

Inference with difference-in-differences revisited

Robert Joyce (Institute for Fiscal Studies)

Joint work with Mike Brewer (Essex, IFS) and Thomas Crossley (Essex, IFS)

PEPA is based at the IFS and CEMMAP

© Institute for Fiscal Studies

Inference in DiD

National Centre for

Research Methods

One reason not to be so confident

National Centre for

Research Methods

Serial correlation (another reason not to be so confident)

Introduction

- Emerging literature on inference in common DiD designs
- Main focus has been on test size when
 - Grouped errors and no variation in treatment status within group-time cells (Moulton 1990; Donald and Lang 2007)
 - Serially correlated errors and treatments within groups (Bertrand et al 2004; Hansen 2007)
- Standard solution would be 'cluster-robust' standard errors (CRSEs) but asymptotics apply as $G \rightarrow \infty$
 - With small G, wild cluster bootstrap-t the leading method (Cameron et al 2008)
 - Alternatives include small-G adjustments to CRSE-based inference (e.g. scaling SEs; using t reference dist.), but literature hasn't found they work well

With Monte Carlo simulations we make 3 points

- 1. Test size need not be a concern
- 2. Problem is low power to detect real effects
- 3. FGLS combined with robust inference can help a lot

Setup

• Model:
$$Y_{igt} = \alpha + \beta T_{gt} + \delta X_{igt} + \mu_g + \xi_t + u_{igt}$$

 $E(u_{igt} | T_{gt}, X_{igt}, \mu_g, \xi_t) = 0$
 $u_{igt} = \eta_{gt} + \varepsilon_{igt}$

- Computation of $\hat{\beta}_{OLS}$ equivalent to first running this regression... $Y_{igt} = \lambda_{gt} + \delta X_{igt} + u_{igt}$
- ...and then this, with error term $\omega_{gt} \equiv \eta_{gt} + (\hat{\lambda}_{gt} \lambda_{gt})$

$$\hat{\lambda}_{gt} = \alpha + \beta T_{gt} + \mu_g + \xi_t + \omega_{gt}$$

• If cell sizes are large, true precision of $\hat{\beta}_{OLS}$ depends almost entirely on # of group-time cells (not observations)

Monte Carlo experiments

- Use women's log-earnings from CPS (1979-2008), as in Bertrand et al (2004), Cameron et al (2008), Hansen (2007)
- Collapse to state-year level using covariate-adjusted means
- Repeat the following 5000 times, varying G from 6 to 50:
 - Sample G states at random with replacement
 - Randomly choose some (initially G/2) states to be 'treated'
 - Randomly choose a year from which treated states will be treated
 - Estimate treatment 'effect'
 - Test (true) null of no effect using nominal 5%-level test
- Then count how often null was rejected (out of 5000)

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*		
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.041*	0.042*	0.052		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*		
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.041*	0.042*	0.052		
Wild cluster bootstrap-t	0.044	0.041*	0.048	0.059*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*		
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.041*	0.042*	0.052		
Wild cluster bootstrap-t	0.044	0.041*	0.048	0.059*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

Alternative data generating processes

- To check robustness we simulate our own state-time shocks
- In doing so we vary degree of serial correlation and non-normality

$$\omega_{ct}^{sim} = \rho \omega_{c,t-1}^{sim} + f^{1}(d) \upsilon_{ct} \quad t = 2,...,30$$
$$\omega_{c1}^{sim} = f^{2}(d) \upsilon_{c1}$$

- Error term generated by AR(1) process with parameter ρ
- White noise v_{ct} drawn from t distribution with d degrees of freedom
- f^1 and f^2 scale white noise so that, with $\rho = 0.4$, variance of statetime shocks in each period equals that in the CPS

Rejection rates under various error processes with 10 groups, using CRSE*sqrt(G/G-1) and t_{G-1} critical values

			AR(1) parameter					
d (controls non- normality in white noise)	0	0.2	0.4	0.6	0.8	Varies by group		
4	0.054	0.052	0.049	0.051	0.056*	0.053		
20	0.051	0.050	0.050	0.049	0.049	0.051		
60	0.053	0.050	0.050	0.047	0.053	0.053		
120	0.052	0.051	0.053	0.053	0.054	0.055*		

Unbalanced designs (back to the CPS data)

	Number of treated states out of 10					
	5	4	3	2		
CRSE*sqrt(G/(G-1)), t _{G-1}	0.042*	0.051	0.074*	0.150*		
Wild cluster bootstrap-t	0.048	0.054	0.052	0.018*		

Unbalanced designs (back to the CPS data)

	Number of treated states out of 10				
	5	4	3	2	
CRSE*sqrt(G/(G-1)), t _{G-1}	0.042*	0.051	0.074*	0.150*	
Wild cluster bootstrap-t	0.048	0.054	0.052	0.018*	
		Number of tr	eated states out o	f 50	
	25	15	10	5	
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.052	0.060*	0.119*	
Wild cluster bootstrap-t	0.044	0.051	0.046	0.060*	

BUT WHAT ABOUT POWER?

But what about power?

	Number of groups (US states), half of which are treated						
	50	20	10	6			
Effect on log-earn = 0.02							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.238	0.134	0.088	0.074			
Wild cluster bootstrap-t	0.225	0.125	0.093	0.074			
Effect on log-earn = 0.05							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.822	0.513	0.273	0.168			
Wild cluster bootstrap-t	0.799	0.490	0.283	0.167			
Effect on log-earn = 0.10							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.919	0.718	0.448			
Wild cluster bootstrap-t	0.999	0.898	0.712	0.429			
Effect on log-earn = 0.15							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.995	0.904	0.755			
Wild cluster bootstrap-t	1.000	0.992	0.896	0.700			

Note:

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null.

Minimum detectable effects on log(earnings) using CRSE*sqrt(G/G-1) and t_{G-1} critical values, 5% level tests

National Centre for

Research Methods

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS	0.106	0.985	0.101	0.799	0.124	0.434

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS	0.106	0.985	0.101	0.799	0.124	0.434
FGLS, robust	0.049	0.957	0.045	0.670	0.061	0.255

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS	0.106	0.985	0.101	0.799	0.124	0.434
FGLS, robust	0.049	0.957	0.045	0.670	0.061	0.255
BC-FGLS	0.073	0.978	0.070	0.763	0.096	0.384

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS	0.106	0.985	0.101	0.799	0.124	0.434
FGLS, robust	0.049	0.957	0.045	0.670	0.061	0.255
BC-FGLS	0.073	0.978	0.070	0.763	0.096	0.384
BC-FGLS, robust	0.049	0.955	0.045	0.696	0.065	0.286

Minimum detectable effects on log(earnings) using 5% level hypothesis tests: OLS vs BC-FGLS estimation

More on FGLS

- In paper we look at power gains and size properties under misspecified error processes and varying time dimension
- If process severely misspecified (if it's really MA(1)), there's no power gain, but size can still be controlled (even with few groups)
- If less severely misspecified (if it's really heterogeneous AR(2)), still big power gains
- Power improvement noticeable as long as T>=10
- Punchline: BC-FGLS may have big benefits (i.e. higher power); and it won't hurt you (i.e. you can control size), even if parametric assumptions about error process are wrong and G is small

Summary and conclusions

- Literature is right that DiD designs can pose problems for inference
- But controlling test size need not be big problem
- Key problem is low power
- We therefore recommend that researchers think seriously about the efficiency of DiD estimation (not just consistency and test size)
- BC-FGLS combined with robust inference can help significantly, *without* compromising test size, even with *few groups*

