Empirical predictions from theory

The retailer's decision depending on five parameters:
(1) ariv, the strength of the rivalrous capture effect of adverting
(2) $a_{\text {ind }}$, the strength of the industry expansion effect of advertising
(3) s, retailer size
(4) V, the consumers' willingness-to-pay for the product (relative to production costs)
(5) $a_{r e t}$, and the strength of rivalrous capture at inter-store level, i.e. the degree to which having heavily advertised brands on offer attracts consumers into the store at the expense of competitors with a less favourable product selection

Data

Brand shares, supermarket size

- Kantar Worldpanel; all purchases of "fast moving consumer goods" brought into the home
- rolling panel of around 25,000 households; daily 2002-2010
- products identified as: Branded, Standard Own-brand, Budget Own-brand
- Large supermarkets: Asda, Morrisons, Sainsburys, Tesco
- Small supermarkets: Budgens, Coop, Iceland, Netto, Somerfield Waitrose
- Specialty stores: Aldi, Lidl, Marks + Spencer

Advertising expenditure

- A.C. Nielsen Digest of Advertising;
- all advertising expenditure in the UK
- includes ads on TV, radio, in the press, on billboards and online
- monthly 2002-2010; by brand

Share of own-brand sales

- Main variation is across products
- and with different types of stores following different strategies
- Very constant over time
- And broadly similar across similar types of stores

Quantity share for some market sectors

	Own-brand			Expend
	Branded	Standard	Budget	$(£ \mathrm{~m})$
Fruit and Vegetables	0.008	0.848	0.145	4.2
Bakery Products - Chilled	0.038	0.912	0.050	0.3
Meat+ Poultry+Fish	0.150	0.493	0.356	4.9
Dairy Products	0.273	0.524	0.204	6.4
Household and Cleaning	0.395	0.354	0.251	2.9
Bread	0.424	0.481	0.095	1.9
Drinks - Fizzy	0.473	0.357	0.170	2.1
Tiiletries - Healthcare	0.482	0.494	0.025	0.7
Pickles/Sauces and Ketchup	0.581	0.286	0.134	0.5
Biscuits	0.599	0.206	0.194	1.5
Toiletries - Oralcare	0.677	0.277	0.046	0.5
Washing powder	0.715	0.196	0.089	0.6
Drinks - Hot	0.778	0.153	0.069	1.1
Alcohol	0.784	0.157	0.059	4.7
Crisps	0.816	0.134	0.051	1.0
Toiletries - Haircare	0.822	0.150	0.028	0.5
Confectionery	0.835	0.105	0.060	1.7

Quantity share by fascia

	Own-brand			Expend
	Branded	Standard	Budget	$(\mathbf{\text { (m) }}$

Estimating impact of advertising

Advertising is rivalrous if,

$$
\frac{\partial s h r_{i t}}{\partial a_{j t}}<0
$$

it is expansionary if

$$
\frac{\partial Q_{t}}{\partial a_{j t}}>0
$$

$q_{i t}$: quantity of product i
Q_{t} : market size
$a_{i t}$: advertising
$s h r_{i t}=\frac{q_{i t}}{Q_{t}}$

We estimate
(1)

$$
q_{i t}=\beta_{1} p_{i t}+\beta_{2} \bar{p}_{j t}+\gamma_{1} a_{i t}^{1 / 2}+\gamma_{2} \bar{a}_{j t}^{1 / 2}+\eta_{i}+\tau_{t}+e_{i t}
$$

(2)

$$
s_{i t}=\beta_{1}^{s} p_{i t}+\beta_{2}^{s} \bar{p}_{j t}+\gamma_{1}^{s} a_{i t}^{1 / 2}+\gamma_{2}^{s} \bar{a}_{j t}^{1 / 2}+\eta_{i}^{s}+\tau_{t}^{s}+e_{i t}^{s}
$$

(3)

$$
Q_{t}=\beta^{v} \bar{P}_{t}+\gamma^{v} \bar{a}_{t}^{1 / 2}+\tau_{t}^{v}+e_{i t}^{v}
$$

$p_{i t}$: price
$a_{i t}$: advertising shr $r_{i t}$: quantity share Q_{t} : market size
$\bar{p}_{j t}$: mean rival price
$a_{j t}^{1 / 2}$: sum of square root of rival advertising
η_{i} : are product effects
τ_{t} : time trend + month effects

Advertising cross-elasticity has predatory and expansionary effect

$$
\begin{aligned}
\epsilon_{i j}^{a} & =\frac{a_{j}}{q_{i}} \frac{\partial q_{i}}{\partial a_{j}}=a_{j} \frac{\sum q_{i}}{q_{i}} \frac{\partial}{\partial a_{j}}\left(\frac{q_{i}}{\sum q_{i}}\right)+\frac{a_{j}}{\sum q_{i}} \frac{\partial}{\partial a_{j}}\left(\sum q_{i}\right) \\
& =\epsilon_{i j}^{a p}+\epsilon_{j}^{a g}
\end{aligned}
$$

$\epsilon_{i j}^{a p}$ is the predatory effect of advertising by j on product i
$\epsilon_{j}^{a g}$ is the expansionary effect of advertising by j
$\epsilon_{i j}^{a p}=\frac{a_{j}}{s_{i}} \frac{\partial s_{i}}{\partial a_{j}}$
$\epsilon^{a g}=\frac{a_{t}}{Q_{t}} \frac{\partial Q_{t}}{\partial a_{t}}$

Example: Confectionery products

Firm; Brand	Selected	Market share	Months of zero adv	Adv exp.	Rival's adv exp.	Price
Asda Stores Ltd; Asda	0	0.038	0.528	57025		3.82
Cadburys; Cadburys Creme Egg	0	0.013	0.581	214776		6.99
Cadburys; Cadburys Dairy Milk	1	0.093	0.179	512331	629349	6.11
Cadburys; Cadburys Roses	0	0.018	0.792	39032		6.46
Dunhills P L C; Haribo	1	0.039	0.104	210930	930750	3.98
J Sainsburys; Sainsbury	0	0.023	0.566	63693		4.20
Lidl UK GMBH; Lidl	0	0.011	0.953	261		3.64
Marks and Spencer; M+S	0	0.011	0.868	14109		9.58
Mars; Galaxy	0	0.031	0.047	417558		6.50
Mar; Maltesers	0	0.024	0.594	166792		8.05
Mars; Mars Bar	1	0.041	0.132	282051	859629	4.21
Mars; Mars Celebrations	0	0.017	0.604	131394		6.89
Mars; Milky Way	0	0.010	0.651	44267		6.25
Mars; Snickers	0	0.013	0.623	71995		4.57
Morrisons Ltd; Morrisons	0	0.014	0.660	41739		3.56
Nestle Confectionery; Aero	0	0.014	0.500	182632		7.74
Nestle Confectionery; Kit Kat	0	0.017	0.104	617380		6.01
Nestle Confectionery; Quality Street	1	0.024	0.509	86822	1054858	6.37
Nestle Confectionery; Rowntrees	0	0.019	0.500	116861		6.10
Nestle Confectionery; Smarties	0	0.012	0.387	109674		7.00
Swizzels Matlow; Swizzels	1	0.013	0.604	1333	1140347	4.95
Tesco Food Stores Ltd; Tesco	0	0.048	0.623	40637		4.00
Trebor Bassett Ltd; Bassetts	1	0.023	0.811	48212	1093468	4.60
Trebor Bassett Ltd; Maynards	0	0.010	0.708	87043		5.97
Trebor Bassett Ltd; Trebor	0	0.011	0.538	139948		5.90

Confectionery estimates

Own-price elasticity
Cross-price elasticity
0.780

Own-advertising elasticity Cross-advertising elasticity

Predatory advertising elasticity
Expansionary advertising elasticity
Number of brands
0.323
-0.046
0.027

6 $\epsilon_{j}^{a g}$

Summary

	Price Elasticity		Advertising Elasticity			
	Own	Cross	Own	Cross	Pred	Exp
of Brands						

Large supermarkets

Small supermarkets, high V

Small supermarkets, low $a_{\text {ret }}$

Summary and further work

- document patterns in product offering across large range of products and stores
- main variation is across products and across types of stores
- develop a model that seeks to explain this variation by primatives of industry, nature of demand and nature of advertising
- Further work
- theory
- link between theory and empirics
- estimate demand parameters for more products
- deal with some econometric issues
- ...

