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Abstract

In many contexts we may be interested in understanding whether direct connections between

agents, such as declared friendships in a classroom or family links in a rural village, affect their

outcomes. In this paper we review the literature studying econometric methods for the analysis

of social networks. We begin by providing a common framework for models of social effects,

a class that includes the ‘linear-in-means’ local average model, the local aggregate model, and

models where network statistics affect outcomes. We discuss identification of these models

using both observational and experimental/quasi-experimental data. We then discuss models of

network formation, drawing on a range of literatures to cover purely predictive models, reduced

form models, and structural models, including those with a strategic element. Finally we discuss

how one might collect data on networks, and the measurement error issues caused by sampling

of networks, as well as measurement error more broadly.
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1 Introduction

Whilst anonymous markets have long been central to economic analysis, the role of networks as an

alternative mode of interaction is increasingly being recognised. Networks might act as a substitute

for markets, for example providing access to credit in the absence of a formal financial sector, or

as a complement, for example transmitting information about the value of a product. Analysis

that neglects the potential for such social effects when they are present is likely to mismeasure any

effects of interest.

In this paper we provide an overview of econometric methods for working with network data –

data on agents (‘nodes’) and the links between them – taking into account the peculiarities of the

dependence structures present in this context. We draw on both the growing economic literature

studying networks, and on research in other fields, including maths, computer science, and sociology.

The discussion proceeds in three parts: (i) estimating social effects given a (conditionally) exogenous

observed network; (ii) estimating the underlying network formation process, given only a single

cross-section of data; and (iii) data issues, with a particular focus on accounting for measurement

error, since in a network-context this can have particularly serious consequences.

The identification and estimation of social effects – direct spillovers from the characteristics or

outcome of one agent to the outcome of others – are of central interest in empirical research on

networks in economics. Whilst researchers have tended to focus on the effects from the average

characteristics and outcomes of network ‘neighbours’, different theoretical models will imply dif-

ferent specifications for social effects. In Section 3 we begin by setting out a common framework

for social effects, which has as a special case the common ‘linear-in-means’ specification, as well

as a number of other commonly used specifications. Since the general model is not identified, we

then go through some important special cases, first outlining the theoretical model which generates

the specification, before discussing issues related to identification of parameters.1 For most of our

discussion we focus on identification of the parameters using only observational data, since this is

typically what researchers have available to them. We then go on to consider the conditions under

which experimental variation can help weaken the assumptions needed to identify the parameters

of interest.

The key challenge for credible estimation of social effects comes from the likely endogeneity of the

network. Thus far most of the empirical literature has simply noted this issue without tackling it

head on, but more recently researchers have tried to tackle it directly. The main approach to doing

this has been to search for instruments which change the probability of a link existing without

directly affecting the outcome. Alternatively, where panel data are available, shocks to network

structure – such as node death – have been used to provide exogenous variation. These approaches

1A different presentation of some of the material in this part of Section 3 can be found in Topa and Zenou (2015).
Of the models we discuss, their focus is on two of the more common specifications used. Topa and Zenou (2015)
compare these models to each other, and also to neighbourhood effect models, and discuss the relationship between
neighbourhood and network models.
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naturally have all the usual limitations: a convincing story must be provided to motivate the exclu-

sion restriction, and where there is heterogeneity they identify only a local effect. Additionally, they

rely on the underlying network formation model having a unique equilibrium. Without uniqueness

we do not have a complete model, as we have not specified how an equilibrium is chosen. Hence a

particular realisation of the instrument for some group of nodes is consistent with multiple resulting

network structures, and a standard IV approach cannot be used.

This provides one natural motivation for the study of network formation models: being able to

characterise and estimate a model of network formation would, in the presence of exclusion restric-

tions (or functional form assumptions motivated by theory) allow us to identify social effects using

the predicted network. Formation models can also be useful for tackling measurement error, by

imputing unobserved links. Finally, in some circumstances we might be interested in these models

per se, for example to understand how we can influence network structure and hence indirectly the

distribution of outcomes.

In Section 4 we consider a range of network formation models, drawing from literatures outside

economics as well as recent work by economists, and show how these methods relate to each other.

We first consider purely descriptive models that make use of only data on the observed links, and

can be used to make in-sample predictions about unobserved links given the observed network

structure. Next we turn to reduced form economic models, which make use of node characteristics

in predicting links, but which do not allow for dependencies in linking decisions. Lastly we discuss

the growing body of work estimating games of strategic network formation, which allow for such

dependencies and so at least, in principle, can have multiple equilibria.2

The methods discussed until now have all assumed access to data on a population of nodes and

all the relevant interconnections between them. However, defining and measuring the appropriate

network is often not straightforward. In Section 5 we begin by discussing issues in network definition

and measurement. We then discuss different sampling approaches: these are important because

networks are comprised of interrelated nodes and links, meaning that a sampling strategy over one

of these objects will define a non-random sampling process over the other. For example if we sample

edges randomly, and compute the mean number of neighbours for the nodes to whom those edges

belong, this estimated average will be higher than if the average were computed across all nodes,

since nodes with many edges are more likely to have been included in the sample by construction.

Next we discuss different sources of measurement error, and their implications for the estimation of

network statistics and regression parameters. We end with an explanation of the various methods

available to correct for these problems, and the conditions under which they can be applied.

Given the breadth of research in these areas alone, we naturally have to make some restrictions to

narrow the scope of what we cover. In the context of social effects estimation, we omit entirely

any discussion of peer effects where all that is known about agents’ links are the groups to which

they belong. A recent survey by Blume et al. (2010) more than amply covers this ground, and

2Another review of the material on strategic network formation is provided by Graham (2015).
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we direct the interested reader to their work. We also restrict our focus to linear models, which

are appropriate for continuous outcomes but may be less suited to discrete choice settings such

as those considered by Brock and Durlauf (2001) and Brock and Durlauf (2007). Similarly in our

discussion of network formation, we do not consider in any detail the literature on the estimation of

games. Although strategic models of network formation can be considered in this framework, the

high dimension of these models typically makes it difficult to employ the same methods as are used

in the game context. For readers who wish to know more about these methods, the survey paper

by de Paula (2013) is a natural starting point. Finally, for a survey of applied work on networks in

developing countries, see the review by Chuang and Schechter (2014).

We round off the paper with some concluding remarks, drawing together the various areas discussed,

noting the limits of what we currently know about the econometrics of networks, and considering

the potential directions for future research. Appendix A then provides detailed definitions of the

various network measures and topologies that are mentioned in the text below.

2 Notation

Before we proceed, we first outline the notation we use throughout the paper. We define a network

or graph g = (Ng, E g)
3 as a set of nodes, Ng, and edges or links, Eg.4 The nodes represent individual

agents, and the edges represent the links between pairs of nodes. In economic applications, nodes are

usually individuals, households, firms or countries. Edges could be social ties such as friendship,

kinship, or co-working, or economic ties such as purchases, loans, or employment relationships.

The number of nodes present in g is Ng = |Ng|, and the number of edges is Eg = |Eg|. We define

GN = {g : |Ng| = N} as the set of all possible networks on N nodes.

In the simplest case – the binary network – any (ordered) pair of nodes i, j ∈ Ng is either linked,

ij ∈ Eg, or not linked, ij /∈ Eg. If ij ∈ Eg then j is often described as being a neighbour of i. We

denote by neii,g = {j : ij ∈ Eg} the neighbourhood of node i, which contains all nodes with whom

i is linked. Nodes that are neighbours of neighbours will often be referred to as ‘second degree

neighbour’. Typically it is convenient to assume that ii /∈ Eg ∀i ∈ Ng. Edges may be directed, so

that a link from node i to node j is not the same as a link from node j to node i; in this case the

network is a directed graph (or digraph). In Section 4 we will at times find it useful to explicitly

enumerate the edges; we denote by Λ this set of enumerated edges, with typical element l. Unlike

Eg, Λ is an ordered set, with order 12, 13, ...N(N − 1), so that we may use (l − 1) to denote the

element in the set one position before l.

A more general case than the binary graph is that of a weighted graph, in which the edge set contains

all possible combinations of nodes, other than to the node itself. That is, Eg = {ij : ∀i, j ∈ Ng, i 6=
3In a slight abuse of notation, we will also use g to index individual networks when data from multiple networks

is available.
4In Appendix A we provide further useful definitions.
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j}. Moreover, edges have edge weights wei(i, j) which measure some metric of distance or link

strength. Care is needed in interpreting the value of weights, as these differ by context. ‘Distance’

weighted graphs, which arise for example when weights represent transaction costs between two

nodes, would typically have weid(i, j) ∈ [0,∞), with weid(i, j) = ∞ being equivalent to i and j

being unconnected in the binary graph case. Conversely, ‘strength’ weighted graphs, where weights

capture for example the frequency of interaction between agents, typically have weis(i, j) ∈ [0, w̄],

with weis(i, j) = 0 being equivalent to i and j being unconnected in the binary graph case and

w̄ < ∞.5 Which definition is used depends on the context and application, but similar methods

can be used for analysis in either case.6

Network graphs, whether directed or not, can also be represented by an adjacency matrix, Gg,

with typical element Gij,g. This is an Ng × Ng matrix with the leading diagonal normalised to

0. When the network is binary, Gij,g= 1 if ij ∈ Eg, and 0 otherwise, while for weighted graphs,

Gij,g = wei(i, j). We will use the notation Gi,g to denote the ith row of the adjacency matrix

Gg, and G′i,g to denote its ith column.7 Many models defined for binary networks make use of the

row-stochastic8 adjacency matrix or influence matrix, G̃g. Elements of this matrix are generally

defined as G̃ij,g = Gij,g/
∑
j Gij,g if two agents are linked and 0 otherwise.

When we describe empirical methods for identifying and estimating social effects, we will frequently

work with data from a number of network graphs. Graphs for different networks will be indexed,

in a slight abuse of notation, by g = 1, ...,M , where M is the total number of networks in the data.

Node-level variables will be indexed with i = 1, ..., Ng, where Ng is the number of nodes in graph

g. Node-level outcomes will be denoted by yi,g, while exogenous covariates will be denoted by the

1×K vector xi,g and common network-level variables will be collected in the 1×Q vector, zg.

The node-level outcomes, covariates and network-level variables can be stacked for each node in a

network. In this case, we will denote the stacked Ng × 1 outcome vector as yg and the Ng × K
matrix stacking node-level vectors of covariates for graph g as Xg. Common network-level variables

for graph g will be gathered in the matrix Zg = ιgzg where ιg denotes an Ng × 1 vector of ones.

The adjacency and influence matrices for network g will be denoted by Gg and G̃g. At times we

will also make use of the Ng × Ng identity matrix, Ig, consisting of ones on the leading diagonal,

and zeros elsewhere.

Finally, we introduce notation for vectors and matrices stacking together the network-level outcome

vectors, covariate matrices and adjacency matrices for all networks in the data. Y = (y
′
1, ...,y

′
M )
′

is an
∑M

g=1Ng× 1 vector that stacks together the outcome vectors; G = diag{Gg}g=Mg=1 denotes the∑M
g=1Ng×

∑M
g=1Ng block-diagonal matrix with network-level adjacency matrices along the leading

5In both of these examples, wei(i, j) = wei(j, i). More generally this need not be true. For example, in some
settings one might use ‘flow weights’ where weif (i, j) represents the net flow of, say, resources from i to j. Then by
definition weif (i, j) = −weif (j, i), and the weighted adjacency matrix, defined shortly, is skew-symmetric.

6With distance weighted graphs, one must be careful in dealing with edges where weid(i, j) = ∞. A good
approximation can usually be made by replacing infinity with an arbitrarily high finite value.

7G′i,g is the ith row of G′g, which is the ith column of Gg.
8A row stochastic (also called ‘right stochastic’ matrix) is one whose rows are normalised so they each sum to one.
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diagonal and zeros off the diagonal, and analogously G̃ = diag{G̃g}g=Mg=1 (with similar dimensions

as G) for the influence matrices; and X = (X
′
1, ...,X

′
M )
′

and Z = (Z
′
1, ...,Z

′
M )
′

are respectively,∑M
g=1Ng×K and

∑M
g=1Ng×Q matrices, that stack together the covariate matrices across networks.

Finally, we define the vector ι as a
∑M

g=1Ng × 1 vector of ones and the matrix L = diag{ιg}g=Mg=1 ,

as an
∑M

g=1Ng ×M matrix with each column being an indicator for being in a particular network.

3 Social Effects

Researchers are typically interested in understanding how the behaviour, choices and outcomes of

agents are influenced by the agents that they interact with, i.e. by their neighbours. This section

reviews methods that have been used to identify and estimate these social effects.9 We consider

a number of restrictions that would allow parameters of interest to be recovered, and place them

into a broader framework. We focus on linear estimation models, which cover the bulk of methods

used in practice.

We begin by providing a common organisational framework for the different empirical specifications

that have been applied in the literature. Thereafter, we discuss in turn a series of commonly used

specifications, the underlying theoretical models that generate them, and outline conditions for the

causal identification of parameters with observational cross-sectional data. We then briefly discuss

how experimental and quasi-experimental variation could be used to uncover social effects. Finally,

we discuss some methods that can be applied to overcome confounding due to endogenous formation

of edges, and discuss their limitations. A comprehensive overview of models of network formation

is provided in Section 4.

We will use a specific example throughout this section to better illustrate the restrictions imposed

by each of the different models and empirical specifications. Specifically, we will consider how we

can use these methods to answer the following question: How is a teenager’s schooling performance

influenced by his friends? This is a widely studied question in the education and labour economics

literatures, and is of great policy interest.10

We take as given throughout this section that the researcher knows the network(s) for which he is

trying to estimate social effects and that he observes the entirety of this network without error. In

Section 5 we will discuss how these data might be collected, and the consequences of having only

a partial sample of the network and/or imperfectly measured networks.

3.1 Organising Framework

Almost all (linear) economic models of social effects can be written as a special case of the following

equation (written in matrix terms using the notation specified in Section 2):

9We leave aside the important issues of inference, in order to keep the scope of this survey manageable.
10See Sacerdote (2011) for an overview of this literature.
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Y = αι+wy(G, Y )β +Xγ +wx(G, X)δ + Zη +Lν + ε (3.1)

Y is a vector stacking individual outcomes of nodes across all networks.11 X is a matrix of

observable background characteristics that influence a node’s own outcome and potentially that of

others in the network. G is a block-diagonal matrix with the adjacency matrices of each network

along its leading diagonal, and zeros on the off-diagonal. wy(G, Y ) and wx(G, X) are functions of

the adjacency matrix, and the outcome and observed characteristics respectively. These functions

indicate how network features, interacted with outcomes and exogenous characteristics of (possibly

all) nodes in the network, influence the outcome, Y . The block-diagonal nature of G means that

only the characteristics and outcomes of nodes in the same network are allowed to influence a node’s

outcome. Z is a matrix of observed network-specific variables; ν = {νg}g=Mg=1 is the associated vector

of network-specific mean effects, unobserved by the econometrician but known to agents; and ε is

a vector stacking the (unobservable) error terms for all nodes across all networks.

We make the following assumptions on the ε term:

E[εi,g|Xg,Zg,Gg] = 0 ∀ i ∈ g; g ∈ {1, ...,M} (3.2)

Cov[εi,gεk,h|Xg,Xh,Zg,Zh,Gg,Gh] = 0 ∀ i ∈ g; k ∈ h; g, h ∈ {1, ...,M}; g 6= h (3.3)

Equation 3.2 says that the error term for individual nodes in a network is mean independent of

observed node-level characteristics of all network members, of network-level characteristics and of

the network structure, as embodied in the adjacency matrix Gg. The network, is in this sense

assumed to be exogenous, conditional on individual-level observable characteristics and network-

level observable characteristics. Later in Subsection 3.7 below, we will review some approaches

taken to relax this assumption. In addition, Equation 3.3 implies that the error terms of all nodes,

i and k in different networks, g and h, are uncorrelated conditional on observable characteristics of

the nodes, the observable characteristics of the networks, and the structure of the network. Finally,

note that no assumptions are imposed on the covariance of node-level error terms within the same

network.

In some cases, the following assumption is made on ν:

E[νg|Xg,Zg,Gg] = 0 ∀ g ∈ {1, ...,M} (3.4)

That is, the network-level unobservable is mean independent of observable node- and network-

level characteristics, and of the network. Many of the models that we consider below relax this

11We allow Y to be univariate, so individuals have only a single outcome. A recent paper by Cohen-Cole et al.
(forthcoming) discusses how to relax this assumption, and provides some initial evidence that restricting outcomes
to only a single dimension might be important in empirical settings.
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assumption and allow for correlation between ν and the other right hand side variables in Equation

3.1.

The social effect parameter that is most often of interest to researchers is β - the effect of a

function of a node’s neighbours’ outcomes (e.g. an individual’s friends’ schooling performance) and

the network. This is also known as the endogenous effect, to use the term coined by Manski (1993).

This parameter is often of policy interest, since in many linear models, the presence of endogenous

effects implies the presence of a social multiplier: the aggregate effects of changes in X, wx(G, X),

and Z are amplified beyond their direct effects, captured by γ, δ, and η. The parameters δ and η

are known as the exogenous or contextual effect while ν captures a correlated effect.

This representation nests a range of models estimated in the economics literature:

1. Local average models: This model corresponds with wy(G, Y ) = G̃Y and wx(G, X) = G̃X,

which arises when node outcomes are influenced by the average behaviour and characteristics

of his direct neighbours. In our schooling example, this model implies that an individual’s

schooling performance is a function of the average schooling performance of his friends, his

own characteristics, the average characteristics of his friends and some background network

characteristics. This can apply, for example, when social effects operate through a desire for

a node to conform to the behaviour of its neighbours. The identifiability of the parameters

β, γ, and δ from the data available to a researcher depends on the structure of the network

and the level of detail available about the network:12

(a) With data containing information only on the broad peer group that a node belongs to

and where a node can belong to a single group only (e.g. a classroom), it is common

to assume that the node is directly linked with all other nodes in the same group and

that there are no links between nodes in different groups. In this case, the peer group

corresponds to the network. All elements of the influence matrix of a network g, G̃g,

(including the diagonal) are set to 1
Ng

where Ng is the number of agents within the

network.13 This generates the linear-in-means peer group model studied by Manski

(1993) among others. Manski (1993) shows that identification of the parameter β is

hampered by a simultaneity problem that he labels the reflection problem: it is not

possible to differentiate whether the choices of a node i in the network influence the

choices of node j, or vice versa. An alternative definition for G̃ sets all diagonal terms

of the network-level influence matrices, G̃g, to 0 and off-diagonal terms to 1
Ng−1 , which

implies using the leave-self-out mean outcome as the regressor generating social effects.

With this definition, identification of the parameters β, γ, and δ is possible in some

circumstances as shown by Lee (2007).14 Identification issues related to this model with

12The parameter η can also be identified under the assumption that E[ν|X,Z,G] = 0.
13Note that in this case, since all nodes are linked to all others (including themselves), the total number of i’s edges

(or degree), di,g =
∑
j Gij,g = Ng ∀ i ∈ g. Hence by definition, all elements of G̃g are set to 1

Ng
.

14Other solutions to the reflection problem have also been proposed, such as those by Glaeser et al. (1996), Moffitt
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single peer groups have been surveyed in detail elsewhere, and thus will not be considered

here. The interested reader should consult the comprehensive review by Blume et al.

(2010).

(b) If instead detailed network data (i.e. information on nodes and the edges between them)

are available, or if nodes belong to multiple partially overlapping peer groups, it may

be possible to separately identify the parameters β, γ, and δ from a single cross-section

of data. In this case, elements of the network-level influence matrices, G̃g are defined

as G̃ij,g = 1
di,g

when a link between i and j exists, where di,g is the total number of i’s

links (or degree); and 0 otherwise. Identification results for observational network data

have been obtained by Bramoullé et al. (2009). These are explored in more detail in

Subsection 3.2 below.

2. Local aggregate models: When there are strategic complementarities or substitutabilities

between a node’s outcomes and the outcomes of its neighbours one can obtain the local

aggregate model. In our schooling example, it may be more productive for an individual to

put in more effort in studying if his friends also put in more effort, consequently leading to

better schooling outcomes. In this case a node’s outcome depends on the aggregate outcome

of its neighbours. In the context of Equation 3.1, this implies that wy(G, Y ) = GY and

wx(G, X) is typically defined to be G̃X, implying that the outcome of interest is influenced

by the average exogenous characteristics of a node’s neighbours.15 Identification and estima-

tion of this model in observational networks data has been studied by Calvó-Armengol et al.

(2009), Lee and Liu (2010) and Liu et al. (2014b). More details are provided in Subsection

3.3 below.

3. Hybrid local models: This class of models nests both the local average and local aggregate

models. This allows the social effect to operate through both a desire for conformism and

through strategic complementarities/substitutabilities. In the schooling example, the model

implies that individuals may want to ‘fit-in’ and thus put in similar amounts of effort in

studying as their friends, but their studying efforts may also be more productive if their

friends also put in effort. Both of these channels then influence their schooling performance.

In the notation of Equation 3.1, it implies that wy(G,Y ) = GY + G̃Y . As in the local

average and aggregate models above, wx(G, X) is typically defined to be G̃X. Identification

and estimation of this model with observational data is studied by Liu et al. (2014a). See

Subsection 3.4 for more details.

4. Networks may influence node outcomes (and consequently aggregate network outcomes)

through more general features or functionals of the network. For instance, the DeGroot (1974)

(2001), and Graham (2008). Kwok, 2013 provides a general study of the conditions under which identification of
parameters can be achieved. He finds that network diameter – the length of the longest geodesic – is the key parameter
in determining identification.

15This choice of definition for wx(G, X) is, to our understanding, not based on any explicit theoretical justification.
It does, however, ease identification as wx(.) and wy(.) are now different functions of G.
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model of social learning implies that an individual’s eigenvector centrality, which measures

a node’s importance in the network by how important its neighbours are, determines how

influential it is in affecting the behaviour of other nodes.16 In the schooling context, if an

individual’s friends are also friends of each other (a phenomenon captured by clustering), he

may have to spend less time maintaining these friendships due to scale economies, allowing

him more time for school work thereby leading to better schooling performance.

Denoting a specific network statistic (such as eigenvector centrality in the social learning

model above) by ωr, where r indexes the statistic, we can specialise the term wy(G, Y )β in

Equation 3.1 for node i in network g in a model with node-level outcomes as:

•
R∑
r=1

ωri,gβr: R different network statistics; or

•
R∑
r=1

∑
j 6=i

Gij,gyj,gω
r
j,gβr: the sum of neighbours’ outcomes weighted by R different network

statistics; or

•
R∑
r=1

∑
j 6=i

G̃ij,gyj,gω
r
j,gβr: the average of neighbours’ outcomes weighted by R different net-

work statistics.

Analogous definitions are used for wx(G, X)δ. Models of this type have been estimated by

Jackson et al. (2012) and Alatas et al. (2012).

When researchers are interested in aggregate network outcomes, rather than node level out-

comes, the following specification is typically estimated:

ȳ = φ0 + w̄ȳ(G)φ1 + X̄φ2 + w̄X̄(G, X̄)φ3 + u (3.5)

where ȳ is an (M × 1) vector stacking the aggregate outcome of the M networks, w̄ȳ(G) is a

matrix of R̄ network statistics (e.g. average degree) that directly influence the outcome, X̄ is

an (M ×K) matrix of network-level characteristics (which could include network-averages of

node characteristics) and w̄X̄(G, X̄) is a term interacting the network-level characteristics

with the network statistics. φ1 captures how the network-level aggregate outcome varies with

specific network features while φ2 and φ3 capture, respectively, the effects of the network-level

characteristics and these characteristics interacted with the network statistic on the outcome.

Models of this type have been estimated by among others, Banerjee et al. (2013), and are

discussed further in Subsection 3.5.

In Subsections 3.2 to 3.5 below, we review methods relating to identification of the parameters β,

γ, δ, φ1 and φ2 and φ3 in these models,17 under the assumption that the network is exogenous

16Eigenvector centrality is a more general function of the network than those considered above, since it relies on
the whole structure of the network.

17η can also be identified in some cases, particularly when the assumption E[ν|X,Z,G] = 0 is imposed.
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conditional on observable individual and network-level variables. For each case discussed, we start

by outlining a theoretical model that generates underlying the resulting empirical specification, and

outline identification conditions using observational data.

Thereafter, in Subsection 3.6, we outline how experimental and quasi-experimental variation has

been used to uncover social effects, and highlight some of the challenges faced in using such variation

to uncover parameters of the structural models outlined in Subsections 3.2 to 3.4 below.

Subsection 3.7 outlines methods used by researchers to relax the assumption made in equation 3.2:

that the individual error term is mean independent of the network and observed individual and

network-level characteristics. Dealing with endogenous formation of social links is quite challenging,

and so most of the methods outlined in this section fail to satisfactorily deal with the identification

challenges posed by endogenous network formation. Moreover, none of these methods deal with

the issue of measurement error in the network. These issues are considered in Sections 4 and 5

respectively.

3.2 Local Average Models

In local average models, a node’s outcome (or choice) is influenced by the average outcome of its

neighbours. Thus, an individual’s schooling performance is influenced by the average schooling

performance of his friends. The outcome for node i in network g, yi,g, is typically modelled as being

influenced by its own observed characteristics, xi,g, scalar unobserved heterogeneity εi,g, observed

network characteristics zg, unobserved network characteristic νg, and also the average outcomes and

characteristics of neighbours. Below, we consider identification conditions when data are available

from multiple networks, though some results apply to data from a single network.18

Stacking together data from multiple networks yields the following empirical specification, expressed

in matrix terms:

Y = αι+βG̃Y +Xγ + G̃Xδ +Zη +Lν + ε (3.6)

where Y , ι, X, Z, L and ν are as defined previously; and G̃ is a block diagonal matrix stacking

network-level influence matrices along its leading diagonal, with all off-diagonal terms set to 0. The

social effect, β, is a scalar in this model.

Given the simple empirical form of this model, it has been widely applied in the economics literature.

Examples include:

• Understanding how the average schooling performance of an individual’s peers influences the

individual’s own performance in a setting where students share a number of different classes

18When data on only a single network are available, the empirical specification is as follows: yg = a + βG̃gyg +
Xgγ+G̃gXgδ+εg, where a = αιg +Zgη + ιgνg in our earlier notation, capturing all of the network-level character-
istics.
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(e.g. De Giorgi et al., 2010), or where students have some (but not all) common friends (e.g.

Bramoullé et al., 2009).

• Understanding how non-market links between firms arising from company directors being

members of multiple company boards influence firm choices on investment and executive pay

(e.g. Patnam, 2013).

Although this specification is widely used in the empirical literature, few studies consider or acknow-

ledge the form of its underlying economic model, even though parameter estimates are subsequently

used to evaluate alternative policies and to make policy recommendations. Indeed, parameters are

typically interpreted as in the econometric model of Manski (1993), whose parameters do not map

back to ‘deep’ structural (i.e. policy invariant) parameters without an economic model.

An economic model that leads to this specification is one where nodes have a desire to conform to

the average behaviour and characteristics of their neighbours (Patacchini and Zenou, 2012). In our

schooling example, conformism implies that individuals would want to exert as much effort in their

school work as their friends so as to ‘fit in’. Thus, if one’s friends may want to exert no effort in

their school work, the individual would also not want to exert any effort in his school work.

Below we show how this model leads to Equation 3.6. However, this is not the only economic model

that leads to an empirical specification of this form: a similar specification arises from, for example,

models of perfect risk sharing, where a well-known result is that under homogeneous preferences,

when risk is perfectly shared, the consumption of risk-averse households will move with average

household consumption in the risk sharing group or network (Townsend, 1994).

Conformism is commonly modelled by node payoffs that are decreasing in the distance between

own outcome and network neighbours’ average outcomes. Payoffs are also allowed to vary with

an individual heterogeneity parameter, πi,g, which captures the individual’s ability or productivity

associated with the outcome:19

Ui(yi,g;y−i,g,Xg, G̃i,g) =

πi,g − 1

2

yi,g − 2β

Ng∑
j=1

G̃ij,gyj,g

 yi,g (3.7)

β in Equation 3.7 can be thought of as a taste for conformism. Although we write this model as

though nodes are perfectly able to observe each others’ actions, this assumption can be relaxed.

In particular, an econometric specification similar to Equation 3.6 can be obtained from a static

model with imperfect information (see Blume et al., 2013).

The best response function derived from the first order condition with respect to yi,g is thus:

yi,g = πi,g + β

Ng∑
j=1

G̃ij,gyj,g (3.8)

19Notice that in Equation 3.7,
∑Ng

j=1 G̃ij,gyj,g is identical to the ith row of G̃gyg, which appears in Equation 3.6.
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Patacchini and Zenou (2012) derive the conditions under which a Nash equilibrium exists, and

characterise properties of this equilibrium.

The individual heterogeneity parameter, πi,g , can be decomposed into a linear function of individual

and network characteristics (both observed and unobserved):

πi,g = xi,gγ +

Ng∑
j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (3.9)

Substituting for this in Equation 3.8, we obtain the following best response function for individual

outcomes:

yi,g = β

Ng∑
j=1

G̃ij,gyj,g + xi,gγ +

Ng∑
j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (3.10)

Then, stacking observations for all nodes in multiple networks, we obtain Equation 3.6, which can

be taken to the data.

Bramoullé et al. (2009) study the identification and estimation of Equation 3.6 in observational data

with detailed network information or data from partially overlapping peer groups.20 To proceed

further, one needs to make some assumptions on the relationship between the unobserved variables

– ν and ε – and the other right hand side variables in Equation 3.6.

One specific assumption is that E[ε|X,Z, G̃] = 0, i.e. the individual level error term, ε, is assumed

to be mean independent of the observed individual and network-level characteristics and of the

network. The network level unobservable is also initially assumed to be mean independent of the

right hand side variables, i.e. E[ν|X,Z, G̃] = 0; though this assumption will be relaxed further

on.

Under these assumptions, the parameters {α, β,γ, δ,η} are identified if {I, G̃, G̃2} are linearly

independent. Identification thus relies on the network structure. In particular, the condition would

not hold in networks composed only of cliques – subnetworks comprising of completely connected

components – of the same size, and where the diagonal terms in the influence matrix, G̃ are not

set to 0. In this case, G̃2 can be expressed as a linear function of I and G̃. Moreover, the model

is then similar to the single peer group case of Manski (1993), and the methods outlined in Blume

et al. (2010) apply.

In an undirected network (such as the in the left panel in Figure 1 below), this identification

condition holds when there exists a triple of nodes (i, j, k) such that i is connected to j but not

k, and j is connected to k. The exogenous characteristics of k, xk,g, directly affect j’s outcome,

but not (directly) that of i, hence forming valid instruments for the outcome of i’s neighbours

20Similar identification results have been independently described by De Giorgi et al. (2010), who have data with
overlapping peer groups of students who share a number of classes.
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(i.e. j’s outcome) in the equation for node i. Intuitively this method uses the characteristics

of second-degree neighbours who are not direct neighbours as instruments for outcomes of direct

neighbours.

 
 

(a) Intransitive triad in undirected network (b) Intransitive triad in directed network 
 

Figure 1: Intransitive triad in a undirected network (left panel) and a directed network (right panel)

It is thus immediately apparent why identification fails in networks composed only of cliques: in

such networks, there is no triple of nodes (i, j, k) such that i is connected to j, and j is connected

to k, but i is not connected to k.

In the directed network case, the condition is somewhat weaker, requiring only the presence of an

intransitive triad: that is, a triple such that ij ∈ E , jk ∈ E and ik /∈ E (as in the right panel

of Figure 1 above).21 This is weaker than in undirected networks, which would also require that

ki /∈ E .

As an example, consider using this method to identify the influence of the average schooling perform-

ance of an individual’s friends on the individual, controlling for the individual’s age and gender, the

average age and gender of his friends, and some observed school characteristics (such as expenditure

per pupil). Assume first that the underlying friendship network in this school is undirected as in

the left panel of Figure 1, so that if i considers j to be his friend, j also considers i to be his friend.

j also has a friend k who is not friends with i. We could then use the age and gender of k as

instruments for the schooling performance of j in the equation for i. If instead, the network were

directed as in the right panel of Figure 1, where the arrows indicate who is affected by whom (i.e.

i is affected by j in the Figure, and so on), we can still use the age and gender of k as instruments

for the school performance of j in the equation for i even though k is connected with i. This is

possible since the direction of the relationship is such that k’s school performance is affected by i’s

performance, but the converse is not true.

The identification result above requires that the network-level unobservable term be mean independ-

ent of the observed covariates, X and Z, and of the network, G̃. However, in many circumstances

one might be concerned that unobservable characteristics of the network might be correlated with

X, so that E[ν|X,Z, G̃] 6= 0. For example, in our schooling context, when we take the network of

interest to be constrained to be within the school, it is plausible that children with higher parental

21Equivalently, a triple such ji ∈ E , kj ∈ E and ki /∈ E forms an intransitive triad.
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income will be in schools with teachers who have better unobserved teaching abilities, since wealth-

ier parents may choose to live in areas with schools with good teachers. In this case, a natural

solution when data on more than one network is available, is to include network fixed effects, Lν̃

in place of the network-level observables, Z, and the network-level unobservable, Lν; where ν̃ is

an M × 1 vector that captures the network fixed effects.

Since the fixed effects themselves are generally not of interest, to ease estimation they are removed

using a within transformation. This is done by pre-multiplying Equation 3.6 by Jglob, a block

diagonal matrix that stacks the network-level transformation matrices Jglobg = Ig − 1
Ng

(ιgι
′
g) along

the leading diagonal, and off-diagonal terms are set to 0.22 The resulting model, suppressing the

superscript on Jglob for legibility, is of the following form:

JY = βJG̃Y + JXγ + JG̃Xδ + Jε (3.11)

In this case, the identification condition imposes a stronger requirement on network structure. In

particular, the matrices {I, G̃, G̃2, G̃3} should be linearly independent. This requires that there

exists a pair of agents (i, j) such that the shortest path between them is of length 3, that is, i

would need to go through at least two other nodes to get to j (as in Figure 2 below). The presence

of at least two intermediate agents allows researchers to use the characteristics of third-degree

neighbours (neighbours-of-neighbours-of-neighbours who are not direct neighbours or neighbours-

of-neighbours) as an additional instrument to account for the network fixed effect.

Figure 2: Identification with network fixed effects. The picture on the left panel shows an undirected
network with an agent l who is at least 3 steps away from i, while the picture on the right panel
shows the same for a directed network.

A concern that arises when applying this method is that of instrument strength. Bramoullé et al.

(2009) find that this varies with graph density, i.e., the proportion of node pairs that are linked; and

the level of clustering, i.e. the proportion of node triples such that precisely two of the possible three

edges are connected.23 Instrument strength is declining in density, since the number of intransitive

triads tends to zero. The results for clustering are non-monotone, and depend on density.

The discussion thus far has assumed that the network through which the endogenous social effect

operates is the same as the network through which the contextual effect operates. It is possible to

22This is a global within transformation, which subtracts the average across the entire network from the individual’s
value. Alternatively, a local within transformation, J locg = Ig−G̃g, can be used, which would subtract only the average
of the individual’s peers rather than the average for the whole network. The latter transformation has slightly stricter
identification conditions than the former, since it does not make use of the fact that the network fixed effect is common
across all network members, and not just among directly linked nodes.

23This definition is also referred to as the clustering coefficient.
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allow for these two networks to be distinct. This could be useful in a school setting, for instance,

where contextual effects could be driven by the average characteristics of all students in the school,

while endogenous effects by the outcomes of a subset of students who are friends. This might occur

if the contextual effect operates through the level of resources the school has, which depends on the

parental income of all students, whilst the peer learning might come only from friends.

Let GX,g and Gy,g denote the network-level adjacency matrices through which, respectively, the

contextual and endogenous effects operate. As before we define the block diagonal matrices GX =

diag{GX,g}g=Mg=1 and Gy = diag{Gy,g}g=Mg=1 . Blume et al. (2013) study identification of this model

assuming that the two networks are (conditionally) exogenous and show that when the matrices

Gy and GX are observed by the econometrician, and at least one of δ and γ is non-zero, then the

necessary and sufficient conditions for the parameters of Equation 3.6 to be identified are that the

matrices I, Gy, GX and GyGX are linearly independent.

Although all parameters of interest can be identified by this method, the assumption that the

network structure is conditionally exogenous is highly problematic. Though endogeneity caused by

selection into a network can be overcome by allowing for group fixed effects which can be differenced

out, endogenous formation of links within the network remains problematic and is substantially

more difficult to overcome. Formally, the problem arises from the fact that agents’ choices of with

whom to link are correlated with unobservable (at least to the researcher) characteristics of both

agents, so Pr(Gij,g = 1|εi,g) 6= Pr(Gij,g).

This means that the absence of a link between two nodes i and k may be correlated with εi,g and

εk,g, meaning that E[εi,g|Xg,Zg,Gg] 6= 0.24 Consequently the condition in Equation 3.2 no longer

holds. This is problematic for the method of Bramoullé et al. (2009), where the absence of a link

is used to identify the social effect, and this absence could be for reasons related to the outcome

of interest, thereby invalidating the exclusion restriction. For instance, more motivated pupils in a

school may choose to link with other motivated pupils; or individuals may choose to become friends

with other individuals who share a common interest (such as an interest in reading, or mathematics)

that is unobserved in the data available to the researcher. In such examples, the absence of a link

is due to the unobserved terms of the two agents being correlated in a specific way rather than the

absence of correlation between these terms. Solutions to this problem are considered in Subsection

3.7.

3.3 Local Aggregate Model

The local aggregate class of models considers settings where agents’ utilities are a function of the

aggregate outcomes (or choices) of their neighbours. Such a model applies to situations where there

are strategic complementarities or strategic substitutabilities. For example:

24Similarly, E[εk,g|Gg] 6= 0.
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• An individual’s costs of engaging in crime may be lower when his neighbours also engage in

crime (e.g. Bramoullé et al., 201425).

• An agent is more likely to learn about a new product and how it works if more of his neighbours

know about it and have used it.

The local aggregate model corresponds empirically to Equation 3.1 with wy(G, Y )=GY and

wx(G, X)=G̃X, and a scalar social effect parameter, β. This specification can be motivated

by the best responses of a game in which nodes have linear-quadratic utility and there are strategic

complementarities or substitutabilities between the actions of a node and those of its neighbours.

A model of this type has studied by Ballester et al. (2006).26 In particular, the utility function for

node i in network g takes the following form:

Ui(yi,g;y−i,g,Xg,Gg) =

πi,g − 1

2
yi,g + β

Ng∑
j=1

Gij,gyj,g

 yi,g (3.12)

where yi,g is i’s action or choice, and πi,g is, as before, an individual heterogeneity parameter.27

πi,g is parameterised as

πi,g = xi,gδ +
n∑
j=1

G̃ij,gxj,gγ + zgη + νg + εi,g

so that individual heterogeneity is a function of a node’s own characteristics, the average charac-

teristics of its neighbours, network-level observed characteristics, and some unobserved network-

and individual-level terms.

The quadratic cost of own actions means that in the absence of any network, there would be a

unique optimal amount of effort the node would exert. β > 0 implies that neighbours’ actions are

complementary to a node’s own actions, so that the node increases his actions in response to those

of his neighbours. If β < 0, then nodes’ actions are substitutes, and the reverse is true. Nodes

choose yi,g so as to maximise their utility.

The best response function is:

y∗i,g(Gg) = β

n∑
j=1

Gij,gyj,g + xi,gδ +

n∑
j=1

G̃ij,gxj,gγ + zgη + νg + εi,g (3.13)

Ballester et al. (2006) solve for the Nash equilibrium of this game when β > 0 and show that when

|βωmax(Gg)| < 1, where ωmax(Gg) is the largest eigenvalue of the matrix Gg, the equilibrium is

25The games considered in both Bramoulle and Kranton (2007) and Bramoullé et al. (2014) are not strictly linear
models, since there are corner solutions at zero.

26Ballester et al. (2006) focus on the case where there are strategic complementarities. Bramoullé et al. (2014)
study the case where there are strategic substitutabilities and characterise all equilibria of this game.

27Notice that
∑Ng

j=1Gij,gyj,g = Gi,gyg.
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unique and the equilibrium outcome relates to a node’s Katz-Bonacich centrality, which is defined

as b(Gg, β) = (Ig − βGg)
−1(ιg).

28

Bramoullé et al. (2014) study the game with strategic substitutabilities between the action of a node

and those of its neighbours. They characterise the set of Nash equilibria of the game and show that,

in general, multiple equilibria will arise. A unique equilibrium exists only when β|ωmin(Gg)| < 1,

where ωmin(Gg) is the lowest eigenvalue of the matrix Gg. When there are multiple equilibria

possible, they must be accounted for in any empirical analysis. Methods developed in the literature

on the econometrics of games may be applied here (Bisin et al., 2011). See de Paula (2013) for an

overview.

When a unique equilibrium exists, this theoretical set-up implies the following empirical model

(stacking data from multiple networks):

Y = αι+ βGY +Xγ + G̃Xδ +Zη +Lν + ε (3.14)

which corresponds to Equation 3.1 with wy(G, Y )=GY and wx(G, X)=G̃X, and where all other

variables and parameters are as defined above in Subsection 3.1.

Identification of Equation 3.14 using observational data has been studied by Calvó-Armengol et al.

(2009), Lee and Liu (2010) and Liu et al. (2014b). They proceed under the assumption that

E[ε|X,Z,G, G̃] = 0 and E[ν|X,Z,G, G̃] 6= 0. That is, the node-varying error component is

conditionally independent of node- and network-level observables and of the network, while the

network-level unobservable could be correlated with node- and network-level characteristics and/or

the network itself.

These assumptions imply a two-stage network formation process. First agents select into a network

based on a set of observed individual- and network-level characteristics and some common network-

level unobservables. Then in a second stage they form links with other nodes. There are no network-

level unobservable factors that determine link formation once the network has been selected by the

node. Moreover, there are no node-level unobservable factors that determine the choice of network

or link formation within the chosen network.

To proceed, we assume that data is available for multiple networks. Then, as in Subsection 3.2, we

replace the network-level observables, Z, and the network-level unobservable, Lν in Equation 3.14

with network fixed effects, Lν̃, where ν̃ is a M × 1 vector that captures the network fixed effects.

To account for the fixed effect, a global within-transformation is applied, as in Subsection 3.2.

This transformation is represented by the block diagonal matrix Jglob that stacks the following

network-level transformation matrices – Jglobg = Ig − 1
Ng

(ιgι
′
g) – along the leading diagonal, with

off-diagonal terms set to 0. Again we suppress the superscript on Jglob in the rest of this subsection.

The resulting model, analogous to Equation 3.11, is:

28A more general definition for Katz-Bonacich centrality is b(Gg, β, a) = (Ig − βGg)
−1(aGgιg), where a > 0 is a

constant (Jackson, 2008).
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JY = βJGY + JXγ + JG̃Xδ + Jε (3.15)

The model above suffers from the reflection problem, since Y appears on both sides of the equation.

However, the parameters of Equation 3.15 can be identified using linear IV if the deterministic part

of the right hand side, [E(JGY ),JX,JG̃X], has full column rank. To see the conditions under

which this is satisfied, we examine the term with the endogenous variable, E(JGY ). Under the

assumption that |βωmax(Gg)| < 1, we obtain the following from the reduced form equation of

Equation 3.14:

E(JGY ) = J(GX + βG2X + ...)γ + J(GG̃X + βG2G̃X + ...)δ

+J(GL+ βG2L+ ...)ν̃ (3.16)

We can thus see that if there is variation in node degree within at least one network g (which means

thatGg and G̃g are linearly independent), and the matrices {I,G, G̃,GG̃} are linearly independent

with γ, δ, and ν̃ each having non-zero terms, the parameters of Equation 3.14 are identified.29 This

is a special case of the Blume et al. (2013) result discussed earlier. Node degree (GL), along with

the total and average exogenous characteristics of the node’s direct neighbours (i.e. GX and G̃X)

and sum of the average exogenous characteristics of its second-degree neighbours (i.e. GG̃X) can

be used as instruments for the total outcome of the node’s neighbours (i.e. GY ). The availability

of node degree as an instrument can allow one to identify parameters without using the exogenous

characteristics, X, of second- or higher-degree network neighbours, which could be advantageous

in some situations as we will see in Section 5 below.

In terms of practical application, consider using this method to identify whether there are comple-

mentarities between the schooling performance of an individual and that of his friends, conditional

on how own characteristics (age and gender), the composition of his friends (average age and

gender), and some school characteristics. Then, if there are individuals in the same network with

different numbers of friends, and the matrices {I,G, G̃,GG̃} are linearly independent, the indi-

vidual’s degree, along with the total and average characteristics of his friends (i.e. total and average

age and gender) and the sum of the average age and gender of the individual’s friends of friends

can be used as instruments for the sum of the individual’s friends’ schooling performance.

Parameters can still be identified if there no variation in node degree within a network for all

networks in the data, but there is variation in degree across networks. In this case, Gg = d̄gG̃g and

[E(JGY ),JX,JG̃X] has full column rank if the matrices {I,G, G̃,GG̃, G̃2,GG̃2} are linearly

29See Liu et al. (2014b) for a different identification condition that allows for some linear dependence among these
matrices under additional restrictions.
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independent and γ and δ each have non-zero terms.30 Finally, when there is no variation in node

degree within and across all networks in the data, parameters can be identified using a similar

condition as encountered in Subsection 3.3 above: the matrices {I, G̃, G̃2, G̃3} should be linearly

independent.

It is possible to identify model parameters in the local aggregate model in networks where the local

average model parameters cannot be identified. For example, in a star network (see Figure 3) there

is no pair of agents that has a geodesic distance (i.e. shortest path) of 3 or more, so this fails the

identification condition for the local average model (see Subsection 3.2 above). However, there is

variation in node degree within the network and the matrices Ig,Gg, G̃g,GgG̃g can be shown to

be linearly independent, thus satisfying the identification conditions for the local aggregate model.

Figure 3: Star Network

3.4 Hybrid Local Models

The local average and local aggregate models embody distinct mechanisms through which social

effects arise. One may be interested in jointly testing these mechanisms, and empirically identifying

the most relevant one for a particular context. Liu et al. (2014a) present a framework nesting both

the local aggregate and local average models, allowing for this.

The utility function for node i in network g that nests both the (linear) local aggregate and local

average models has the following form:

Ui(yi,g;y−i,g,Xg, G̃i,g,Gi,g) =

πi,g + β1

Ng∑
j=1

Gij,gyj,g −
1

2

yi,g − 2β2

Ng∑
j=1

G̃ij,gyj,g

 yi,g (3.17)

30See Liu et al. (2014b) for a different identification condition that allows for some linear dependence among these
matrices under additional restrictions.
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where πi,g is node-specific observed heterogeneity, which affects the node’s marginal return from the

chosen outcome level yi,g. A node’s utility is thus affected by the choices of its neighbours through

changing the marginal returns of its own choice (e.g. in a schooling context, an individual’s studying

effort is more productive if his friends also study), as in the local aggregate model, and by a cost of

deviating from the average choice of its neighbours (i.e. individuals face a utility cost if they study

when their friends don’t study), as in the local average model.

The best reply function for a node i nests both the local average and local aggregate terms. Liu

et al. (2014a) prove that under the condition that β1 ≥ 0, β2 ≥ 0 and dmaxg β1 + β2 < 1, where

dmaxg is the largest degree in network g, the simultaneous move game has a unique interior Nash

equilibrium in pure strategies.

The econometric model, assuming that the node-specific observed heterogeneity parameter takes

the form πi,g = xi,gγ +
∑Ng

j=1 G̃ij,gxj,gδ + zgηg + νg + εi,g, is as follows:

Y = αι+ β1GY + β2G̃Y +Xγ + G̃Xδ +Zη +Lν + ε (3.18)

using the same notation as before (see e.g. Subsection 3.1).

With data from only a single network it is not possible to separately identify β1 and β2 and hence

test between the local aggregate and local average models (or indeed find that the truth is a hybrid

of the two effects). Identification of parameters is considered when data from multiple networks

are available under the assumption that E[εi,g|Xg,Zg,Gg, G̃g] = 0 and E[νg|Xg,Zg,Gg, G̃g] 6=
0. Thus, as in Subsections 3.2 and 3.3 above, the individual error term, εi,g is assumed to be

mean independent of node- and network-level observable characteristics and the network. The

network-level unobservable, νg, by contrast is allowed to be correlated with node- and network-

level characteristics and/or the network.

To proceed, as in the local average and local aggregate model, Zη and Lν are replaced by a

network-level fixed effect, Lν̃, which is then removed using the global within-transformation, Jglob.

Again, we suppress the superscript on Jglob. The resulting transformed network model is:

JY = β1JGY + β2JG̃Y + JXγ + JG̃Xδ + Jε (3.19)

When there is variation in the degree within a network g, then the reduced form equation of

Equation 3.19 implies that JG(I − β1G − β2G̃)−1L can be used as an instrument for the local

aggregate term JGY and JG̃(I − β1G − β2G̃)−1L can be used as an instrument for the local

average term JG̃Y . The model parameters may thus be identified even if there are no node-

level exogenous characteristics, X, in the model. Caution must be taken though when the model

contains no exogenous characteristics, X, since, in this case, the model may be only tautologically

identified if β1 = 0 (Angrist, 2013). The availability of such characteristics offers more possible IVs:

in particular, the total and average exogenous characteristics of direct and indirect neighbours can
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be used as instruments. These are necessary for identification when all nodes within a network have

the same degree, though average degree may vary across networks. In this case, parameters can

be identified if the matrices {I,G, G̃,GG̃, G̃2,GG̃2, G̃3} are linearly independent. If, however, all

nodes in all networks have the same degree, it is not possible to identify separately the parameters

β1 and β2.

This specification nests both the local average and local aggregate models, so a J-test for non-

nested regression models can be applied to uncover the relevance of each mechanism. The intuition

underlying the J-test is as follows: if a model is correctly specified (in terms of the set of regressors),

then the fitted value of an alternative model should have no additional explanatory power in the

original model, i.e. its coefficient should not be significantly different from zero. Thus, to identify

which of the local average or local aggregate mechanisms is more relevant for a specific outcome,

one could first estimate one of the models (e.g. the local average model), and obtain the predicted

outcome value under this mechanism. In a second step, estimate the other model (in our example,

the local aggregate model), and include as a regressor the predicted value from the other (i.e.

local average) model. If the mechanism underlying the local average model is also relevant for the

outcome, the coefficient on the predicted value will be statistically different from 0. The converse

can also be done to test the relevance of the second model (the local aggregate model in our case).

See Liu et al. (2014a) for more details.

3.5 Models with Network Characteristics

The models considered thus far allow for a node’s outcomes to be influenced only by outcomes of

its neighbours. However, the broader network structure may affect node- and aggregate network-

outcomes through more general functionals or features of the network. Depending on the theoretical

model used, there are different predictions on which network features relate to different outcomes of

interest. For example, the DeGroot (1974) model of social learning implies that a node’s eigenvector

centrality, which measures its ‘importance’ in the network by how important its neighbours are,

determines how influential it is in affecting the beliefs of other nodes.

Empirical testing and verification of the predictions of these theoretical models has greatly lagged

the theoretical literature due to a lack of datasets with both information on network structure and

socio-economic outcomes of interest. The recent availability of detailed network data from many

contexts has begun to relax this constraint.

The following types of specification are typically estimated when assessing how outcomes vary with

network structure, for node-level outcomes:

Y = fy(wy(G, Y ),X,wx(G, X),Z) + ε (3.20)
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and network-level outcomes:

ȳ = fȳ(w̄ȳ(G), X̄, w̄x̄(G, X̄)) + u (3.21)

fy(.) and fȳ(.) are functions that specify the shape of the relationship between the network statistics

and the node- and network-level outcomes. When fy(.) is simply a linear index in its argument,

Equation 3.22 remains nested in Equation 3.1. Though, in principle, the shape of fy(.) should

be guided by theory (where possible), through the rest of this Subsection, we take fy(.) to be a

linear index in its argument. wy(G, Y ) includes R network statistics that vary at the node- or

network-level and that may be interacted with Y 31 while w̄ȳ(G) contains the R̄ network statistics

in the network-level regression. X is a matrix of observable characteristics of nodes, wx(G, X)

interacts network statistics with exogenous characteristics of nodes, and Z and X̄ are network-level

observable characteristics. w̄X̄(G, X̄) interacts network statistics with network-level observable

characteristics.

The complexity of networks poses an important challenge in understanding how outcomes vary with

network structure. In particular, there are no sufficient statistics that fully describe the structure

of a network. For example, networks with the same average degree may vary greatly on dimensions

such as density, clustering and average path length among others. Moreover, the adjacency matrix,

G, which describes fully the structure of a network, is too high-dimensional an object to include

directly in tests of the influence of broader features of network structure. Theory can provide

guidance on which statistics are likely to be relevant, and also on the shape of the relationship

between the network statistic and the outcome of interest. A limitation though is that theoretical

results may not be available (given currently known techniques) for outcomes one is interested in

studying. This is a challenge faced by, for instance Alatas et al. (2012) who study how network

structure affects information aggregation.

Below we outline methods that have been applied to analyse the effects of features of network struc-

ture on socio-economic outcomes. We do so separately for node-level specifications and network-

level specifications. This literature is very much in its infancy and few methods have been developed

to allow for identification of causal parameters.

3.5.1 Node-Level Specifications

Many theoretical models predict how node-level outcomes vary with the ‘position’ of a node in

the network, captured by node varying network statistics such as centrality; or with features of

the node’s local neighbourhood such as node clustering; or with the ‘connectivity’ of the network,

represented by statistics that vary at the network-level such as network density.

A common type of empirical specification used in the literature correlates network statistics with

some relevant socio-economic outcome of interest. This approach is taken by, for example, Jackson

31The term wy(G, Y ) will be endogenous when network statistics are interacted with Y .
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et al. (2012) who test whether informal favours take place across edges that are supported (i.e. that

nodes exchanging a favour have a common neighbour), which is the prediction of their theoretical

model.

This corresponds with wy(G,Y ) in Equation 3.20 above being defined as wy(G,Y ) = ω, where

ω is an (
∑M

g=1Ng ×R) matrix stacking ωi,g, the (1×R) node-level vector of network statistics of

interest for all nodes in all networks, and wx(.) being defined as ι. Here, wy(G,Y ) is defined to

be a function of the network only.

When fy(.) is linear, the specification is as follows:

Y = αι+ωβ +Xγ + Zη + ε (3.22)

where the variables and parameters are as defined above and the parameter of interest is β. Defining

W = (ω,X,Z), the key identification assumption is that E[ε′W ] = 0, that is that the right hand

side terms are uncorrelated with the error term. This may not be satisfied if there are unobserved

factors that affect both the network statistic (through affecting network formation decisions) and

the outcome, Y or if the network statistic is mismeasured. Both of these are important concerns

that we cover in detail in Sections 4 and 5 below.

In some cases, one may also be interested in estimating a model where an agent’s outcome is

affected by the outcomes of his neighbours, weighted by a measure of their network position. For

example, in the context of learning about a new product or technology, the DeGroot (1974) model

of social learning implies that nodes’ eigenvector centrality determines how influential they are in

influencing others’ behaviour. Thus, conditional on the node’s eigenvector centrality, its choices

may be influenced more by the choices of his neighbours with high eigenvector centrality. Thus, one

may want to weight the influence of neighbours’ outcomes on own outcomes by their eigenvector

centrality, conditional on own eigenvector centrality. This implies a model of the following form:

Y = αι+wy(G, Y )β + X̃γ̃ +wx(G, X̃)δ̃

+Zη +Lν + ε (3.23)

wy(G, Y ) is an
∑

gNg × R matrix, with the (i, r)th element being the weighted sum of i’s neigh-

bours’ outcomes,
∑
j 6=i

Gij,gyj,gω
r
j,g or

∑
j 6=i

G̃ij,gyj,gω
r
j,g, with weights ωrj,g being the neighbour’s rth

network statistic. X̃ = (X̃ ′1, X̃
′
2, ..., X̃

′
M )′, where X̃g = (Xg,ωg) is a matrix stacking together

the network-level matrices of exogenous explanatory variables and network statistics of interest.

wx(G, X̃) could be defined as GX̃ or G̃X̃. Identification of parameters in this case is complic-

ated by the fact that wy(G, Y ) is a (possibly non-linear) function of Y , and thus endogenous. It

may be possible to achieve identification using network-based instrumental variables, as done in
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Subsections 3.2, 3.3 and 3.4 above, though it is not immediately obvious how such an IV could be

constructed. Future research is needed to shed light on these issues.

3.5.2 Network-level Specifications

Aggregate network-level outcomes, such as the degree of risk sharing or the aggregate penetration

of a new product, may also be affected by how ‘connected’ the network is, or the ‘position’ of nodes

that experience a shock or who first hear about a new product.

Empirical tests of the relationship between aggregate network-level outcomes and network statistics

involves estimating specifications such as Equation 3.21, where the shape of the function fȳ(.) and

the choice of statistics in w̄ȳ(G) = ω̄, where ω̄ is an (M × R̄) matrix of network statistics, are,

ideally, motivated by theory. With linear fȳ(.), this implies the following equation:

ȳ = φ0 + ω̄φ1 + X̄φ2 + w̄X̄(G, X̄)φ3 + u (3.24)

where the variables are as defined after Equation 3.21. The parameter of interest is typically φ1.

Defining W̄ = (ω, X̄, w̄X̄(G, X̄)), the key identification assumption is that E[uW̄ ] = 0, which

will not hold if there are unobserved variables in u that affect both the formation of the network

and the outcome ȳ; or if the network statistics are mismeasured. Recent empirical work, such as

that by Banerjee et al. (2013), has used quasi-experimental variation to try and alleviate some of

the challenges posed by the former issue in identifying the parameter φ1.

Since this specification uses data at the network-level, estimation will require a large sample of

networks in order to recover precise estimates of the parameters, even in the absence of endogeneity

from network formation and mismeasurement of the network. This is a problem in practice, since

as we will see below in Section 5.3, the difficulties and costs involved in collecting network data

often mean that in practice researchers have data for a small number of networks only.

3.6 Experimental Variation

Subsections 3.2 to 3.5 above considered the identification of the social effect parameters using

observational data. In this section, we consider identification of these parameters using experimental

data. We focus on the case where a policy is assigned randomly to a sub-set of nodes in a network.

Throughout we assume that the network is pre-determined and unchanged by the exogenously

assigned policy.32

We focus the discussion on identifying parameters of the local average model specified in Subsection

3.2 above. The issues related to using experimental variation to uncover the parameters of the local

32This assumption is not innocuous. Comola and Prina (2014) provide an example where the policy intervention
does change the network.
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aggregate model are similar. As outlined above, this model implies that a node’s outcome is

affected by the average outcome of its network neighbours, its own and network-level exogenous

characteristics (which may be subsumed into a network fixed effect), and the average characteristics

of its network neighbours. We are typically interested in parameters β, γ and δ in the following

equation:

Y = αι+βG̃Y +Xγ + G̃Xδ +Lν̃ + ε (3.25)

where the variables are as defined above.

Throughout this section, we assume that the policy shifts outcomes for the nodes that directly

receive the policy.33 To proceed further, we first assume that a node that does not receive the

policy (i.e. is untreated, to use the terminology from the policy evaluation literature), is only

affected by the policy through its effects on the outcomes of the node’s network neighbours. This

implies the following model for the outcome Y :

Y = αι+βG̃Y +Xγ + G̃Xδ + ρt+Lν̃ + ε (3.26)

where t is the treatment vector, and ρ is the direct effect of treatment. We assume that

E[ε|X,Z, G̃, t] = 0. Moreover, random allocation of the treatment implies that t ⊥⊥X,Z, G̃, ε.

Applying the same within-transformation as in Subsection 3.2 above to account for the network-level

fixed effect leads to the following specification:

JY = αJι+βJG̃Y + JXγ + JG̃Xδ + ρJt+ Jε (3.27)

We can use instrumental variables to identify β as long as the deterministic part of the right hand

side of Equation 3.27, [E(JG̃Y ),JX,JG̃X] has full column rank. JX and JG̃X can be used

as instruments for themselves. We thus need an instrument for E[JG̃Y ]. We use the following

expression for JG̃Y , derived from the reduced form of Equation 3.26 under the assumption that

|β| < 1, to construct instruments:

E[JG̃Y ] = JG̃

∞∑
s=0

βsG̃sαι+ J(G̃Xγ + βG̃2Xγ + ...) + J(G̃2Xδ + βG̃3Xδ + ...)

+J(ρG̃t+ βρG̃2t+ ...) (3.28)

From this equation, we can see that G̃t, the average treatment status of a node’s network neigh-

bours, does not appear in Equation 3.26. It can thus be used as an instrument for G̃Y , either

33Below, we will consider identification conditions in the case where a node may be affected by the treatment status
of his network neighbours even if their outcomes do not shift in response to the treatment.
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in addition to, or as an alternative to G̃2X and G̃3X, the average characteristics of the node’s

second- and third-degree neighbours. Thus, the policy could be used to identify the model para-

meters, albeit under a strong assumption on who it affects.34

In many cases, however, the assumption that the policy affects a node’s outcome only if it is directly

treated may be too strong. The treatment status of a node’s neighbours could affect its outcome

even when the neighbours’ outcomes do not shift in response to receiving the policy. An example of

such a case, studied by Banerjee et al. (2013), is when the treatment involves providing individuals

with information on a new product, and the outcome of interest is the take-up of the product. Then

neighbours’ treatment status could affect the individual’s own adoption decision by (1) shifting his

neighbours’ decision (endorsement effects), and also (2) through neighbours passing on information

about the product and letting the individual know of its existence (diffusion effect).35 In this case,

a more appropriate model would be as follows:

Y = αι+ βG̃Y +Xγ + G̃Xδ + ρt+ G̃tµ+ ε (3.29)

where ρ captures the direct treatment effect, i.e. the effect of a node itself being treated, and µ is the

direct effect of the average treatment status of social contacts. This highlights the limits to using

exogenous variation from randomised experiments to identify social effect parameters. We might

want to use the exogenous variation in the average treatment allocation of a node’s neighbours,

G̃t, as an instrument for neighbours’ outcomes, G̃Y . However, this will identify β only under the

assumption that µ = 0, i.e. there is no direct effect of neighbours’ treatment status. This rules out

economic effects such as the diffusion effect.

We can still make use of the treatment effect for identification, by using the average treatment

status of a node’s second-degree (and higher-degree) neighbours, G̃2t, as instruments for the average

outcome of his neighbours (G̃Y ). This is the same identification result as discussed earlier, from

Bramoullé et al. (2009), and simply treats G̃2t in the same way the other covariates of second-

degree neighbours, G̃2X. Such instruments rely not only on variation in treatment status, but also

on the network structure, with identification not possible for certain network structures as we saw

in Subsection 3.2.36

Thus far, we have discussed how exogenous variation arising from the random assignment of a

policy can be used to identify the social effect associated with a specific model – the local average

model – which, as we saw, arises from an economic model where agents conform to their peers.

In empirical work, though, it is common for researchers to directly include the average treatment

34Similar results can be shown for the local aggregate model when |βωmax(G)| < 1. However, as shown above,
node degree can also be used as an additional instrument in this model.

35The study of how to use these effects to maximise the number of people who adopt relates closely to study of the
‘key player’ in work by Ballester et al. (2006) and Liu et al. (2014b).

36Note that instruments based on random treatment allocation and network structure (e.g. G̃t and G̃2t) may be
more plausible than those based on the exogenous characteristics, X, and the network structure (e.g. G̃2X), since t
has been randomly allocated, whereas X need not be.
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status of network neighbours, rather than their average outcome, as a regressor in the model. In

other words, the following type of specification is usually estimated:

Y = b1ι+ b2G̃t+Xb3 + G̃Xb4 + b5t+ u (3.30)

A non-zero value for b2 is taken to indicate the presence of some social effect. However, without

further modelling, it is not possible to shed light on the exact mechanism underlying this social

effect, or the value of some ‘deep’ structural parameter.

3.7 Identification of Social Effects with Endogenous Links

In the previous subsections we focused on the identification of social effects under the assumption

that the edges along which the effects are transmitted are exogenous. By exogenous we mean that

the probability that agent i forms an edge with agent j is mean independent of any unobservables

that might influence the outcome of interest for any individual in our social effects model. Formally,

we assumed E[ε|X,Z, G̃] = 0.37

However, in many contexts this may not be hold. Suppose we have observational data on farming

practices amongst farmers in a village, and want to understand what features influence take-up

of a new practice. We might see that more connected farmers are more likely to take up the

practice. However, without further analysis we cannot necessarily interpret this as being caused by

the network.

One possibility is that there is some underlying correlation in the unobservables of the outcome and

connection equations. More risk-loving people, who might be more likely to take up new farming

practices, may also be more sociable, and thus have more connections. The endogeneity problem

here comes from not being able to hold constant risk-preferences. Hence the coefficient on the

network measures is not independent of this unobserved variable. This problem could be solved if

we could find an instrument: something correlated with network connections that is unrelated to

risk-preferences.

Another possibility is that connections were formed explicitly because of their relationship with

the outcome. If agents care about their outcome yi,g, and if the network has some impact on yi,g,

then they have incentives to be strategic in choosing the links in which they are involved. Suppose

agents’ utility (or profit) varies with yi,g, but that some agents have a higher marginal utility from

increases in yi,g. Agents have incentives to manipulate the parts of the network they are involved

in i.e. the elements of the ith row and ith columns of Gg – {Gi,g,G
′
i,g} – to try to maximise

yi,g. Moreover, if links are costly, but there is heterogeneity in the agents’ valuations of yi,g, then

agents who value yi,g most should form more costly links, and have higher yi,g, but the network is

a consequence and not a cause of the individual value for yi,g.

37Goldsmith-Pinkham and Imbens (2013) suggest a test for endogeneity.
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Returning to the farming example, some agents may have a greater preference for taking up new

technologies. If talking to others is costly, but can help in understanding the new techniques, these

farmers will form more connections. Now the unobservable factors which influence the outcome –

preference for take up – will be be correlated with the number of connections. Unlike the previous

case, this time we cannot find an ‘instrumental’ solution: it is the same unobservable driving both

yi and Gi.

To overcome this issue experimentally one would need to be able to assign links in the network.

However, with the exception of rare examples (including one below), this is difficult to achieve in

practice. Additionally there can be external validity issues, as knowing the effect that randomly

assigned networks have may not be informative about what effect non-randomly assigned networks

have. Alternatively, one can randomly assign treatment status, as discussed in Section 3.6. 38

Carrell et al. (2013) provide a cautionary example of the importance of considering network forma-

tion when using estimated social effects to inform policy reform. Carrell et al. (2009) use data from

the US Air Force Academy, where students are randomly assigned to classrooms. They estimate

a non-linear model of peer effects, implicitly assuming that conditional on classroom assignment

friendship formation is exogenous. They find large and significant peer effects in maths and English

test scores, and some non-linearity in these effects. Carrell et al. (2013) use these estimated effects

to ‘optimally assign’ a random sample of students to classrooms, with the intention of maximising

the achievement of lower ability students. However, test performance in the ‘optimally assigned’

classrooms is worse than in the randomly assigned classrooms. They suggest that this finding comes

from not taking into account the structure of the linkages between individuals within classrooms.39

3.7.1 Instrumental Variables

In the first example above, the outcome y was determined by an equation of the form of Equation

3.1, where the networkG was determined potentially by some of the observables already in Equation

3.1 and also the unobservables u, and E[ε|X,Z, G̃] 6= 0. The failure of the mean independence

assumption prevents us from identifying the parameters of Equation 3.1 in the ways suggested

previously.

If our interest is in identifying only those parameters, one (potential) solution to the problem is to

randomly assign the network structure. However, this is typically prohibitively difficult to enforce

38However, when the network is allowed to be endogenous, one needs to make (implicit) assumptions on the network
formation process in order to obtain causal estimates. For example, if we assume that the network formation process
is such that nodes with similar observed and unobserved characteristics hold similar positions in the resulting network,
we can obtain causal estimates if we compare outcomes of nodes with similar network characteristics and different
levels of indirect treatment exposure – i.e. exposure to the treatment through their neighbours. See Manski (2013)
for more discussion on these issues.

39? have a different interpretation of this result. They suggest that the problem with the assignment based on
the results of Carrell et al. (2009) is that the peer groups constructed fall far outside the support of the data used.
Hence predictions about student performance come from extrapolation based on the functional form assumptions
used, which should have been viewed with caution.
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in real world settings. It is also unlikely to be representative of the edges people actually choose

(see for example Carrell et al., 2013).40

Alternatively we can attempt to overcome the endogeneity of the network by taking an instrumental

variables (IV) approach and finding an exclusion restriction. Here one needs to have a covariate

that affects the structure of the network in a way relevant to the outcome equation – something

which changes wy(G, Y ) – but is excluded from the outcome equation itself. For example, if the

outcome equation has only in-degree as a network covariate, then one needs to find a covariate that

is correlated with in-degree but not the outcome. If instead the outcome equation included some

other network covariate, for example Bonacich centrality, a different variable might be appropriate

as an instrument.

Mihaly (2009) takes this approach. In trying to uncover the effect of popularity – measured in vari-

ous ways41 – on the educational outcomes of adolescents in the US, she uses an interaction between

individual and school characteristics as an instrument for popularity. This is a valid instrument if

the composition of the school has no direct effect on educational attainment (something which the

education literature suggests is unlikely), but does affect all of the measures of popularity.

As ever with instrumental variables, the effectiveness of this approach relies on having a good

instrument: something which has strong predictive power for the network covariate but does not

enter the outcome equation directly. As noted earlier, if individuals care about the outcome of

interest, they will have incentives to manipulate the network covariate. Hence such a variable will

generally be easiest to find when there are some exogenous constraints that make particular edges

much less likely to form than others, despite their strong potential benefits. For example Munshi

and Myaux (2006) consider the role of strong social norms that prevent the formation of cross-

religion edges even where these might otherwise be very profitable, when studying fertility in rural

Bangladesh. The restrictions on cross-religion connections means that having different religions is

a strong predictor that two women are not linked. Alternatively, secondary motivations for forming

edges that are unrelated to the primary outcome could be used to provide an independent source

of variation in edge formation probabilities.42

It is important to note that this type of solution can only be employed when the underlying

network formation model has a unique equilibrium. Uniqueness requires that there is only one

network structure consistent with the (observed and unobserved) characteristics of the agents and

environment. However, when multiple equilibria are possible, which will generally be the case if the

incentives for a pair of agents to link depend on the state of the other potential links, IV solutions

40In the models discussed this means we might observe outcomes that wouldn’t be seen without manipulation,
because we have changed the support of G. In interpreting these results in the context of unmanipulated data we
need to be cautious, since we are relying heavily on the functional form assumptions as extrapolate outside the support
of what we observe.

41She uses four definitions of popularity: in-degree, network density (which only varies between networks), eigen-
vector centrality, and Bonacich centrality.

42An application of this idea is provided by Cohen-Cole et al. (forthcoming), who consider multiple outcomes of
interest, but where agents can form only a single network which influences all of these.
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cannot be used. We discuss further in Section 4 issues of uniqueness in network formation models,

and how one might estimate the formation equation in these circumstances.

One should also be aware, when interpreting the results, that if there is heterogeneity in β then this

approach delivers a local average treatment effect (LATE). This is a particular weighted average of

the individual-specific β’s, putting more weight on those for whom the instrument (in our example,

school composition) creates most variation in the network characteristic. Hence if the people whose

friendship decisions are most affected by school characteristics are also those who, perhaps, are

most affected by their friends’ outcomes, then the estimated social effect will be higher than the

average social effect across all individuals.

3.7.2 Jointly model formation and social effects

In our second example at the beginning of Subsection 3.7 we considered the case where the outcome

y was determined by an equation of the form of Equation 3.1, and the network G was strategically

chosen to maximise the (unobserved) individual return from this outcome, subject to unobserved

costs of forming links. Here the endogeneity comes from G being a function of u. If there is

heterogeneity in the costs of forming links, these costs might be useful as instruments, if observed.43

Without this we must take an alternative approach.

Rather than treating the endogeneity of the network as a problem, jointly modelling G and y uses

the observed choices over links to provide additional information about the unobservables which

enter the outcome equation. Rather than looking for a variable that can help explain the endogenous

covariate but is excluded from the outcome, we now model an explicit economic relationship, and

rely on the imposed model to provide identification. Such an approach is taken, for example, by

Badev (2013), Blume et al. (2013), Hsieh and Lee (forthcoming), and Goldsmith-Pinkham and

Imbens (2013).

Typically the process is modelled as a two-stage game,44 where agents first form a network and then

make outcome decisions. Agents are foresighted enough to see the effect of their network decisions on

their later outcome decisions. Consequently they solve the decision process by backward induction,

first determining actions for each possible network, and then choosing network links with knowledge

of what this implies for outcomes. For this approach to work one needs to be able to characterise

the payoff of each possible network, so as to account for agents’ network formation incentives in a

tractable way.

There are two main limitations for this approach. First, by avoiding the use of exclusion restrictions,

the role of functional form assumptions in providing identification becomes critical. Since theory

43However, even this will depend on the timing of decisions. See Blume et al. (2013) for details on when such an
argument might not hold.

44Of the papers mentioned above, Badev (2013) models the choice of friendships and actions simultaneously, whilst
the others assume a two-stage process.
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rarely specifies precise functional forms, it is not unreasonable to worry about the robustness of

results based on assumptions that are often due more to convenience than conviction.

Second, we typically need to impose limits on the form of the network formation model that mean

the model is unable to generate many of the features of observed networks, such as the relatively

high degree of clustering and low diameter. Particularly restrictive, and discussed further in Section

4, is the restriction that links are formed conditionally independently.

3.7.3 Changes in network structure

An alternative approach to those suggested above relies on changes in network structure to provide

exogenous variation. In some circumstances one might believe that particular nodes or edges are

removed from the network for exogenous reasons (this is sometimes described as ‘node/edge failure’).

For example, Patnam (2013) considers a network of interlocking company board memberships in

India. A pair of firms is considered to be linked if the firms have a common board member.

Occasionally edges between companies are severed due to the death of a board member, and to the

extent that this is unpredictable, it provides plausibly exogenous variation in the network structure.

One can then see how outcomes change as the network changes, and this gives a local estimate of the

effect of the network on the outcome of interest. A similar idea is used by Waldinger (2010, 2012)

using the Nazi expulsion of Jewish scientists to provide exogenous changes in academic department

membership.

The difficulty with this approach in general is finding something that exogenously changes the

network, but to which agents do not choose to respond.45 Non-response includes both not adjusting

edges in response to the changes that occur, and not ex ante choosing edges strategically to insure

against the probabilistic exogenous edge destruction process. In the examples above these relate to

not taking into account a board member’s probability of death when hiring (e.g. not considering

age when recruiting), and not hiring new scientists to replace the expelled ones.

4 Network Formation

Network formation is commonly defined as the process of edge formation between a fixed set of

nodes. Although, in principle, one could also consider varying the nodes, in most applications the

set of nodes will be well-defined and fixed. The empirical study and analysis of this process is

important for three reasons.

First, the analysis in most of the previous section described how one might estimate social ef-

fects under the critical assumption that the networks of connections were themselves exogenous,

or exogenous conditional on observed variables. In many circumstances, such as those described in

45It is important to note that one also needs access to a panel of data for the network, which is not often available.
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Subsection 3.7, one might think that economic agents are able to make some choice over the con-

nections they form, and that if their connections influence their outcomes they might be somewhat

strategic in which edges they choose to form. In this case the social effects estimated earlier will

be contaminated by correlations between an individual’s observed covariates and the unobserved

covariates of his friends. This is in addition to the problems of correlations in group-level unobserv-

ables that is well-known in the peer effects literature. For example, someone with a pre-disposition

towards smoking is likely to choose to form friendships with others who might also enjoy smoking.

An observed correlation in smoking decision, even once environmental characteristics are controlled

for, might then come from the choice of friends, rather than any social influence. One solution to

this problem, is to use a two-step procedure, in which a predicted network is estimated as a first

stage. This predicted network is then used in place of the observed network in the second stage.

This approach is taken by König et al. (2014).46 Again the first stage will require estimation of a

network formation process.

Second, an important issue when working with network data is that of measurement error. We

return to this more fully in the next section, but where networks are incompletely observed, direct

construction of network statistics using the sampled data typically introduces non-classical meas-

urement error in these network statistics. If these statistics are used as covariates in models such

as those in Section 3, we will obtain biased parameter estimates. One potential solution to this

problem – proposed in different contexts by Goldberg and Roth (2003), Popescul and Ungar (2003),

Hoff (2009), and Chandrasekhar and Lewis (2011) – is to use the available data and any knowledge

of the sampling scheme to predict the missing data. This can be used to recover the (predicted)

structure of the entire network, which can then be used for calculating any network covariates.

Such procedures require estimation of network formation models on the available data.

Finally, we saw in Section 3 that social contacts can be important for a variety of outcomes, including

education outcomes (Duflo et al., 2011; De Giorgi et al., 2010), risk-sharing (Ambrus et al., 2014;

Angelucci et al., 2012; Jackson et al., 2012), and agricultural practices (Conley and Udry, 2010).

Hence one might want to understand where social connections come from per se and how they can

be influenced, in order to create more desirable outcomes. For example, there is substantial evidence

of homophily (Currarini et al., 2010). Homophily might in some circumstances limit the benefits

of connections, since there may be bigger potential gains from interaction by agents who are more

different, e.g. ceteris paribus the benefits of mutual insurance are decreasing in the correlation of

income. We might then want to consider what the barriers are to the creation of such links, and

what interventions might support such potentially profitable edges.

The key challenge to dealing with network formation models is the size of the joint distribution for

edges. For a directed binary network, this is a N(N − 1)-dimensional simplex, which has 2N(N−1)

points of support (potential networks).47 To give a sense of scale, for a network of more than 7

46The same idea is used by Kelejian and Piras (2014) in the context of spatial regression.
47Through Section 4 we will be concerned with the identification and estimation of network formation models using

data on a single network only. Throughout this section we therefore suppress the subscript g.
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agents the support of this space is larger than the number of neurons in the human brain,48 with

13 agents it is larger than the number of board configurations in chess,49 and with 17 agents it

is larger than the number of atoms in the observed universe.50 Yet networks with so few agents

are clearly much smaller than one would like to work with in practice. Hence simplifications will

typically need to be made to limit the complexity of the probability distribution defined on this

space, in order to make work with these distributions computationally tractable.

We begin in Subsection 4.1 by considering methods which allow us to use data on a subset of

observed nodes to predict the status of unsampled nodes. Here the focus is purely on in-sample

prediction of link probabilities, not causal estimates of model parameters, so econometric concerns

about endogeneity can be neglected. Such methods allow us to impute the missing network edges,

providing one method for dealing with measurement error.

In Subsection 4.2, we then discuss conditions for estimating a network formation model, when the

ultimate objective is controlling for network endogeneity in the estimation of a social effects model,

as discussed in Subsection 3.7. Now we may have data on some or all of the edges of the network,

and methods used for estimation will in many cases be similar to those for in-sample prediction.

The key difference is that only exogenous predictors/covariates may be used. Additionally, in order

to be useful as a first-stage for a social effects model, there must be at least one covariate which is

a valid instrument i.e. it must have explanatory power for edge status, and not directly affect the

outcome in the social effects model.

Next in Subsection 4.3, we consider economic models of network formation. Here we think about

individual nodes as being economic agents, who make choices to maximise some objective e.g.

students maximising their utility by choosing who to form friendships with. We first consider

non-strategic models of formation, where the formation of one edge does not generate external-

ities, so that Pr(Gij = 1|Gkl) = Pr(Gij = 1) ∀ij 6= kl. Estimation of these models is relatively

straightforward, and again relates closely to the discussion in the first two subsections.

Finally, we end with a discussion of more recent work on network formation, which has begun

allowing for strategic interactions. Here the value to i of forming edges with j might depend on the

status of other edges in the network. For example, when trying to gather information about jobs,

individuals might find it more profitable to form edges with highly linked individuals who are more

likely to obtain information, rather than those with few contacts. This dependence of edges on the

status of other edges introduces important challenges, particularly when only a single cross-section

of data are observed, as will typically be the case in applications. Since this work is at the frontier

of research in network formation, we will focus on describing the assumptions and methods that

have so far been used to estimate these models, without being able to provide any general guidance

on how practitioners should use these methods.

48Estimated to be around 8.5× 1010 (Azevedo et al., 2009).
49Around 1046.25 (Chinchalkar, 1996).
50Around 1080 (Schutz, 2003).
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4.1 In-sample prediction

Network formation models have long been studied in maths, computer science, statistical physics,

and sociology. These models are characterised by a focus on the probability distribution Pr(G)

as the direct object of interest.51 For economists the main use for such models is likely to be

for imputation/in-sample prediction when all nodes, and only a subset of edges in a network are

observed.

The data available are typically a single realisation for a particular network, although occasionally

multiple networks are observed and/or the network(s) is (are) observed over time. We focus on the

case of one observation for a single network, since even when multiple networks are observed their

total number is still small.52 If multiple networks are available one could clearly at a minimum

use the procedures described below, treating each separately, although one could also impose some

restrictions on how parameters vary across networks if there is a good justification for doing so

in a particular context. For example, suppose one observed edges between children in multiple

classrooms in a school, with no cross-edges existing between children in different classes. If one

believed that the parameters affecting edge formation were common across classrooms then one

could improve the efficiency of estimation by combining the data. It could also provide additional

identifying power, as network-level variables could also be incorporated into the model.

Identifying any non-trivial features of the probability distribution over the set of possible (direc-

ted) networks, Pr(G), is not possible from a single observation without making further restrictive

assumptions. It is useful to note that Pr(G) is by definition equal to the joint distribution over

all of the individual edges, Pr
(
G12, ..., GN(N−1)

)
. Hence a single network containing N agents can

be seen instead as N(N − 1), potentially dependent, observations of directed edge statuses.53 This

joint distribution can be decomposed into the product of a series of conditionals. For notational

ease, let l ∈ Λ index edges, so Λ = {12, 13, ..., 1N, 21, 23, ..., N(N − 1)}. Then we can write

Pr(G) =
∏
l∈Λ Pr(Gl|Gl−1, ..., G1), so that each conditional distribution in the product is the dis-

tribution for a particular edge conditional on all previous edges. This conditioning encodes any

dependencies which may exist between particular edges.

We begin with the simplest model of network formation, which assumes away both heterogeneity

and dependence in edge propensities, and then reintroduce these features, describing the costs and

benefits associated with doing so.

51Economists, in contrast, are often interested in microfoundations, so the focus is typically instead on understand-
ing the preferences, constraints, and/or beliefs of the agents involved in forming G. We consider models of this form
in Subsection 4.3.

52As noted in footnote 47, we therefore suppress the subscript g throughout this section to avoid unnecessarily
cluttered notation.

53If the network is undirected there are only half that many edges.
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4.1.1 Independent edge formation

The Bernoulli random graph model is the simplest model of network formation. It imposes a

common edge probability for each edge, and that probabilities are independent across edges. In-

dependence ensures that the joint distribution Pr
(
G12, ..., GN(N−1)

)
is just the product of the

marginals,
∏
l∈Λ Pr(Gl). A common probability for each edge means that Pr(Gl) = p ∀ l ∈ Λ, so all

information about the distribution Pr(G) is condensed into a single parameter, p, the probability an

edge exists.54 This can be straightforwardly estimated by maximum likelihood, with the resulting

estimate of the edge probability p̂ = |E|
N(N−1) ,55 equal to the proportion of potential edges that are

present.

A natural extension of this model allows the probability Pr(Gij = 1) to depend on characteristics

of the nodes involved, (xi, xj), but conditional on these characteristics independence across edges

is maintained. This type of model can be motivated either by pairs of individuals with particular

characteristics (xi, xj) being more likely to meet each other and hence form edges, or by the benefits

of forming an edge depending on these characteristics, or some combination of these. In general

one cannot separate meeting probabilities from the utility of an edge without either parametric

restrictions or an exclusion restriction, so additional assumptions will be needed if one wants to

interpret the parameters structurally. We discuss this further in Subsection 4.3.1.

The key restriction here is the assumption of independence across edge decisions. In many cases this

is unlikely to be reasonable. For example, in a model of directed network formation, there might

well be correlation in edges Gij and Gil driven by some unobservable node-specific fixed effect for

node i e.g. i might be very friendly, so be relatively likely to form edges. Use of the estimated

model to generate predicted networks will be problematic, as it will fail to generate some of the key

features typically observed, such as the high degree of clustering.

4.1.2 Allowing for fixed effects

The simplest form of dependencies that one might want to allow for are individual-specific propensit-

ies to form edges with others, and to be linked to by others. Such models were developed by Holland

and Leinhardt (1977, 1981) and are known as p1-models. They parameterise the log probability

an edge exists, log(pij), as a linear index in a (network-specific) constant θ0, a fixed effect for the

edge ‘sender’ θ1,i, and a fixed effect for the edge ‘receiver’ θ2,j , so log(pij) = θ0 + θ1,i + θ2,j . The

fixed effects are interpreted as individual heterogeneity in propensity to make or receive edges.

Additional restrictions
∑

i θ1,i =
∑

j θ2,j = 0 provide a normalisation that deals with the perfect

collinearity that would otherwise be present.

The use of such fixed effects creates inferential problems, since increasing the size of the network also

54Theoretical work on this type of model was done by Gilbert (1959), and it relates closely to the model of Erdös
and Rényi (1959).

55Or twice that probability if edges are undirected, so that there are only 1
2
N(N − 1) potential edges.
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increases the number of parameters,56 sometimes described as an incidental parameters problem.

One natural solution to the latter problem is to impose homogeneity of the θ1 and θ2 parameters

within certain groups, such as gender and race.57 If there are C groups, then the number of

parameters is now 2C + 1 and this remains fixed as N goes to infinity. This removes the inference

problem and also allows agents’ characteristics to be used in predicting edge formation.58

Alternatively, if node-specific effects are uncorrelated with node characteristics, then variations in

edge formation propensity ‘only’ create a problem for inference. This comes from the unobserved

node-specific effects inducing a correlation in the residuals, analogous to random effects. Fafchamps

and Gubert (2007) show how clustering can be used to adjust standard errors appropriately.

However, in both cases the maintenance of the conditional independence assumption across edges

continues to present a problem for the credibility of this method. In particular it rules out cases

where the status of other edges, rather than just their probability of existence, affects the probability

of a given edge being present. This would be inappropriate if for example i’s decision on whether

to form an edge with j depends on how many friends j actually has, not just on how friendly j is.

4.1.3 Allowing for more general dependencies

As discussed earlier in this section, identification of features of Pr(G) whilst allowing for completely

general dependencies in edge probabilities is not possible. However, it is possible to allow the

probability of an edge to depend on a subset of the network, where this subset is specified ex

ante by the researcher. Such models are called p∗-models (Wasserman and Pattison, 1996) or

exponential random graph models (ERGMs). These have already been used in economics by, for

example, Mele (2013), who shows how such models can arise as the result of utility maximising

decisions by individual agents, and Jackson et al. (2012) studying favour exchange among villagers

in rural India.

Frank and Strauss (1986) showed how estimation could be performed in the absence of edge

independence under the assumption that the structure of any dependence is known. For ex-

ample, one might want to assume that edge ij depends not on all other edges, but only

on the other edges that involve either i or j. This dependency structure, Prθ(Gij |G−ij) =

Prθ(Gij |Grs ∀ r ∈ {i, j}or s ∈ {i, j} but rs 6= ij) where θ is a vector of parameters and G−ij =

G\Gij , is called the pairwise Markovian structure.

Drawing from the spatial statistics literature, where this is a more natural assumption, Frank and

Strauss show how an application of the Hammersley-Clifford theorem59 can be used to account for

any arbitrary form of dependency. The key result is that if the probability of the observed network

56Every new node adds two new parameters to be estimated.
57This is sometimes described as block modelling, since we allow the parameters, and hence edge probability, to

vary across ‘blocks’/groups.
58 A related approach to solving this problem is suggested by Dzemski (2014).
59Originally due to Hammersley and Clifford (1971) in an unpublished manuscript, and later proved independently

by Grimmett (1973); Preston (1973); Sherman (1973); and Besag (1974).
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is modelled as an exponential function of a linear index of network statistics, appropriately defined,

any dependency can be allowed for.

To construct the appropriate network statistics, they first construct a dependency graph, gdep. This

graph contains N(N − 1) nodes, with each node here representing one of the N(N − 1) edges in

the original graph.60 Then an edge between a pair of nodes ij and rs in the dependency graph

denotes that the conditional probability that edge ij exists is not independent of the status of edge

rs i.e. Prθ(Gij = 1|Grs) 6= Prθ(Gij = 1). Further, conditional on the set of neighbours of node

ij in the dependency graph, neidepij , Pr(Gij = 1) is independent of all other edges in the original

graph. So Prθ(Gij = 1|G−ij) = Prθ(Gij = 1|Grs ∈ neidepij ). For example, the p1 graph, with

independent edges, has a dependency graph containing no edges. By contrast, a 5-node graph with

a pairwise Markovian dependency structure would have, for example, edge 12 dependent on edges

(13, 14, 15, 23, 24, 25, 31, 32, 41, 42, 51, 52), i.e. all edges which have one end at either 1 or 2.

We let A be the set of cliques61 of the dependency graph, where isolates are considered to be

cliques of size one. For example, if Gij is independent of all other edges conditional on Gji then

A = {(ij), (ij, ji)}i 6=j .62 Then we define A as representing the different architectures or motifs in A.

In the previous example these would be ‘edges’, (ij), and ‘reciprocated edges’ (ij, ji). This imposes

a homogeneity assumption: that the probability a particular graph g is selected from GN depends

only on the number of edges and reciprocated edges, rather than to whom those edges belong, so

all networks with the same overall architecture (called ‘isomorphic networks’63) are equally likely.

If instead we allow dependence between any edges that share a common node, then A is the set

of all edges (ij), reciprocated edges (ij, ji), triads (ij, ir, rj),64 and k-stars (ij1, ij2, ..., ijk). Now A

represents ‘edges’, ‘reciprocated edges’, ‘triads’, and ‘k-stars’.

Invoking the Hammersley-Clifford theorem, Frank and Strauss (1986) note that the probability

distribution over the set of graphs GN allows for the imposed dependencies if it takes the form

Pr θ(G) =
1

κ(θ)
exp

{∑
A

θASA(G)

}
(4.1)

where SA(G) is a summary statistic for motif A calculated from G, θA is the parameter associ-

ated with that statistic, and κ(θ) is a normalising constant, sometimes described as the partition

function, such that
∑
G∈GN Prθ(G) = 1.65 In particular, SA(G) must be a positive function of

60Nodes in this graph will be referred to by the name of the edge they represent in the original graph.
61A clique is any group of nodes such that every node in the group is connected to every other node in the group.
62(i, j) is always a member of A, since we defined isolates as cliques of size one. Dependence of ij on ji means that

we can also define (ij, ji) as a clique, since in the dependency graph these nodes are connected to each other.
63Formally, two networks are isomorphic iff we can move from one to the other only by permuting the node labels.

For example, all six directed networks composed of three nodes and one edge are isomorphic. Isomorphism implies
that all network statistics are also identical, since these statistics are measured at a network level so are not affected
by node labels.

64This represents all triads in an undirected network, but in a directed network there are six possible edges between
three nodes, since ij 6= ji, so we may define a number of different triads.

65In a slight abuse of notation we write
∑
G∈GN

Prθ(G) to mean
∑
g∈GN

Prθ(Gg).
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the number of occurrences of motif A in G. Since we are working with binary edges, without loss

of generality we can define SA(G) as simply a count of the number of occurrences of motif A in

the graph represented by G. For example, defining S(G) as the vector containing the SA(G), if

A = {(ij), (ij, ji)}i 6=j then S(G) is a 2× 1 vector containing a count of the number of edges and a

count of the number of reciprocated edges.

Estimation of the ERGM model is made difficult by the presence of the partition function, κ(θ).

Since this function normalises the probability of each graph so that the probabilities across all

potential graphs sum to unity, it is calculated as
∑
G∈GN exp {

∑
A θASA(G)}. The outer summation

is a sum over the 2N(N−1) possible graphs. As noted earlier, even for moderate N this is a large

number, so computing the sum analytically is rarely possible.

Three approaches to estimation have been taken to overcome this difficulty: (1) the coding method ;

(2) the pseudolikelihood approach; and (3) the Markov Chain Monte Carlo approach. The first two

are based on the maximising the conditional likelihoods of edges, rather than the joint likelihood,

thus obviating the need for calculating the normalising constant, whilst the third instead calculates

an approximation to this constant.

Coding Method The coding method (Besag, 1974) writes the joint distribution of the edge

probabilities as the product of conditional distributions Prθ(G) =
∏
l∈Λ Prθ(Gl|Gl−1, ..., G1), where

as before Λ is the set of all N(N − 1) potential edges. Under the assumption that edge Gl depends

only on a subset of other edges Gl′ ∈ neidepl one could ‘colour’ each edge, such that each edge

depends only on edges of a different colour.66, 67 All edges of the original graph that have the same

colour are therefore independent of each other by construction. Let Λc be the set of all edges of

a particular colour. One could then estimate the parameter vector of interest, θ, by maximum

likelihood, using only Prθ(Gl|Gl′ ∈ neidepl ) ∀l ∈ Λc, which treats only edges of the same colour as

containing any independent information.

We define the ‘change statistic’ DA(G; l) := SA(Gl = 1,G−l) − SA(Gl = 0,G−l) as the change

in statistic SA from edge Gl being present, compared with it not being present, given all the

other edges G−l. Then, given the log-linear functional form assumption that we have made (see

Equation 4.1), the conditional probability of an edge l can be estimated from the logit regression

log
{

Pr(Gl=1|G−l)
Pr(Gl=0|G−l)

}
=
∑

A θADA(G; l). This can be implemented in most standard statistical pack-

ages. Hence we can estimate θ using maximum likelihood under the assumption that the edge

probability takes a logit form and treating the edges l ∈ Λc as independent, conditional on the

edges not in Λc. Since all the conditioning edges which go into SA are of different colours, they are

not included in the maximisation, so θ̂c will be consistent.

66This is equivalent to saying that no two adjacent (i.e. linked) nodes of the dependency graph should have the
same colour.

67Note that this colouring will not be unique. For example, one could trivially always colour every edge a different
colour. However, for estimation it is optimal to try to minimise the number of colours used, as this makes the most
of any information available about independence.
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By performing this maximisation separately for each colour, a number of different estimates can be

recovered. Researchers may choose to then report the range of estimates produced, or to create a

single estimate from these many results, for example taking a mean or median.

The main disadvantage of this approach is that the resulting estimates will each be inefficient, since

they treat the edges l /∈ Λc as if they contain no information about the parameters. In practice the

proportion of edges in even the largest colour set Λc is likely to be small. For example, if any edges

that share a node are allowed to be dependent, then the number of independent observations will

only be 1
2N

68. Hence efficiency is far from a purely theoretical concern in the environment.

Pseudolikelihood approach The pseudolikelihood approach69 attempts to overcome the in-

efficiency problem, by finding θ which jointly maximises all the conditional distributions, not

just those of the same colour. We write the log likelihood based on edges of colour c as

Lc =
∑

l∈Λc
log Prθ(Gl = 1|Gl′ ∈ neidepl ), with θ̂c as the maximiser of this. Besag (1975) notes that

the log (pseudo)likelihood PL =
∑

c Lc =
∑

c

∑
l∈Λc

log Prθ(Gl = 1|Gl′ ∈ neidepl ), constructed by

simply combining all the data as if there were no dependencies, is equivalent to a particular weight-

ing of the individual, ‘coloured’ log likelihoods. This likelihood is misspecified,70 since the correct

log likelihood using all the data should be L =
∑

l log Prθ(Gl = 1|Gl−1, ..., G1), whilst here we have

instead L =
∑

l log Prθ(Gl = 1|G−l) =
∑

l log Prθ(Gl = 1|GL, ...Gl+1, Gl−1, ..., G1). Nevertheless,

under a particular form of asymptotics it may still yield consistent estimates.

We have already noted that for any given colour, the standard maximum likelihood consistency

result applies, as the observations included are independent. If the number of colours are held fixed

as the number of potential edges is increased,71 then under some basic regularity conditions (Besag,

1975), maximising the log pseudolikelihood function PL(θ) as though there were no dependencies

will also give a consistent estimate of θ.

Unfortunately, in practice this approach suffers from a number of problems. First, although it makes

use of more information in the data, so is potentially more efficient, the standard errors that are

produced by standard statistical packages such as Stata will clearly be incorrect as they will not take

into account the dependence in the data. Little is known about how to provide correct standard

errors, but in some cases inference can proceed using an alternative, non-parametric procedure:

multiple regression quadratic assignment procedure (MRQAP). This method can provide a test

as to whether particular edge characteristics or features of the local network, such as a common

friend, are important for predicting the probability that a pair of individuals is linked. It is based

68Or 1
2
(N − 1) if N is odd.

69Introduced to the social networks literature by Strauss and Ikeda (1990).
70A likelihood based on Prθ(Gl|G−l) without any correction suffers from simultaneity, since the probability of each

edge is being estimated conditional on all others remaining unchanged. In a two node directed network, as a simple
example, we effectively have two simultaneous equations, one for Prθ(G12|G21) and Prθ(G21|G12). It is well-known
that such systems will not generally yield consistent parameter estimates if the dependence between the equations is
not considered, and that strong restrictions will typically be needed even to achieve identification.

71In the language of spatial statistics, this is described as ‘domain increasing asymptotics’.
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on the quadratic assignment procedure (QAP): a type of permutation test for correlation between

variables. For more details see Appendix B.

A second issue is that in network applications we need to impose some structure on the way in

which new nodes are added to the network when we do asymptotics (Boucher and Mourifié, 2013;

Goldsmith-Pinkham and Imbens, 2013). If, as we increase the sample size, new nodes added could

be linked to all the existing nodes, then there is no reduction in dependence between links. In

the spatial context for which the theory was developed, the key idea is that increasing sample size

creates new geographic locations that are added at the ‘edge’ of the data. If correlations reduce

with distance, then as new, further away, locations are added, they will be essentially independent

from most existing locations. Such asymptotics are called domain-increasing asymptotics. The

analogy in a networks context, proposed by Boucher and Mourifié (2013) and Goldsmith-Pinkham

and Imbens (2013), is that new nodes are further away in the support of the covariates. If there is

homophily, so that nodes which are far apart in covariates never link, then the decisions of these

nodes are almost independent. Asymptotics results from the spatial case can then be used.

Third, Kolaczyk (2009) suggests that in practice this method only works well when the extent of

dependence in the data is small. In general there is no reason to assume dependence will be small

in network data; indeed it is precisely because we did not wish to assume this that we considered

ERGMs at all.

Markov Chain Monte Carlo Maximum Likelihood An alternative approach, not based on

the ad-hoc weighting provided by the pseudolikelihood approach, is to use Markov Chain Monte

Carlo (MCMC) maximum likelihood (Geyer and Thompson, 1992, Snijders, 2002, Handcock, 2003).

As noted earlier, the key difficulty with direct maximum likelihood estimation of Equation 4.1 is the

presence of the partition function κ(θ) =
∑
G∈G exp {

∑
A θASA(G)}. This normalising constant is

an intractable function of the parameter vector θ. In this estimation approach, MCMC techniques

can be used to create an estimate of κ(θ) based on a sample of graphs drawn from GN .

The original log likelihood can be written as L(θ) =
∑

A θASA(G)−κ(θ). Maximising this is equival-

ent to maximising the likelihood ratio LR = L(θ)−L(θ(0)) since the latter is just a constant for some

arbitrary initial θ(0). Writing this out in full we get LR =
∑

A

[
θA − θ(0)

A

]
SA(G)−

[
κ(θ)− κ(θ(0))

]
.

The second component can be approximated by drawing a sequence ofW graphs, (G1, ...,GW ), from

the ERGM under θ(0), and computing log
∑

w∈W exp
{∑

A(θA − θ(0)
A )SA(G(w))

}
(see Kolaczyk

(2009) pp185-187 for details). Under this procedure the maximiser of the approximated log likeli-

hood will converge to its true value θ as the number of sampled graphs W goes to infinity.

This approach has two major disadvantages. The first is that implementation of this method is

very computationally intensive. Second, although this approach avoids the approximation of the

likelihood by directly evaluating the normalising constant, its effectiveness depends significantly on

the quality of the estimate of
[
κ(θ)− κ(θ(0))

]
. If this cannot be approximated well then it is not

clear that this approach, although more principled, should be preferred in practical applications.
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Recent work by Bhamidi et al. (2008) and Chatterjee et al. (2010) suggests that in practice the

mixing time – time taken for the Markov chain to reach its steady state distribution – of such MCMC

processes is very slow (exponential time). This means that as the space of possible networks grows,

the number of replications in the MCMC process that must be performed in order to achieve a

reasonable approximation to
[
κ(θ)− κ(θ(0))

]
rises rapidly, making this approach difficult to justify

in practice.

Statistical ERGMs Chandrasekhar and Jackson (2014) also note that practitioners often report

obtaining wildly different estimates from repeated uses of ERGM techniques on the same set of data

with the same model, with variation far exceeding that expected given the claimed standard errors.

They propose a technique which they call Statistical ERGM (SERGM), which is easier to estimate,

as an alternative to the usual ERGM. With this they are not able to recover the probability that we

observe a particular network, but instead focus on the probability of observing a given realisation,

s, of the network statistics, S.72

In an ERGM the sample space consists of the set of possible distinct networks on the N nodes.

This set has 2N(N−1) elements (in the case of a directed network), and we treat each isomorphic

element as being equally likely. Our reference distribution is a uniform distribution across these

2N(N−1) elements i.e. this is the null distribution against which we are comparing the observed

network.

If our interest is only in the realisations of the network statistics, we can reduce the size of the

sample space we are working with. Chandrasekhar and Jackson (2014) define SERGMs as ERGMs

on the space of possible network statistics, S. This sample space will typically contain vastly fewer

elements than the space of possible networks.

We can then rewrite Equation 4.1 using the space of network statistics as sample space. In this case

the probability of observing statistics S(G) taking value s is Prθ(S(G) = s) = #S(s) exp(θs)∑
s′ #S(s′) exp(θs′) ,

where #S(s) = |{G ∈ G : S(G) = s}| is the number of potential networks which have S = s.

So far we have only rewritten our originally ERGM by defining it over a new space. We defined

our reference distribution in the ERGM to put equal weight on each possible network. To maintain

this distribution when the sample space is the space of statistics, we must weight the usual (unnor-

malised) probability of observing network G, exp(θs), by the number of networks which exhibit

this configuration of statistics, #S(s′).

Much of the difficulty in estimating ERGM models comes from use of these weights, since we are

required to know in how many networks a particular combination of statistics exists. Since this is

typically not possible to calculate analytically, we discussed how MCMC approaches might be used

to sample from the distribution of networks.

72S is a |A| × 1 dimensional vector stacking the network statistics SA, and θ a 1 × |A| dimensional vector of
parameters.
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Chandrasekhar and Jackson (2014) complete their definition of SERGMs as a generalisation of

ERGMs by allowing any reference distribution, KS(s) to be used in the place of #S(s′). However,

to ease estimation relative to ERGMs, they then define the ‘count SERGM’, which imposes KS(s) =
1
|S| .

73 The key here is not that these weights are constant, but that they no longer depend on the

space of networks. Since KS(s) is now known, unlike #S(s′) which needed to be calculated, if |S|
is sufficiently small, exact evaluation of the partition function κ̃(θ) =

∑
s′ KS(s′) exp {θs′} is now

possible.

Since count SERGMs – and any other SERGMs with known KS(s′) – can be estimated directly

and without approximation, they are easier to implement than standard ERGMs. Chandrasekhar

and Jackson (2014) also provide assumptions under which the parameters of the SERGM, θSERGM ,

can be estimated consistently.

The key drawback to this method is in interpretation. The estimated parameters, θSERGM , are not

the same as the parameters θ in Equation 4.1, and the predicted probabilities are now the prob-

ability of a particular configuration of statistics, rather than of a particular network. Nevertheless,

for a researcher interested in which network motifs are more likely to be observed than one would

expect under independent edge formation, SERGMs offer an appropriate alternative.

4.2 Reduced form models of network formation

The methods discussed in the previous subsection focused on in-sample prediction of network edges.

However, since they (mostly) predict these probabilities based on the structure of the networks,

without use of other characteristics, they both fail to make use of all the information typically

available to researchers, and also do not contain the necessary independent variation needed for

use as the first stage of a social effects model with an endogenous network (of the sort discussed in

Subsection 3.7). When our ultimate aim is to estimate a social effects model but we are concerned

about the network being endogenous, one solution discussed in Subsection 3.7 is to estimate the edge

probability using individual characteristics, including at least one covariate that is not included in

the outcome equation (an exclusion restriction), as in a standard two-stage least squares setting. In

this subsection we describe estimation of models that include individual (node) characteristics. As

long as at least one of these is a valid instrument, then this approach to overcoming the endogeneity

of network formation is possible.

A well-recognised feature of many kinds of interaction networks is the prevalence of homophily:

a propensity to be linked to relatively similar individuals.74 This observation may arise from a

preference for interacting with agents who are similar to you (preference homophily), a lower cost

of interacting with such agents (cost homophily), or a higher probability of meeting such agents

73Count SERGMs also restrict the set A to include only network motifs such as triangles and nodes of particular
degree, which can be counted. This rules out, for example, statistics such as density.

74Homophily may be casually described as the tendency of ‘birds of a feather to flock together’.
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(meeting homophily). However, they all have the reduced form implication that more similar agents

are more likely to be linked.75

Fafchamps and Gubert (2007) provide a discussion of the conditions that must be fulfilled by a model

used for dyadic regression, i.e. a regression model of edge formation when edges are being treated

as observations and node characteristics are included in the regressors. They note the regressors

must enter the model symmetrically, so that the effect of individual characteristics (xi, xj) on edge

Gij is the same as that of (xj , xi) on Gji. Additionally the model may contain some edge-specific

covariates, such as the distance between agents, which must by definition be symmetric wij = wji.

If edges are modelled as directed, then the model takes the general form

Gij = f (λ0 + (x1i − x1j)λ1 + x2iλ2 + x3jλ3 +wijλ4 + uij) (4.2)

This specification allows a term that varies with the difference between i and j in some characterist-

ics, (x1i−x1j); terms varying in the characteristics of both the sender and the receiver of the edge,

x2i and x3j respectively; some edge-specific characteristics, wij ; and an edge-specific unobservable,

uij . There may be partial or even complete overlap between any of x1, x2, and x3. Since Gij is

typically binary, the function f(.) and the distribution of u are usually chosen to make the equation

amenable to probit or logit estimation. However, in some cases other functional forms are chosen.

For example, Marmaros and Sacerdote (2006) model f(.) as exp(.) since they are working with

email data, measuring edges by the number of emails between the individuals, which takes only

non-negative values and varies (almost) continuously.

If edges are undirected, then (x1i−x1j) must be replaced with |x1i−x1j |;76 x2 = x3 and λ2 = λ3;

and uij = uji, so that Gij necessarily equals Gji. The identification of parameters λ2 and λ3

requires variation in degree. As Fafchamps and Gubert (2007) note, if all individuals in the data

have the same number of edges, such as a dataset of only married couples, then it is possible to ask

whether people are more likely to form edges with people of the same race, captured by λ1, but

not possible to ask whether some races are more likely to have edges.

Careful attention needs to be paid to inference in this model, since there is dependence across

multiple dyads for any individual, similar to the Markov random graph assumption discussed in the

previous subsection. Fafchamps and Gubert (2007) show that standard errors can be constructed

analytically using a ‘four-way error components model’. This is a type of clustering, allowing for

correlation between uij and urs if either of i or j is equal to either of r and s. The analytic correction

they propose provides an alternative to using MRQAP, described in Subsection 4.1.3, which may

also be used in this circumstance.

75In Subsection 4.3.1 below, we consider homophily in more detail, and structural models that try to separate these
causes of observed homophily.

76Or (x1i − x1j)
2 may also be used.
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4.3 Structural models of network formation

Economic models of network formation consider nodes as motivated agents, endowed with prefer-

ences, constraints, and beliefs, choosing which edges to form. The focus for applied researchers is

to estimate parameters of the agents’ objective functions. For example, to understand what factors

are important for students in deciding which other students to form friendships with.

These models allow us to think about counterfactual policy scenarios. For example, if friendships

affect academic outcomes, then there might be a role for policy in considering how best to organise

students into classrooms, given knowledge of their endogenous friendship formation response. If

students tend to form homophilous friendships i.e. with others who have similar predetermined

characteristics, but not to form friendships across classrooms, there may be a case for not streaming

students into classes of similar academic abilities. This would create more heterogeneity in the

characteristics of friends than if streaming were used, which might improve the amount of peer

learning that takes place.77 We begin by discussing non-strategic models, in which these decisions

depend only on the characteristics of the agents involved in the edge. We then discuss strategic

network formation, which occurs when network features directly enter into the costs or benefits of

forming particular edges.78

4.3.1 Structural Homophily

As noted above, a key empirical regularity which holds across a range of network types is the

presence of homophily. This is related to the more familiar (in economics) concept of positive

assortative matching, i.e. that people with similar characteristics form edges with one another.

As we have already seen, many reduced form models include homophilic terms – captured by λ1

in Equation 4.2 – to allow the probability a tie exists to vary with similarity on various node

characteristics.79 In this subsection, we consider the economic models of network formation that

are based on homophily.

We define homophily formally as follows. Let the individuals in a particular environment be mem-

bers of one of H groups, with typical group h. Groups might be defined according to sex, race,

height, or any other characteristics. Continuous characteristics will typically need to be discretised.

We denote individual i’s membership of group h as i ∈ h. Relationships for individuals in group

h exhibit homophily if Pr(Gij = 1|i ∈ h, j ∈ h) > Pr(Gij = 1|i ∈ h, j /∈ h). In words, a group h

exhibits homophily if its members are more likely to form edges with other members of the same

group than one would expect if edges were formed uniformly at random among the population of

77Clearly this is just an example, and there are many other factors to consider, such as the effectiveness of teachers
when faced with more heterogeneous classrooms, the ability to tailor lessons to challenge high ability students, and
other outcomes that might be influenced by changing friendships.

78See also a recent survey by Graham (2015), which became available after work on this manuscript.
79In principle this probability could be falling in similarity, known as heterophily. This may be relevant, for example

in models of risk sharing with heterogeneous risk preferences and complete commitment.
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nodes. In general there will be multiple characteristics {H1, ...,HK} according to which individuals

can be classified, and relationships may exhibit homophily on any number of these characteristics.

As noted earlier there are (at least) three possible sources of homophily: preference homophily, cost

homophily, and meeting homophily.

Preference homophily implies that, conditional on meeting, people in a group are more likely to

form edges with other members of the same group as they value these edges more. For example,

within a classroom boys and girls might have equal opportunities to interact, but boys may choose

to form more friendships with other boys (and mutatis mutandis for girls) if they have more similar

interests.

Cost homophily occurs when the cost of maintaining an edge to a dissimilar agent is greater than

the cost of maintaining an edge to a more similar agent. For example, one might have an equal

preference for all potential friends, but find it ‘cheaper’ to maintain a friendship with individuals who

live relatively nearer. Unlike preferences, which are in some sense fundamental to the individual,

costs might be manipulable by policy. To the extent that they are environmental these can also

change the value of an edge over time, e.g. a friend moving further away may lead to the friendship

being broken.

Meeting homophily occurs when people of a particular group are more likely to meet other members

of the same group. For example, if we thought of all students in a school year as being part of

a single network, then there is likely to be meeting homophily within class groups, since students

in the same class have more opportunities to interact. Again this is amenable to manipulation by

policy, for example changing seating arrangements across desks in a classroom. However, unlike

cost homophily, once individuals have met, changes in the environment should not change the value

of a friendship.

These three sources of homophily all have the reduced form implication that the coefficient on the

absolute difference in characteristics, λ1 in Equation 4.2, should be negative for any characteristics

on which individuals exhibit homophily. However, since they may have different policy implications,

there is a case for trying to distinguish which of these channels are operating to cause the observed

homophily.

Currarini et al. (2009) suggest how one can distinguish between preference and meeting homophily

under the assumption that cost homophily does not exist. They note that if group size varies

across groups, then preference homophily should lead to more friendships among the larger group,

whereas meeting homophily should not. Intuitively this is because under preference homophily, a

larger own-group means there are more people with whom one might potentially form a profitable

friendship. One could then use regression analysis to test for the presence of preference homophily by

interacting group size with absolute difference in characteristics, and testing whether the estimated

parameter is significantly different from zero.

Alternatively one might want to estimate the magnitude of the effect of changing particular features

of the environment, such as the classrooms to which individuals are assigned. In this case one could
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parameterise an economic model of behaviour, and then directly estimate the parameters of the

model. Currarini et al. (2009) do this using a model of network formation that incorporates a

biased meeting process, so individuals can meet their own-type more frequently than other types,

and differences in the value of a friendship depending on whether agents are the same type.80 They

simulate the model with a number of different parameters for meeting probabilities and relative

values of friendships, and use a minimum distance procedure to choose the parameters that best

explain the data.

As ever with structural models, whilst this approach allows one to perform counterfactual policy

experiments, the main cost is that the reasonableness and interpretation of results depend on the

accuracy with which the imposed model fits reality. Also, without time series variation in friend-

ships, one cannot also allow for cost heterogeneity, which might show up either in preferences by

changing the value of forming an edge, or in meeting probabilities since those with lower meeting

probabilities will typically have a greater cost to maintaining a friendship. Finally, it is important

to note that estimation of such models requires the unobserved component of preferences to be

independent of the factors influencing meeting. If the unobserved preference for partying is correl-

ated with choosing to live in a particular dormitory, and hence meeting other people living here,

then this will bias the parameter estimate of the probability of meeting in this environment.

Mayer and Puller (2008) develop an enriched version of this model which allows again for meeting

and preference homophily, but they allow the bias in the meeting process to depend not only on

exogenous characteristics, but also on sharing a mutual friend. Formally, Pr(meetij = 1|Gir =

Gjr = 1) > Pr(meetij = 1), where Pr(meetij) denotes the probability that nodes i and j meet (and

hence have the opportunity to form an edge). This allows for the stylised fact that individuals who

are friends often also share mutual friends, which helps the model match the observed clustering in

the data.

However, although the model fit is improved, their model cannot distinguish whether this cluster-

ing is in fact generated by a greater probability of meeting such individuals, a greater benefit to

being friends with someone you share a friend with already, or a lower cost of maintaining that

friendship. They show how one can estimate their model using a simulated method of moments

procedure. However, this method suffers from the same constraints as those in the model suggested

by Currarini et al. (2009): the utility of the model for counterfactuals depends on how closely it

matches reality; cost homophily is neglected; and it is important the unobserved component of

preferences is independent of the meeting process.

In the next subsection we consider extensions to these models that allow network statistics, such

as sharing a common friend, to enter into individuals’ utility functions. These create strategic

interactions which can complicate estimation.

80Again they do not allow for cost homophily.
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4.3.2 Strategic network formation

Much of the theoretical literature on networks has emphasised the strategic nature of interactions,

setting up games of network formation as well as games to be played on existing networks (as seen

in Section 3 above). The empirical literature has recently begun to take a similar approach, trying

to estimate games of network formation. The key extension of such models, beyond those already

considered, is to include network covariates into the objective function of agents. This creates

two complications: first such models may have zero, one, or many equilibria, and this must be

accounted for in estimation; and second, as with ERGM models, the presence of network covariates

necessitates the calculation of intractable functions of the unknown parameters.

Before considering estimation in more detail, we discuss the modelling choices that one needs to

make. First, as with all structural modelling one must explicitly determine the nature of the

objective function that agents are trying to maximise. For example one might have individuals

with utility functions that depend on some feature of the network,81,82 who are trying to maximise

this utility. Second, the ‘rules of the game’: are decisions made simultaneously or sequentially?

Unilaterally or bilaterally? What do agents know, and how do they form beliefs? Given that

we typically only observe a single cross-section of data, additional assumptions about the nature

of any meeting process are necessary. Similarly, data may be reported as directed or undirected,

but whether we treat unreciprocated directed edges as measurement error or evidence of unilateral

linking is an important consideration, particularly given the consequences of such measurement

error (see Section 5.3). Finally, one needs to take a stand on the appropriate concept of equilibrium

and the strategies being played. At the weakest, one could impose only that strategies must

be rationalisable, and hence many strategy profiles are likely to be equilibria. On the other hand,

depending on the information available to agents one could impose Nash equilibrium, or Bayes-Nash

equilibrium where individuals have incomplete information and need to form beliefs. Alternatively

one could use a partly cooperative notion of equilibrium such as pairwise stability (Jackson and

Wolinsky, 1996), which models link formation as requiring agreement from both parties involved,

although dissolution remains one-sided.83

Since these models are at the frontier of research on network formation, few general results are

currently available. We therefore instead briefly discuss the approaches that have been taken so far

to write estimable models, and estimate the parameters of these models. Our aim is to highlight

some of the choices that need to be made, and their relative advantages and costs.

Christakis et al. (2010) and Mele (2013) both model network formation as a sequential game: there

is some initial network, and then a sequential process by which edge statuses may be adjusted.

81For example their centrality, or the number of edges they have subject to some cost of forming edges.
82It is important to note that although it is the realised network feature that typically enters an agent’s objective

function, their strategy will depend on their beliefs about how others will act.
83As in the literature on coalition formation, the issue of whether utility is transferable or not is also critical.

Typically this issue is not discussed in networks papers (Sheng (2012) is an exception to this), and it is implicitly
assumed that utility is not transferable.
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Crucial, also, to their models, is that at each meeting agents only weigh the static benefits of

updating the edge status (i.e. play a myopic best response), rather than taking into account the

effect this decision will have on both their own and others’ future decisions. Allowing for such

forward-looking behaviour has so far proved insolvable from an economic theory perspective, and

hence they rule this out.

Christakis et al. (2010) assume the initial network is empty, and allow each pair to meet precisely

once, uniformly at random, in some unknown order. Mele (2013) also allows uniform at random

meeting, but pairs may meet many times until no individual wants to change any edge. In both

cases these assumptions about the meeting process – the number of meetings, order in which pairs

meet, and probability with which each pair meets – will influence the set of possible networks that

may result. However, in the latter case, the resulting network will be an equilibrium network,

something which is not true in Christakis et al. (2010).

A different approach, taken by Sheng (2012), avoids making assumptions about the meeting order.

Instead she uses only an assumption about the relevant equilibrium concept (pairwise stability).

For the network to be pairwise stable, the utility an agent gets from each link that is present must

be greater than the utility he would get if the link were not present, and conversely for a link

which is not present at least one of the agents it would involve must not prefer it. Sheng uses the

moment inequalities this implies for estimation, but is only able to find bounds on the probability

of observing particular networks.84 Hence assumptions about meeting order seem important for

the point identification of the parameter of interest (we discuss this further below).

de Paula et al. (2014) also avoid assumptions on the meeting order. Rather than using individual-

level data, they identify utility parameters by aggregating individuals into ‘types’, and looking at

the share of each type that is observed in equilibrium. This can be seen as an extension of the work

of Currarini et al. (2009). Individuals’ characteristics are discretised, so that each individual can

be defined as a single type. Agent characteristics might, for example, be sex and age. Typically

age is measured to the nearest month or year, so is already discretised. However, if the number of

elements in the support is large, broader discretisation might be desirable (e.g. in the age example,

measure age in ten-year bands). Then we might define one type as (male, 25-35years) and another

as (female, 15-25). de Paula et al. (2014) assume that agents have preferences only over the types

they connect to both directly and indirectly, not who the individuals are, and that preference shocks

are also defined in terms of type rather than individuals. They further assume that there is some

maximum distance such that there is no value to a having connections beyond this distance, and

there is a maximum number of direct connections that would be desired. Under these restrictions

they can set identify the set of parameters for which the observed outcome – distribution of network

types – is an equilibrium, without making any assumptions on equilibrium selection. They are even

84Sheng (2012) is actually only able to estimate an ‘outer region’ in which these probabilities lie, rather than a sharp
set. More information is, in principle, available in the data, but making use of it would increase the computational
burden.
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able to allow for non-existence of equilibrium, in which case the identified set is empty. Estimation

can be performed using a quadratic program.

Recent work by Leung (2014) takes a fourth approach, and is able to achieve point identification

without assumptions on the meeting order. Instead the game is modelled as being simultaneous

(so there is no meeting order to consider), but there is also incomplete information. Specifically,

the unobserved (by the econometrician) link-specific component of utility is assumed to also be

unobserved by other agents. Hence agents make their decisions with only partial knowledge about

what network will form. Estimation proceeds using a so-called ‘two-step’ estimator, analogous to

that used by Bisin et al. (2011) in a different context. First agents’ beliefs about the expected state

of the network are estimated non-parametrically. The observed conditional probability of a link

in the network is used as an estimate for agents’ belief about the probability such a link should

form. This estimated network is used to replace the endogenous observed network variables that

enter the utility function. Then the parameters of the utility function can be estimated directly in

a second step. One advantage of this approach is that only a single network is needed to be able

to estimate the utility parameters, although the network must be large.

Whether edges should be modelled as directed has consequences for identification and estimation,

as well as the interpretation of the results, and will depend on features of the data used. Both

Christakis et al. (2010) and Mele (2013) use data on school students from the National Longitudinal

Study of Adolescent Health (Add Health), but Christakis et al. (2010) assume friendship formation is

a bilateral decision whilst Mele (2013) assumes it is unilateral. The data show some edges that are

not reciprocated, and it is an issue for researchers how this should be interpreted.85 Theoretically,

networks based on unilateral linking are typically modelled as being Nash equilibria of the network

formation game, whilst those based on bilateral edges use pairwise stability (Jackson and Wolinsky,

1996) as their equilibrium concept.86

Both Christakis et al. (2010) and Mele (2013) assume utility functions such that the marginal

utility of an edge depends on characteristics of the individuals involved, the difference in their

characteristics (homophily), and some network statistics. This has two crucial implications.

First, since they assume network formation occurs sequentially, they need to assume a meeting pro-

cess to ‘complete’ their models. This process acts as an equilibrium selection mechanism. Although

they do not discuss equilibrium, Christakis et al. (2010) use the meeting process to determine

what network should be realised for a given set of covariates and parameters. Mele (2013) makes

assumptions on the structure of the utility function to ensure that at least one Nash equilibrium

exists, but potentially there are multiple equilibria. The meeting process is then used to provide

85It is sometimes argued when data contain edges that are not reciprocated that the underlying relationships are
reciprocal, but that some agents failed to state all their edges. The union of the edges is then used to form an
undirected graph, so gundirij = max(gij , gji).

86Loosely, an undirected network is pairwise stable if (i) Gij = 1 implies that neither i nor j would prefer to break
the edge, and (ii) Gij = 0 implies that if i would like to edge with j then j must strictly not want to edge with i.
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an ergodic distribution over these equilibria. In both cases functional form assumptions and use of

a meeting order are critical to identification.87

Second, both papers assume that the relevant network statistics are based on purely ‘local’ network

features. By this we mean that the marginal utility to i of forming an edge with j depends only on

edges that involve either i or j. This is equivalent to the pairwise Markovian assumption discussed in

Subsection 4.1. Estimation of these models can therefore be performed using the MCMC techniques

described there. It also suffers from the same difficulties, viz. that estimation is time-consuming,

and often the parameter estimates are highly unstable between runs of the estimation procedure

because of the difficulty in approximating the partition function.

Hence, although in principle, it has recently become possible to estimate economic models of stra-

tegic network formation, there is still significant scope for further work to generalise these results

and relax some of the assumptions that are used.

5 Empirical Issues

The discussion thus far has taken as given some, possibly multiple, networks g = {1, ..,M} of nodes

and edges. In this section we consider where this network comes from. We begin by outlining the

issues involved in defining the network of interest. We then discuss the different methods that may

be used to collect data on the network, focusing on practical considerations for direct data collection

and sampling methods. Our discussion thereafter examines in detail the issue of measurement error

in networks data. We divide issues into those where measurement error depends on the sampling

procedure, and those from other sources. Since networks are composed of interrelated nodes and

edges, random (i.e. i.i.d.) sampling of either nodes or edges imposes some (conditionally) non-

random process on the other, which depends on the structure of the underlying network, thereby

generating non-classical measurement error. We discuss the implications of measurement error

arising from both these sources – sampling and other – on network statistics, and on parameter

estimates of models that draw on these data. Researchers working in a number of disciplines

including economics, statistics, sociology and statistical physics have suggested methods for dealing

with measurement error in networks data, which are described in detail thereafter.

5.1 Defining the network

A first step in network data collection is to define, based on the research question of interest, the

interaction that one would like to measure. For example, suppose one were studying the role of

social learning in the adoption of a new technology, such as a new variety of seeds. In this situation,

information sharing with other farmers cultivating the new variety could be considered to be the

87Without a meeting order, both Sheng (2012) and de Paula et al. (2014) only achieve partial identification. Leung
(2014) achieves point identification by assuming agents move simultaneously and have incomplete information.
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most relevant interaction. The researcher would then aim to capture interactions of this type in

a network of nodes and edges. It should be noted that different behaviours and choices will be

influenced by different interactions. For example, amongst households in a village, fertiliser use

might be affected by the actions of other farmers, whilst fertility decisions may be influenced by

social norms of what the whole village chooses. Similarly, (extended) family members are more

likely to lend one money, while friends and acquaintances are often better sources of information

on new opportunities.88

Moreover, even when the interaction of interest is well-defined, e.g. risk-sharing between households,

there is an additional question of whether potential network neighbours – that is households who

are willing to make a transfer or lend to one’s own household – or realised network neighbours – the

households that one’s household actually received transfers or loans from – are of interest. Hence

the research question of interest and the context matter, and having detailed network data is not a

panacea: one must still justify why the measured network is the most relevant one for the research

question being considered.

In addition, researchers are typically also forced to define a boundary for the network, within which

all interactions are assumed to take place. Geographic boundary conditions are very common in

social networks – for instance, edges may only be considered if both nodes are in the same village,

neighbourhood or town – supported by the implicit assumption that a majority of interactions

takes place among geographically close individuals, households and firms. Such an assumption is

questionable,89 but greatly eases the logistics and costs of collecting primary network data, and is

often considered to be the most reasonable when no further information is available on the likely

reach of the network being studied.

Network data collection involves collecting information on two interrelated objects – nodes and

edges between nodes – within the pre-defined boundary. Data used in most economic applications

are typically collected as a set of observations on nodes (individuals, households, or firms), with

information on the network (or group(s)) they belong to, and perhaps with information on other

nodes within the network (or group) that they are linked to. As an example, in a development

context, we may have a dataset with socio-economic information on households (nodes), the village

or ethnic group they belong to (group), and potentially which other households within the village

its members talk to about specific issues (edges). Our focus, as elsewhere in this paper, continues

to be cases where detailed information on network neighbours (i.e. edges) is available, although

where multiple group memberships are known these may also be used to implicitly define a set of

neighbours, as in De Giorgi et al. (2010).

88The classic example of this issue comes from Granovetter (1973), who shows the importance of ‘weak ties’ in
providing job vacancy information.

89For example, a household’s risk sharing might depend more on its edges to other households outside the village,
since the geographic separation is likely to reduce the correlation between the original household’s shocks and the
shocks of these out-of-village neighbours.
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5.2 Methods for Data Collection

In practical terms, a range of methods can be and have been used to collect the information needed

to construct network graphs. In order to construct undirected network graphs, researchers need

information on the nodes in the network, and on the edges between nodes.90 Depending on the

interaction or relationship being studied, it may furthermore be possible to obtain information on

the directionality of edges between nodes, and on the strength of edges, allowing for the construction

of directed and weighted graphs. The methods include:

1. Direct Elicitation from nodes:

(a) Asking nodes to report all the other nodes they interact with in a specific dimension

within the specified network boundary, e.g. all individuals within the same village that

one lends money to. In this case, nodes are free to list whomever they want. Information

on the strength of edges can similarly be collected.91

(b) Asking nodes to report for every other node in the network whether they interacted with

that node (and potentially the strength of these interactions). In contrast to (a), nodes

are provided with a list of all other nodes in the network. Though this method has the

advantage of reducing recall errors, it may generate errors from respondent fatigue in

networks with a large number of nodes.

(c) Asking nodes to report their own network neighbours and their perception of edges

between other nodes in the network. This method would presumably work reasonably

well in settings where, and in interactions for which, private information issues are not

very important (e.g. kinship relations in small villages in developing countries). Alatas

et al. (2012) use this method to collect information on networks in Indonesian hamlets.

(d) Asking nodes to report their participation in various groups or activities, and then

imposing assumptions on interactions within the groups and activities, e.g. two nodes

are linked if they are members of the same group. The presence of multiple groups can

generate a partially-overlapping peer group structure.

2. Collection from Existing Data Sources: Edges between nodes can be constructed from inform-

ation in available databases e.g. citation databases (Ductor et al., 2014), corporate board

memberships (Patnam, 2013), online social networks (e.g. LinkedIn, Twitter, Facebook).

The resulting networks often have a partially-overlapping peer group structure, with agents

that share a common environment (such as a university) belonging to multiple subgroups

(e.g. classes within the university). Network structure is then imposed by assuming that

90Some features of network graphs can be obtained without detailed information on all nodes and the edges between
nodes. Degree, for instance, can be captured by asking nodes directly about the number of edges they have, without
enquiring further about who these neighbours are.

91In practice, edge strength is usually proxied by the frequency of interaction, or the amount of time spent together,
or in the case of family relationships, by the amount of shared genetic material between individuals.
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an edge exists between nodes that share a subgroup. Examples include students in a school

sharing different classes (e.g. De Giorgi et al., 2010) or company directors belonging to the

same board of directors (e.g. Patnam, 2013) or households which, through marriage ties of

members, belong to multiple families (e.g. Angelucci et al., 2010).

Moreover, the directionality of the edge can sometimes, though not always, be inferred from

available data, e.g. data from Twitter includes information on the direction of the edge, while

the existence of an edge in LinkedIn requires both nodes to confirm the edge. However, it

is not possible to infer directionality among, for instance, students in a school belonging to

multiple classes, since we don’t even know if they actually have any relationship.

In order to generate the full network graph, researchers would need to collect data on all nodes and

edges, i.e. they need to collect a census. This is typically very expensive, particularly since a number

of methods described above in Section 3 exploit cross-network variation to identify parameters,

meaning that many networks would need to be fully sampled.

In general, it is very rare to have data available from a census of all nodes and edges. Even when a

census of nodes is available, it is very common to observe only a subset of edges because of censoring

in the number of edges that can be reported.92 In practice, given the high costs of direct elicitation

of networks, and the potentially large size of networks from existing data sources,93 researchers

usually collect data on a sample of the network only, rather than on all nodes and edges. Various

sampling methods have been used, of which the most common are:

1. Random Sampling: Random samples can be drawn for either nodes or edges. This is a

popular sampling strategy due to its low cost relative to censuses. Data collected from a

random sample of nodes typically contain information on socio-economic variables of interest

and some (or all) edges of the sampled nodes, although data on edges are usually censored.94

At times, information may also be available on the identities, and in some rare cases, on some

socio-economic variables of all nodes in the network. Data on outcomes and socio-economic

characteristics of non-sampled nodes are crucial in order to be able to implement many of

the identification strategies discussed in Section 3 above. Moreover, as we will see below,

this information is also useful for correcting for measurement error in the network. Recent

analyses with networks data in the economics literature have featured datasets with edges

collected from random samples of nodes. Examples include data on social networks and the

diffusion of microfinance used by both Banerjee et al. (2013) and Jackson et al. (2012); and

92This is a feature of some commonly used datasets, including the popular National Longitudinal Study of Adoles-
cent Health (AddHealth) dataset.

93For instance, Facebook has over 1 billion monthly users, while Twitter reports having around 200 million regular
users.

94The network graph constructed from data where nodes are randomly sampled and where edges are included only
if both nodes are randomly sampled is known as an induced subgraph. The network constructed from data where
nodes are randomly sampled and all their edges are included, regardless of whether the incident nodes are sampled
(i.e. if i is randomly sampled, the edge ij will be included regardless of whether or not j is sampled), is called a star
subgraph.
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data on voting and social networks used in Fafchamps and Vicente (2013).

Datasets constructed through the random sampling of edges include a node only if any one of

its edges is randomly selected. Examples of such datasets include those constructed from ran-

dom samples of email communications, telephone calls or messages. In these cases researchers

often have access to the full universe of all e-mail communication, but are obliged to work

with a random sample due to computational constraints.

2. Snowball Sampling and Link Tracing: Snowball sampling is popularly used in collecting

data on ‘hard to reach’ populations i.e. those for whom there is a relatively small proportion in

the population, so that one would get an insufficiently large sample through random sampling

from the population e.g. sex workers. Link tracing is usually used to collect data from vast

online social networks. Under both these methods, a dataset is constructed through the

following process. Starting with an initial, possibly non-random, sample of nodes from the

population of interest, information is obtained on either all, or a random sample of their

edges. Snowball sampling collects information on all edges of the initially sampled nodes,

while link tracing collects information on a random sample of these edges. In the subsequent

step, data on edges and outcomes are collected from any node that is reported to be linked

to the initial sample of nodes. This process is then repeated for the new nodes, and in turn

for nodes linked to these nodes (i.e. second-degree neighbours of the initially drawn nodes)

and so on, until some specified node sample size is reached or up to a certain social distance

from the initial ‘source’ nodes. It is hoped that, after k steps of this process, the generated

dataset is representative of the population i.e. the distribution of sampled nodes no longer

depends on the initial ‘convenience’ sample. However, this typically happens only when k is

large. Moreover, the rate at which the dependence on the original sample declines is closely

related to the extent of homophily, both on observed and unobserved characteristics, in the

network. In particular, stronger homophily is associated with lower rates of decline of this

dependence. Nonetheless, this method can collect, at reasonable costs, complete information

on local neighbourhoods, which is needed to apply the methods outlined in Section 3 above.

Examples in economics of datasets collected by snowball sampling include that of student

migrants used in Méango (2014).

The sampling method used has important implications for how accurately the network graph and

its features are measured. In the next subsection we will discuss some of the common measurement

errors arising from the above methods (as well as measurement error from non-sampling sources),

their implications for model parameters, and methods for overcoming these often substantial biases.

5.3 Sources of Measurement Error

An important challenge that complicates identification of parameters using overlapping peer groups

and detailed network data is the issue of measurement error. Measurement error can arise from a
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number of sources including: (1) missing data due to sampling method, (2) mis-specification of the

network boundary, (3) top-coding of the number of edges, (4) miscoding and misreporting errors,

(5) spurious nodes and (6) non-response. We refer to the first three of these as sampling-induced

error, and the latter three as non-sampling error. It is important to account for this, since as we will

show in this Subsection, measurement error can induce important biases in measures of network

statistics and in parameter estimates.

Measurement error issues arising from sampling are very important in the context of networks data,

since these data comprise information on interrelated objects: nodes and edges. All sampling meth-

ods – other than undertaking a full census – generate a (conditionally) non-random sample of at

least one of these objects, since a particular sampling distribution over one will induce a particular

(non-random) structure for sampling over the other.95 This means that econometric and statist-

ical methods for estimation and inference developed under classical sampling theory are often not

applicable to networks data, since many of the underlying assumptions fail to hold. Consequently

the use of standard techniques, without adjustments for the specific features of network data, leads

to errors in measures of the network, and hence biases model parameters.

In practice, however, censuses of networks that economists wish to study are rare, and feasible to

collect only in a minority of cases (e.g. small classrooms or villages). Frequently, it is too expensive

and cumbersome to collect data on the whole network. Moreover, when data are collected from

surveys, it is common to censor the number of edges that can be reported by nodes. Finally, to ease

logistics of data collection exercises, one may erroneously limit the boundary of the network to a

specified unit, e.g. village or classroom, thereby missing nodes and edges lying beyond this bound-

ary. Subsection 5.3.1 outlines the consequences of missing data due to sampling on estimates of

social effects arising from outcomes of network neighbours (such as those considered in Subsections

3.2, 3.3 and 3.4) and network statistics (as in Subsection 3.5). Until recently most research into

these issues was done outside economics, so we draw on research from a range of fields, including

sociology, statistical physics, and computer science.

Measurement error arising from the other three sources – misreporting or miscoding errors, spurious

nodes, and non-response – which we label as non-sampling measurement error, can also generate

large biases in network statistics and parameters in network models. Though there is a large

literature on these types of measurement error in the econometrics and statistics (see, for example,

Chen et al. (2011) for a summary of methods for dealing with misreporting errors in binary variables,

also known as misclassification errors), these issues has been less studied in a networks context.

Subsection 5.3.2 below summarises findings from this literature.

Finally, a number of methods have been suggested to help deal with the consequences of measure-

ment error, whether due to sampling or otherwise. Subsection 5.4 outlines the various methods

that have been developed for this purpose.

95We consider a random sample to consist of units that are independent and identically distributed.
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5.3.1 Measurement Error Due to Sampling

Node-Specific Neighbourhoods Collecting only a sample of data, rather than a complete

census, can lead to biased and inconsistent parameter estimates in social effect models. This is

because sampling of the network leads to misspecification of nodes’ neighbours. In particular, a

pair of nodes in the sampled network may appear to be further away than they actually are. Recall

from Section 3 that with observational data, methods for identifying the social effects parameters in

the local average, local aggregate and hybrid local model use the exogenous characteristics of direct,

second- and, in some cases, third-degree neighbours as instrumental variables for the outcomes of

a node’s neighbours. Critically, these methods require us to know which edges are definitely not

present to give us the desired exclusion restrictions. Misspecification of nodes’ direct and indirect

(i.e. second- and third-degree) neighbours may consequently result in mismeasured and invalid

instruments.

Chandrasekhar and Lewis (2011) show that this is indeed the case for the local average model, where

the instruments are the average characteristics of nodes’ second- and third-degree neighbours. The

measurement error in the instruments is correlated with the measurement error in the endogenous

regressors, leading to bias in the social effect estimates. Simulations in their paper suggest that

these biases can be very large, with the magnitude falling as the proportion of the network sampled

increases, and as the number of networks in the sample increases.96 Chandrasekhar and Lewis

(2011) offer a simple solution to this problem when (i) network information is collected via a star

subgraph – i.e. where a subset of nodes is randomly sampled (‘sampled nodes’) and all their

edges are included in constructing the network graph; and (ii) data on the outcome and exogenous

characteristics are available for all nodes in the network, or at least for the direct and second- and

potentially third-degree neighbours of the ‘sampled’ nodes. In this case, all variables in the second

stage regression (i.e. Equation 3.6) are correctly measured for the ‘sampled’ nodes, since for any

node, the regressors, G̃i,gYg =
∑

j∈neii,g

G̃ij,gyj,g and G̃i,gXg =
∑

j∈neii,g

G̃ij,gxj,g, are fully observed.

Including only sampled nodes in the second stage thus avoids issues of erroneously assuming that

nodes in the observed network are further away from one another than they actually are. The

influence matrix constructed with the sampled network is, however still mismeasured, leading to

measurement error in the instruments (which use powers of this matrix), and thus in the first stage.

However, this measurement error is uncorrelated with the second stage residual, thus satisfying the

IV exclusion restriction. Note though that the measurement error in the instruments reduces their

informativeness (strength), particularly when the sampling rate is low. This is because this strategy

requires the existence of nodes that have a (finite) geodesic of at least 2 or 3 between them. At

low sampling rates there will be very few such pairs of nodes, since many sampled nodes will seem

completely unconnected as the nodes that connect them will be missing from the data.

A similar issue applies to local aggregate and hybrid models. Simulations in Liu (2013) show that

96A limitation of these simulations is that the authors only considered simulations with either 1 or 20 networks. It
is unclear how large such biases may be when a large number (e.g. 50) of networks is available.
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parameters of local aggregate models are severely biased and unstable when estimated with partial

samples of the true network. In this model, however, as shown in Subsection 3.3, a node’s degree can

be used as an instrument for neighbours’ outcomes. When the sampled data take the form of a star

subgraph, the complications arising from random sampling of nodes can be circumvented by using

the out-degree, which is not mismeasured, as an instrument for the total outcome of edges. This

allows for the consistent estimation of model parameters. This is supported by simulation evidence

in Liu (2013), which shows that estimates of the local aggregate model computed using out-degrees

as an additional instrument are very close to the parameters of a pre-specified data generating

process. Other possible ways around this problem include the model-based and likelihood-based

corrections outlined in Subsection 5.4.

Network Statistics Missing data arising from partial sampling generate non-classical meas-

urement error in measured network statistics. This is an important issue in estimating the effects

of network statistics on outcomes using regressions of the form seen in Subsection 3.5, because

measurement error leads to substantial bias in model parameter estimates. A number of stud-

ies, primarily in fields outside economics, have investigated the consequences and implications of

sampled network data on measures of network statistics and model parameters. The following

broad facts emerge from this literature:

1. Network statistics computed from samples containing moderate (30-50%) and even relatively

high (∼70%) proportions of nodes in a network can be highly biased. Sampling a higher

proportion of nodes in the network generates more accurate network statistics. We illustrate

the severity of this issue using a stylised example. Consider the network in panel (a) of Figure

4, which contains 15 nodes and has an average degree of 3.067. We sample 60%, 40% and 20%

of nodes and elicit information on all their edges (i.e. we elicit a star subgraph). The resulting

network graphs are plotted in panels (b), (c) and (d), with the unshaded nodes being those

that were not sampled. Average degree is calculated based on all nodes and edges in the star

subgraph, i.e. including all sampled nodes, the edges they report, and nodes they are linked

with.97 When only 20% of nodes are sampled, the average degree of the sampled graph is 2,

which is around 35% lower than the true average degree.98 However, when a higher proportion

of nodes are sampled, average degree of the sampled graph becomes closer to that of the true

graph. More generally, simulation evidence99 from studies including Galaskiewicz (1991),

Costenbader and Valente (2003), Lee et al. (2006), Kim and Jeong (2007) and Chandrasekhar

and Lewis (2011) have estimated the magnitude of sampling induced bias in statistics such as

97This is equivalent to taking an average of the row-sums of the (undirected) adjacency matrix constructed from
the sampled data, in which two nodes are considered to be connected if one reports an edge. This is a common
way of constructing the adjacency matrix in empirical applications. However, for data collected through star sub-
graph sampling, an accurate estimate of average degree can be obtained by including only the sampled nodes in the
calculation.

98We will discuss methods that allow one to correct for this bias in Subsection 5.4.
99Simulations are typically conducted by taking the observed network to be the true network, and constructing

‘sampled’ networks by drawing samples of different sizes using various sampling methods.
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degree (in-degree and out-degree in the directed network case), degree centrality, betweenness

centrality, eigenvector centrality, transitivity (also known as local clustering), and average

path length. They find biases that are very large in magnitude, and the direction of the bias

varies depending on the statistic. For example, the average path length may be over-estimated

by 100% when constructed from an induced subgraph with 20% of nodes in the true network.

This concern is particularly relevant for work in the economics literature: a literature review

of studies in economics by Chandrasekhar and Lewis (2011) reports a median sampling rate of

25% of nodes in a network. Table 1 below summarises findings from these papers for various

commonly used network statistics.
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Figure 4: Sampled networks with different sampling rates

    

# Nodes in sample = 15 

# Edges in sample = 46 

# Nodes in sample = 15 

# Edges in sample = 42 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 12 

# Edges in sample = 24 

Average degree = 3.067 Average degree = 2.800 Average degree = 2.615 Average degree = 2 

(a) Full Graph (b)  60% of nodes sampled (c) 40% of nodes sampled (d) 20% of nodes sampled 
 

Notes to Figure: This figure displays the full graph (panel (a)), and the star subgraphs obtained from sampling 60% (panel (b)), 40% (panel (c)) and

20% (panel (d)) of nodes. The unshaded nodes in panels (b), (c) and (d) represent nodes that were not sampled, and the dotted lines represent nodes

and edges on which no data were collected. Though the average degree in the original graph is 3.067, that in the sampled graphs ranges from 2.8 to

2. The # Nodes, and # Edges indicated in the figure refer to the numbers included in the calculation of the displayed average degree.
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2. Measurement error due to sampling varies with the underlying network topology (i.e. struc-

ture). This is apparent from work by Frantz et al. (2009), who investigate the robustness

of a variety of centrality measures to missing data when data are drawn from a range of

underlying network topologies: uniform random, small world, scale-free, core-periphery and

cellular networks (see Appendix A for definitions). They find that the accuracy of centrality

measures varies with the topology: small world networks, which have relatively high cluster-

ing and ‘bridging’ edges that reduce path lengths between nodes that would otherwise be far

away from one another, are especially vulnerable to missing data. This is not surprising since

key nodes that are part of a bridge could be missed in the sample and hence give a picture

of a less connected network. By contrast, scale-free networks are less vulnerable to missing

data. Such effects are evident even in the simple stylised example in Figure 5 below, where

we sample the same nodes from networks with different topologies – uniform random, and

small world. Though each network has the same average degree,100 and the same number of

nodes is sampled in both cases, the average degree in the graph sampled from the uniform

random network is closer to the true value than that sampled from the small world network.

Figure 5: Sampling from uniform random and small world networks

 

 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 15 

# Edges in sample = 34 

True average degree = 3.067;  

Sampled avg. Degree = 2.615 

True average degree = 3.067 

Sampled avg. Degree = 2.267 

(a) Uniform Random Graph (b) Small world graph 
 

Notes to Figure: This figure displays the star subgraphs obtained from sampling 40% of nodes in a network

with a uniform random topology (panel (a)) and a small world topology (panel(b)). The unshaded nodes

represent nodes that were not sampled, and the dotted lines represent nodes and edges on which no data

were collected.

100As in (1) above, average degree is calculated from the adjacency matrix with all nodes and edges in the sample
(i.e. all the nodes and edges with firm lines).

63



3. The magnitude of error in network statistics due to sampling varies with the sampling method.

Different sampling methods result in varying magnitudes of errors in network statistics. Lee

et al. (2006) compare data sampled via induced subgraph sampling, random sampling of nodes,

random sampling of edges, and snowball sampling, from networks with a power-law degree

distribution.101 They show that the sampling method impacts the magnitude and direction of

bias in network statistics. For instance, random sampling of nodes and edges leads to an over-

estimation of the size of the exponent of the power-law degree distribution.102 Conversely,

snowball sampling, which is less likely to find nodes with low degrees, underestimates this

exponent. We illustrate this fact further using a simple example that compares two node

sampling methods common in data used by economists – induced subgraph, where only edges

between sampled nodes are retained; and star subgraph, in which all edges of sampled nodes

are retained regardless of whether or not the nodes involved in the edges were sampled.

Consider again the network graph considered in panel (a) of Figure 4 above, and displayed

again in panel (a) of Figure 6 below. We sample the same set of nodes – 1, 5, 8, 9, 12, and 14

– from the full network graph. Panels (b) and (c) of Figure 6 display the resulting network

graphs under star and induced subgraph sampling respectively. Though the proportion of the

network sampled is the same under both types of sampling, the resulting network structure is

very different. This is reflected in the estimated network statistics as well: the average degree

for the induced subgraph is just over a half of that for the star subgraph, which is not too

different from the average degree of the full graph.103

4. Parameters in economic models using mismeasured network statistics are subject to substantial

bias. Sampling induces non-classical measurement error in the measured statistic; i.e., the

measurement error is not independent of the true network statistic. Chandrasekhar and

Lewis (2011) suggest that sampling-induced measurement error can generate upward bias,

downward bias or even sign switching in parameter estimates. The bias is large in magnitude:

for statistics such as degree, clustering, and centrality measures, they find that the mean

bias in parameters in network level regressions ranges from over-estimation bias of 300%

for some statistics to attenuation bias of 100% for others when a quarter of network nodes

are sampled.104 As with network statistics, the bias becomes smaller in magnitude as the

proportion of the network sampled increases. The magnitude of bias is somewhat smaller,

but nonetheless substantial, for node-level regressions. Table 2 summarises the findings from

the literature on the effects of random sampling of nodes on parameter estimates.

101Power law degree distributions are those where the fraction of nodes having k edges, P (k) is asymptotically
proportional to k−γ , where usually 2 < γ < 3. Such a distribution allows for fat tails, i.e. the proportion of nodes
with very high degrees constitutes a non-negligible proportion of all nodes.
102A larger exponent on the power law degree distribution indicates a greater number of nodes with large degrees.
103Average degree is calculated as above, including all nodes and edges in the sample, i.e. those with firm lines in

Figure 6.
104Simulations typically report bias in parameters from models where the outcome variable is a linear function of

the network statistic.
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Figure 6: Sampling with star and induced subgraphs

 

 

 

 

# Nodes in sample = 15 

# Edges in sample = 46 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 6 

# Edges in sample = 8 

Average degree = 3.067 Average degree = 2.615 Average degree = 1.333 

(a) Full Graph (b) Star Subgraph (c) Induced Subgraph 
 

Notes to Figure: Panel (a) of the figure displays the true network graph and panels (b) and (c) display the

star and induced subgraph obtained when the darker-shaded nodes are sampled. The unshaded nodes in

panels (b) and (c) represent nodes that were not sampled, and the dotted lines represent nodes and edges

on which no data were collected. In the star subgraph, an edge is present as long as one of the two nodes

involved in the edge is sampled. This is not the case in the induced subgraph, where an edge is present only

if both nodes involved in the edge are sampled.

5. Top-coding of edges or incorrectly specifying the boundary of the network biases network stat-

istics. Network data collected through surveys often place an upper limit on the number of

edges that can be reported. Moreover, limiting the network boundary to an observed unit,

e.g., a village or classroom, will miss nodes and edges beyond the boundary. Kossinets (2006)

investigates, via simulations, the implications of top-coding in reported edges and boundary

specification on network statistics such as average degree, clustering and average path length.

Both types of error cause average degree to be under-estimated, while average path length

is over-estimated. No bias arises in the estimated clustering parameter if the consequence of

the error is to simply limit the number of edges of each node.

Tables 1 and 2 below summarises findings on the consequences of missing data for both estimates of

network statistics and parameter estimates when using data on networks collected through random

sampling of nodes. We consider two types of graph induced by data collected via random node

sampling: induced subgraph, and star subgraph, which are as shown in Figure 6 above.
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Table 1: Findings from literature on sampling-induced bias in measures of network statistics

Statistic Measurement error in statistic

Network-Level

Statistics

Star Subgraph Induced Subgraph

Average Degree Underestimated (–) if non-sampled nodes are

included in the calculation. Otherwise sampled

data provide an accurate measure.a

Underestimated (–).a

Average Path length Not known. Over-estimated (+); network appears less

connected; magnitude of bias very large at low

sampling rates, and falls with sampling rate.b

Spectral gap Direction of bias ambiguous (±); depends on the

relative magnitudes of bias in the first and second

eigenvalues, both of which are attenuated.a

Direction of bias ambiguous (±): depends on the

relative magnitudes of bias in the first and second

eigenvalues, both of which are attenuated.a

Clustering Coefficient Attenuation (–) since triangle edges appear to be

missing.a
Little or no bias - random sampling yields same

share of connected edges between possible

triangles.a,b

Average Graph Span Overestimation (+) of the graph span: sampled

network is less connected than the true network.

At low sampling rates, graph span may appear to

be small, depending on how nodes not in the giant

component are treated.a

Overestimation (+) of the graph span: sampled

network is less connected than the true network.

At low sampling rates, graph span may appear to

be small, depending on how nodes not in the giant

component are treated.a

Notes: Non-negligible, or little bias refers to |bias| of 0-20%, large bias to |bias| of 20%-50% and very large bias to |bias| >
50%. a Source: Chandrasekhar and Lewis (2011); b Source: Lee et al. (2006).
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Table 1 contd.

Statistic Measurement error in statistic

Node - Level Statistics Star Subgraph Induced Subgraph

Degree (In and Out in

directed graphs)

In-degree and out-degree both underestimated

(–) if all nodes in sample included in

calculation. If only sampled nodes included,

out-degree is accurately estimated. In

undirected graphs, underestimation (–) of

degree for non-sampled nodes.a

Degree (in undirected graphs) of highly connected

nodes is underestimated (–).b

Degree Centrality

(Degree Distribution)

Not known. Overestimation (+) of exponent in scale-free

networks ⇒ degree of highly connected nodes is

underestimated. Rank order of nodes across

distribution considerably mismatched as sampling

rate decreases.b

Betweenness Centrality Distance between true betweenness centrality

distribution and that from sampled graph

decreases with the sampling rate. At low

sampling rates (e.g. 20%), correlations can be

as low as 20%.a

Shape of the distribution relatively well estimated.

Ranking in distribution much worse, i.e. nodes

with high betweenness centrality appear to have

low centrality.d

Eigenvector Centrality Very low correlation between vector of true

node eigenvector centralities and that from

sampled graph.a

Not known.

Notes: Source: aCostenbader and Valente (2003);bSource: Lee et al. (2006); cSource: Kim and Jeong (2007)
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Table 2: Findings from literature on sampling-induced bias in parameter estimates

Statistic Bias in Parameter Estimates

Network Level

Statistics

Star Subgraph Induced Subgraph

Average Degree Scaling (+) and attenuation (–), both of which fall

with sampling rate when all nodes in sample

included in calculation; |scaling| > |attenuation|. No

bias if only sampled nodes included.

Scaling (+) and attenuation (–), both of which fall

with sampling rate; |scaling| > |attenuation|.
Magnitude of bias higher than for star subgraphs.

Average Path length Attenuated (–). Magnitude of bias large and falls

with sampling rate.

Attenuated (–) (more than star subgraphs).

Magnitude of bias is very large at low sampling

rates, and falls with sampling rate.

Spectral gap Attenuated (–), with bias falling with sampling rate.

Magnitude of bias large even when 50% of nodes are

sampled.

Attenuated (–) (more than star subgraphs).

Magnitude of bias very large and falls with the

sampling rate.

Clustering Coefficient Scaling (+) and attenuation (–); |scaling| >
|attenuation|. Very large biases, which fall with

sampling rate.

Attenuation (–), falls with sampling rate.

Magnitude of bias non-negligible at node sampling

rates of <40%.

Average Graph Span Estimates have same sign as true parameter if node

sampling rate is sufficiently large; Can have wrong

sign if sampling rate is too low, depending on how

nodes not connected to the giant component are

treated in the calculation.

Estimates have same sign as true parameter if node

sampling rate is sufficiently large; Can have wrong

sign if sampling rate is too low, depending on how

nodes not connected to the giant component are

treated in the calculation.

Notes: Non-negligible bias refers to |bias| of 0-20%, large bias to |bias| of 20%-50% and very large bias to |bias| > 50%.

Source: Chandrasekhar and Lewis (2011)
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Table 2 contd.

Statistic Bias in Parameter Estimates

Node - Level Statistics Star Subgraph Induced Subgraph

Degree (In and Out in

directed graphs)

Attenuation (–), with the magnitude of bias

falling with the sampling rate. The magnitude

of bias is large even when 50% of nodes are

sampled.

Scaling (+), with the bias falling with the node

sampling rate. Bias is very large in magnitude.

Degree Centrality

(Degree Distribution)

Not known. Not known.

Betweenness Centrality Not known. Not known.

Eigenvector Centrality Attenuation (–), with magnitude of bias falling

with the sampling rate. Magnitude of bias

large even when 50% of nodes are sampled.

Attenuation (–), with magnitude of bias falling with

the sampling rate. Magnitude of bias very large.

Notes: Large bias refers to |bias| of 20%-50% and very large bias to |bias| > 50%. Source: Chandrasekhar and Lewis

(2011)
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5.3.2 Other Types of Measurement Error

Beyond sampling-induced measurement error, networks could be mismeasured for a variety of other

reasons including:

1. Miscoding and misreporting errors: Edges could be miscoded, either because of re-

spondent or interviewer error: respondents may forget nodes or interview fatigue may lead

them to misreport edges. In some cases, there may be strategic reporting of edges, e.g., re-

spondents may report desired rather than actual edges, as in Comola and Fafchamps (2014).

2. Spurious Nodes: Spelling mistakes in node names or multiple names for the same nodes

can lead to the presence of spurious nodes. This is a concern when edges are inferred from

existing data.

3. Non-response: Edges are missing as a result of non-response from nodes.

Wang et al. (2012) consider, in a simulation study, the consequences of these types of measurement

error on network statistics including degree centrality, the clustering coefficient and eigenvector

centrality. They find that degree centrality and eigenvector centrality are relatively robust to

measurement error arising from spurious nodes and miscoded edges, while clustering coefficient is

biased by mismeasured data. Though there is a large literature on these types of measurement error

in the econometrics and statistics (see, for example, Chen et al. (2011) for a summary of methods

for dealing with misreporting errors in binary variables, also known as misclassification errors),

these issues has been less studied in a networks context. An exception is Comola and Fafchamps

(2014), who propose a method for identifying and correcting misreported edges.

5.4 Correcting for Measurement Error

Ex-post (i.e. once data have been collected) methods of dealing with measurement error can be

divided into three broad classes: (1) design-based corrections, (2) model-based corrections, and

(3) likelihood-based corrections. Design-based corrections apply primarily to correcting sampling-

induced measurement error, while model-based and likelihood-based corrections can apply to both

sampling-induced and non-sampling-induced measurement error. We briefly summarise the under-

lying ideas behind each of these, discussing some advantages and drawbacks of each.

5.4.1 Design-Based Corrections

Design-based corrections rely on features of the sampling design to correct for sampling-induced

measurement error (Frank 1978, 1980a, 1980b, 1981; Thompson, 2006).105 They are based on

105Chapter 5 of Kolaczyk (2009) provides useful background on these methods.
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Horvitz-Thompson estimators, which use inverse probability-weighting to compute unbiased estim-

ates of population totals and means from sampled data. This method can be applied to correct

mismeasured network statistics that can be expressed as totals, such as average degree and cluster-

ing. We illustrate how Horvitz-Thompson estimators work using a simple example.

A researcher has data on an outcome y for a sample of n units drawn from the population. Under the

particular sampling scheme used to draw this sample, each unit i in the population U = {1, ..., N}
has a probability pi of being in the sample. The researcher wants to use the sample to compute

an estimate of the sum of y in the population, τ =
∑

i∈U yi. The Horvitz-Thompson estimator for

this total can be computed by summing the y’s for the sampled units, weighted by their probability

of being in the sample. That is, τ̂p =
∑
i∈U

yi
pi

. Essentially, the estimator computes an inverse

probability-weighted estimate to correct for bias arising from unequal probability sampling. In the

case of network statistics, this thus corrects for the non-random sampling of either nodes or edges

induced by the particular sampling scheme. The key to this approach is the construction of the

sample inclusion weights, pi.

Formulae for node- and edge-inclusion probabilities are available for the random node and edge

sampling schemes (see Kolaczyk (2009) for more details). Recovering sample inclusion probabilit-

ies when using snowball sampling is typically not straightforward after the first step of sampling.

This is because every possible sample path that can be taken in subsequent sampling steps must

be considered when calculating the sample-inclusion probability, making this exercise very com-

putationally intensive. Estimators based on Markov chain resampling methods, however, make it

feasible to estimate the sample inclusion probabilities. See Thompson (2006) for more details.

Frank (1978, 1980a, 1980b, 1981) derives unbiased estimators for graph parameters such as dyad

and triad counts, degree distribution, average degree, and clustering under random sampling of

nodes. Chandrasekhar and Lewis (2011) show that parameter estimates in network regressions

using design-based corrected network statistics as regressors are consistent for three statistics:

average degree, clustering coefficient, and average graph span. Their results show that the Horvitz-

Thompson estimators can correct for sampling-induced measurement error. Numerical simulations

suggest that this method reduces greatly, and indeed eliminates at sufficiently high sampling rates,

the sampling induced bias in parameter estimates.

There are two drawbacks of this procedure. First, it is not possible to compute Horvitz-Thompson

estimators for network statistics that cannot be expressed as totals or averages. This includes

node level statistics, such as eigenvector centrality, many of which are statistics of interest for

economists. Second, they can’t be used to correct for measurement error arising from reasons other

than sampling (unless the probability of correct reporting is known). Model-based and likelihood-

based corrections can, by placing more structure on the measurement error problem, offer alternative

ways of dealing with measurement error in these cases.
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5.4.2 Model-Based Corrections

Model-based corrections provide an alternative approach to correcting for measurement error. Such

corrections involve specifying a model that maps the mismeasured network to the true network and

have primarily been used to correct for measurement error arising from sampling related reasons.

Thus the model is typically a network formation model of the type seen in Subsection 4.1 above.

Parameters of the network formation model are estimated from the partially observed network,

and available data on the identities and characteristics of nodes and edges; with the estimated

parameters subsequently used to predict missing edges (in-sample edge prediction). Note that it

is crucial to have information on the identities and, if possible, the characteristics (e.g. gender,

ethnicity, etc.) of all nodes in the network. This is important from a data requirements perspective.

Without this information, it is not possible to use this method to correct for measurement error.

In most economics applications, researchers would typically want to use the predicted networks

to subsequently identify social effect parameters using models similar to those in Section 3 above.

Chandrasekhar and Lewis (2011) show that the network formation model must satisfy certain

conditions in order to allow for consistent estimation of the parameters of social effects models such

as those discussed in Section 3.

They study a setting where data on the network is assumed to be missing at random, and where

the identities and some characteristics of all nodes are observed. Data are assumed to be available

for multiple, possibly large networks. This is necessary since in their results the rate of convergence

of the estimated parameter to the true parameter depends on both the number of nodes within a

network, and the number of networks in the data. Their analysis shows that consistent estimation

of social effect parameters is possible with network formation models similar to those outlined in

Section 4.1 above, as long as the interdependence between the covariates of pairs of nodes decays

sufficiently fast with network distance between the nodes. This may not be satisfied for instance,

in a model where a network statistic (such as degree distribution) is a sufficient statistic for the

network formation process. In this case, Chandrasekhar and Lewis (2011) show that parameters of

the network formation process do not converge sufficiently fast to allow for consistent estimation

of the social effect parameters in models at the node-level (e.g. Equation 3.1), though parameters

of network-level models, such as Equation 3.5 can be consistently estimated. Their analysis also

shows that network formation processes that allow for specific network effects in edge formation

(i.e. some strategic models of network formation such as the model of Christakis et al., 2010) also

satisfy conditions under which the social effect parameter can be consistently estimated.

5.4.3 Likelihood-Based Corrections

Likelihood-based corrections can be applied to correct for measurement error when only a sub-

sample of nodes in a network are observed. Such methods have, however, been used to correct

specific network-based statistics such as out-degree and in-degree, but may not apply to other
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statistics. Here, we discuss two likelihood-based methods to correct for measurement error: the

first method from Conti et al. (2013), corrects for sampling related measurement error when data

is available only for sampled nodes; while the second has been proposed and applied by Comola

and Fafchamps (2014) to correct for misreporting.

Conti et al. (2013) correct for non-classical measurement error in in-degree arising from random

sampling of nodes by adjusting the likelihood function to account for the measurement error. The

method involves first, specifying the process for outgoing and incoming edge nominations, and as

a result obtaining the outgoing and incoming edge probabilities. Specifically, Conti et al. (2013)

assume that outgoing (incoming) edge nominations from i to j are a function of i’s (j’s) observable

preferences, the similarity between i and j’s observable characteristics (to capture homophily)

and a scalar unobservable for i and j. Moreover, the process allows for correlations between

i’s observable and j’s unobservable characteristics (and vice versa). When edges are binary, the

out-degree and in-degree have binomial distributions with the success probability given by the

calculated outgoing and incoming edge probabilities. Random sampling of nodes to obtain a star

subgraph generates measurement error in the in-degree, but not in the out-degree. However, since

the true in-degree is binomially distributed, and nodes are randomly sampled, the observed in-

degree has a hypergeometric distribution conditional on the true in-degree. Knowledge of these

distributions allows for the specification of the joint distribution of the true in-degree, the true

out-degree and the mismeasured in-degree. Pseudolikelihood functions can therefore be specified

allowing for parameters to be consistently estimated via maximum likelihood methods.106

Comola and Fafchamps (2014) propose a maximum likelihood based framework to correct for meas-

urement error arising from misreporting by nodes of their neighbours and/or flows across the edges.

To illustrate this method, we take the case of binary edges. In survey data, where nodes are asked

to declare the presence or not of an edge with other nodes, misreporting could mean that one of

two nodes in any edge omits to report the edge; or both forget to report the edge even if it exists,

or both report an edge when it doesn’t exist or, one of the two nodes erroneously reports an edge

when it doesn’t exist. Misreporting in this case is a form of misclassification error. Assuming that

the misreporting process is such that either nodes forget to declare neighbours, or they spuriously

report neighbours, it is possible to use a maximum likelihood framework to correct for this mis-

reporting bias. By assuming a statistical process for edges (e.g. Comola and Fafchamps (2014)

assume that edges follow a logistic process, and are a function of observed characteristics), and

given that the mismeasured variable is binary, it is possible to write down a likelihood function

that incorporates the measurement error. Maximising this function provides the correct parameter

estimates for the edge formation process, which can then be used to correct for misreporting.

106Conti et al. (2013) also account for censoring by using a truncated distribution in the likelihood function.
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6 Conclusion

Networks can play an important role both as a substitute for incomplete or missing markets and

a complement to markets, for example, by transmitting information, or even preferences. Whether

such effects exist in practice is an important empirical question, and recent work across a range of

fields in economics has tried to provide some evidence about this. However, working with networks

data creates important challenges that are not present in other contexts.

In this paper we outline econometric methods for working with network data that take account

of the peculiarities of the dependence structures present in this context. It divides the issues into

three parts: (i) estimating social effects given a conditionally exogenous observed network; (ii)

estimating the underlying network formation process, given only a single cross-section of data; and

(iii) accounting for measurement error, which in a network context can have particularly serious

consequences.

When data are available on only agents and the reference groups to which they belong, researchers

have for some time worried about how social effects might be identified. However, when detailed

data on nodes and their individual links are present, identification of social effects (taking the

network as conditionally exogenous) is generic, and estimation is relatively straightforward. Two

broader conceptual issues exist in this case: First, theory is often silent on the precise form that

peer effects should take when they exist. Since Manski (1993), many people have focused on the

‘local average’ framework, often without discussion of the implications for economic behaviour,

but social effects might instead take a local aggregate, or indeed local maximum/minimum form

where the best child in a classroom provides a good example to all others, or the worst disrupts

the lesson. Until a non-parametric way of allowing for social effects is developed, researchers need

to use theory to guide the empirical specification they use. Second, researchers typically treat the

observed network as the network which mediates the social effect, and where many networks are

observed the union of these is taken. Given what we know about measurement error in networks,

this behaviour will generally create important biases in results, if the relevant network is a network

defined by a different kind of relationship, or is actually some subset of the union taken. Here again

it is important that some justification is given for why the network used should be the appropriate

one.

In addition to these conceptual issue, the key econometric challenge in identifying social effects is

allowing for network endogeneity. In recent years there have been attempts to account directly for

network endogeneity. A natural first direction for this work has been to use exclusion restrictions

to provide an instrument for the network structure. As ever, this requires us to be able to credibly

argue that there is some variable that indirectly affects the outcome of interest, through its effect

on the network structure, but has no direct effect. Whether this seems reasonable will depend on

the circumstance, but an important issue here is that the network formation process must have a

unique equilibrium for these methods to be valid.
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This leads naturally to a discussion of network formation models that can allow for dependence

between links. Drawing from work in a number of fields, this paper brings together the main

estimation methods and assumptions, describing them in a common language. Although other fields

have modelled network formation for some time, and developed methods to estimate parameters,

they are often unsuitable when we treat the data as observations of decisions made by optimising

agents. There is still much scope in this area to develop more general methods and results which

do not rely on strong assumptions about the structure of utility functions or meeting processes in

order to achieve identification.

Finally, the paper discussed data collection and measurement error. Since networks comprise of

interrelated nodes and edges, a particular sampling scheme over one of these objects will imply a

structure for sampling over the other. Hence one must think carefully in this context about how

data are collected, and not simply rely on the usual intuitions that random sampling (which is not

even well-defined until we specify whether it is nodes or edges over which we define the sampling)

will allow us to treat the sample as the population. When collecting census data is not feasible,

it will in general be necessary to make corrections for the induced measurement error, in order to

get unbiased parameter estimates. Whilst there are methods for correcting some network statistics

for some forms of sampling, again there are few general results, and consequently much scope for

research.

Much work has been done to develop methods for working with networks data, both in economics

and in other fields. Applied researchers can therefore take some comfort in knowing that many

of the challenges they face using these data are ones that have been considered before, and for

which there are typically at least partial solutions already available. Whilst the limitations of

currently available techniques mean that empirical results should be interpreted with some caution,

attempting to account for social effects is likely to be less restrictive than simply imposing that

they cannot exist.
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A Definitions

Here we provide an index of definitions for the different network representations and summary

statistics used.

• Adjacency Matrix: This is an N ×N matrix, G, whose ijth element, Gij , represents the

relationship between node i and node j in the network. In the case of a binary network,

the elements Gij take the value 1 if i and j are linked, and 0 if they are not linked; while

in a weighted network, Gij = w(i, j), where w(i, j) is some measure of the strength of the

relationship between i and j. Typically, the leading diagonal of G is normalised to 0.

• Influence Matrix: This is a row-stochastic (or ‘right stochastic’) adjacency matrix, G̃ whose

elements are generally defined as G̃ij = Gij/
∑
j Gij if two agents are linked and 0 otherwise.

• Degree: A node’s degree, di, is the number of edges of the node in an undirected graph.

The degree of node i in the network with a binary adjacency matrix, G, can be calculated

by summing the elements of the ith row of this matrix.107 In a directed graph, a node’s

in-degree is the number of edges from other nodes to that node, and it’s out-degree is the

number of edges from that node to other nodes in the network. For node i, the former can

be calculated by summing the elements of the ith column of the binary adjacency matrix for

the network, while the latter is obtained by summing the ith row of this matrix.

• Average degree: The average degree for a network graph is the average number of edges

that nodes in the network have.

• Density: The relative fraction of edges that are present in a network. It is calculated as the

average degree divided by N − 1, where N is the number of nodes in the network.

• Shortest path length (geodesic): A path in a network g between nodes i and j is a

sequence of edges, i1i2, i2i3, ..., iR−1iR, such that irir+1 ∈ g, for each r ∈ {1, ..., R} with i1 = i

and iR = j and such that each node in the sequence i1, ..., iR is distinct. The shortest path

length or geodesic between i and j is the path between i and j that contains the fewest

edges. The average geodesic of a network is the average geodesic for every pair of nodes

in the network. For nodes for whom no path exists, it is common to either exclude them

from the calculation of the average geodesic (i.e. to calculate the average geodesic from the

connected part of the network) or to define the geodesic for these nodes to be some large

number (usually greater than the largest geodesic in the network).

• Diameter: The diameter of a graph is the largest geodesic in the connected part of the

network, where by connected, we refer to nodes for whom a path exists to get from one node

to the other.
107Similarly, for a weighted graph, summing the elements for row i in the adjacency matrix yields the weighted

degree.
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• Component: A connected component, or component, in an undirected network is a subgraph

of a network such that every pair of nodes in the subgraph is connected via some path, and

there exists no edge from the subgraph to the rest of the network.

• Bridge: The edge ij is considered to be a bridge in the network g if removing the edge ij

results in an increase in the number of components in g.

• Complete Network: A network in which all possible edges are present.

• Degree Centrality: This is the node’s degree divided by N −1, where N is total number of

nodes in the network. It measures how well a node is connected in terms of direct neighbours.

Nodes with a large degree have a high degree centrality.

• Betweenness centrality: This is a measure of centrality based on how well situated a node

is in terms of the paths it lies on. The importance of node i in connecting nodes j and k

can be calculated as the ratio of the number of geodesics between j and k that i lies on to

the total number of geodesics between j and k. Averaging this ratio across all pairs of nodes

yields the betweenness centrality of node i.

• Eigenvector centrality: A relative measure of centrality, the centrality of node i is the

sum of the centrality of its neighbours. It can be calculated by solving the following equation

in matrix terms, λCe(G) = GCe(G), where Ce(G) is an eigenvector of G, and λ is the

corresponding eigenvalue.

• Bonacich Centrality: Another measure of centrality that defines a node’s centrality as a

function of their neighbours’ centrality. It is defined as b(Gg, β) = (Ig − βGg)
−1.(αGgι).

• Dyad count: A dyad is a pair of nodes. In an undirected network, the dyad count is the

number of edges in the network.

• Triad count: A triad is a triple of nodes such that a path connecting all 3 nodes exists. The

triad count of an undirected network is the number of such triples in the network.

• Clustering coefficient: For an undirected network, this measures the proportion of fully

connected triples of nodes out of all potential triples in which at least two edges are present.

• Support: An edge ij ∈ Eg is supported if there exists an agent k 6= i, j such that ik ∈ Eg

and jk ∈ Eg.

• Expansiveness: For subsets of connected nodes in the network, the ratio of the number of

edges connecting the subset to the rest of the network to the number of nodes in the subset.

• Sparseness: A property of the network related with the length of all minimal cycles con-

necting triples of nodes in the network. For any integer, q ≥ 0, a network is q-sparse if all

minimal cycles connecting any triples of nodes (i, j, k) such that ij ∈ Eg and jk ∈ Eg have

length ≤ q + 2. See Bloch et al. (2008) for more details.
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• Graph span: The graph span is a measure that mimics the average path length. It is defined

as

spang =
log(Ng)− log(dg)

log(d̃g)− log(dg)
+ 1

where Ng is the number of nodes in network g, dg is the average degree of network g and d̃g

is the average number of second-degree neighbours in the network.

Network Topologies

• Bipartite network: A network whose set of nodes can be divided into two sets, U and V ,

such that every edge connects a node in U to one in V .

• Uniform random network: A graph where edges between nodes form randomly.

• Scale-free network: A network whose degree distribution follows a power law, i.e. where

the fraction of nodes having k edges, P (k) is asymptotically proportional to k−γ . Such a

distribution allows for fat tails, i.e. the proportion of nodes with very high degrees constitutes

a non-negligible proportion of all nodes.

• Core-periphery network: A network that can be partitioned into a set of nodes that is

completely connected (‘core’), and another set of agents (‘periphery’) who are linked primarily

with nodes in the ‘core’.

• Cellular network: Networks containing many sets of completely connected nodes (or

‘cliques’), with few edges connecting the different cliques.

• Small world network: A network where most nodes are not directly linked to one another,

but where geodesics between nodes are small, i.e. a node can reach every other node in the

network by passing through a small number of nodes.

• k-star: A component with k nodes and k− 1 links such that there is one ‘hub’ node who has

a direct link to each of the (k − 1) other (‘periphery’) nodes.

• Cliques: A clique is any induced subgraph of a network (i.e. subset of nodes and all edges

between them) such that every node in the subgraph is directly connected to every other node

in the subgraph.
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Figure 7: Network Topologies
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• Induced Subgraph: The network graph constructed from data where nodes are randomly

sampled and where edges are included only if both nodes are randomly sampled are known

as induced subgraph.

• Star Subgraph: The network constructed from data where nodes are randomly sampled

and all their edges are included, regardless of whether the incident nodes are sampled (i.e. if

i is randomly sampled, the edge ij will be included regardless of whether or not j is sampled),

is called a star subgraph.

• Network Motif: Any subgraph of the network which has a particular structure. For ex-

ample, the reciprocated link motif is defined as any pair of nodes, {i, j}, such that both of the

possible directed links between them, {ij, ji}, are present in the subgraph. Another example

is the k-star motif, which is defined as any k nodes such that one of the nodes is linked to all

(k-1) other nodes, and the other nodes are not linked to each other.

• Isomorphic Networks: Two networks are isomorphic iff we can move from one to the other

only by permuting the node labels. For example, all six directed networks composed of three

nodes and one edge are isomorphic. Isomorphism implies that all network statistics are also

identical, since these statistics are measured at a network level so are not affected by node

labels.
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B Quadratic Assignment Procedure

The Quadratic Assignment Procedure (QAP) was developed originally by Mantel (1967) and Hubert

and Schultz (1976).108 It tests for correlation between a pair of network variables by calculating

the correlation in the data, and comparing this to the range of estimates computed from the same

calculation after permutation of the rows and columns of the adjacency matrix G. For example,

suppose we have two vectors y(G) = {yi(Gg)}i∈Ng
and x(G) = {xi(Gg)}i∈Ng

which are functions

of the network. We first calculate ρ̂0,Y X , the correlation between y and x observed in the data.

In order to respect the dependencies between edges that involve the same node, we then jointly

permute the rows and columns of the argument of y. This amounts to effectively relabelling the

nodes, so that we calculate a new estimate ρ̂w,Y X : the correlation between y(Gw) and x(G), where

Gw is the permuted adjacency matrix. It is generally not the same as permuting the elements of

the vectors y. This is repeated W times, to give a range of estimates {ρ̂w,Y X}w=1,...,W . Under the

null hypothesis of no correlation, we can perform, for example, a two-sided test at the 10% level,

by considering whether ρ̂0,Y X lies between the 5th and 95th percentiles of {ρ̂w,Y X}w=1,...,W . If it

does not, we can reject the null at the 10% level.

Ideally one would like to use all the possible permutations available, but typically this number is

too large. Hence a random sample of permutations is typically used. This is done by drawing

the from the set of nodes of the network, {1, ..., N}, without replacement. The order in which the

indices are drawn is defined as the new, permuted ordering, for calculating y(Gw).

Krackhardt (1988) extended QAP to a multivariate setting. Now we have variables

{y(G), x1(G), ..., xK(G)} and are interested in testing whether there is a statistically signi-

ficant correlation between y and the K other variables. To test for a relationship between y and

x1, Krackhardt suggests we first regress y and x1, separately, on (x2...xK) to give residuals y∗1
and x∗1. Then one can perform QAP on y∗1 and x∗1, as in the bivariate setting, where ρ̂0,Y ∗X∗1

is

an estimate of the partial correlation between y and x1 conditioning on the other (x2...xK). This

process can be repeated for all K covariates.

108See Hubert (1987) for a review of developments of this method.
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