
Dynamic economics in Practice

Monica Costa Dias and Cormac O'Dea

Motivation

I Many economic decisions (e.g. education take-up, savings or
investments) are di�cult to rationalise in a static setting

I They all involve some trade-o� between present costs and future
returns, sometimes in uncertain environments

I The existence of some markets (credit, insurance...) hinges on the
dynamic nature of some decisions

I Their existence may reinforce the dynamic nature of the decision
process

The problem I

Dynamic microeconomic problems are notably di�cult to solve

I Very high dimensional

I Present cost of a decision depends on present circumstances, and
these are a consequence of past circumstances and decisions

I Future returns may also depend on present circumstances and be
realised in many periods and in di�erent ways, possibly in�uencing
future decisions

I In most cases, dynamic problems are not tractable analytically

I Possible solution: break the big problem into a sequence of similar
smaller problems that we can solve - use Recursive Methods

The problem II

I Solution we explore: break the big problem into a sequence of
similar smaller problems that we can solve

I This is what a recursive method called Dynamic Programming does

I Describe the position of the problem at a moment in time: the state

of the world today � it summarises all the current information
relevant for decision-making

I Where it might be tomorrow: the state of the world tomorrow
I And how the agents care about tomorrow vis-a-vis today

I DP allows us to characterise the problem with two functions

I Transition function: maps the state today into the state tomorrow
I Choice function: maps the state today into the endogenous choices

This course I

I Gentle and practical introduction to dynamic optimisation

I Dynamic programming

I Numerical solution

I Computational methods

I Main goals

I Introduce standard tools to study and solve dynamic optimisation
problems in microeconomics

I Demonstrate practically how these tools are used

I Discuss their comparative advantages

I Focus on methods and tools that can be easily extended to more
general and complex setups

This course II

I Workhorse: the consumption-savings model

I Interesting per-se: a key model in economics, underlying the
permanent income theory and all developments that hinge on it

I Inherently dynamic

I Many interesting variations useful to illustrate how to tackle
alternative dynamic problems: uncertainty, risk aversion,
life-cycle/in�nite horizon, habit formation, many choice or state
variables, ...

I Various alternative speci�cations re�ect underlying assumptions
about market structure

I Crucial tool for policy analysis

This course III

I Practical focus

I Discuss the approaches and procedures we found useful

I While keeping an eye on e�ciency (but it will not be central)

I We make no attempt to discuss comprehensively the theoretical
foundations of the problem or solution

I Goal: to solve increasingly more realistic (but also more complex)
models showing methods that can be extended and applied to other
settings

Outline of this course

1. The simplest consumption-savings problem: the cake-eating problem
The problem; Simple example; Existence and uniqueness of solution

2. Introduction to dynamic programming
Bellman equation; Recursive solution; Optimality conditions; Numerical

solution; Practical implementation

3. Life-cycle income process
Credit markets; Numerical solution; Practical implementation

4. Stochastic optimisation
Markov processes; Iid income process; Numerical solution; Practical

implementation; Autocorrelated income process; Practical implementation

5. In�nite horizon
The problem; Existence and uniqueness of solution; Simple example;

Numerical solution; Practical implementation

The cake-eating problem

Setup and classical solution

The cake-eating problem

Simplest possible life-cycle consumption-savings problem

I Intertemporal problem of a consumer living for T periods and
endowed with initial wealth a1 in period t = 1

I Her goal: to allocate the consumption of this wealth over her T
periods of life in order to maximise her lifetime wellbeing

I Consumption is divisible: a continuous decision variable

I Any remaining wealth in period t is productive, generating k(a)
units of wealth to consume in the future

I No outstanding debts are allowed at the end of life

I And any remaining wealth at the end of life is of no value

Formal model

max
(c1,...,cT)∈CT

T∑
t=1

βt−1u(ct)

s.t at+1 = k(at − ct) for t = 1, . . . ,T

aT+1 ≥ 0

a1 (∈ A) given

I Per-period wellbeing u: increasing in consumption

I Consumption: choice variable, with domain C (here R+
0 or R+,

depending on u)

I Assets is the state variable, with domain A (here R+
0 or R+)

I k : law of motion for assets, a positive and increasing function in A

k (at − ct) = R (at − ct) where R = 1+ r is the interest factor

Classical solution

I Objective function is C1 (continuously di�erentiable): interior
optimum satis�es foc

I Classical solution: attack problem directly by solving all its foc's

I Useful to write model restrictions more compactly by noting that the
law of motion for assets together with the initial condition imply

aT+1 = RTa1 −
T∑
t=1

RT−t+1ct

I Therefore, the consumer's problem for a given a1 ≥ 0 is

max
(c1,...,cT)∈(C)T

T∑
t=1

βt−1u(ct) s.t

T∑
t=1

R1−tct ≤ a1

Classical solution: Euler equation I

I Lagrangian for this problem

L =
T∑
t=1

βt−1u(ct)− λ

(
T∑
t=1

R1−tct − a1

)

I With necessary foc's with respect to ct , for t = 1, . . . ,T :

βt−1u′ (ct) = λR1−t

I Putting together two subsequent conditions yields

u′ (ct) = βRu′ (ct+1) for t = 1, . . . ,T − 1 (1)

I These are the Euler equations for this problem

Classical solution: Euler equation II

u′ (ct) = βRu′ (ct+1) for t = 1, . . . ,T − 1

I Euler equation: establishes relationship between consumption in
subsequent periods

I But not the consumption level

I For that we need the budget constraint

I The Kuhn-Tucker conditions do just that

Classical solution: Kuhn-Tucker conditions

I The Kuhn-Tucker conditions for this problem:

λ

(
T∑
t=1

R1−tct − a1

)
= 0, λ ≥ 0,

T∑
t=1

R1−tct ≤ a1

I If u strictly increasing (u′ > 0):

I λ > 0: +ve marginal value of relaxing the budget constraint

I
∑

t=1,...,T R1−tct = a1: consumer better o� by consuming all a1
I Then

aT+1 = 0 (2)

I Together, the T conditions (??) and (??) determine the T interior
optimal consumption choices

Corner solutions

I Up to here we assumed that the solution is interior

I The Euler conditions allowing for corner solutions are

u′(ct) ≤ βRu′(ct+1) for the possibility of ct = 0
or u′(ct) ≥ βRu′(ct+1) for the possibility of ct = at

I Typical choices of utility functions are continuously di�erentiable
and monotonically increasing in R+, with the additional following
property:

lim
ct→0+

u(ct) = −∞ and lim
ct→0+

u′(ct) = +∞

In this case a solution, if it exists, is interior

The cake-eating problem

Simple example: CRRA utility

CRRA utility

I A convenient and popular speci�cation of the utility function (γ > 0)

u(c) =
c1−γ

1− γ

γ−1 is the elasticity of intertemporal substitution

I It is generally accepted that γ ≥ 1, in which case, for c ∈ R+

u(c) < 0, limc→0 u(c) = −∞, limc→+∞ u(c) = 0
u′(c) > 0, limc→0 u

′(c) = +∞, limc→+∞ u′(c) = 0

CRRA utility: solution I

I The problem is

max
(c1,...,cT)∈(R+)T

T∑
t=1

βt−1 c
1−γ
t

1− γ
s.t

T∑
t=1

R1−tct ≤ a1

I Euler equations:

c−γt = βRc−γt+1 ⇒ ct = (βR)−
1

γ ct+1 for t = 1, . . . ,T − 1

I By successive substitution:

ct = (βR)
t−1
γ c1

CRRA utility: solution II

I The budget constraint and optimality condition imply

a1 =
∑

t=1,...,T

R1−tct

= c1
∑

t=1,...,T

(
β

1

γ R
1−γ
γ

)t−1
= c1

∑
t=1,...,T

αt−1 where α = β
1

γ R
1−γ
γ

I The solution for t = 1, . . . ,T :

c1 =
1− α
1− αT

a1 and ct =
1− α
1− αT

(βR)
t−1
γ a1

CRRA utility: solution III

In general, if the optimisation problem starts at time t as follows

max
(ct ,...,cT)∈(R+)T−t+1

T∑
τ=t

βτ−t
c1−γτ

1− γ
s.t

T∑
τ=t

Rτ−tcτ ≤ aτ

the solution for ct is

ct =
1− α

1− αT−t+1
at

This is the consumption function, a linear function of assets if utility is
CRRA

CRRA utility: consumption over the life-cycle

βR determines the pro�le of the solution: ct = 1−α
1−αT (βR)

t−1
γ a1

.0
2

.0
3

.0
4

.0
5

.0
6

co
ns

um
pt

io
n

20 30 40 50 60
age

r=4% r=2.5% r=1%

β = 1.025−1 and initial assets are a20 = 1.

The cake-eating problem

Existence and uniqueness of solution

When can the existence of the optimum be guaranteed?

I Feasibility set: space of choices satisfying the problem constraints

C1:T (a1) =

(c1, . . . , cT) ∈ CT :
∑

t=1,...,T

R1−tct ≤ a1


where typically C = R+

I Apply Weierstrass theorem to ensure existence of solution:

Let u : C→ R be continuous and suppose C1:T (a1) ⊂ CT is

non-empty and compact. Then the consumer's problem

max
(c1,...,cT)∈C1:T (a1)

∑
t=1,...,T

βt−1u(ct)

has a solution in C1:T (a1) for any a1 ∈ A.

When is the optimum interior and unique?

I Typical consumer's problem: u is strictly increasing, concave and C1

I Then the sum of per-period utilities is also strictly increasing,
concave and C1

I Also assume that the feasibility set C1:T (a1) is non-empty and
compact

I Under these conditions the solution is unique

I It is also interior (T > 1)

I But if we had a convex u: corner solution

Dynamic programming

The Bellman equation

Dynamic programming

I Dynamic programming splits the big problem into smaller problems
that are of similar structure and easier to solve

I The trick is to �nd the limited set of variables that completely
describe the decision problem in each period � the state

I Then the solution of these problems over a small state-space
determines a set of policy functions: optimal consumption is ht(at)
for t = 1, . . .T

I DP returns a general solution: it solves the entire family of problems
of the same type

I The speci�c solution to our problem can be constructed recursively,
by iterating

ct = ht(at)

at+1 = R(at − ct)

starting from the given a1

Problem speci�cation I

I In our problem, the level of assets at the start of period t
summarises all the information needed to solve for consumption

I The feasibility set at time t for the sequence of present and future
consumption choices given at ∈ A is

Ct:T (at) =

(ct , . . . , cT) ∈ CT−t+1 :
∑

τ=t,...,T

R t−τcτ ≤ at


I If consumption must be positive in every period, then C = A = R+

and the feasibility set at time t is

Ct(at) =

 {ct > 0 : at+1 = R (at − ct) > 0} if t < T

{ct > 0 : at+1 = R (at − ct) ≥ 0} if t = T

Problem speci�cation II

I The problem of a consumer with assets at at time t is

Vt(at) = max
(ct ,...,cT)∈Ct:T (at)

∑
τ=t,...,T

βτ−tu(cτ)

I Vt is the value function

I Indirect lifetime utility: measures max utility that assets at can
deliver

I It is a function of at alone
I Dependence on at arises through the feasibility set

Problem speci�cation III

The value function can be de�ned recursively

Vt(at) = max
(ct ,...,cT)∈Ct:T (at)

∑
τ=t,...,T

βτ−tu(cτ)

= max
ct∈Ct(at)


u(ct) + β

 max
(ct+1,...,cT)∈Ct+1:T (at+1)

T∑
τ=t+1

βτ−(t+1)u(cτ)︸ ︷︷ ︸


Vt+1(at+1)


= max

ct∈Ct(at)
{u(ct) + βVt+1 (R[at − ct])}

The Bellman equation I

Vt(at) = max
ct∈Ct(at)

{u(ct) + βVt+1 (R[at − ct])}

I This is a functional equation: recursive formulation

I Breaks the large lifecycle problem in smaller static problems
I Key: memoryless process depends only on the value of state variables

at the time of decision

I Principle of Optimality: if the consumer behaves optimally in the
future, all that matters for the solution at time t is the decision of
how much to consume today

I Vt+1 exists (by recursion) but is unknown!

The Bellman equation II

Often useful to reformulate the problem in terms of savings decisions

I De�ne the payo� function as

f (at , at+1) = u
(
at −

at+1

R

)
= u (ct)

I Then the consumption/savings problem is equivalently speci�ed as

Vt(at) = max
at+1∈Dt(at)

{f (at , at+1) + βVt+1 (at+1)}

where the feasibility set at time t (for C = A = R+)

Dt(at) =


{
at+1 > 0 : at − at+1R

−1 > 0,
}

if t < T{
at+1 ≥ 0 : at − at+1R

−1 > 0
}

if t = T

The Bellman equation III

I The solution is

gt(at) = argmax
at+1∈Dt(at)

{f (at , at+1) + βVt+1 (at+1)}

I Exists and is unique under the conditions discussed earlier:
I f real-valued, strictly increasing (decreasing) in the �rst (second)

argument, concave and C1 in both arguments
I D is non-empty and compact

I Under these conditions g is also continuous

I Moreover, V inherits some of the properties of f
I continuity, monotonicity and concavity
I di�erentiability at points a ∈ A in which the solution is interior

Dynamic programming

Recursive solution

Recursive solution

Vt(at) = max
at+1∈Dt(at)

{f (at , at+1) + βVt+1 (at+1)}

Key insight of dynamic programming: the unknown V can be pinned
down by backward induction

I This highlights the usefulness of the Bellman equation

I And inspires the numerical strategy to solve models with no
closed-form solution

Last period

Solution strategy: start from period T and move backwards as the future
value function, the continuation value, is determined

I The problem in the last period is

VT (aT) = max
aT+1∈DT (aT)

{f (aT , aT+1)}

where DT (aT) = [0,RaT]

I The solution is (for any aT ∈ A)

gT (aT) = 0 with value VT (aT) = f (aT , 0) = u(aT)

Last but one period

I Since VT (aT) = u(aT), the problem at T − 1 is known

VT−1(aT−1) = max
aT∈DT−1(aT−1)

{f (aT−1, aT) + βVT (aT)}

I Under di�erentiability of the maximising function, an interior
optimum satis�es the foc's (for any aT−1 ∈ A

gT−1(aT−1) is the solution to f2 (aT−1, aT) + βV ′T (aT) = 0

I So the value function at T − 1 is (for each aT−1 ∈ A)

VT−1(aT−1) = f (aT−1, gT−1(aT−1)) + βVT (gT−1(aT−1))

Period t

Move backwards in similar steps

I Once the value function for period t + 1 has been determined, solve
(for each at ∈ A)

gt(at) = argmax
at+1∈Dt(at)

{f (at , at+1) + βVt+1(at+1)}

I The solution can then be used to build Vt (for each at ∈ A):

Vt(at) = f (at , gt(at)) + βVt+1 (gt(at))

Solution to our speci�c problem

I The speci�c problem we are interested in is fully characterised by the
initial condition, a1

I To construct the solution, we use the policy functions gt and iterate,
for t = 1, . . . ,T

ct = at − R−1gt(at) and at+1 = gt(at)

Dynamic programming

Optimality conditions

Optimality conditions I

I The typical problem in economics assumes that the utility function is
strictly increasing, concave and continuously di�erentiable (in
consumption), and that the feasibility space is closed and bounded

I Under these conditions the solution is unique and V is di�erentiable

I And the �rst order conditions are necessary and su�cient for an
interior optimum

Optimality conditions II

I The problem at time t is

Vt(at) = max
at+1∈Dt (at)

{f (at , at+1) + βVt+1 (at+1)}

I The foc at time t is

f2 (at , at+1) + βV ′t+1 (at+1) = 0

I Use the envelope condition to workout V ′t+1 (at+1)

V ′t (at) = f1 (at , at+1) + f2 (at , at+1)
∂at + 1

∂at
+ βV ′t+1 (at+1)

∂at + 1

∂at

= f1 (at , at+1) +
[
f2 (at , at+1) + βV ′t+1 (at+1)

]︸ ︷︷ ︸
foc at t

∂at + 1

∂at

= f1 (at , at+1) = u′ (ht(at))

Optimality conditions III

Put the foc together with the envelope condition to get the Euler
equation

f2 (at , at+1) + βf1 (at+1, at+2) = 0

⇔ u′(ct) = βRu′(ct+1)

since: u(ct) = f (at , at+1) = u
(
at − at+1

R

)
and so: f1 (at , at+1) = u′(ct) and f2 (at , at+1) = − u′(ct)

R

Dynamic programming

Numerical solution

Numerical solution

I The cake-eating problem is easy to solve on the paper

I But it is an instructive example to play with numerically

I Sophisticated enough to require most of the numerical tricks used in
more complicated models

I But easy enough to keep the discussion simple
I Can be used to demonstrate the comparative advantages of various

numerical procedures since the solution is known!

Computers do not known in�nity

1. Model speci�cation

I CRRA utility is great to ensure that consumers avoid getting close to
zero consumption

I The same does not hold for computational solutions: extreme values
cause the routine to crash
⇒ Bound solution space to its relevant parts to avoid problems

2. Discretise state space

I Select grid in assets A = {ai}i=1,...,na
I Solve problem only for points in the grid
I Approximate unknown functions numerically outside the grid

Algorithm for recursive solution

1. Parameterise model and select grid in assets:
{
ai
}
i=1,...,na

2. Choose stopping criterion ε > 0

3. Store VT+1

(
ai
)
= 0 for all i = 1, . . . , na

4. Loop over t backwards: t = T , . . . , 1

For each i = 1, . . . , na

4.1 Compute g i
t = arg maxat+1∈Dt (ai)

{
u
(
ai − at+1

R

)
+ βṼt+1 (at+1)

}
4.2 Compute V i

t = u
(
ai − g it

R

)
+ βṼt+1

(
g i
t

)
4.3 Approximate Vt over its entire domain to get Ṽt and store it

This step is optional: can be done directly in step 4.1 or skipped
altogether, depending on the solution method - more to follow

Solution at each point

I Step 4.1 is the (computationally) heavy part of the solution
algorithm

I There are two main ways of �nding the optimum g i
t

I Use a search algorithm to look for the value of savings at+1 that
maximise Vt(at)

This is the procedure implicit in the algorithm we presented

I Or look for the root of the Euler equation u′(ct) = βRV ′(at+1)
vspace0.1cm We will discuss this solution later

Solution at each point using the foc: a trick I

I Useful trick under CRRA: speed up and improve accuracy of solution

I The Euler equation is

c−γt = βRV ′t+1(at+1) ⇔ ct = (βR)−1/γ
[
V ′t+1(at+1)

]−1/γ
I But since (envelope condition)

V ′t+1(at+1) = u′ (ht+1(at+1)) =

(
at+1 −

gt+1(at+1)

R

)−γ
I The solution is the level of savings at+1 that satis�es

at −
at+1

R︸ ︷︷ ︸
ct

= (βR)−1/γ
[
at+1 −

gt+1(at+1)

R

]
︸ ︷︷ ︸

ct+1

Solution at each point using the foc: a trick II

at −
at+1

R︸ ︷︷ ︸
ct

= (βR)−1/γ
[
at+1 −

gt+1(at+1)

R

]
︸ ︷︷ ︸

ct+1

= (βR)−1/γ ht+1(at+1)

I This is a linear (in at+1) equation in non-stochastic problems

I More generally, the policy function h is typically not very non-linear

I So all we need is to:

1. Store ht(a
i) after solving consumers problem at time t

2. �Connect the points� to approximate function h and obtain the
solution over the entire domain: Linear Interpolation

I Notice that V is not needed to solve the problem using the foc

Approximating the value function

I A bad idea: to rely on simple (linear) approximations of V to solve
model as V can be highly non-linear

I But one may still need the value function, even when relying on the
foc for the solution:
I to study the value of di�erent policy interventions
I or attitudes towards risk once uncertainty is considered

I Two alternatives to approximate V
I More reliable approximation method: shape-preserving splines
I Reduce non-linearity by applying selected transformation, then

approximate by linear interpolation
For a CRRA utility:

Ψt(at) = [(1− γ)Vt(at)]
1

1−γ

Practical session 1

Income process

Add income process

I Just adding an income process does not much change the lifecycle
problem

I But raises interesting issues of how to deal with the credit markets

I Suppose the consumer has a stream of income over time

yt = w(at , t)

I For the moment, suppose {yt}t=1,...,T is known by the consumer
from time t = 1

Income process

Credit Markets

Functioning credit markets I

I If credit markets are complete, the consumer may borrow to bring
income forward

I Assets at time t can be negative
I Borrowing limited by ability to repay
I Domain of possible values of assets changes over time, depending on

time left to repay debts and terminal condition

I The problem of the consumer at time t for assets at

Vt(at , yt) = max
at+1
{f (at , yt , at+1) + βVt+1(at+1, yt+1)}

s.t. at+1 = R(at + yt − ct)

yt+1 = w(at+1, t + 1)

ct > 0 and aT+1 ≥ 0

Functioning credit markets II

I The feasibility space at time t < T is

Dt(at , yt) =

at+1 : at + yt −
at+1

R︸ ︷︷ ︸
ct

> 0, at+1 +
T∑

τ=t+1

R(t+1)−τyτ > 0


=

(
−

T∑
τ=t+1

R(t+1)−τyτ , R (at + yt)

)

I At time T

DT (aT , yT) = [0, R (aT + yT))

Functioning credit markets III

I The compact speci�cation of the problem is

Vt(at , yt) = max
at+1∈Dt(at ,yt)

{f (at , yt , at+1) + βVt+1 (at+1, yt+1)}

s.t. yt = w(at , t) for all t

I Foc is Euler equation u′(ct) = βRu′(ct+1)

I The state space is now 2-dimensional

I Although it is easy to reduce to 1 dimension in this case by noting
that at+1 = R(at + w(at , t)− ct)

I Computation-wise, reducing the dimensionality of the state space is
the most time-saving procedure

Simple example: CRRA utility

I With CRRA utility the Euler equation implies ct = (βR)
t−1
γ c1

I The value of total lifetime wealth at t = 1 is

W = a1 +
∑

t=1,...,T

R1−tyt

I Total consumption is

C =
∑

t=1,...,T

R1−tct =
∑

t=1,...,T

(
βR1−γ) t−1

γ c1

I Yielding, for t = 1, . . . ,T

ct = (βR)
t−1
γ

1− α
1− αT

W where α = β
1

γ R
1−γ
γ

CRRA utility: pro�les for a patient consumer

−
4

−
2

0
2

20 30 40 50 60
age

increasing income

0
1

2
3

4
20 30 40 50 60

age

constant income

consumption income assets

r = 4% and β = 1.025−1. Initial assets are a1 = 1. Income pro�les as

plotted.

CRRA utility: introducing retirement

−
5

0
5

10
15

20 30 40 50 60 70
age

consumption income assets

r = 4% and β = 1.025−1. Initial assets are a1 = 1. Income pro�les as

plotted.

Credit constraints I

I If credit is rationed, the consumer may be willing to consume more
than she can a�ord in the short term

I In the absence of credit, the feasibility set is restricted to

Dt(at , yt) =
{
at+1 : at + yt −

at+1

R
> 0, at+1 ≥ 0

}
I This implies that the consumer's best choice may be a corner

solution

Credit constraints II

I The problem of the consumer at time t for assets at is now

Vt(at , yt) = max
at+1
{f (at , yt , at+1) + βVt+1(at+1, yt+1)}

s.t. at+1 = R(at + yt − ct)

yt+1 = w(at+1, t + 1)

ct > 0 and at+1 ≥ 0

I There are T inequality restrictions in assets now, so we have T �rst
order and Kuhn Tucker conditions:

f3(at , yt , at+1) + βf1(at+1, yt+1, at+2) = λt
λtat+1 = 0, λt ≥ 0, at+1 ≥ 0

for t = t = 1, . . . ,T − 1

aT+1 = 0 for t = T

Credit constraints III

The solution is

ct = min {at + yt , root of u
′(ct) = βRu′(ct+1)}

or

at+1 = max {0, root of f3(at , yt , at+1) + βf1(at+1, yt+1, at+2) = 0}

Income process

Numerical solution

Solution algorithm

The recursive solution in practice: almost exactly as before

1. Parameterise model and select grids in at :
{
ait
}
i=1,...,na

2. Choose stopping criterion ε > 0

3. Store VT+1

(
aiT+1

)
= 0 for all i = 1, . . . , na

4. Loop over t backwards: t = T , . . . , 1

For each i = 1, . . . , na

4.1 Compute g i
t = arg max

at+1∈Dt (a
i
t)

{
u
(
ait + w(ait , t)− at+1

R

)
+ βṼt+1 (at+1)

}
4.2 Compute V i

t = u
(
ait + w(ait , t)− g it

R

)
+ βṼt+1

(
g i
t

)

Computational solution: additional issues

1. Dimension of state space: reduce to 1 in solution

at+1 = R(at + w(at , t)− ct)

2. Positive consumption: may be tricky to ensure with approximated
functions ⇒ impose minimum consumption cmin > 0

3. Functioning credit markets: grid in assets changes over time

I Lower bound at t ensures debt can be repaid and cmin is a�ordable

at +
∑

τ=t...,T

R t−τyτ ≥
∑

τ=t...,T

R t−τcmin

I Upper bound at t reached if consumes cmin in all periods to t

at ≤ R t−1a1 +
∑

τ=1...,t−1

R t−τ (yτ − cmin)

Practical session 2

Stochastic optimisation

Stochastic problems

I Most interesting problems in economics involve some sort of
uninsurable risk

I The solution to the dynamic problem will depend crucially on

1. how much risk consumers face
2. their attitudes towards risk

I We consider a stochastic income process to formalise uncertainty

I And do so in a parsimonious way, using Markov processes

Stochastic optimisation

Markov processes

Super brief introduction to stochastic Markov processes I

Stochastic process: sequence {yt}t=1,... of random variables/vectors

The Markov property

I Suppose {yt}t=1,2,... is de�ned on the support Y

I Then {yt} satis�es the Markov property if, for all y ∈ Y

Prob (yt+1 = y | yt , . . . , y1) = Prob (yt+1 = y | yt) for discrete Y

Prob (yt+1 < y | yt , . . . , y1) = Prob (yt+1 < y | yt) for continuous Y

Super brief introduction to stochastic Markov processes II

I The conditional probabilities are known as the transition function

Qt (yt , yt+1) = Prob (yt+1 | yt)

I Time-invariant process: Qt (yt , yt+1) = Q (yt , yt+1)

I Q : Y× Y→ [0, 1] is a transition function if Q (yt , y) is a pdf:

For each yt ∈ Y

Q (yt , y) ≥ 0 for all y ∈ Y

and

∫
Y
Q (yt , y) dy = 1

Super brief introduction to stochastic Markov processes III

I Markov process: stochastic process satisfying the Markov property

I Characterised by 3 objects
I the domain Y
I the transition function Q
I the distribution of the initial value y1

I These fully characterise the joint and marginal distributions of y at
all points in time

Super brief introduction to stochastic Markov processes IV

I The unconditional distribution of yt can be obtained iteratively

I Let πt−1 be the pdf of y at time t − 1. Then, if πt−1 is known

πt(yt) =

∫
y∈Y

Q(y , yt)πt−1(y) dy

where πt be the pdf of y at time t

I A Markov process is stationary if πt(y) = πt′(y) = π(y)

I In this case, π is the �xed point in the functional equation

π(yt) =

∫
y∈Y

Q(y , yt)π(y) dy

Stochastic optimisation

Iid income process

Memoryless income process with discrete support

I Take a discrete income process yt ∈ Y =
{
y1, . . . , yn

}
I For a memoryless problem, the transition function equals the

unconditional pdf:

πi = Prob
(
yt = y i

)
= Q

(
y , y i

)
for each i = 1, . . . , n

I The consumer's problem is

Vt (at , yt) = max
at+1∈Dt (at ,yt)

f (at , yt , at+1) + β
∑
y i∈Y

Vt+1

(
at+1, y

i
)
πi


s.t. yt is a rv with pdf π

I The problem is setup as a Markov process: (at+1, yt+1) depends only
on (at , yt)

Memoryless income process with continuous support

I The problem is

Vt (at , yt)

= max
at+1∈Dt (at ,yt)

{
f (at , yt , at+1) + β

∫
y∈Y

Vt+1 (at+1, y)π(y) dy

}

I Feasibility set: savings choices ensuring positive consumption is
a�ordable even in worst possible scenario

Dt(at , yt)

=

{
at+1 : at + yt −

at+1

R
> 0, at+1 +

T∑
τ=t+1

R(t+1)−τymin > 0

}

Support and feasibility set in practice

I Feasibility set for at+1 is Dt(at , yt)
I Set of possible choices at+1 given current value of state variables
I Computational implementation: optimal savings chosen in Dt(at , yt)

I Support of at+1 is At+1

I Range of all possible values of at+1, independently of current value of
state variables

I Computational implementation: grid in at+1 drawn to represent At+1

I Clearly Dt(at , yt) ⊆ At+1 for all (at , yt)

I Suppose we bound consumption choices from below: ensure cmin

always a�ordable

I And use bounded support of income is Y = [ymin, ymax]

Support and feasibility set in practice: support

I Upper bound of At+1: maximum savings reached if yt = ymax and
ct = cmin in the past

at+1 ≤ R ta1 +
t∑

τ=1

Rτymax −
t∑

τ=1

Rτcmin

⇒ UBt+1 = R ta1 + R
1− R t

1− R
(ymax − cmin)

I Lower bound of At+1: ensures cmin always a�ordable in future

at+1 +
T∑

τ=t+1

R(t+1)−τymin ≥
T∑

τ=t+1

R(t+1)−τcmin

⇒ LBt+1 =
1− R t−T

1− R−1
(cmin − ymin)

I So At+1 = [LBt+1,UBt+1]

Support and feasibility set in practice: feasibility set

I Upper bound of Dt conditional on (at , yt) ensures ct ≥ cmin

at + yt − at+1R
−1 ≥ cmin

⇒ UBt+1(at , yt) = R(at + yt − cmin)

I Lower bound of Dt equals lower bound of At+1: LBt+1 can always
be reached or otherwise problem has no solution

I So Dt(at , yy) = [LBt+1,UBt+1(at , yy)]

Memoryless income process: optimality conditions

I Foc at time t: derivative of objective function at time t is zero

f3 (at , yt , at+1) + β

∫
y∈Y

∂Vt+1 (at+1, y)

∂at+1

π(y) dy = 0

I Work out marginal value of at :

∂Vt (at , yt)

∂at
= f1 +

f3 + β

∫
y∈Y

∂Vt+1

∂at+1

π(y) dy︸ ︷︷ ︸
=0

 ∂at+1

∂at
= f1 (at , yt , at+1)

I So an interior optimum satis�es

f3(at , yt , at+1) + β

∫
y∈Y

f1(at+1, y , at+2)π(y) dy = 0

⇔ u′(ct)− βREt

[
u′(ct+1)

]
= 0

Stochastic optimisation

Iid income process: Numerical solution

Computational algorithm

1. Parameterise model and select grids (A,Y) and compute weights πj

2. Choose stopping criterion ε > 0

3. Store EVT+1

(
ait+1

)
= 0 for all i = 1, . . . , na

4. Loop over t backwards: t = T , . . . , 1

Loop over i = 1, . . . , na

4.1 Compute for j = 1, . . . , ny

g ij
t = arg max

at+1∈Dij
t

{
u
(
ait + y j − at+1

R

)
+ βẼV t+1 (at+1)

}

4.2 Compute the continuation value

EV i
t =

∑
j=1,...,ny

[
u

(
ait + y j − g ij

t

R

)
+ βẼV t+1

(
g ij
t

)]
πj

Practical issues I

I State space is 2-dim: (a, y)
I The income process could have a continuous support: discretise Y

and solve problem in na × ny points for each t
I Bounds in Y: ensure feasibility and measurability

I Grid in a to account for the many possible future circumstances
I Feasibility amounts to ensure cmin remains a�ordable
I Imposed on worst case scenario of future income so it holds under all

possible future circumstances

I Continuation value: EtVt+1

I Measured at t conditional on existing information
I Only argument in EtVt+1 is at+1

I Choice of grid in y to support integration
I Need set of weights to calculate integral numerically, πj

Practical issues II

We choose to store EV instead of V

I More e�cient: saves computations in solution

I Can be used to recover Vt at (a, y)

Vt(a, y) = u

(
a+ y − g̃t(a, y)

R

)
+ βẼV t+1 (g̃t(a, y))

I If had stored Vt , step 4.1 would compute (for each (i , j , t))

g ij
t = argmax

at+1∈Dij
t

{
u
(
ait + y j − at+1

R

)
+ β

ny∑
l=1

Ṽt+1

(
at+1, y

l
)
πl

}

involving ny interpolations for each at+1 called by maximisation
routine

Numerical integration I

I Suppose we want to compute
∫ b

a
f (y)πy (y)dy where

I πy is the pdf of y
I the value of f is known in points y i in grid Y

I The numerical integral is a simple weighted average of f over a
discrete selected grid∫ b

a

f (y)πy (y)dy '
ny∑
i=1

f (y i)w i

I The simplest procedure (Tauchen)

1. Divide the distribution of y into ny equal-probability intervals, Y i

2. Compute the grid points y i = E(y | Y i)

3. The weights are uniform: w i = n−1y

4. Then
∫
Y f (y)πy (y)dy ' n−1y

∑ny
i=1 f (y i)

Numerical integration II

Alternative procedures

I Gaussian quadrature: Gaussian nodes and weights
{
(y i ,w i)

}
are

selected to make exact the numerical integral of polynomials of
degree 2ny + 1 or less

I Good option if f can be closely approximated by a polynomial
I Weights and nodes depend on the distribution of y : Gauss-Laguerre

for normal, Gauss-Hermite for log-normal, ...

I Monte-Carlo simulations: draw
{
y i
}
randomly from its distribution

and compute simple average of f (y) at random points

Practical issues III

I The algorithm we speci�ed is implicitly designed to use with a search
method

I But again it can be more e�cient and accurate to use foc

Find root of Euler equation: CRRA utility

I At each (ait , y
j , t) �nd root (at+1) of

u′
(
ait + y j − at+1

R

)
− βRd̃V t+1(at+1) = 0

I Inverse marginal utility reduces non-linearity in marginal value

I Can solve Euler equation in its quasi-linearised version(
ait + y j − at+1

R

)
− (βR)−

1

γ l̃dV t+1(at+1) = 0

where the quasi-linear expected marginal value (ldV) is stored

ldV i
t+1 = (u′)−1

[
dV i

t+1

]
=

 ny∑
j=1

(
ait+1 + y j −

g ij
t+1

R

)−γ
πj

− 1

γ

Stochastic optimisation

Autocorrelated income process

Autocorrelated income process

I More interesting model of income: AR(1) process

I We assume
ln yt = α+ ρ ln yt−1 + et

I yt is a Markov process: Markov structure of dynamic problem not
compromised

I Stationarity requires that unconditional pdf of y is time-invariant

I Stationarity under log-normality requires |ρ| < 1 and, for all t
I E(ln yt) = α(1− ρ)−1

I Var(ln yt) = σ2
e

(
1− ρ2

)−1

Autocorrelated income process: model

The consumption-savings problem is (Dt(a, y) as de�ned earlier)

Vt(at , yt)

= max
at+1∈Dt

{
f (at , yt , at+1) + β

∫
Vt+1 (at+1, y

ρ
t exp {α + e}) dFe(e)

}

I Generally need to bound domain of e to ensure feasibility and
measurability at all points

I The Euler equation is

u′(ct) = βREt [u
′(ct+1) | yt]

Simple example I

Not most appealing 2-period model... but can be solved explicitly

I Period 1: consumer endowed with (a1, y1), consumes c1

I Period 2:
I a2 = R(a1 + y1 − c1)
I y2 = ρy1 + e2
I c2 = R(a1 + y1 − c1) + (ρy1 + e2)

where e2 is a rv of mean zero, unknown from period 1 and unrelated
to other model variables

I Utility function: u(c) = δ0 + δ1c + δ2c
2

I Consumers problem:

max
c1
{u (c1) + βE1u [R(a1 + y1 − c1) + (ρy1 + e2)]}

Simple example II

I The Euler equation is (with βR = 1)

δ1 + δ2c1 = δ1 + δ2E [R(a1 + y1 − c1) + (ρy1 + e2)]

= δ1 + δ2 [R(a1 + y1 − c1) + ρy1]

I With solution

c1 =
R

1+ R
a1 +

ρ+ R

1+ R
y1

I If ρ = 0: income shocks do not persist and consumption responds
less to shocks

I If ρ = 1: permanent income shocks and consumption responds fully
to shocks

Solution algorithm

1. Parameterise model and select grids (A,Y) and compute weights Q jl

2. Choose stopping criterion ε > 0

3. Store EVT+1

(
ait+1, y

j
)
= 0 for all i = 1, . . . , na and j = 1, . . . , ny

4. Loop over t backwards: t = T , . . . , 1

Loop over i = 1, . . . , na

4.1 Compute for j = 1, . . . , ny

g ij
t = arg max

at+1∈Dij
t

{
u
(
ait + y j − at+1

R

)
+ βẼV t+1

(
at+1, y

j
)}

4.2 Compute the continuation value at point (at , yt−1) = (ait , y
l)

EV il
t =

∑
j=1,...,ny

[
u

(
ait + y j − g ij

t

R

)
+ βẼV t+1

(
g ij
t , y

j
)]

Q lj

Practical issues

I The continuation value at time t is Et [Vt+1(at+1, yt+1) | yt], a
function of (at+1, yt)

I If the foc were to be used in the solution, the linearised expected
marginal value in time t Euler equation would also be a function of
(at+1, yt)

I Persistency in yt implies that the integration weights Q need to be
conditional on the past realisation of y

Transition function: simple procedure to determine Q ji

I Consider a stationary Markov process

xt = α+ ρxt−1 + et where e ∼ N (0, σ2)

I A simple procedure to compute Q jl

1. Divide the domain X in nx intervals {X i =
[
x i , x i

]
}

2. Compute the grid points x i = E(x i | x i ∈ X i)
3. Then

Q ji = Prob
(
xt ∈ X i | xt−1 = x j

)
= Prob

(
x i ≤ α + ρx j + et ≤ x i

)
= Prob

(
x i − α− ρx j ≤ et ≤ x i − α− ρx j

)
= Φ

(
x i − α− ρx j

σ

)
− Φ

(
x i − α− ρx j

σ

)

Practical session 3

In�nite horizon

The problem

Consumption-savings with in�nite horizon

I Often useful to consider dynamic problems in in�nite horizon
I Short time periods
I End period very far away
I End period uncertain and not becoming more likely over time

I Inherits many of the features of �nite horizon problem but
conceptually more complex

I Markov structure of problem is key: cannot deal with dependencies
on in�nite past

I Stationarity (at least in limit) is also crucial: dimensionality problem,
and possibly measurement problems as well

The problem at time t

This is

Vt (at , yt) = Et

[
max

Dt:∞(at ,yt)

∞∑
τ=t

βτ−t f (aτ , yτ , aτ+1) | at , yt

]

I The horizon is always in�nite, whichever t
I Conditional on (a, y), the feasibility set is always the same, D∞(a, y)
I Conditional on (a, y), the problem is always the same, V (a, y)

I Given stationarity the in�nite horizon problem is time-invariant

I Hence can drop time indexes

Recursive form I

The functional equation

V (a, y) = E

[
max
D∞(a,y)

∞∑
t=0

βt f (at , yt , at+1)

∣∣∣∣∣ a, y
]

= max
a′∈D(a,y)


f (a, y , a′) + βEy′|y

(
E

[
max

D∞(a′,y′)

∞∑
t=0

βt f (at , yt , at+1)

∣∣∣∣∣ a′, y ′
])

︸ ︷︷ ︸
Expected value today of V ′ tomorrow, conditional on (a, y)


= max

a′∈D(a,y)

{
f (a, y , a′) + βEy′|y

[
V
(
a′, y ′

)]}

Recursive form II

V (a, y) = max
a′∈D(a,y)

f (a, y , a′) + β Ey ′|y [V (a′, y ′)]︸ ︷︷ ︸∫
Y V (a′,y ′)Q(y ,y ′)dy ′


I This is the Bellman equation

I The solution is a �xed point V of this functional equation

I Key to the speci�cation: stationarity of the Markov process

Feasibility set

I Determined by a set of conditions

a′ = R(a+ y − c)

ln y ′ = α+ ρ ln y + e′

e ∼ N
(
0, σ2

e

)
ln y0 ∼ N

(
µln y , σ

2
ln y

)
(a0, y0) ∈ A× Y
a bounding condition

I Stationarity requires

µln y =
α

1− ρ
and σ2

ln y =
σ2
e

1− ρ2

Bounding condition

I Typical assumption is that transversality conditions is satis�ed

lim
t→∞

βtE

[
∂f (at , yt , at+1)

∂at
at

]
= 0

I This is similar to the Kuhn-Tucker conditions
I In the limit, either the present marginal value of assets is 0 or the

agent consumes all her wealth
I Ensures that consumer cannot borrow too much: present value of

assets in far future is zero

In�nite horizon

Existence and uniqueness of solution

Contraction Mapping result I

I C (X) is space of continuous functions with support X

I T : C (X)→ C (X) is a transformation (mapping): Tw(x) = v(x)

I T satisfying Blackwell su�cient conditions is a contraction mapping

Monotonicity if v ,w ∈ C (X) and v(x) ≤ w(x) for all x ∈ X , then
Tv(x) ≤ Tw(x)

Discounting there is β ∈ (0, 1) such that
T (v + k)(x) ≤ Tv(x) + βk for all k > 0, where
(v + k)(x) = v(x) + k

Contraction Mapping result II

I Fixed point of T is a function v : T (v(x)) = v(x)

I Contraction Mapping Theorem

If T is a contraction mapping with modulus β, then

1. T has exactly 1 �xed point
2. Fixed point can be reached iteratively from any v0 ∈ C(X)

I Bellman equation de�nes a contraction mapping with modulus β

TV (a, y) = max
a′∈D(a,y)

{
f (a, y , a′) + β

∫
Y
V (a′, y ′)Q(y , y ′)dy ′

}

Existence and uniqueness result

The dynamic optimisation problem is

V (a, y) = max
a′∈D(a,y)

{
f (a, y , a′) + β

∫
Y
V (a′, y ′)Q(y , y ′)dy ′

}

I β ∈ (0, 1);

I f : real-valued, continuous, strictly concave in a and bounded;

I y : Markov process in the compact set Y ;

I D(a, y): non-empty, compact and convex.

Then:

1. there exists a unique function V that solves this problem;

2. V is continuous and strictly concave in a;

3. g(a, y) exists and is a (unique) continuous, single-valued function.

Other properties of the problem

Other properties of f are transferred to V through the mapping T :

1. f also C1 in (a, a′) ∈ int(A)2 and g(a, y) ∈ int(D(a, y))

⇒ V is C1 in a and V1(a, y) = f1(a, y , g(a, y))

2. f also strictly increasing in a and D(a, y) ≥ D(a′, y) for a ≥ a′

⇒ V is strictly increasing in a

3. 2 also true for y if f and D(a, y) are strictly increasing in y

Optimality conditions for interior solution

I Euler equation under the continuous di�erentiability conditions

f3(a, y , a
′) + β

∫
Y
f1(a

′, y ′, g(a′, y ′))Q(y , y ′)dy ′ = 0

⇔ f3(a, y , a
′) + βEy ′|y [f1(a

′, y ′, g(a′, y ′))] = 0

Or in terms of the utility function

d u(c)

d c
= βREy ′|y

[
d u(c ′)

d c ′

]
I Euler and transversality conditions: necessary and su�cient for the

interior optimum a′ = g(a, y)

lim
t→∞

βtE

[
∂f (at , yt , at+1)

∂at
at

]
= 0

In�nite horizon

Simple example

Simple example I

I Consider the problem

V (a) = max
c>0
{ln(c) + βV (R(a− c))}

I The Euler equation is

1

ct
= βR

1

ct+1

⇔ ct+1 = βRct = (βR)tc0

I The transversality condition is

lim
t→∞

βtu′(ct)at = lim
t→∞

βtat
(βR)tc0

= lim
t→∞

at
R tc0

= 0

Simple example II

Work out the value of at

at = R(at−1 − ct−1)

= R(R[at−2 − ct−2]− ct1) . . .

= R ta0 −
t−1∑
τ=0

R t−τcτ

= R ta0 −
t−1∑
τ=0

R t−τ (βR)τc0

= R ta0 − R tc0

t−1∑
τ=0

βτ

= R t

(
a0 − c0

1− βt

1− β

)

Simple example III

I We got at = R t
(
a0 − c0

1−βt

1−β

)
I Replace in transversality condition to yield

lim
t→∞

at
R tc0

= lim
t→∞

R t
(
a0 − c0

1−βt

1−β

)
R tc0

= a0 − c0
1

1− β
= 0

I Hence the solution is c0 = a0(1− β)
I More generally, ct = a0(1− β)(βR)t

In�nite horizon

Numerical solution

Recursion

V (a, y) = max
a′∈D(a,y)

{
f (a, y , a′) + βEy ′|y [V (a′, y ′)| a, y]

}
I Contraction Mapping Theorem

1. The problem has a unique �xed point V
2. It can be reached iteratively from any starting function V0

I Value function iteration

1. �nd optimal savings

gn(a, y) = arg max
a′∈D(a,y)

{
f (a, y , a′) + βEy′|y

[
Vn−1(a′, y ′)

]}
2. compute new value function

Vn(a, y) = f (a, y , gn(a, y)) + βEy′|y
[
Vn−1(gn(a, y), y ′)

]

Solution algorithm: value function iteration

1. Parameterise model and select grids (A,Y) and compute weights Q jl

2. Choose stopping criterion ε > 0

3. Select initial guess EV0

(
ai , y j

)
for all

(
ai , y j

)
∈ A× Y

4. Iterate until convergence, for n = 1, . . .

4.1 For all ai in grid A compute

(a) g ij
n = arg max

a′∈Dij

{
f
(
ai , y j , a′

)
+ βẼV n−1

(
a′, y j

)}
for all y = y j

(b) EV il
n =

ny∑
j=1

[
f
(
ai , y j , g ij

n

)
+ βẼV n−1

(
g ij
n , y

j
)]

Q lj for all y−1 = y l

4.2 Check distance between EVn−1 and EVn

I If larger than ε then go back to step 4.1

I Else accept solution (gn,Vn) and stop

Practical issues

I Time subscript dropped and loop is now until convergence of V to
�xed point

I Initial guess
I should be C1
I could be EV0 = 0: implying consumer saves nothing to next period
I better solution is EV0 = u(c)

I Solution using Euler equation: store dV , a function of (a, y−1)

I Distance in continuation value: max absolute di�erence
(levels/relative)

Feasibility set

I Transversality condition not practical

lim
t→∞

βtE
[
f1(at , yt , a

′
t+1)at

]
= 0

I Implication: consumer avoids low assets, where f1 arbitrarily large

I ⇒ ensure cmin always a�ordable in worst possible scenario

a+
∞∑
t=0

R−tymin ≥
∞∑
t=0

R−tcmin ⇔ a+
1

1− R−1
(ymin − cmin) ≥ 0

I If present state is (a, y) ⇒ optimal savings a′ must lie in interval

D(a, y) =

[
− 1

1− R−1
(ymin − cmin) , R (a+ y − cmin)

]

Now for the �nal practical example!

