the
response of subsistence farmers in a context of incomplete markets, as discussed in Section 2.1. In
that scenario, farmers exposed to a negative shock and limited off-farm opportunities may need to

31Due to data limitations, we cannot say whether this effect captures lower hours hired or lower hourly wages paid.
32Note that the dataset only provides information on labor outcomes in the week previous to the survey. To reduce

measurement error, we focus only on households that were interviewed during the growing season. This explains the
smaller number of observations.

33This last result is consistent with findings in the literature on child labor (Bandara et al., 2015, Beegle et al.,
2006) that show that poor households tend to use children in productive activities when subject to negative income
shock, in line with the luxury axiom proposed initially by Basu and Pham (1998).
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resort to a more intensive use of non-traded inputs to avoid undesirable drops in consumption.
These results are novel and, to the best of our knowledge, have not been documented before.

They uncover an adaptive response (i.e, increase in input use) that may be specially relevant for
farmers in less developed countries. This margin of adjustment may have been missed in existing
studies of the effect of temperature on agriculture because they focus on farmers in developed
countries. In that context, better access to markets, crop insurance and other coping mechanism
may make changes in land use a less relevant response.

This finding has two important implications. First, it suggests a dynamic link between weather
shocks and long-run outcomes. To see this, consider that unused land or household labor are not
necessarily unproductive, but might have alternative uses. For instance, leaving land uncultivated
(i.e., fallowing) is a common practice in traditional agriculture to avoid depleting soil nutrients,
recover soil biomass, and restore land productivity (Goldstein and Udry, 2008). Similarly, sending
children to school, instead of working on the farm, can increase future earnings. Thus, using these
inputs more intensively, as a response of a weather shock, could reduce these future benefits. In
this sense, this adaptive response is akin to reducing savings/investments.

Second, this adaptive response may affect estimations of the effect of climate change on agri-
cultural production. These estimates are usually based on the effect of temperature on crop yields
(Y/T ). This is a correct approach if land use is fixed. In that case, changes in crop yields are
the same as changes in output. However, using crop yields may be less informative in contexts in
which farmers adapt to weather shocks by changing land use. As we show in Section 5, taking into
account this adaptive response reduces, in a non-trivial magnitude, the predicted effects on total
output.

Table 3: Impacts of HDD on input use

Hired Labor T Household Labor

(1) (2) (3) (4) (5)

Dep var: Wage Bill Land Used
HH members

in farm
HH Hours
in farm Child Labor

Average DDs 0.017 -0.003 -0.008∗ -0.019∗∗∗ -0.020∗∗∗
(0.014) (0.005) (0.004) (0.007) (0.006)

Average HDDs -0.151∗ 0.035∗∗ 0.066∗∗∗ 0.084∗∗ 0.045∗∗
(0.082) (0.015) (0.022) (0.036) (0.020)

N 54,979 54,981 22,500 22,503 11,990
R2 0.222 0.313 0.261 0.257 0.308

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include
district and climatic region-by-growing season fixed effects, and the same controls as baseline regression
in Table 2. Columns (3) to (5) include only information for households interviewed during the growing
season as well as month of interview fixed effects.
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Changes in crop mix Recent studies have emphasized the possible role of changes in crop mix
as an adaptive response to climate change (Burke and Emerick, 2016, Colmer, 2016). How relevant
is this response in our context?

In Table 4 we explore this issue by looking at the effect of temperature on quantities and
value shares of three main crop types: cereals (mostly rice in the Coast and corn in the Highlands),
tubers (i.e., potatoes) and legumes. These crops represent more than 70% of agricultural production
and are widely widespread. Note, however, that farmers in our context practice multicropping: the
average farmers grows almost 6 different crops.34 This is a commonplace practice among subsistence
farmers across the developing world, and is in stark contrast with the modern agricultural practices
of the U.S. and other developed countries, which mostly practice monocropping.

We find that extreme heat reduces the quantity (in absolute and relative terms) of cereals, but
increases the production of tubers. This change is not mechanically driven by different sensitivities
to heat: if tubers were less negatively affected than cereals, we would observe an increase in the
relative importance of tubers in total output, but a decrease in absolute quantities produced for both
crops. Instead, we observe that the quantity of tubers produced increases with the average HDD
experienced during the growing season.35 Dercon (1996) previously documented the importance of
sweet potato as a risk-coping strategy among Tanzanian farmers with no liquid assets in the form
of livestock. In the Peruvian context, tubers offer the advantage of having a flexible calendar, and
may be planted all year round, making them an attractive income-smoothing strategy for farmers
experiencing extreme temperatures.

We interpret these results as suggestive of changes in crop mix being an adaptive response to
extreme heat. Note, however, that since we focus on total agricultural output, not crop-specific
yields, our estimates of the effect of extreme heat on productivity already include attenuation
associated with changes in crop mix. Since our estimates are negative and sizeable, these results
then suggest a limited role, at least in the short-run, for changes in crop mix as a strategy to offset
the losses of extreme heat.

3.3 Other coping mechanisms

The literature on consumption smoothing has identified several mechanisms used by rural house-
holds to adjust to income, and weather, shocks. For example, individuals in affected households can
seek employment off the farm (Colmer, 2016, Kochar, 1999, Rosenzweig and Stark, 1989), migrate
(Kleemans and Magruder, 2017, Munshi, 2003, Feng and Schlenker, 2015) or sell assets, such as
cattle (Rosenzweig and Wolpin, 1993). In Table 5 we explore these mechanisms.

Columns 1 and 2 examine whether households adjust to extreme heat by increasing off-farm
employment. We use an indicator of a household member having a non-agricultural job, as well as

34In our sample, less than 10% of farmers report growing only one crop.
35A concern is that this last result could simply reflect the increase use in land. However, as we show in Section 4,

the increase in tuber production occurs among all farmers, regardless of whether they increase land or not.
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Table 4: Impacts of HDD on crop mix

Dep var: ln(output) Share of total output

(1) (2) (3) (4) (5) (6)
Crop group: Cereals Tubers Legumes Cereals Tubers Legumes

Average DDs 0.044∗∗∗ -0.079∗∗∗ 0.019∗∗ 0.011∗∗∗ -0.026∗∗∗ 0.002∗
(0.009) (0.015) (0.009) (0.002) (0.003) (0.001)

Average HDDs -0.207∗∗∗ 0.182∗∗∗ 0.012 -0.031∗∗∗ 0.036∗∗∗ 0.004
(0.061) (0.056) (0.056) (0.011) (0.007) (0.007)

N 43,251 40,131 34,335 54,214 54,214 54,214
R2 0.454 0.391 0.318 0.380 0.520 0.239

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications
include district and climatic region-by-growing season fixed effects, and the same controls as baseline
regression in Table 2. Columns (3) to (5) include only information for households interviewed during
the growing season as well as month of interview fixed effects.

the total number of hours worked off-farm.36 These outcomes capture supply of off-farm employ-
ment in the extensive and intensive margin. In both cases, the effect of extreme heat on off-farm
work is very small and statistically insignificant.

In columns 3 to 5 we look for evidence of migration. Due to data limitations, we cannot measure
migration directly. Instead, we use proxy variables such as an indicator of whether any member
has been away from home for more than 30 days, household size, and an indicator of whether the
household receives remittances. None of these variables seems to be affected by extreme weather
and all the point estimates, albeit small and insignificant, show the opposite sign of what we would
expect if migration was a coping mechanism.

The lack of significant results on migration and off-farm work should be interpreted with caution.
Our analysis focuses on a short time period (within a year) and these adjustments may happen
over a longer time frame. In addition, our measures of labor and migration may be noisy proxies of
actual behavior. These factors likely reduce the power of our statistical analysis and could explain
the insignificant results.

Finally, we examine cattle sales as a possible coping mechanism (columns 7-10). Consistent
with previous findings, such as Rosenzweig and Wolpin (1993), our results show that households
reduce their holding of livestock.37 We find evidence of changes on both the extensive and the
intensive margin, as the probability of showing a decrease in value increases (column 7) and the
real value of current livestock decreases (column 10). The effect seems to come from households

36These variables are only reported for the week previous to the interview. As in Table 3, we restrict the sample
to households interviewed during the growing season. However, results do not change if we include observations for
the whole year.

37This includes cattle, sheep, horses, llamas and pigs.
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selling, rather than consuming their livestock (columns 8 and 9).
Table 5 shows evidence that households engage in consumption smoothing mechanisms when

exposed to extreme temperatures. Together with the findings on adaptation in production, this set
of results requires further inspection as different explanations are consistent with what we observe.
For example, do farmers use the consumption mechanisms to complement changes in land use or
are these strategies substitutes? If the latter, in the context of subsistence farming and imperfect
input markets, then farmers would only expand land use if there is no other way to cope with the
shock, i.e., if they have no livestock.
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Table 5: Other adjustments to HDD

Off-farm work Migration Livestock buffer

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dep var:

HH member
has off-
farm job

Hours
worked
off-farm

HH member
away 30+

days HH size

Receives
private
transfers

Decrease in
livestock
value

Sold
livestock

Consumed
livestock

Current
livestock
value

Average DDs 0.007∗ 0.038∗∗ 0.002∗∗ -0.000 0.005∗∗ -0.006∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -1.509
(0.004) (0.016) (0.001) (0.013) (0.002) (0.002) (0.002) (0.003) (4.824)

Average HDDs -0.005 0.030 -0.003 0.002 -0.001 0.028∗∗∗ 0.024∗ 0.009 -34.124∗
(0.020) (0.085) (0.004) (0.049) (0.009) (0.011) (0.013) (0.013) (20.174)

Mean outcome 0.469 1.745 0.084 4.325 0.195 0.331 0.515 0.474 887.436
N 22,503 22,503 54,981 54,981 54,981 49,094 49,094 49,094 41,745
R2 0.223 0.248 0.058 0.245 0.148 0.077 0.146 0.239 0.553

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming district-level clustering): *p
<0.10, ** p <0.05, *** p <0.01. All specifications include district and climatic region-by-growing season fixed effects, and the same controls as baseline
regression in Table 2. Columns 1 and 2 include only information for households interviewed during the growing season as well as month of interview
fixed effect. Livestock value from Columns (6) and (9) are measured in 2007 USD.
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4 Understanding changes in land use

In this section we explore more carefully the nature of adaptation in land use. We focus on the
increase in land use as an important adaptation mechanism for at least three reasons. First,
land is an important agricultural input which, due to factors such as ill-defined property rights,
is usually subject to severe market imperfections. Second, since unused land can be part of a
dynamic productive decision (such as fallowing), adjustments in land to attenuate current weather
shocks may impose productivity losses in the future. Finally, by focusing on crop yields, the current
literature on climate change and agriculture, has neglected this margin of adjustment. This coping
mechanism has also been overlooked by the literature examining ex-post consumption smoothing.

4.1 Who adapts?

As a first step, we start by looking at the interplay between consumption smoothing and productive
adaptation, aiming to understand what types of farmers adjust their land use. As discussed in
Section 2.1, it is possible that this adaptive strategy is shaped by the availability of other coping
mechanisms, such as off-farm work or disposable assets. To examine these heterogeneous responses,
we run our baseline regressions interacting HDD with an indicator of whether farmers had livestock
before the start of the growing season or not. The choice of this interaction term is driven by
our previous finding (see Table 5) that selling cattle seems a relevant consumption smoothing
mechanism. As a robustness check, we also examine interactions with indicators of availability of
off-farm work.

Our results (see Table 6) suggest that the increase in land use is significantly larger for farmers
who did not have livestock (column 1). This occurs despite both type of farmers experiencing
similar drop in TFP (column 2). We observe similar pattern when comparing farmers with and
without off-farm jobs (columns 3 and 4).38

These results suggest that the farmers who respond by increasing land use are the ones who lack
other coping mechanisms. 39 This result is not mechanically driven by cattle owners lacking unused
land that could be put into production. Closer examination shows that cattle owners actually have
more uncultivated land than non-cattle owners. While some of this land may be used for foraging,
it is suggestive that increasing land is a feasible strategy for cattle-owner, but they do not do it.
In that case, our results would indicate that, by a revealed preferences argument, adjusting land is
a more costly (more undesirable) strategy than selling disposable assets.

38Result are robust to using number of days during the growing season with extreme temperatures instead of HDD
(see Table A.2 in the Appendix).

39We observe similar heterogeneous responses on child labor (see Table A.3 in the Appendix). In particular, the
increase in child labor is larger for households without cattle. This is consistent with previous evidence from Beegle
et al. (2006) in Tanzania, where households respond to shocks by increasing child labor but manage to offset most of
it if they hold assets. Interestingly, in their paper they find that land does not have the same effectiveness as holding
other durable assets.
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Table 6: Temperature impacts on land use and TFP, by type of farmer

Livestock Farmer Only

(1) (2) (3) (4)
Dep var: ln(land TFP ln(land TFP

used) used)

Average HDD x owned livestock 0.019 -0.175∗∗∗
(0.016) (0.067)

Average HDD x no livestock 0.042∗∗∗ -0.173∗∗∗
(0.015) (0.065)

Average HDD x Other activity -0.003 -0.311∗∗∗
(0.015) (0.072)

Average HDD x Farmer only 0.048∗∗∗ -0.106∗
(0.016) (0.059)

Difference 0.023 0.002 0.051 0.205
p-value 0.030 0.956 0.000 0.000

N 54,981 54,972 54,981 54,972
R2 0.326 0.410 0.323 0.412

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate sta-
tistical significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01.
All specifications include district and climatic region-by-growing season fixed effects, and the
same controls as baseline regression in Table 2.

An alternative explanation is that cattle owners cannot, or do not need to, implement productive
adaptations. To explore this explanation, we examine heterogeneous effects on crop mix by cattle
ownership (see Table 7). Contrary to this hypothesis, and in contrast to the results on land use, we
find that both types of farmers, with and without cattle, change crop mix as a response to extreme
heat.40 This finding also rule out concerns that changes in crop mix, documented in Table 4, were
mechanically reflecting an increase in land use.

4.2 When do they adapt? Early and late shocks

The ability to adapt to weather shocks may vary during the growing season. For instance, farmers
may be able to clear land and plant new crops at the beginning of the growing season, but this
response may be more difficult to implement in later stages.

To investigate how timing of the shocks may affect farmers’ adaptive behavior, we construct
separate measures of DD and HDD according to whether the temperature shock happened in the
first or the second half of the growing season (early and late DD/HDD). Then, we examine the
effect of temperature on productivity, output and land use.

40We obtain similar results when interacting HDD with an indicator of having off-farm job instead of an indicator
of cattle ownership. Results available upon request.
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Table 7: Impacts of HDD on crop mix, by type of farmers

Dep var: ln(output) Share of total output

(1) (2) (3) (4) (5) (6)
Crop group: Cereals Tubers Legumes Cereals Tubers Legumes

Average HDD x owned livestock -0.252∗∗∗ 0.140∗∗ -0.009 -0.023∗ 0.030∗∗∗ 0.006
(0.062) (0.056) (0.058) (0.013) (0.008) (0.008)

Average HDD x no livestock -0.133∗∗ 0.264∗∗∗ 0.060 -0.042∗∗∗ 0.043∗∗∗ 0.002
(0.066) (0.069) (0.061) (0.010) (0.008) (0.007)

Difference 0.119 0.124 0.069 -0.018 0.013 -0.004
p-value 0.003 0.019 0.161 0.019 0.002 0.365

N 43,251 40,131 34,335 54,214 54,214 54,214
R2 0.465 0.403 0.323 0.381 0.521 0.239

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming
district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district and climatic region-by-
growing season fixed effects, and the same controls as baseline regression in Table 2. Columns (3) to (5) include only
information for households interviewed during the growing season as well as month of interview fixed effects.

Table 8 presents our results. Note that both early and late shocks have negative effect on
productivity (columns 1-3). The negative effect is smaller for early shocks, although the difference
is not statistically significant. One possible interpretation for this smaller effect is that a wider range
of productive adaptations, other than incorporating more land, such as increasing work effort or
other the use of other inputs (such as fertilizers), are feasible if temperature shocks occur during
this period. A biological channel could also be at play: crops may be more capable to manage high
temperatures at this stage.

Interestingly, we find that increases in land use only happen if high temperatures occur during
the first half of the growing season (column 5). Extreme heat during the second half of the growing
season has virtually no effect on land. We interpret this finding as evidence that farmers are more
able to engage in productive adaptations when the shocks happen earlier. Consistent with this
interpretation, we observe that early shocks have a small, and statistically insignificant, effect on
output. In contrast, the effect is larger, and similar in magnitude to the drop in TFP, when shocks
occur late in the growing season.

4.3 Adaptive response or increase in prices?

We interpret the increase in land use as a strategy to attenuate the negative effects of extreme heat.
An alternative explanation is that areas subject to extreme temperature experience a decrease in
the supply of agricultural products. To the extent that there is a positive price effect, then farmers
may be induced to increase production and thus, also the quantity of inputs. If that is the case, our
result may be interpreted as a purely profit-driven decision rather than as an adaptive response.
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Table 8: Impacts of early and late HDD on farmer productivity, output and land

Y/T TFP Y T

Dep var: ln(output/ha) ln(output) ln(output) ln(output) ln(land used)
(1) (2) (3) (4) (5)

Average Early HDD -0.067∗∗ -0.064∗ -0.076∗∗ -0.036 0.031∗∗
(0.038) (0.035) (0.036) (0.067) (0.013)

Average Late HDD -0.126∗ -0.103∗ -0.109∗ -0.119∗ 0.007
(0.063) (0.061) (0.060) (0.015) (0.015)

Input controls No OLS IV No No

N 54,938 54,929 54,929 54,938 54,938
R2 0.241 0.405 0.391 0.244 0.313

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance
(assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district and
climatic region-by-growing season fixed effects, and the same controls as baseline regression in Table 2. Input
controls: number of household members working in agriculture, total land used and amount spent on hiring
labor, all in logarithms. Instruments for labor and land: household size and land owned, both in logarithms.
First stage F-test is 651.28. P-values for the difference between coefficients are, in order, 0.42, 0.65, 0.65, 0.27
and 0.32.

Formally, by failing to account for output prices, our previous results would suffer from omitted
variable bias. This issue would be less of a concern if prices are set in national markets. In that
case, their influence would be picked up by the set of growing season fixed effects. The problem
would arise, though, if agricultural markets were geographically smaller.41

In Table 9, we examine this possibility in two ways. First, column 1 includes region-growing
season fixed effects (i.e., a set of around 200 dummies that account for 20 regions in 10 agricultural
years). If agricultural markets are regional, then this approach would control for prices. Column
2 goes a step further by controlling for the median log prices of cereals and tubers, calculated at
the district level. In both cases, the relationship between HDD and land remains positive and
significant. The magnitude of the effect of extreme temperatures is also very similar to the baseline
results in Table 2.

Second, we examine the effect of temperature on prices of cereals and tubers (columns 3-6). We
observe that prices of both crops increase with extreme temperature when measured in each of the
20 regions in the sample. The effect is slightly stronger for cereals, consistent with the previous
result that farmers tend to move away from these crops. In columns 5 and 6, we reduce the level
of aggregation to the district level and find no significant effects on prices. Taken together, these
results suggest that, while regional prices may increase in extremely hot years, changes in prices
cannot fully explain the expansion in land use.

41For instance Aragón and Rud (2013) find evidence that in the northern highlands of Peru prices of agricultural
products are determined locally.
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Table 9: Temperature impacts on regional and local prices

Dep var: ln(land used) ln(regional price) ln(local price)

Cereals Tubers Cereals Tubers
(1) (2) (3) (4) (5) (6)

Average DD -0.004 -0.004 0.000 -0.002∗ -0.003 -0.001
(0.005) (0.005) (0.002) (0.001) (0.002) (0.002)

Average HDD 0.038∗∗ 0.043∗∗ 0.022∗ 0.009∗∗ 0.004 0.007
(0.016) (0.018) (0.012) (0.005) (0.008) (0.016)

Region-GS FEs Yes No No No No No

Control for local prices No Yes No No No No

N 54,981 50,836 54,981 54,981 52,739 52,447
R2 0.320 0.319 0.931 0.910 0.757 0.667

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifica-
tions include district and climatic region-by-growing season fixed effects, and the same controls as
baseline regression in Table 2.

4.4 Dynamic effects

The presence of uncultivated land suggest that land might have alternative uses other than current
agricultural production. In the context of traditional farming, one such use is fallowing: leaving land
uncultivated (or covered with grasses and shrubs) allows it to recover nutrients, restore biomass,
and increase productivity in the future. This feature creates a dynamic link between land use today
and future agricultural outcomes, and highlight a potential cost of using land as a buffer to negative
shocks: loss of future productivity, or even increasing risk of soil depletion.

We examine this dynamic implications by estimating the effect of current and lagged values of
HDD on agricultural yields.42 Figure 4 plots the estimated effect of HDD from two specifications:
the first one includes one lag at a time, while the second adds all lags to the same regression. This
later specification is very demanding due to the serial correlation of HDD.

In both specifications, we observe that HDD realized four seasons ago have a negative effect on
current productivity. This effect is in addition to the reduction associated with contemporaneous
hot temperatures. This time lag is consistent with existing evidence (from Peru and other develop-
ing countries) that the average fallow duration is around four years (Denevan, 2003, Goldstein and
Udry, 2008, Watters, 1994). These results are encouraging and suggest that short-term adaptive
responses, such as using more land, could have medium- to long-term negative effects in the form
of lower productivity.

42Results are similar when estimating a TFP regression (i.e, output conditional on inputs). These results are
available upon request.
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However, these results should be interpreted with caution for at least two reasons. First, we
interpret this dynamic effect as mediated by previous land use choices, but we are unable to examine
this channel directly due to data limitations: we only observe repeated cross sections of farmers,
and the survey does not include questions on previous land use or fallowing practices. Second, since
satellite data goes back to 2002, we can only observe farmers’ exposure to weather for a limited
number of years. Thus, we are unable to examine whether the effects are long-lived or not.43

43An alternative way to examine this last issue would be to obtain a measure of cumulative exposure to extreme
heat and examine their impact on productivity. The key idea is that farmers subject to more extreme heat events
would have used their land more intensively and have higher risk of soil depletion. We implement this analysis by
constructing a measure of cumulative HDD in the last 10 years and adding it to our baseline regression. Our results,
in Table A.4 in the Appendix, show that, after controlling for contemporaneous HDD, the accumulation of extreme
temperatures over time does not seem to affect yields, TFP, output or land use. This exercise, however, is likely to
be low-powered and uninformative in our context: 10 years may not be enough time to create sizable differences in
cumulative HDD across nearby localities, nor for generating observable effects on land productivity.
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Figure 4: Effect of contemporaneous and lagged HDD on yields

(a) One lag at a time

(b) All lags included

Notes: Diamonds represent point estimates of the effect of different lags of HHD on ln(output per
ha). Vertical lines represent 95% confidence intervals
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5 Predicting the effect of climate change

In this section, we use our previous estimates to predict the damages to yields and agricultural
output associated with higher temperatures predicted in climate change scenarios. Importantly, we
show that these predictions are over-estimated when failing to account for productive adaptations,
such as changes in land use.

5.1 Peru’s climatic regions

As discussed in relation to Table 1, our sample has two distinct climatic and agricultural regions.
On one hand, the coast is hotter and dryer, and farmers are exposed to more harmful degree days.
However, and most importantly, farmers are, on average, substantially better off: they are more
productive, more diversified, and less poor. This is also reflected in the fact that they specialize
on fruits, are more mechanized, and have access to more irrigation. Also, in the coast farmers use
a much greater proportion of their land. These climatic differences become more apparent when
observing the distribution of daily temperature in these two regions (see Figure 5).

Figure 5: Distribution of daily average temperature by climatic region

(a) Coast (b) Highlands

Notes: Figures depict share of days in growing season in each temperature bin.

We reproduce our main set of results for both regions to show that, despite these differences,
the main set of results remains very similar. In Table 10 we see that extreme temperatures reduce
yields and output and increase land use. Note that the effect on output is somewhat stronger in the
coast while the expansion of land is larger in the highlands. As shown above, this can be explained
by the fact that in the coast farmers use their land more intensively. With less ability to adapt to
the shock, farmers suffer a greater drop in output. In any case, as shown in columns 6 and 9, those
differences are not significant between regions.
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Table 10: No differential impact of HDD by region

Dep var: ln(output per ha) ln(output) ln(land used)

Region: Coast Highlands Coast Highlands Coast Highlands
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average DD 0.004 0.007 0.005 0.003 0.001 -0.004
(0.040) (0.008) (0.039) (0.008) (0.010) (0.006)

Average HDD -0.195∗∗ -0.169∗ -0.171∗∗ -0.084 0.024∗ 0.085∗
(0.082) (0.087) (0.084) (0.092) (0.014) (0.047)

Difference in HDD 0.012 0.076 0.057
impact Highlands-Coast (0.121) (0.125) (0.047)

N 7,961 47,020 54,981 7,961 47,020 54,981 7,961 47,020 54,981
R2 0.194 0.269 0.242 0.189 0.269 0.245 0.223 0.325 0.313

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming district-level clustering): *p
<0.10, ** p <0.05, *** p <0.01. All specifications include household controls (age, age squared, gender, and level of education of the household
head); soil quality controls (nutrient availability, nutrient retention, rooting conditions, oxygen availability, salinity, toxicity and workability; each
indicating severe, moderate or no constraints to plant growth, from Fischer et al. (2008)); and controls for the share of irrigated land owned by
the household.
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5.2 Climate change scenarios

The purpose of this exercise is to highlight two important issues: (1) the heterogeneity of impacts
within a country according to their climatic regions and, (2) the importance of accounting for
farmers’ response when estimating the impact of climate change scenarios. Our exercise does not
account for a multitude of factors that might affect agricultural outcomes and thus should be
interpreted with caution.44

We consider two possible scenarios with increase in average temperature of 1.5◦C and 3◦C
.The first scenario corresponds to the RCP2.6 representative concentration pathway (RCP) used in
IPCC (2014), and assumes a steep reduction of greenhouse emissions due to faster adoption of green
technologies. The second is the A1B scenario of the Special Report on Emission Scenarios, and the
RCP8.5 model used in IPCC (2014). This is a “business as usual” scenario with predicted increases
in Peru’s average temperature 3◦C to 3.5◦C relative to the 1990-2000 period (Gosling et al., 2011).
We use the lower bound and assume a country-wide increase of 3◦C. In both scenarios, average
precipitation is predicted to stay within one standard deviation of its natural internal variability
in both scenarios (IPCC, 2014), so we do not assume any change in this respect. For simplicity, we
model each scenario as an even increase of the daily temperature.45

For each scenario, we calculate the predicted change in DD and HDD. To do so, we use data
from 2005-2015 to obtain the average temperature of every day of the growing season for each
survey block k in our sample. We use this temperature distribution to calculate the average DD
and HDD (DDavg

k and HDDavg
k ). Then we increase each day temperature by 1.5 or 3 depending of

the climate change scenario. Using the new distribution, we predict new DD and HDD (DDpred
k and

HDDpred
k ). For each location, we define the change in HDD as ∆HDDk = HDDpred

ki −HDDavg
k .

We use similar procedure to obtain ∆DDk.
We are interested on assessing the importance of taking into account farmer’s responses on

estimating the negative effects of climate change on output. To do so, we also consider separately
effects on agricultural yields. Specifically, we define the predicted effect on yields (output per ha)

44An important omitted factor is the increased concentration of CO2 in the atmosphere and its interaction with
changing weather conditions. While lab experiments suggest that higher levels of CO2 could help plant growth, there
is significant uncertainty regarding its interaction with other weather variables and its impact on global agricultural
yields remains hard to predict (Gosling et al., 2011). We also do not consider any impacts from increased flooding
and reduced water access due to glacial melting, nor potential changes of relative food prices.

45We can, however, think of many other mean-preserving spreads that would still fit these mean predicted temper-
atures. Given the non-linear feature of DD and HDD, these different assumptions can alter the predicted impacts.
For example, in our “business as usual” scenario we could increase all daily temperatures above the median by 6◦C
and leave the rest unchanged, resulting as well in an average daily temperature increase of 3◦C. However this second
option will likely result in stronger negative impacts since we would be skewing the distribution of daily temperatures
towards more HDDs. While we opted for the most straightforward application of climate change forecasts, it is
possible that variance in temperatures might also increase over time, suggesting that our predictions could serve as
a lower bound for actual impacts.
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and output as follows:

∆yi = β̂1∆DDk + β̂2∆HDDk,

where, y is the outcome of interest for farmer i in location k. β̂1 and β̂2 correspond to the estimates
for the two regions taken from Table 10.

Table 11 presents our predictions for the whole sample and each natural region (coast and
highlands). There are three relevant observations. First, the increase in temperature would create
substantially more harmful temperatures in the coast than in the highlands. The opposite would
be true in terms of good degree days. Columns A and B reflect this results, which is a natural
consequence of the current distribution of temperatures in both regions, as presented in Figure
5. The coast is already quite warm and has a larger proportion of days already close to the
HDD threshold. Hence, the shift of the distribution due to higher average temperature has a
greater impact on HDD. The increase in HDD in the highlands is partially offset by the increase
in beneficial DD.

Second, the impacts of increasing temperatures are very heterogeneous: while the coast would
experience sizable losses of yields and agricultural output, the effect on the highlands would be
negligible and even positive (rows C and D).46

Third, despite the fact that we find small effects on land use (i.e. around 4 percentage points
increase), taking into account farmers’ responses is important. In the Coast, ignoring this adaptive
response would mean that the negative effect of extreme temperature would be overestimated
by 1.3%. On the contrary, the beneficial effects of higher temperatures in cold places would be
underestimated by 0.3%. Proportionally to the effect on yields, the error is much greater in the
highlands, due to the fact that farmers manage to attenuate the drop in output more than in the
coast, thanks to a greater use of land. That is, these farmers would benefit doubly, i.e. from higher
temperatures and because they engage in more adaptive behavior. This finding is important for
the estimation of economic costs of climate change in developing countries. Several studies simply
extrapolate estimates of effect of extreme heat on crop yields from samples of farmers in developed
countries or from controlled agronomic studies.47

46This result is consistent with other studies finding stronger negative impacts in low-lying areas (Auffhammer and
Schlenker, 2014) and strong regional differences (Deschenes and Greenstone, 2007).

47As previously noted, the more intensive use of land in the short term might reduce productivity in the long-run.
Due to data limitations, we do not include this potential negative effect of climate change in our analysis.
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Table 11: Heterogeneous effects of increased temperatures by region

CC scenario: Scenario +1.5 Celsius Scenario +3 Celsius

Sample: All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

Effect on temperature over the growing season
A. Average DD 1.383 1.007 1.450 2.724 1.833 2.881
B. Average HDD 0.103 0.493 0.034 0.255 1.167 0.095

Effect on agricultural productivity and output
C. Change in productivity (ln(Y/T)) -0.010 -0.092 0.005 -0.029 -0.220 0.005
D. Change in output (ln(Y)) -0.010 -0.079 0.002 -0.027 -0.190 0.002

Over-estimation of effect in Y (|D-C|) 0.000 0.013 0.003 0.002 0.030 0.003
Notes: Coefficients to estimate effects are from Table 10.

6 Robustness

In this section we present several robustness checks on the effect of temperature on agricultural
productivity, output and inputs presented in Table 2.

6.1 Alternative specifications

In Table 12 we present results for a number of alternative specifications. We start by looking
into additional controls, such as input endowments (namely land ownership and household size,
a proxy for labor force as in Benjamin (1992)), region-growing season fixed effects and month
of interview fixed effects (to account for recall bias if the agricultural season is far in the past).
This is a very demanding specification that flexibly accounts for department-specific trends in
agricultural productivity. Row 1 shows that saturating the regression with these indicators does
not substantially change our estimates. Similarly, results hold when we cluster standard error at a
slightly larger level of aggregation, allowing for shocks to be correlated within provinces (Row 2).

While controlling for month of interview in Row 1 may attenuate some concerns with respect
to the timing of the interview relative to the growing season, we add two more specifications to
check the robustness of our main results. First, recall that our baseline results consider exposure
to temperature in the last completed growing season (October-March). This means, for example,
that for households interviewed in March 2010, we are assigning weather variables for the period
October 2008-March 2009. However, for households interviewed a month later (April 2010) we
would assign weather from period October-2009-March 2010. If agricultural output is affected by
the most recent weather outcomes, then by assigning households the weather of the last complete
growing season we would introduce measurement error. To examine the relevance of this issue, in
Row 3 we drop households interviewed during the growing season. Finally, because the agricultural
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Figure 6: Model fit (R2) of weather regressions with different temperature thresholds

Notes: Figure plot model fit (R2) for regressions of Equation 1 using different values of τhigh, the thresholds
to split between DD and HDD. Controls include household head’s characteristics ( age, age2, gender and
education attainment), precipitation, its square, indicators of soil quality, and district and growing season
fixed effects.

survey asks about production in the previous 12 months, in Row 6 we use a measure of degree days
and hot degree days during that period, instead of just using information for the growing season.
While a bit noisier, the main features of our analysis remain very similar in magnitude.48

6.2 Optimal temperature threshold

In this part we present an alternative way to determine the threshold between DD and HDD,
following Schlenker and Roberts (2009) among others. To do so, we estimate equation 1 varying
the value of τhigh in 1 degree intervals from 20◦C to 40◦C . We record the R-square and select the
threshold value the produces the best fit. We perform this analysis using the whole sample and
splitting it by climatic region. Our specification uses log of output per hectare as main outcome but
results are robust to using log of agricultural output, controlling for input use, or adding a richer
set of fixed effects (department-by-growing season). Figure 6 shows the results of this exercise. The
best fit for the whole sample is achieved with a value of τhigh = 32◦C.

Row 4 in Table 12 shows the results when we use this new threshold. In Row 5 we also allow
the threshold to be different between the hotter Coast and the cooler Highlands. In both cases, the
main results on yields, TFP, output and land use retain their sign and significance.49

48Additionally, in Figure 4 it was clear that one and two-period lead realizations of HHD did not affect current
productivity.

49Results are also robust to the use of quadratic effects of temperature on TFP, as in IMF (2017).
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Table 12: Robustness checks

Y/T TFP Y T

Dep var: ln(output/ha) ln(output) ln(output) ln(land used)
(1) (2) (3) (4)

1. Adding endowment -0.166∗∗ -0.140∗∗ -0.136∗∗ 0.025∗
and additional FE (0.065) (0.058) (0.069) (0.014)

2. Clustering s.e. -0.192∗∗ -0.164∗∗ -0.157∗ 0.031∗
by province (n=159) (0.074) (0.063) (0.084) (0.016)

3. Dropping sample -0.152∗ -0.128 -0.109 0.042∗∗
October-March (0.085) (0.079) (0.092) (0.021)

4. Common HDD -0.128∗∗∗ -0.112∗∗∗ -0.103∗∗ 0.022∗∗
threshold at 32◦C (0.040) (0.037) (0.044) (0.010)

5. Region-specific HDD -0.156∗∗∗ -0.135∗∗∗ -0.133∗∗ 0.019∗
threshold (32◦C and 36◦C (0.050) (0.046) (0.055) (0.011)

6. Exposure to temperature -0.230∗∗ -0.205∗∗ -0.151 0.069∗∗
in the last 12 months (0.115) (0.101) (0.123) (0.027)

Input controls No Yes No No
Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance
(assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district
and climatic region-by-growing season fixed effects, and the same controls as baseline regression in Table
2. Input controls: number of household members working in agriculture, total land used and amount
spent on hiring labor, all in logarithms. Each row presents the estimates using a different specification.

7 Conclusion

How do poor farmers mitigate the impact of extreme temperature events? We show evidence of
adaptation along several margins, including livestock depletion, child labor and, ultimately, the
expansion of land used for agricultural production, that attenuate the reduction in output. The
effect on land use is only present when households do not have alternative sources of consumption
or income smoothing. This is consistent with the idea that some land is left unused to recover, and
implies that interrupting the process may have deleterious effects in future productivity. In fact,
households that can dispose of assets or that do not fully rely on agricultural income do not engage
in this practice when exposed to similar shocks.

Taken together our results have important implications for the analysis of climate change in the
context of traditional subsistence farming in developing countries. First, as vulnerable households
adapt their production in seasons with extreme temperatures, this questions the usefulness of
estimates of the link between hot temperatures and yields obtained from other contexts where this
response is not available or unlikely (such as studies from developed countries or from controlled
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experiments). Second, while in the short run farmers can attenuate shocks by using more land,
it is less clear that this practice is sustainable in the long run, as extreme events become more
regular and land is not allowed to fallow as needed. Third, an appraisal of potential effects of
climate change in developing countries should allow for regional variation, as warmer temperatures
may benefit some regions while harm others. Fourth, our results suggest that instruments such as
index-insurance that are linked to the measurement of hot days during the growing season could
potentially benefit households engaged in traditional farming.

There are still many questions that we cannot answer in this context and that may be relevant
in terms of understanding the links between short-run adaptation to weather shocks, climate change
and welfare. Issues such as temporary migration, changes in agricultural practices and methods, or
the exact timing of the responses we observe, could not be fully addressed due to data constraints.
Similarly, medium to long run costs of current adaptation in terms of land productivity or other
unobserved private costs (e.g. on health, education or well-being) also deserve further attention
as well as better and more appropriate data. Finally, while satellite data provides a good fix for
the lack of reliable high frequency data in rural areas in developing countries, improvements in
measurement of temperature are necessary to make progress in the understanding of the effects of
a changing climate in areas and populations that will likely be the most affected.
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