Introduction	Literature	Model	Data	Results	Conclusion

Cash and pensions: Have English households saved optimally for retirement?

Rowena $\mathsf{Crawford}^1$ and $\mathsf{Cormac}\ \mathsf{O'Dea}^2$

¹Institute for Fiscal Studies

²Institute for Fiscal Studies and University College London

9th March 2015

Introduction	Literature	Model	Data	Results	Conclusion
Outline for	section 1				

- 2 Literature
- 3 Model

Introduction	Literature	Model	Data	Results	Conclusion
Introduction					

- Strong and robust feeling among policymakers that there is undersaving for retirement in the UK (and elsewhere)
- This is despite very large stocks of wealth held in the form of private pensions
- This paper assesses whether a particular cohort of households have undersaved for retirement
- We do this using a lifecycle model in which households have access to:
 - State provided pensions
 - Private non-pension saving
 - Private pension saving

Introduction	Literature	Model	Data	Results	Conclusion
Introduction					

- Strong and robust feeling among policymakers that there is undersaving for retirement in the UK (and elsewhere)
- This is despite very large stocks of wealth held in the form of private pensions
- This paper assesses whether a particular cohort of households have undersaved for retirement
- We do this using a lifecycle model in which households have access to:
 - State provided pensions
 - Private non-pension saving
 - Private pension saving

Introduction	Literature	Model	Data	Results	Conclusion
Introduction					

- Strong and robust feeling among policymakers that there is undersaving for retirement in the UK (and elsewhere)
- This is despite very large stocks of wealth held in the form of private pensions
- This paper assesses whether a particular cohort of households have undersaved for retirement
- We do this using a lifecycle model in which households have access to:
 - State provided pensions
 - Private non-pension saving
 - Private pension saving

Introduction	Literature	Model	Data	Results	Conclusion
State pen	sions in the	US and U	K		

Introduction	Literature	Model	Data	Results	Conclusion
State pens	sions in the	US and U	K		

Introduction	Literature	Model	Data	Results	Conclusion
Summarv	of results fr	om this pa	aper		

Introduction	Literature	Model	Data	Results	Conclusion
Summary	of results fr	om this n	aner		

Introduction	Literature	Model	Data	Results	Conclusion
Outline for	r section 2				

Introduction	Literature	Model	Data	Results	Conclusion
Literature					

- Analysis of replacement rates
 - US: Munnell et al. (2007, 2012)
 - UK: Banks et al. (2005), Crawford & O'Dea (2012)
- Consumption changes around retirement
 - Banks et al. (1998), Bernheim et al. (2001), Battistin et al. (2008)
- Issue relevant to many structural papers ours is most closely related to:
 - Scholz et al. (2005), Gustman & Steinmeier (2006)

Introduction	Literature	Model	Data	Results	Conclusion
Literature					

- Analysis of replacement rates
 - US: Munnell et al. (2007, 2012)
 - UK: Banks et al. (2005), Crawford & O'Dea (2012)
- Consumption changes around retirement
 - Banks et al. (1998), Bernheim et al. (2001), Battistin et al. (2008)
- Issue relevant to many structural papers ours is most closely related to:
 - Scholz et al. (2005), Gustman & Steinmeier (2006)

Introduction	Literature	Model	Data	Results	Conclusion
Literature					

- Analysis of replacement rates
 - US: Munnell et al. (2007, 2012)
 - UK: Banks et al. (2005), Crawford & O'Dea (2012)
- Consumption changes around retirement
 - Banks et al. (1998), Bernheim et al. (2001), Battistin et al. (2008)
- Issue relevant to many structural papers ours is most closely related to:
 - Scholz et al. (2005), Gustman & Steinmeier (2006)

Introduction	Literature	Model	Data	Results	Conclusion
Outline for	section 3				

2 Literature

Introduction	Literature	Model	Data	Results	Conclusion
Utility fund	ction				

Household's maximise the discounted expected sum of the utility of (equivilised) consumption:

$$n_t^{eq} U\left(rac{c_t}{n_t^{eq}}
ight)$$

Utility function is standard constant relative risk aversion function

Introduction	Literature	Model	Data	Results	Conclusion
Utility fund	ction				

Household's maximise the discounted expected sum of the utility of (equivilised) consumption:

$$n_t^{eq} U\left(\frac{c_t}{n_t^{eq}}\right)$$

Utility function is standard constant relative risk aversion function

Introduction	Literature	Model	Data	Results	Conclusion
Assets and	d choice var	iables			

In addition to the state pension system, there are two assets:

- 1. Risk-free asset
- 2. Defined contribution pension (401k-style)

There are two choices to make each period:

- 1. How much to consume
- 2. How much to split savings between cash and the pension

Introduction	Literature	Model	Data	Results	Conclusion
Assets and	d choice var	iables			

In addition to the state pension system, there are two assets:

- 1. Risk-free asset
- 2. Defined contribution pension (401k-style)

There are two choices to make each period:

- 1. How much to consume
- 2. How much to split savings between cash and the pension

Introduction	Literature	Model	Data	Results	Conclusion
Uncertainty					

There is uncertainty over:

- Employment
- Wages
- Return on private pension
- Survival

Introduction	Literature	Model	Data	Results	Conclusion
Wages an	d employme	nt			

- ► Wages:
 - Household log wages for each of three education types *ed* are the sum of a fixed effect, a quadratic in age and an persistent stochastic component

• Employment occurs with probability π in each period:

$$e_{it}= egin{array}{ccc} ilde{e_{it}} & w.p. & \pi_{ed} \ 0 & w.p. & 1-\pi_{ed} \end{array}$$

Introduction	Literature	Model	Data	Results	Conclusion
Wages an	d employme	nt			

- ► Wages:
 - Household log wages for each of three education types *ed* are the sum of a fixed effect, a quadratic in age and an persistent stochastic component

• Employment occurs with probability π in each period:

$$e_{it}=egin{array}{ccc} ilde{e_{it}} & w.p. & \pi_{ed} \ 0 & w.p. & 1-\pi_{ea} \end{array}$$

Introduction	Literature	Model	Data	Results	Conclusion
Retirement					

- ▶ Household retirement happens when the male reaches 65
- Retirement involves stopping work and drawing down DC pension
 - ▶ 25% of the pension in a tax free lump sum
 - ▶ 75% is annuitised at rates that are actuarially fair after a deduction for administrative costs

Optimal consumption allocation satisfies an Euler equation in *equivilised* consumption:

$$U'\left(\frac{c_t}{n_t^{eq}}\right) = \beta(1+r)E\left[U'\left(\frac{c_{t+1}}{n_t^{eq}}\right)\right]$$

We set $\beta = \frac{1}{1+r}$ such that households are no more impatient than they are compensated for in the return on risk-free saving:

$$U'\left(\frac{c_t}{n_t^{eq}}\right) = E\left[U'\left(\frac{c_{t+1}}{n_t^{eq}}\right)\right]$$

Recursive

Optimal consumption allocation satisfies an Euler equation in *equivilised* consumption:

$$U'\left(\frac{c_t}{n_t^{eq}}\right) = \beta(1+r)E\left[U'\left(\frac{c_{t+1}}{n_t^{eq}}\right)\right]$$

We set $\beta = \frac{1}{1+r}$ such that households are no more impatient than they are compensated for in the return on risk-free saving:

$$U'\left(\frac{c_t}{n_t^{eq}}\right) = E\left[U'\left(\frac{c_{t+1}}{n_t^{eq}}\right)\right]$$

Recursive

Introduction	Literature	Model	Data	Results	Conclusion
Outline fo	r section 4				

2 Literature

3 Model

Introduction	Literature	Model	Data	Results	Conclusion
Data					

Data source is English Longitudinal Study of Ageing (ELSA) linked with administrative data on National Insurance contributions

- English Longitudinal Study of Ageing
 - Interviewed every 2 years
 - Careful measurement of wealth (including pension wealth)
 - Similar in form and purpose to HRS (USA) and SHARE (Europe)
- National Insurance (Social Security) contributions
 - Respondents were asked for permission to link their survey data to NI records
 - Allows us obtain earnings histories (subject to some censoring)

Introduction	Literature	Model	Data	Results	Conclusion
Data					

Data source is English Longitudinal Study of Ageing (ELSA) linked with administrative data on National Insurance contributions

- English Longitudinal Study of Ageing
 - Interviewed every 2 years
 - Careful measurement of wealth (including pension wealth)
 - Similar in form and purpose to HRS (USA) and SHARE (Europe)
- National Insurance (Social Security) contributions
 - Respondents were asked for permission to link their survey data to NI records
 - Allows us obtain earnings histories (subject to some censoring)

▶ More

Introduction	Literature	Model	Data	Results	Conclusion
Sample					

Sample is:

- Couples
- Man born in the 1940s
- ► Where we have NI records for both members of the couple

Introduction	Literature	Model	Data	Results	Conclusion
Paramete	risation				

Parameter	Symbol	Value/Source
Unemployment rate	π	6.2%
Return on safe asset	r	2.2%
Mean pension return	$ar{\phi}$	4.0%
St. Dev. pension return	$ar{\sigma_{\phi}}$	13.8%
Survival probabilities	s_t^m, s_t^f	ONS Life Tables
Administrative load on annuities	q	10%
Discount factor	β	$\frac{1}{1+r} = 0.978$
Coefficient of relative risk aversion	γ	1.5
Equivalence scale	n	Modified OECD scale

Introduction	Literature	Model	Data	Results	Conclusion
Outline for	section 5				

Introduction	Literature	Model	Data	Results	Conclusion
Summary	of results fr	om this p	aner		

J

Introduction	Literature	Model	Data	Results	Conclusion
Results -	excluding ho	ousing			

Baseline model:

Excluding housing:

Proportion undersaving: 7.9% R-squared: 0.31 Proportion undersaving: 25.1% R-squared: 0.32

We add to the baeline model:

- ► an exogenous consumption flow coming from holding housing wealth (r^hH_t)
- a deduction for mortgage payments (*h_t*) from available resources

Baseline

Adapted

 $u(c) = n_t^{eq} U\left(\frac{C}{n_t^{eq}}\right) \qquad u(c) = n_t^{eq} U\left(\frac{C}{n_t^{eq}} + r^h H_t\right)$ $a_{t+1} = (1+r)(a_t + y_t - c_t - p_t) \qquad a_{t+1} = (1+r)(a_t + y_t - c_t - p_t - h_t)$

We add to the baeline model:

- an exogenous consumption flow coming from holding housing wealth (r^hH_t)
- ► a deduction for mortgage payments (*h_t*) from available resources

Baseline

Adapted

$$u(c) = n_t^{eq} U\left(\frac{C}{n_t^{eq}}\right) \qquad u(c) = n_t^{eq} U\left(\frac{C}{n_t^{eq}} + r^h H_t\right)$$
$$a_{t+1} = (1+r)(a_t + y_t - c_t - p_t) \qquad a_{t+1} = (1+r)(a_t + y_t - c_t - p_t - h_t)$$

Baseline model:

Exogenous housing:

Proportion undersaving: 7.9% R-squared: 0.31

Proportion undersaving: 16.0% R-squared: 0.24

Introduction	Literature	Model	Data	Results	Conclusion
Discussion					

What's missing from the model?

- Non-separabilities between consumption and leisure
- Home production
- Nursing home expenses
- Bequest motives

Introduction	Literature	Model	Data	Results	Conclusion
Replacemen	t rates				

	Income coming from			
Replacement	Pensions	Annuitised	Annuitised	
Rate		non-housing	housing	
		wealth	wealth	
<=67%				
<=80%				
<=100%				
>100%				

Introduction	Literature	Model	Data	Results	Conclusion
Replacemen	t rates				

	Income coming from			
Replacement	Pensions	Annuitised	Annuitised	
Rate		non-housing	housing	
		wealth	wealth	
<=67%	19.6			
<=80%	35.0			
<=100%	58.6			
>100%	41.4			

Introduction	Literature	Model	Data	Results	Conclusion
Replacemen	t rates				

	Inco	ome coming fro	om
Replacement	Pensions	Annuitised	Annuitised
Rate		non-housing	housing
		wealth	wealth
<=67%	19.6	10.0	
<=80%	35.0	19.9	
<=100%	58.6	41.0	
>100%	41.4	59.0	

Introduction	Literature	Model	Data	Results	Conclusion
Replacemen	t rates				

	Inco	ome coming fro	om
Replacement	Pensions	Annuitised	Annuitised
Rate		non-housing	housing
		wealth	wealth
<=67%	19.6	10.0	2.3
<=80%	35.0	19.9	5.3
<=100%	58.6	41.0	16.0
>100%	41.4	59.0	84.0

Introduction	Literature	Model	Data	Results	Conclusion
Outline fo	r section 6				

- 1 Introduction
- 2 Literature
- 3 Model
- 4 Data
- **5** Results

Introduction	Literature	Model	Data	Results	Conclusion
Conclusion	าร				

- 9 out of every 10 of those born in the 1940s have more than enough wealth to maintain living standards into retirement
- New concern is that younger cohorts are undersaving for retirement
- Maybe not such a concern if their parents have 'oversaved'?
- New work planned on younger cohorts with the Wealth and Assets Survey

Outline for section 7

Heterogeneity

The problem solved (and therefore the decision rules obtained) are different for each household in the sample in three dimensions

- 1. Their earnings process (fixed effect)
- 2. The number and timing of children
- 3. State pension entitlements

Image A Back

Optimal wealth and the proportion undersaving

	Median	Prop.	Median	Median	Median
	optimal	undersaving	deficit	surplus	observed
	wealth		(cond.)	(cond.)	wealth
All	77	7.9%	39	226	324
L.E. Quint					
1					
2					
3					
4					
5					

Optimal wealth and the proportion undersaving

	Median	Prop.	Median	Median	Median
	optimal	undersaving	deficit	surplus	observed
	wealth		(cond.)	(cond.)	wealth
All	77	7.9%	39	226	324
L.E. Quint					
1	0.6	9.5%	8	126	119
2	29	4.5%	11	189	213
3	73	6.5%	28	232	293
4	152	8.5%	79	283	392
5	392	10.6%	94	329	690

Recursive formulation

Value function and consumer problem:

$$V_{t}(\mathbf{X}_{t}) = \max_{c_{t},dc_{t}} \left(U(c_{t}) + \beta s_{t+1}^{m} s_{t+1}^{f} \int V_{t+1}(\mathbf{X}_{t+1}, h = 1) dF(\mathbf{X}_{t+1} | \mathbf{X}_{t}) \right)$$

+ $\beta s_{t+1}^{m} (1 - s_{t+1}^{f}) \int V_{t+1}(\mathbf{X}_{t+1}, h = 2) dF(\mathbf{X}_{t+1} | \mathbf{X}_{t})$
+ $\beta (1 - s_{t+1}^{m}) (s_{t+1}^{f}) \int V_{t+1}(\mathbf{X}_{t+1}, h = 3) dF(\mathbf{X}_{t+1} | \mathbf{X}_{t}) \right)$

 X_t contains 6 state variables:

 Age; Wages; HH composition; Cash; DC wealth; Pension Income

Intertemporal budget constraints

Cash:

$$a_{t+1} = (1+r)(a_t + y_t - c_t - dc_t)$$

Household income y_t is given by:

$$y_t = \tau(e, ra, pp, sp, h, k, dc, t)$$

DC wealth

$$egin{aligned} & \mathcal{D}\mathcal{C}_{t+1} = (1+\phi_t) \left(\mathcal{D}\mathcal{C}_t + d\mathcal{c}_t
ight) \ & \phi \sim \mathcal{N}\left(ar{\phi}, \sigma_{\phi}^2
ight) \end{aligned}$$

Defined Benefit Pensions

Many in this cohort have wealth in older-style 'Defined Benefit' pensions

- Model does not contain DB pensions
- The question we are asking is what would these households had saved if given access only to the DC fund
- Much of observed wealth will have come from remittances by employers, not employees
- ► We augment household earnings to take account of this

Summary statistics on wealth

	Mea	n
Mean wealth holdings:	£	%
Total net wealth	574,048	100
of which:		
Financial	52,514	9.1
Prim. hous.	147,431	25.7
Other hous.	23,589	4.1
Physical	40,962	7.1
Priv. pen.	187,281	32.6
State pen.	122,271	21.3
Sample size	996	õ

Table: State pension wealth, lifetime earnings, and implied average lifetime savings rates, by quintile of lifetime earnings

	Mean	Mean	Mean	Mean (priv +
	state pension	lifetime	priv. wealth	state wealth)
	wealth	earnings	/ life. earn.	/ life. earn.
All	122	1,090	13.5%	24.7%
Quintile				
1 (Lowest)	108	483	2.0%	24.3%
2	123	793	4.9%	20.4%
3	124	970	8.5%	21.3%
4	129	1,219	13.8%	24.4%
5 (Highest)	127	1,988	22.0%	28.4%

Housing

- Cost (h_t) :
 - Households are assumed to only have owned their current property
 - They are assumed to have saved 1.5% of the purchase value from the age of 20 to the year of purchase
 - They take out a 25 year mortgage for the purchase price less the value of their deposit
 - Time series of mortgage interest rates taken from Bank of England
- ▶ Yield (*r^h*)
 - r^h = 4.4% (Bank of England (2007))
- ▶ House value (*H*_t)
 - Property value known at purchase and at survey date
 - Assumed to have grown at a constant rate between purchase date and survey date
 - Assumed to grow at the rate of return on riskless asset in the future (after the last survey)

Sensitivity

	Median	Prop.	Median	Median	R
	optimal	under-	deficit	surplus	squared
	wealth	saving	(cond.)	(cond.)	
Baseline	77	7.9%	39	226	0.31
Early ret	81	10.2%	58	208	0.28
$\gamma=$ 3	75	8.2%	34	223	0.30
eta=1	301	42.9%	94	138	0.38
Comp to age 64	154	28.8%	105	191	0.19
1 asset	53	4.5%	11	273	0.26

Administrative data

Our administrative data gives us:

- Exact earnings 1997-2004
- Topcoded earnings 1975-1996 (top-coding affects 7.4% of year-individual observations)
- Number of weeks work prior to 1975

We impute data over the censoring point using a fixed-effects Tobit

- Biased
- Though Greene (2004) finds bias is minimal in panels even much shorter than ours (T = 29)
- Plot of quantiles before and after 1997 show only small discontinuities

Quantiles of earnings process

Figure: Selected quantiles of earnings

Model solution

Solution is by backwards recursion from a final period where the decision rules and value function are known

Further details:

- Earnings, assets, stocks of DC assets and pension income are placed on a grid
- Integration is by quadrature
- Optimisation is by golden section search

◀ Back

Components of the tax and benefit system

The tax and benefit function contains:

- Income tax
- National insurance
- Job-seekers allowance
- Child benefit
- Means-tested support in retirement

▲ Back

Accounting for employer pension contributions

We inflate upwards our earnings data e_t^d by a proportion x:

$$x = \frac{\kappa P_S}{\sum_t^{S-1} e_t^d(\prod_t^S (1+\phi_t))}$$

where:

- κ is the proportion of earnings that the *employer* remits to the pension fund
- P_s is the pension wealth observed in survey period S
- ▶ φ_t is the return on DC funds in the year the particular household is of age t

Estimates of earnings process parameters

Education group					
	Low	Middle	High		
ρ	0.8468	0.9727	0.9527		
	(0.0838)	(0.0153)	(0.0025)		
σ_{ξ}^2	0.0413	0.0417	0.0422		
3	(0.0026)	(0.0033)	(0.0026)		
σ_m^2	0.0024	0.0029	0.0066		
	(0.0021)	(0.0026)	(0.0016)		

Results - 'optimal' replacement rates

Implied replacement rates of average lifetime earnings (between 20 and 50):

