Modelling work, health, care and income in the older population: The IFS retirement simulator (RetSim)

Andrew Hood
Presentation at the European Meeting of the International Microsimulation Association, 24 ${ }^{\text {th }}$ October 2014

Motivation

- Increasing longevity and post-war baby boom means that the English population aged 65+ is growing quickly
- projected 22\% increase between 2012 and 2022, from 17% to 20% of overall population
- How will tomorrow's pensioners look different from today's?
- answer this question using a dynamic microsimulation model
- static microsimulation would ignore potentially important cohort effects eg. changing private pension entitlements
- Model mortality, health, care, labour supply, disability benefits
- interesting in themselves, and inputs to net income projections using IFS's static microsimulation model, TAXBEN

Data and methodology

- English Longitudinal Study of Ageing (ELSA): 2002-03 to 2010-11
- representative panel of 52+ population (born 1958 or earlier)
- around 10,000 respondents per wave, in 7,000 households
- biennial survey, so we model two-year transitions
- Examine relationships between outcomes and characteristics over time
- formalise these relationships in regression models
- Simulate circumstances through to 2022-23
- start with people aged 52+ in 2010-11
- look at outputs for people aged 65+ through to 2022-23

Example: mortality

- Run probit regression of probability of dying in next two years on large number of characteristics observed in ELSA data
- including age, sex, couple status, health, early diagnosis of certain diseases, smoker status, receipt of disability benefits
- Predict mortality probabilities for simulated individuals on the basis of the coefficients from this regression
- Calibrate probabilities to match age-sex averages from official mortality projections
- allows the model to account for improving life expectancy

The structure of RetSim

3 headline results

1. Older people will be much more likely to live in couples in future

Family type (85+)

Family type (85+)

Family type (85+)

3 headline results

1. Older people will be much more likely to live in couples in future

- 25% of people aged 85 + lived in couples in 2010-11, rising to 38% of people in 2022-23
- partly explained by increases in life expectancy, but also lower mortality rates in couples

2. Dramatic increase in employment among women in their 60s

People in paid work: ELSA data

People in paid work: ELSA data

People in paid work: projections

People in paid work: projections

3 headline results

1. Older people will be much more likely to live in couples in future

- 25% of people aged $85+$ lived in couples in 2010-11, rising to 38% of people in 2022-23
- partly explained by increases in life expectancy, but also lower mortality rates in couples

2. Dramatic increase in employment among women in their 60 s

- from 16\% in 2010-11 to 37% in 2022-23
- driven by improving health and rising state pension age (60 to 66)

3. Rising income inequality among the $65+$ population

Equivalised family income projections: 65+ population

3 headline results

1. Older people will be much more likely to live in couples in future

- 25% of people aged $85+$ lived in couples in 2010-11, rising to 38% of people in 2022-23
- partly explained by increases in life expectancy, but also lower mortality rates in couples

2. Dramatic increase in employment among women in their 60s

- from 16\% in 2010-11 to 37\% in 2022-23
- driven by improving health and rising state pension age (60 to 66)

3. Rising income inequality among the $65+$ population

- over 3% per year real income growth at the $90^{\text {th }}$ percentile, less than 1% at the $10^{\text {th }}$ percentile
- earnings and private pensions growing faster than state support

References

- Browne et. al. "Modelling work, health, care and income in the older population" provides description of our methodology
- http://www.ifs.org.uk/publications/7253
- Emmerson, Heald and Hood "The changing face of retirement" details our results for the English 65+ population through to 2022
- http://www.ifs.org.uk/publications/7251

Modelling work, health, care and income in the older population: The IFS retirement simulator (RetSim)

Andrew Hood
Presentation at the European Meeting of the International Microsimulation Association, 24 ${ }^{\text {th }}$ October 2014

HEALTH

Fiscal Studies

Measuring health

- Objective health index
- Counts reported health problems
- mobility
- eyesight and hearing
- continence
- mental health
- Groups people into five health categories
- Not equally sized groups

Modelling health

- Use ordered probit to model transitions between the five health categories
- Explanatory variables include:
- demographics (age, sex, couple status, region)
- lagged health, early diagnosis of certain diseases, smoker status, measure of childhood health
- care receipt, work status, education, socioeconomic class, income and wealth quintiles

Trends in health (women)

Source: Figure 3.7

Trends in health (men)

Source: Figure 3.6

Health: results

- Health is poorer among older people
- The proportion of women in the best health increases by around 7% within each age group between 2010-11 and 2022-23
- The improving health of women drives a lot of our results
- Men report better health than women
- Improvements in health for men are more modest
- 5ppts for 75-84 year olds, 2ppts for 65-74 and 85+

CARE RECEIPT AND PROVISION

Modelling the receipt and provision of care

- Split care receipt between formal (from a professional) and informal (from a family member or friend)
- use multinomial probit with three outcomes
- Split care provision by intensity (whether fewer than or at least 35 hours per week)
- again use multinomial probit with three outcomes
- Explanatory variables include:
- lagged care provision and receipt, age, sex, couple status, whether has children, health, partner's health, wealth and income quintiles, receipt of disability benefits

Care provision in 2010

- Likelihood of providing care decreases with age:
- about 20% of people aged $65+$ provide care in 2010
- 25% of $65-74$ year old men and 16% of $85+$ men
- 19% of 65 to 74 year old women and 4% of $85+$ women
- Most care is provided by people in couples:
- 32% of men in couples and 3% of single men
- 26% of women in couples and 6% of single women
- In couples, men report giving more care than women
- Among single people, women report giving more care than men

Care projections: 2010 to 2022

- Improvements in life expectancy mean:
- Some less healthy men will live longer and need care from their wives
- Some less healthy women will live longer and need care from their husbands
- More people in couples in later life means a shift from formal to informal care for the oldest women

Providing care: age $\mathbf{8 5 +}$				Receiving care: women $85+$		
	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 2}$		$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 2}$	
Men	16%	21%		Informal	30%	31%
Women	4%	7%		Formal	35%	32%
				Any	65%	63%

Care projections: 2010 to 2022

- Improvements in female health mean:
- More women will be well enough to provide care
- Fewer women will need care, especially at younger ages

Providing care: women		
	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 2}$
$\mathbf{6 5 - 7 4}$	19%	21%
$\mathbf{7 5 - 8 4}$	15%	17%
$85+$	4%	7%

Receiving care: women		
	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 2}$
$\mathbf{6 5 - 7 4}$	29%	24%
$\mathbf{7 5 - 8 4}$	43%	40%
$85+$	65%	63%

LABOUR SUPPLY

Labour supply decisions flowchart

Labour supply modelling

- 3 multinomial logits (one for each current working status)
- Explanatory variables include:
- Demographics (age polynomials, sex, couple status, region, below state pension and pension scheme retirement age)
- Socioeconomic indicators (deprivation, education, socioeconomic status, time since last worked, ever self employed in survey data)
- Financial indicators (baseline wealth and income quintiles, home ownership, has a mortgage, pension scheme membership, "potential" full time wages, disability benefit receipt)
- Health and care (diagnosis of conditions before age 50, health level, health change since last period, receipt or provision of care)
- Partner variables (partner's care receipt, health level, working status, "potential" full time wages, and whether partner below SPA)
- Sex-interacted versions of all variables

Estimating "potential" wages

- As far as possible, use wages they reported in the data
- up to age 54 , apply 2% p.a. real wage growth
- Where necessary, convert between full and part time wages using sex and education specific factors estimated from the data
- Where no wages are reported, match wages from another person
- technical paper contains details of matching model
- Same process used to get actual wages for income projections

Institute for

What factors affect movement out of work? (1)

- Age
- unsurprisingly older individuals are more likely to leave work
- Health
- those in the worst health up to 24ppts less likely to stay in full-time work than those in the best health
- Care giving
- providing high-intensity care (35+ hours a week) makes individuals over 15ppts less likely to stay in full-time work

What factors affect movement out of work? (2)

- Earnings
- those with higher earnings significantly more likely to stay in work
- State Pension Age
- both sexes 12ppts less likely to leave work if below their SPA
- DB pension scheme membership
- men 12ppts more likely to leave work if part of a DB scheme (women 3ppts more likely), but effect only present for individuals over normal retirement age
- DC pension scheme membership
- men 6ppts more likely to stay in full-time work if in DC scheme (women 2ppts more likely)
- Having a mortgage
- both sexes 5ppts less likely to leave work if have outstanding mortgage

Effect of increase in female SPA from 60 to 62

Source: Figure 2.1 from Cribb, Emmerson and Tetlow, Labour supply effects of increasing the female state pension in the UK from age 60 to 62

Women in paid work by health status

Work and care provision among women 65+

DISABILITY BENEFIT RECEIPT

Disability living allowance (and PIP)

- Women are more likely to receive DLA than men
- Older people are less likely to receive DLA than younger people
- DLA receipt falls:
- health improves
- more people in work
- effects of the reform to PIP

Source: Figures 3.14 \& 3.15

Attendance allowance

- Again, more women than men claim
- Almost 60\% of $85+$ women and over 40% of $85+$ men claim in 2010
- About 50% of $85+$ people of both sexes claim in 2022
- Claimant rates for women fall as health improves

Source: Figure 3.16

NET INCOMES AND POVERTY

Calculating net incomes

- Given gross incomes, we can use the IFS tax and benefit model, TAXBEN, to calculate net incomes (after taxes and benefits)
- We incorporate all reforms announced up to and including Budget 2014
- eg. Universal Credit, transferable tax allowance for married couples
- Then use normal uprating rules to create future tax and benefit systems

Net family incomes by age: 65+ population

Net family income projections: 65+ population

- Slow growth in median income from 2010-11 to 2014-15, then return to average of 2\% per year until 2022-23
- compared to 2.8% per year in the 2000 s
- Incomes rise by more than 3\% per year towards the top of the distribution, but by less than 1% towards the bottom
- leads to increase in income inequality among 65 and over population
- driven by growing importance of earnings
- 3\% per year income growth for 65-74s from 2014-15 to 2022-23
- compared to 1.6% per year for $75+$ population
- reversal of past trends - again explained by importance of earnings

Calculating income poverty

- We project absolute income poverty among 65+ population
- absolute poverty compares incomes to poverty line fixed in real terms
- relative poverty would require projections for whole population median income
- We choose our poverty line to match official statistics
- 17.6\% poverty rate in 2010-11 among 65+ population
- in 2010-11, poverty line is $£ 280$ for couples ($£ 190$ for single people)
- Adjust that poverty line for forecast changes in prices using CPI
- Official statistics currently use RPI, but now thought to overstate inflation

Absolute income poverty: 65+ population

Source: Figure 5.4

Absolute income poverty by family type: $65+$ population

Absolute income poverty projections: $65+$ population

- Absolute poverty projected to fall from 20.1\% in 2014-15 to 12.7% in 2022-23
- around a third of 2000-01 level
- Particularly sharp decline in absolute poverty among couples
- from over 15% in 2010-11 to less than 10% in 2022-23
- But poverty among single women projected to increase
- does not reflect women falling into poverty, rather increasing adverse selection into this group

