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Inference in DiD 
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Serial correlation (another reason not to be so confident) 

Average 

earnings 

Time 

Training 

programme 

introduced 

People in state with training 

programme 
People not in state with 

programme 

Is this an impact of training, or just a 

persistent shock to earnings in the areas 

with treatment? 
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Introduction 

• Emerging literature on inference in common DiD designs 

 

• Main focus has been on test size when 

 

• Grouped errors and no variation in treatment status within group-time cells 
(Moulton 1990; Donald and Lang 2007) 

• Serially correlated errors and treatments within groups (Bertrand et al 2004; 
Hansen 2007) 

 

• Standard solution would be ‘cluster-robust’ standard errors (CRSEs) 
but asymptotics apply as 

 

• With small G, wild cluster bootstrap-t the leading method (Cameron et al 2008) 

• Alternatives include small-G adjustments to CRSE-based inference (e.g. scaling 
SEs; using t reference dist.), but literature hasn’t found they work well 

 

G
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With Monte Carlo simulations we make 3 points 

 

1. Test size need not be a concern 

 

2. Problem is low power to detect real effects 

 

3. FGLS combined with robust inference can help a lot 
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Setup 

• Model: 

 

 

 

• Computation of         equivalent to first running this regression... 

 

• ...and then this, with error term   

 

 

• If cell sizes are large, true precision of         depends almost entirely 
on # of group-time cells (not observations) 
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Monte Carlo experiments 

• Use women’s log-earnings from CPS (1979-2008), as in Bertrand et al 
(2004), Cameron et al (2008), Hansen (2007) 

 

• Collapse to state-year level using covariate-adjusted means 

 

• Repeat the following 5000 times, varying G from 6 to 50: 

– Sample G states at random with replacement 

– Randomly choose some (initially G/2) states to be ‘treated’ 

– Randomly choose a year from which treated states will be treated 

– Estimate treatment ‘effect’ 

– Test (true) null of no effect using nominal 5%-level test 

• Then count how often null was rejected (out of 5000) 

 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.041* 0.042* 0.052 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.041* 0.042* 0.052 

Wild cluster bootstrap-t 0.044 0.041* 0.048 0.059* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.041* 0.042* 0.052 

Wild cluster bootstrap-t 0.044 0.041* 0.048 0.059* 

© Institute for Fiscal Studies   

Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Alternative data generating processes 
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• To check robustness we simulate our own state-time shocks 

• In doing so we vary degree of serial correlation and non-normality 

 

 

 

 

 

• Error term generated by AR(1) process with parameter  

• White noise       drawn from t distribution with d degrees of freedom 

• f1 and f2 scale white noise so that, with                , variance of state-
time shocks in each period equals that in the CPS 
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Rejection rates under various error processes with 10 
groups, using CRSE*sqrt(G/G-1) and tG-1 critical values  
 

AR(1) parameter 

d (controls 

non-

normality in 

white noise) 0 0.2 0.4 0.6 0.8 

Varies by 

group 

4 0.054 0.052 0.049 0.051 0.056* 0.053 

20 0.051 0.050 0.050 0.049 0.049 0.051 

60 0.053 0.050 0.050 0.047 0.053 0.053 

120 0.052 0.051 0.053 0.053 0.054 0.055* 
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Unbalanced designs (back to the CPS data) 

Number of treated states out of 10 

5 4 3 2 

CRSE*sqrt(G/(G-1)), tG-1 0.042* 0.051 0.074* 0.150* 

Wild cluster bootstrap-t 0.048 0.054 0.052 0.018* 
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Unbalanced designs (back to the CPS data) 

Number of treated states out of 10 

5 4 3 2 

CRSE*sqrt(G/(G-1)), tG-1 0.042* 0.051 0.074* 0.150* 

Wild cluster bootstrap-t 0.048 0.054 0.052 0.018* 

Number of treated states out of 50 

25 15 10 5 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.052 0.060* 0.119* 

Wild cluster bootstrap-t 0.044 0.051 0.046 0.060* 
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BUT WHAT ABOUT POWER? 



But what about power? 

Number of groups  (US states), half of which are treated 

50 20 10 6 

Effect on log-earn = 0.02 

CRSE*sqrt(G/(G-1)), tG-1 0.238 0.134 0.088 0.074 

Wild cluster bootstrap-t 0.225 0.125 0.093 0.074 

Effect on log-earn = 0.05 

CRSE*sqrt(G/(G-1)), tG-1 0.822 0.513 0.273 0.168 

Wild cluster bootstrap-t 0.799 0.490 0.283 0.167 

Effect on log-earn = 0.10 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.919 0.718 0.448 

Wild cluster bootstrap-t 0.999 0.898 0.712 0.429 

Effect on log-earn = 0.15 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.995 0.904 0.755 

Wild cluster bootstrap-t 1.000 0.992 0.896 0.700 
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Note:  

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject 

the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from 

the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null. 



Minimum detectable effects on log(earnings) using 
CRSE*sqrt(G/G-1) and tG-1 critical values, 5% level tests 
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Rising to 16% with 6 

states 

 

Need 5% effect on 

earnings for 80% power 

 



Increasing power using feasible GLS 
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

 FGLS 0.106 0.985 0.101 0.799 0.124 0.434 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

 FGLS 0.106 0.985 0.101 0.799 0.124 0.434 

 FGLS, robust 0.049 0.957 0.045 0.670 0.061 0.255 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

 FGLS 0.106 0.985 0.101 0.799 0.124 0.434 

 FGLS, robust 0.049 0.957 0.045 0.670 0.061 0.255 

BC-FGLS 0.073 0.978 0.070 0.763 0.096 0.384 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points No effect 

Effect of 

+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

 FGLS 0.106 0.985 0.101 0.799 0.124 0.434 

 FGLS, robust 0.049 0.957 0.045 0.670 0.061 0.255 

BC-FGLS 0.073 0.978 0.070 0.763 0.096 0.384 

 BC-FGLS, robust 0.049 0.955 0.045 0.696 0.065 0.286 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Minimum detectable effects on log(earnings) using 5% 
level hypothesis tests: OLS vs BC-FGLS estimation 
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More on FGLS 

• In paper we look at power gains and size properties under mis-
specified error processes and varying time dimension 

 

• If process severely misspecified (if it’s really MA(1)), there’s no power 
gain, but size can still be controlled (even with few groups) 

• If less severely misspecified (if it’s really heterogeneous AR(2)), still 
big power gains 

• Power improvement noticeable as long as T>=10 

 

• Punchline: BC-FGLS may have big benefits (i.e. higher power); and it 
won’t hurt you (i.e. you can control size), even if parametric 
assumptions about error process are wrong and G is small 
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Summary and conclusions 

• Literature is right that DiD designs can pose problems for inference 

 

• But controlling test size need not be big problem 

 

• Key problem is low power 

 

• We therefore recommend that researchers think seriously about the 
efficiency of DiD estimation (not just consistency and test size) 

 

• BC-FGLS combined with robust inference can help significantly, 
without compromising test size, even with few groups 

 

 


