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Motivation

» Many economic decisions (e.g. education take-up, savings or
investments) are difficult to rationalise in a static setting

» They all involve some trade-off between present costs and future
returns, sometimes in uncertain environments

» The existence of some markets (credit, insurance...) hinges on the
dynamic nature of some decisions

» Their existence may reinforce the dynamic nature of the decision
process



The problem |

Dynamic microeconomic problems are notably difficult to solve

» Very high dimensional

» Present cost of a decision depends on present circumstances, and
these are a consequence of past circumstances and decisions

» Future returns may also depend on present circumstances and be
realised in many periods and in different ways, possibly influencing
future decisions

» In most cases, dynamic problems are not tractable analytically

» Possible solution: break the big problem into a sequence of similar
smaller problems that we can solve - use Recursive Methods



The problem 1l

» Solution we explore: break the big problem into a sequence of
similar smaller problems that we can solve

» This is what a recursive method called Dynamic Programming does

» Describe the position of the problem at a moment in time: the state
of the world today — it summarises all the current information

relevant for decision-making
»> Where it might be tomorrow: the state of the world tomorrow

» And how the agents care about tomorrow vis-a-vis today
» DP allows us to characterise the problem with two functions

> Transition function: maps the state today into the state tomorrow
» Choice function: maps the state today into the endogenous choices



This course |

» Gentle and practical introduction to dynamic optimisation

>
>
>

Dynamic programming
Numerical solution

Computational methods

» Main goals

| 2

v

Introduce standard tools to study and solve dynamic optimisation
problems in microeconomics

Demonstrate practically how these tools are used
Discuss their comparative advantages

Focus on methods and tools that can be easily extended to more
general and complex setups



This course |l

» Workhorse: the consumption-savings model

>

Interesting per-se: a key model in economics, underlying the
permanent income theory and all developments that hinge on it

» Inherently dynamic

Many interesting variations useful to illustrate how to tackle
alternative dynamic problems: uncertainty, risk aversion,
life-cycle/infinite horizon, habit formation, many choice or state
variables, ...

Various alternative specifications reflect underlying assumptions
about market structure

Crucial tool for policy analysis



This course Il

» Practical focus
» Discuss the approaches and procedures we found useful
» While keeping an eye on efficiency (but it will not be central)

» We make no attempt to discuss comprehensively the theoretical
foundations of the problem or solution

» Goal: to solve increasingly more realistic (but also more complex)
models showing methods that can be extended and applied to other
settings



Outline of this course

1. The simplest consumption-savings problem: the cake-eating problem
The problem; Simple example; Existence and uniqueness of solution

2. Introduction to dynamic programming
Bellman equation; Recursive solution; Optimality conditions; Numerical
solution; Practical implementation

3. Life-cycle income process
Credit markets; Numerical solution; Practical implementation

4. Stochastic optimisation
Markov processes; lid income process; Numerical solution; Practical
implementation; Autocorrelated income process; Practical implementation

5. Infinite horizon
The problem; Existence and uniqueness of solution; Simple example;
Numerical solution; Practical implementation



The cake-eating problem

Setup and classical solution



The cake-eating problem

Simplest possible life-cycle consumption-savings problem

» Intertemporal problem of a consumer living for T periods and
endowed with initial wealth a; in period t =1

» Her goal: to allocate the consumption of this wealth over her T
periods of life in order to maximise her lifetime wellbeing

» Consumption is divisible: a continuous decision variable

» Any remaining wealth in period t is productive, generating k(a)
units of wealth to consume in the future

» No outstanding debts are allowed at the end of life

» And any remaining wealth at the end of life is of no value



Formal model

maXx
(e1,...,cT)ECT

s.t

T
Zﬁt—lu(q)

t=1

a1 = k(ar —c)fort=1,..., T
arp1 >0

a1 (€ A) given

» Per-period wellbeing u: increasing in consumption

» Consumption: choice variable, with domain C (here R(J{ or RT,

depending on u)

> Assets is the state variable, with domain A (here R{ or RT)

» k: law of motion for assets, a positive and increasing function in A

k(a; — c¢t) = R(ar — ¢) where R =1+ r is the interest factor



Classical solution

» Objective function is C! (continuously differentiable): interior
optimum satisfies foc

» Classical solution: attack problem directly by solving all its foc’s

» Useful to write model restrictions more compactly by noting that the
law of motion for assets together with the initial condition imply

T

ary1 = RTay — g RT -t
=1

» Therefore, the consumer’s problem for a given a; > 0 is
T

-
max Zﬂtflu(ct) s.t ZRI*tCt < a
=1

(Cl,.u,CT)E((C)T t=1



Classical solution: Euler equation |

» Lagrangian for this problem

L = Zﬂt_lu(ct) - <Z R=t¢, — a1>

t=1 t=1

» With necessary foc's with respect to ¢;, for t =1,..., T:

5t71u/ (Ct) _ Alet

> Putting together two subsequent conditions yields

v (ct) = BRU (cry1) fort=1,....T -1

» These are the Euler equations for this problem



Classical solution: Euler equation Il

v (c) = BRU (ctyq) fort=1,...,T—1

» Euler equation: establishes relationship between consumption in
subsequent periods

» But not the consumption level
» For that we need the budget constraint

» The Kuhn-Tucker conditions do just that



Classical solution: Kuhn-Tucker conditions

» The Kuhn-Tucker conditions for this problem:
T T
A (Z R"t¢, — al> =0, A>0, Z Rl7tc, < &
t=1 t=1

> If u strictly increasing (v’ > 0):

> X > 0: +ve marginal value of relaxing the budget constraint

» Then
ar4+1 — 0 (2)

> Together, the T conditions (??) and (??) determine the T interior
optimal consumption choices



Corner solutions

» Up to here we assumed that the solution is interior
» The Euler conditions allowing for corner solutions are

u'(ct) < BRu'(cet1) for the possibility of ¢; =0
or u'(¢;) > BRuU'(cry1) for the possibility of ¢; = a;

» Typical choices of utility functions are continuously differentiable
and monotonically increasing in R*, with the additional following
property:

lim u(c;) = —oo and  lim u'(¢;) = +
—0t c;—0t

In this case a solution, if it exists, is interior



The cake-eating problem

Simple example: CRRA utility



CRRA utility

» A convenient and popular specification of the utility function (v > 0)
ct=

u(c)
—1 - - . . .
~~1 is the elasticity of intertemporal substitution

> It is generally accepted that v > 1, in which case, for c € R

u(c) <0, limcou(c)=—o00, limeyioou(c)=0
u'(c) >0, limeot/'(c) =400, limesioot/(c)=0



CRRA utility: solution |

» The problem is

T Cl—'y T
t—1 ~t 1—t
max Bt —— s.t R < &
(Cla"wCT)e(RJr)T tZ:; 1 - ’7 tz:;
» Euler equations:
— — _1
Ci.*’y = BRCH:K = G = (BR) Tcpy fort=1,...,T—1

» By successive substitution:

t—1

¢ = (BR) 7 a



CRRA utility: solution Il

» The budget constraint and optimality condition imply

a = Z R t¢
t=1,..,T
1
= Z (IB’Y
t=1,...,
t=1,..,T
» The solution for t =1,..., T:
1—« d
aq = ——a an
1 o7t

1oy E—1
*RT)

1 1
where o = 7R~

l—« =1
+

= —=(BR) 7 a

11—«



CRRA utility: solution Il

In general, if the optimisation problem starts at time t as follows

T ol T
max Z [ A a— s.t Z R ¢, < a,
(Corernrer) E(RF)T—042 1—~ -
T=t T=t
the solution for ¢; is
11—«
C: =

1_or -t

This is the consumption function, a linear function of assets if utility is
CRRA



CRRA utility: consumption over the life-cycle

BR determines the profile of the solution: ¢; = (6R) = ap
g.,
&
% EY 40 50 60
age
\ =a% —-——- =25% ——— =1%

B =1.025"" and initial assets are azo = 1.



The cake-eating problem

Existence and uniqueness of solution



When can the existence of the optimum be guaranteed?

» Feasibility set: space of choices satisfying the problem constraints

CI:T(QI) = {(C1, Cey CT) S (CT : Z Rl_tCt < a1}

where typically C = R*

» Apply Weierstrass theorem to ensure existence of solution:

Let u: C — R be continuous and suppose C1.7(a;) C CT is
non-empty and compact. Then the consumer'’s problem

max Z B u(cr)
(c1,...,c7)€C1T(21) =1 . T

has a solution in Cy.7(a1) for any a; € A.



When is the optimum interior and unique?

» Typical consumer’s problem: u is strictly increasing, concave and C!

» Then the sum of per-period utilities is also strictly increasing,
concave and C*

» Also assume that the feasibility set C1.7(a1) is non-empty and
compact

» Under these conditions the solution is unique
» It is also interior (T > 1)

» But if we had a convex u: corner solution



Dynamic programming

The Bellman equation



Dynamic programming

» Dynamic programming splits the big problem into smaller problems
that are of similar structure and easier to solve

» The trick is to find the limited set of variables that completely
describe the decision problem in each period — the state

» Then the solution of these problems over a small state-space
determines a set of policy functions: optimal consumption is h;(a;)
fort=1,...T

» DP returns a general solution: it solves the entire family of problems
of the same type

» The specific solution to our problem can be constructed recursively,
by iterating

G = ht(at)

at+1 - R(at - Ct)

starting from the given a;



Problem specification |

» In our problem, the level of assets at the start of period t
summarises all the information needed to solve for consumption

» The feasibility set at time t for the sequence of present and future
consumption choices given a; € A is

Cet(ar) = {(ct,...,cr)eCT—t. Z R™7¢, < a

T=t,..., T

> If consumption must be positive in every period, then C = A = R*
and the feasibility set at time t is

{Ct>0:at+1:R(at7Ct)>0} |ft<T

Ce(ar) =
{Ct>0:at+1:R(at_Ct)20} ift=T



Problem specification |l

» The problem of a consumer with assets a; at time t is

Vi(a:) = max Z BT u(cr)

(ctseereT)ECET at)

» V; is the value function

> Indirect lifetime utility: measures max utility that assets a; can
deliver

» It is a function of a; alone

> Dependence on a; arises through the feasibility set



Problem specification Il

The value function can be defined recursively

Vi(ar)

max E B tu(c
(cerecr)€CuT(ar) _ * (cr)
T=t,..., T

T
max < u(c,) + 3 max By (c,)
c:€Ce(ar) (cts1,ee567)ECH 1:T(A141) —ttl
Vira(ars1)

max {u(ct) + Vi1 (Rlar — c])}

Ct Ect(at)



The Bellman equation |

Vi(ar) = o {ulce) + BVesr (Rlar — )}

» This is a functional equation: recursive formulation

» Breaks the large lifecycle problem in smaller static problems

> Key: memoryless process depends only on the value of state variables
at the time of decision

» Principle of Optimality: if the consumer behaves optimally in the
future, all that matters for the solution at time t is the decision of
how much to consume today

» V,.1 exists (by recursion) but is unknown!



The Bellman equation Il

Often useful to reformulate the problem in terms of savings decisions

» Define the payoff function as

a
f(at,at+1) = U(at — t;\l;l) = U(Ct)

» Then the consumption/savings problem is equivalently specified as

Vi(ar) = max  {f(as, ary1) + BViy1 (aes1)}

arr1€D;(ar)
where the feasibility set at time t (for C = A = R™)
{at+1>0: at—at+1R_1>0,} Ift< T
Dt(at) =

{ac;1>0: ar—aaR7' >0} ift=T



The Bellman equation Il

» The solution is

gt(at) = argmax {f(an at+1) + B Vipa (3t+1)}
at11€D:(ar)

» Exists and is unique under the conditions discussed earlier:

» f real-valued, strictly increasing (decreasing) in the first (second)
argument, concave and C! in both arguments
» D is non-empty and compact

» Under these conditions g is also continuous

» Moreover, V inherits some of the properties of f

» continuity, monotonicity and concavity
> differentiability at points a € A in which the solution is interior



Dynamic programming

Recursive solution



Recursive solution

Vi(ar) = max  {f(as, ars1) + BVira (ar1)}

at11€D¢(ar)

Key insight of dynamic programming: the unknown V can be pinned
down by backward induction
» This highlights the usefulness of the Bellman equation

» And inspires the numerical strategy to solve models with no
closed-form solution



Last period

Solution strategy: start from period T and move backwards as the future
value function, the continuation value, is determined

» The problem in the last period is

Vr(ar) = max  {f(ar,ar41)}
ar+1€Dr(ar)

where Dr(ar) = [0, Rar]
» The solution is (for any ar € A)

gr(ar) = 0 with value Vy(ar) = f(ar,0) = u(ar)



Last but one period

» Since Vr(ar) = u(ar), the problem at T — 1 is known

Vr_i(ar-1) = max {f(ar-1,ar) + BVr(ar)}

ar€Dr_1(ar—1)

» Under differentiability of the maximising function, an interior
optimum satisfies the foc’s (for any ar_; € A

gr_1(ar_1) is the solution to £ (ar_1,ar) + BVi(ar) =0

» So the value function at T — 1 is (for each ar_; € A)

Vr_i(ar-1) = f(ar—1,gr-1(ar-1)) + 8Vr(gr-1(ar-1))



Period t

Move backwards in similar steps

» Once the value function for period t + 1 has been determined, solve
(for each a; € A)

gi(ar) = argmax {f(as, ar11) + BVir1(aei1)}
ary1€D:(ar)

» The solution can then be used to build V; (for each a; € A):

Vi(ar) = f(ar, gt(ar)) + BViya (gt(ar))



Solution to our specific problem

» The specific problem we are interested in is fully characterised by the
initial condition, a;

» To construct the solution, we use the policy functions g; and iterate,
fort=1,..., T

Cr = ar — Rflgt(at) and a1 = gi(ar)



Dynamic programming

Optimality conditions



Optimality conditions |

» The typical problem in economics assumes that the utility function is
strictly increasing, concave and continuously differentiable (in
consumption), and that the feasibility space is closed and bounded

» Under these conditions the solution is unique and V is differentiable

» And the first order conditions are necessary and sufficient for an
interior optimum



Optimality conditions I

» The problem at time t is

Vi(ar) = max ){f(at, atr1) + BVit1 (ae+1)}

art1€D¢(ar
» The foc at time t is

f2 (a, arr1) + /Bthﬂ (ac41) = 0

> Use the envelope condition to workout V. (a11)

63t + 1
8315

= f(ar,a1) + [fz (a¢, as+1) + ,BVtIH (at+1)]

dar+1
+ BV (ars1) (;7‘%
aat —+ 1

831*

Vi(a:) = f(ar,ae1) + 2 (ar, ary1)

foc at t

= f1 (at,at+1) =4 (hf(af))



Optimality conditions Ill

Put the foc together with the envelope condition to get the Euler

equation
f2 (at, at1) + Bfi(ars1,ar42) = 0
& U(c) = BRU'(ces1)
since: u(cy) = f(ar,aer1) = u(ar — 222)

and so: fi (ar, ar11) = U'(ct) and f (ar, ar11) = —”,S?Cf)




Dynamic programming

Numerical solution



Numerical solution

» The cake-eating problem is easy to solve on the paper

» But it is an instructive example to play with numerically

> Sophisticated enough to require most of the numerical tricks used in
more complicated models

> But easy enough to keep the discussion simple
» Can be used to demonstrate the comparative advantages of various
numerical procedures since the solution is known!



Computers do not known infinity

1. Model specification

» CRRA utility is great to ensure that consumers avoid getting close to
zero consumption

» The same does not hold for computational solutions: extreme values
cause the routine to crash
= Bound solution space to its relevant parts to avoid problems

2. Discretise state space

> Select grid in assets A= {a'}i—1,.. .,
» Solve problem only for points in the grid
» Approximate unknown functions numerically outside the grid



Algorithm for recursive solution

o e

Parameterise model and select grid in assets: {a'},_,
Choose stopping criterion € > 0

Store V7 (a') =0foralli=1,...,n,

Loop over t backwards: t=T,...,1

Foreachi=1,...,n,

4.1 Compute gf = arg MaX,,., D, (a) {u (2" — 22) + BVia (at+1)}

4.2 Compute V} = u (ai — %) + BVii1 (g!)
4.3 Approximate V; over its entire domain to get V: and store it

This step is optional: can be done directly in step 4.1 or skipped
altogether, depending on the solution method - more to follow



Solution at each point

> Step 4.1 is the (computationally) heavy part of the solution
algorithm

» There are two main ways of finding the optimum g/
» Use a search algorithm to look for the value of savings a;+1 that

maximise V¢(a¢)
This is the procedure implicit in the algorithm we presented

> Or look for the root of the Euler equation v'(c:) = SRV’ (at+1)
vspace0.1lcm We will discuss this solution later



Solution at each point using the foc: a trick |

» Useful trick under CRRA: speed up and improve accuracy of solution

» The Euler equation is

— — —1
¢ ' = BRV{4(arr1) & <o = (BR) Y [th+1(at+1)] /

> But since (envelope condition)

Vt/+1(at+1) = ul(ht+1(at+1)) = <3t+1 -

gtr1(art1) -
R

» The solution is the level of savings a;;; that satisfies

ar — 3%1 = (BR) M [am _ gﬂlgﬂl)}
——

Ct

Ct+1



Solution at each point using the foc: a trick Il

a - a -
at — t,;l = (BR) Y ar+1 — w = (6/?) Y ht+1(at+1)
N—

Ct

Ct+1

» This is a linear (in a;y1) equation in non-stochastic problems
» More generally, the policy function h is typically not very non-linear

» So all we need is to:

1. Store h(a') after solving consumers problem at time ¢
2. “Connect the points” to approximate function h and obtain the
solution over the entire domain: Linear Interpolation

> Notice that V is not needed to solve the problem using the foc



Approximating the value function

» A bad idea: to rely on simple (linear) approximations of V to solve
model as V can be highly non-linear

» But one may still need the value function, even when relying on the
foc for the solution:
> to study the value of different policy interventions
> or attitudes towards risk once uncertainty is considered

» Two alternatives to approximate V

> More reliable approximation method: shape-preserving splines
» Reduce non-linearity by applying selected transformation, then
approximate by linear interpolation
For a CRRA utility:

We(ar) = [(1— ) Vi(a)] =



Practical session 1



Income process



Add income process

» Just adding an income process does not much change the lifecycle
problem

» But raises interesting issues of how to deal with the credit markets
» Suppose the consumer has a stream of income over time
ye = w(a, t)

» For the moment, suppose {y;}:=1,... 7 is known by the consumer
from time t =1



Income process

Credit Markets



Functioning credit markets |

> If credit markets are complete, the consumer may borrow to bring
income forward

> Assets at time t can be negative

» Borrowing limited by ability to repay

» Domain of possible values of assets changes over time, depending on
time left to repay debts and terminal condition

» The problem of the consumer at time t for assets a;

Vi(ae,ye) = max {f(ar, yr, ae1) + BVera(aesa, yera)}
at+1
s.t. dt+1 — R(at + Y — Ct)

Yer1 = w(ag, t+1)
¢t >0 and ary; >0



Functioning credit markets Il

» The feasibility space at time t < T is

T
a —T
Dt(at7yt) = dt+1 - adt +yt — ;1 > 07 at+1 + Z R(t+1) Yr >0
N e’ T=t+1
ct
T
- (-3 R R )
T=t+1

> At time T

Dr(ar,yr) = [0, R(ar +y71))



Functioning credit markets Il

» The compact specification of the problem is

Vi(at,yt) = . er%aé y){f(an)/h ar1) + BViy1 (aes1, yer1)}
t+1 t tyJt
s.t. yr = w(a, t) forallt

» Foc is Euler equation u'(¢;) = BRu'(cr41)
» The state space is now 2-dimensional

> Although it is easy to reduce to 1 dimension in this case by noting
that a1 = R(ar + w(as, t) — )

» Computation-wise, reducing the dimensionality of the state space is
the most time-saving procedure



Simple example: CRRA utility
t—1
» With CRRA utility the Euler equation implies ¢; = (6R) ™
» The value of total lifetime wealth at t =1 is
W=a+ > Ry
t=1,...,T

» Total consumption is

c= Y Ra= > (BRY) o

t=1,..,T t=1,..,T

» Yielding, fort=1,..., T

-1 1 — 11—y
Ct = (ﬁR) Rl ﬁW where CE:B'YR Rl



CRRA utility: profiles for a patient consumer
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CRRA utility: introducing retirement
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r=4% and 8 = 1.025"". Initial assets are a; = 1. Income profiles as

plotted.



Credit constraints |

» If credit is rationed, the consumer may be willing to consume more
than she can afford in the short term

» In the absence of credit, the feasibility set is restricted to

ar+1

R

Dt(at,yt) = {at+1 .oat +yt - > O, dt+1 Z 0}

» This implies that the consumer’s best choice may be a corner
solution



Credit constraints |l

» The problem of the consumer at time t for assets a; is now

Vt(an}’t) = max {f(an)/n 3t+1) + /BVt+1(3t+1,)’t+1)}
at41
st a1 = R(ar +y: — ct)

Vi1 = w(ag, t+1)
Ct > 0 and de+1 2 0

» There are T inequality restrictions in assets now, so we have T first
order and Kuhn Tucker conditions:

fs”(atayhat«kl)+Bﬂ(at+17yt+17at+2) — )\t o
Margr = 0, A\ >0, agq >0 fort=t=1,...,T—1

ary1 =0 fort=T



Credit constraints Il

The solution is
¢ = min{a;+y:, root of u'(c;) = BRU (cer1)}
or

arr1 = max{0, root of f3(as, yr,aer1) + Bfi(arts, Yet1, aer2) = 0}



Income process

Numerical solution



Solution algorithm

The recursive solution in practice: almost exactly as before

1. Parameterise model and select grids in a;: {a}},_,

2. Choose stopping criterion ¢ > 0

3. Store Vryy (af,,) =0foralli=1,...,n,

4. Loop over t backwards: t=T,...,1
Foreachi=1,... n,

4.1 Compute g/ = argmax {u (ai + w(af, t) — 222) + BVii1 (at+1)}
ar41E€De(al)

4.2 Compute V/ = u (a’; + w(al, t) — %;) + BVes1 (gt’)



Computational solution: additional issues

1. Dimension of state space: reduce to 1 in solution

at+1 = R(at + W(at7 t) — Ct)

2. Positive consumption: may be tricky to ensure with approximated
functions = impose minimum consumption cpi, > 0

3. Functioning credit markets: grid in assets changes over time

> Lower bound at t ensures debt can be repaid and cmin is affordable

a+ >, RTTyr = Y Rcmn
T=t...,T T=t..., T

» Upper bound at t reached if consumes cpis in all periods to t

ar < Rt_lal + Z Rt_T (yT - Cmin)

T=1...,t—1



Practical session 2



Stochastic optimisation



Stochastic problems

» Most interesting problems in economics involve some sort of
uninsurable risk

» The solution to the dynamic problem will depend crucially on

1. how much risk consumers face
2. their attitudes towards risk

» We consider a stochastic income process to formalise uncertainty

» And do so in a parsimonious way, using Markov processes



Stochastic optimisation

Markov processes



Super brief introduction to stochastic Markov processes |

Stochastic process: sequence {y;}:=1,... of random variables/vectors
The Markov property

» Suppose {y:}e=1,2,... is defined on the support Y

» Then {y;} satisfies the Markov property if, for all y € Y

Prob (yer1 =y | Y-, y1) = Prob(yey1 =y | ye) for discrete Y

Prob (yty1 <y | ¥ey.--,y1) = Prob(yes1 <y | yt) for continuous Y



Super brief introduction to stochastic Markov processes ||

» The conditional probabilities are known as the transition function

Q: (Ye, yer1) = Prob (yer1 | yt)

» Time-invariant process: Q; (Vt, Yr+1) = Q (Vr, Ve+1)

> Q:Y x Y —[0,1] is a transition function if Q (y¢,y) is a pdf:
For each y; € Y

Q(yr,y) >0 forallyeyY
and /Q(yr,y) dy =1
Y



Super brief introduction to stochastic Markov processes IlI

» Markov process: stochastic process satisfying the Markov property

» Characterised by 3 objects
» the domain Y
» the transition function @
» the distribution of the initial value y;

» These fully characterise the joint and marginal distributions of y at
all points in time



Super brief introduction to stochastic Markov processes IV

» The unconditional distribution of y; can be obtained iteratively

» Let m;_1 be the pdf of y at time t — 1. Then, if m;_; is known

me(ye) = . Qy, ye)me—1(y) dy
ye

where 7; be the pdf of y at time t
> A Markov process is stationary if m:(y) = 7 (y) = 7(y)

» In this case, 7 is the fixed point in the functional equation

m(ye) = . Q(y, ye)m(y) dy



Stochastic optimisation

lid income process



Memoryless income process with discrete support

> Take a discrete income process y; € Y = {y*,...,y"}

» For a memoryless problem, the transition function equals the
unconditional pdf:

= Prob(ytzyi) = Q(y,y') foreachi=1,...,n

» The consumer's problem is

Vi(ae, ye) = max {f(at,yt, a1)+ B Z Vit (atﬂ,yi) ﬂ-i}

ar+1 €Dt (ar,yt) ey
y

s.t. ye is a rv with pdf 7

» The problem is setup as a Markov process: (a;11, yr+1) depends only
on (at, )



Memoryless income process with continuous support

» The problem is
Vi (at, yt)

= max {f(at,)/n ary1) + ﬁ/ Viii (aea,y) m(y) d)/}
yey

at+1E€D¢(at,yt)

» Feasibility set: savings choices ensuring positive consumption is
affordable even in worst possible scenario

Di(at, yt)

-
a —T
= {at+1 tart+ye — ;1 >0, a1+ E R(Y) Ymin > 0}

T=t+1



Support and feasibility set in practice

> Feasibility set for ari1 is Di(ar, yt)
> Set of possible choices a;11 given current value of state variables
» Computational implementation: optimal savings chosen in D:(a:, y:)

» Support of azy1 is Ay
> Range of all possible values of a;;1, independently of current value of
state variables
» Computational implementation: grid in a;y1 drawn to represent A 1

v

Clearly D¢(a;, yr) € Ayr for all (a;, ye)

» Suppose we bound consumption choices from below: ensure ¢y,
always affordable

» And use bounded support of income is Y = [yYimin, Ymax]



Support and feasibility set in practice: support

» Upper bound of A;,;: maximum savings reached if y; = y.x and
Ct = Cmin in the past

t t

dt+1 < Rtal + Z RT}/max - Z RTCmin
T=1 T=1

1-R'

= UBi1 = Rtal + Rﬁ(ymax - Cmin)

» Lower bound of A;,;: ensures ¢, always affordable in future

T T
at+1+ Z R(H—I)_Tymin 2 Z R(H—l)_TCmin
T=t+1 T=t+1

1— Rth
= LBt+1 = W(Cmin 7ymin)

> So At+1 = [LBt+1,UBt+1]



Support and feasibility set in practice: feasibility set

» Upper bound of D, conditional on (a¢, y;) ensures ¢; > cmin

at + Yyt — ar+1 R~ > Cmin
= UBtH(af,yt) = R(at + Y — Cmin)

» Lower bound of D, equals lower bound of A;1: LB;y1 can always
be reached or otherwise problem has no solution

> So Dt(atvyy) = [LBt+17UBt+1(atayy)]



Memoryless income process: optimality conditions

» Foc at time t: derivative of objective function at time t is zero

oV, R
f:;(an}/t,awl)"rﬁ/ t+(;(at+1 y)ﬂ-(}/) do = 0
yey at+1

» Work out marginal value of a;:

8Vt (at,yt)

OVit1 Oati1
B ———n(y)d

= At |h+
! 3 ﬂ yey aat+1 Oas

= f (ah}’u 3t+1)

=0
» So an interior optimum satisfies

(a0, vo, acs1) + B / fi(acsn,y.ae2)n(y)dy = 0
yeY

& u'(c) = BRE: [U'(ces1)] = O



Stochastic optimisation

lid income process: Numerical solution



Computational algorithm

1. Parameterise model and select grids (A, Y) and compute weights 7/
2. Choose stopping criterion ¢ > 0
3. Store EVryy (al,y) =0foralli=1,... n,
4. Loop over t backwards: t=T,...,1
Loopoveri=1,...,n,

4.1 Compute for j=1,...,n,

i a
gl = argmax{u(at—i—yj— ;1) + BEV i1 at“)}
at+1€D

4.2 Compute the continuation value



Practical issues |

> State space is 2-dim: (a,y)
» The income process could have a continuous support: discretise Y
and solve problem in n, x n, points for each t
» Bounds in Y: ensure feasibility and measurability

» Grid in a to account for the many possible future circumstances
» Feasibility amounts to ensure cmin remains affordable
» Imposed on worst case scenario of future income so it holds under all
possible future circumstances

» Continuation value: E;V; 4
» Measured at t conditional on existing information
» Only argument in E;Viyy is aey1
» Choice of grid in y to support integration
> Need set of weights to calculate integral numerically, 7/



Practical issues Il

We choose to store EV instead of V

» More efficient: saves computations in solution

» Can be used to recover V; at (a,y)

V(o) =u (o y - EC2D) 4 5V (Blay)

> If had stored V4, step 4.1 would compute (for each (7, J, t))

gl = argmax{u(aﬁ—y - :1)+62Vt+1 (arr1,y") I}

ar1€DY

involving n, interpolations for each a,|; called by maximisation
routine



Numerical integration |

> Suppose we want to compute fab f(y)m,(y)dy where
» 7, is the pdf of y ‘
» the value of f is known in points y' in grid Y

» The numerical integral is a simple weighted average of f over a
discrete selected grid

/abf(y )y (y Zf(y

» The simplest procedure (Tauchen)

. Divide the distribution of y into n, equal-probability intervals, Y’
. Compute the grid points y' = E(y | Y')

1

2

3. The weights are uniform: w' = n,!
4

. Then fY f(y)my(y)dy ~ n, Sy N



Numerical integration |

Alternative procedures

> Gaussian quadrature: Gaussian nodes and weights {(y’, w')} are
selected to make exact the numerical integral of polynomials of
degree 2n, + 1 or less

» Good option if f can be closely approximated by a polynomial
» Weights and nodes depend on the distribution of y: Gauss-Laguerre
for normal, Gauss-Hermite for log-normal, ...

> Monte-Carlo simulations: draw {y’} randomly from its distribution
and compute simple average of f(y) at random points



Practical issues Il

» The algorithm we specified is implicitly designed to use with a search
method

» But again it can be more efficient and accurate to use foc



Find root of Euler equation: CRRA utility

» At each (al,y/, t) find root (ary1) of
. . a —~
U’ (32 +_yJ - %1) — 5Rdvt+1(at+1) =0

» Inverse marginal utility reduces non-linearity in marginal value

» Can solve Euler equation in its quasi-linearised version

. . a 11—
(ah+y = Z2) = (BR) 7 dVesa(an) = 0

where the quasi-linear expected marginal value (IdV) is stored

ny

i N7 ]
i - i i i _ & '
Vi, = (u)7! [dV/,] = Z <at+1 +y - ?) !

Jj=1

1



Stochastic optimisation

Autocorrelated income process



Autocorrelated income process

» More interesting model of income: AR(1) process
> \We assume
Iny:=a+plny:—1+ e
» y, is a Markov process: Markov structure of dynamic problem not
compromised
> Stationarity requires that unconditional pdf of y is time-invariant

» Stationarity under log-normality requires |p| < 1 and, for all ¢
> E(Iny:) =a(l—p)~*
> Var(lny:) =02 (1 — pz)_l



Autocorrelated income process: model

The consumption-savings problem is (D;(a, y) as defined earlier)
Vt(ah_)/t)

= max {f (at,yt, at+1) + ,6/ Vt+1 (at“,y{) exp {Oé + e}) dFe(e)}

a1 €D

» Generally need to bound domain of e to ensure feasibility and
measurability at all points

» The Euler equation is

u'(ct) = BRE: [u'(ct11) | y2)



Simple example |

Not most appealing 2-period model... but can be solved explicitly

> Period 1: consumer endowed with (ay, y1), consumes ¢

» Period 2:
> a;=R(a1+y1 — )
> y2=py1te
> o2 =R(a1+y1— )+ (py1 + &)

where e, is a rv of mean zero, unknown from period 1 and unrelated
to other model variables

» Utility function: u(c) = dp + d1¢ + dpc?

» Consumers problem:

max {u(c) + BE1u[R(a1 + y1 — a1) + (oy1 + @)]}



Simple example I

» The Euler equation is (with SR = 1)

01 +dc = 01+ 6E[R(aL+y1—a)+ (o + e)]
01 + 0 [R(al +y1— C1) +,0}/1]

» With solution

R p+R
1R T T RN

aq =
» If p = 0: income shocks do not persist and consumption responds
less to shocks

» If p =1: permanent income shocks and consumption responds fully
to shocks



Solution algorithm

1. Parameterise model and select grids (A, Y) and compute weights Q'
2. Choose stopping criterion ¢ > 0
3. Store EVryq (al,y,y) =0foralli=1,...,n,and j=1,...,n,
4. Loop over t backwards: t=T,...,1
Loopoveri=1,...,n,

4.1 Compute for j=1,...,n,

gl = arg max{u (ai +y - at“) + BEVei (af+1vyj)}

a1 E‘D;f

4.2 Compute the continuation value at point (a:, y:—1) = (at, y')

EV/ = Z [u (aH—yj - %) + BEVen (g{‘jvyj)} Q'

Jj=1,..., ny



Practical issues

» The continuation value at time t is E [Viy1(aeq1, Yer1) | yel. @
function of (a1, yt)

» If the foc were to be used in the solution, the linearised expected
marginal value in time t Euler equation would also be a function of
(at+1,ye)

> Persistency in y; implies that the integration weights @ need to be
conditional on the past realisation of y



Transition function: simple procedure to determine Q'

» Consider a stationary Markov process

Xt = a+pxe_1+e where e~ N(0,0°%)

» A simple procedure to compute @’
1. Divide the domain X in n, intervals {X' = [x', x|}
2. Compute the grid points x' = E(x' | x' € X")
3. Then

@} = Prob(xteXi\Xt,1:><j)
= Prob(5’§a+pr+et§7')

= Prob(gi—a—pxjﬁetgf—a—pxj)

Y — v — ol N |
_ ¢<x o px)_d)(g a px>
o o



Practical session 3



Infinite horizon

The problem



Consumption-savings with infinite horizon

» Often useful to consider dynamic problems in infinite horizon

» Short time periods
» End period very far away
» End period uncertain and not becoming more likely over time

» Inherits many of the features of finite horizon problem but
conceptually more complex

» Markov structure of problem is key: cannot deal with dependencies
on infinite past

> Stationarity (at least in limit) is also crucial: dimensionality problem,
and possibly measurement problems as well



The problem at time t

This is
oo
Vilan,y) = Ee| max > B7'f(ar,yr,ar41) | ae v
Drioo(at,y1) —

» The horizon is always infinite, whichever t

> Conditional on (a,y), the feasibility set is always the same, Doo(a, y)
» Conditional on (a,y), the problem is always the same, V/(a,y)

» Given stationarity the infinite horizon problem is time-invariant

» Hence can drop time indexes



Recursive form |

The functional equation

)

max ¢ f(a,y,a’) + BE,, (E LJR?X > BF(ae ye, aci)

a’€D(a,y) ') s

V(a,y) = E [Dg?;fy);ﬂtf(at,}/ﬁawl)

)

Expected value today of V/ tomorrow, conditional on (a,y)

= max (o) + By [V (39}

a’€D(a,y




Recursive form |l

V(ay) =  max <(f(aya)+BE,,[V(a,y)
a’e€D(a,y) [ ———

Jy V(@,y")Q(y,y")dy’

» This is the Bellman equation
» The solution is a fixed point V of this functional equation
» Key to the specification: stationarity of the Markov process



Feasibility set

» Determined by a set of conditions

a = R(a+y—c)
Iny’ = a+plny +¢€
e ~ N (0,02)

Inyo ~ N(MlanlQr\y)
(20,y0) € AxY

a bounding condition

> Stationarity requires

o N

Hiny = 1 _ and Ohy = 2



Bounding condition

» Typical assumption is that transversality conditions is satisfied

lim 5tE 8f(3t,}’t7 a1:+1)a

t—o0 8at t

» This is similar to the Kuhn-Tucker conditions
» In the limit, either the present marginal value of assets is 0 or the
agent consumes all her wealth
» Ensures that consumer cannot borrow too much: present value of
assets in far future is zero



Infinite horizon

Existence and uniqueness of solution



Contraction Mapping result |

» C(X) is space of continuous functions with support X
> T :C(X)— C(X)is a transformation (mapping): Tw(x) = v(x)

» T satisfying Blackwell sufficient conditions is a contraction mapping

Monotonicity if v,w € C(X) and v(x) < w(x) for all x € X, then
Tv(x) < Tw(x)

Discounting there is 5 € (0,1) such that
T(v+ k)(x) < Tv(x) + Bk for all k > 0, where
(v K)(x) = vi(x) + k



Contraction Mapping result Il

» Fixed point of T is a function v : T(v(x)) = v(x)

» Contraction Mapping Theorem

If T is a contraction mapping with modulus 3, then

1. T has exactly 1 fixed point
2. Fixed point can be reached iteratively from any vo € C(X)

» Bellman equation defines a contraction mapping with modulus 3

ey = mex {fayd)+s [ vid )00y |

a’€D(a,y)



Existence and uniqueness result

The dynamic optimisation problem is

Ve = mex ()t [ vEyIery e |

a’eD(a,y)

> 3€(0,1);
» f: real-valued, continuous, strictly concave in a and bounded;
» y. Markov process in the compact set Y ;
» D(a,y): non-empty, compact and convex.
Then:
1. there exists a unique function V that solves this problem;
2. Vis continuous and strictly concave in a;
3. g(a,y) exists and is a (unique) continuous, single-valued function.



Other properties of the problem

Other properties of f are transferred to V through the mapping T:
1. falso Ctin (a,d) € int(A)* and g(a,y) € int(D(a,y))
= VisC'in aand Vi(a,y) = fi(a,y,g(a,y))
2. f also strictly increasing in a and D(a,y) > D(a’,y) for a > a

= V is strictly increasing in a

3. 2 also true for y if f and D(a,y) are strictly increasing in y



Optimality conditions for interior solution

» Euler equation under the continuous differentiability conditions

f(ay, a’)+5/ f(a',y' g(@,y)Qy.y)dy’ = 0
Y
& f(a,y,d)+BEy,, A,y g(d,y))] = 0
Or in terms of the utility function

d u(c)
dc

— BRE,, [d u(c’)]

dc’

» Euler and transversality conditions: necessary and sufficient for the
interior optimum a’ = g(a, y)

lim BtE |:8f(atayt7 at+1)at:| = 0

t—o0 aat



Infinite horizon

Simple example



Simple example |

» Consider the problem

V(a) = max{ln(c) + SV(R(a—c))}

» The Euler equation is

1 1
— =B8R
Ct Ct+1

< Cer1 = BRey = (5R)tco

» The transversality condition is

. . Bta; . a
lim B8tu'(c)a; = lim = lim =
t~>ooﬁ ( t) t t— o0 (BR)tCO t—o0 RtCO




Simple example I

Work out the value of a;

ar = R(at—l - Ct—l)

= R(Rlat—2 —ct—2] —¢c1,) - -
t—1

= Rtao—ZRt_TC-,-
7=0
t—1

= R'a—» R"(BR)
7=0

t—1
= R'ag— R'c ZﬂT
7=0

= Rt <30 — Coll_ﬂﬁt>




Simple example Il

> We got a; = R (ao — 0 1;%)

» Replace in transversality condition to yield
at

Rt (30 — C()l_fj;)
lim = lim

t—o0 RtCO t— o0 RtCO
1

5 ¢

= a0 — QQ

» Hence the solution is ¢ = ap(1 — )
> More generally, ¢; = ag(1 — 8)(BR)*



Infinite horizon

Numerical solution



Recursion

V(ay) = S {f(a,y,a')+ BE,, [V (d,y)|a,y]}

» Contraction Mapping Theorem

1. The problem has a unique fixed point V
2. It can be reached iteratively from any starting function Vy

» Value function iteration
1. find optimal savings

gi(ay) = oty {f(a,y,a) + BEyy [Va-1(a',¥")]}
a’eD(a,y

2. compute new value function

Va(a,y) = f(a,y,8n(2,¥)) + BE,, [Va-1(gn(a,¥),¥")]



Solution algorithm: value function iteration

1. Parameterise model and select grids (A, Y) and compute weights @/
2. Choose stopping criterion ¢ > 0

3. Select initial guess EVg (a', /) for all (a',y/) e Ax Y

4. lterate until convergence, forn=1,...

4.1 For all @' in grid A compute
(a) gl = arg max{f (@', y,d) + BEV,_1 (a',yj)} for all y = y/
a’eDi
. Ny S —~ L .
(b) EV) =3 [f (3, gd) +BEV,a (gh,))| @ forall yy =y
j=1
4.2 Check distance between EV,,_; and EV,
> If larger than € then go back to step 4.1
> Else accept solution (gn, Vi) and stop



Practical issues

» Time subscript dropped and loop is now until convergence of V to
fixed point

> Initial guess

» should be C*
» could be EVp = 0: implying consumer saves nothing to next period
> better solution is EVo = u(c)

» Solution using Euler equation: store dV/, a function of (a,y_1)

» Distance in continuation value: max absolute difference
(levels/relative)



Feasibility set

» Transversality condition not practical

lim BtE I:ﬂ.(at7ytaa:f+l)at:| =0

t—o0

» Implication: consumer avoids low assets, where f; arbitrarily large

> — ensure Cpi, always affordable in worst possible scenario

a+ZR_tYmin > ZR_tcm/n < a+ (}/m/n_cmin) >0
t=0

t=0

1-R1
> If present state is (a, y) = optimal savings a’ must lie in interval

1
D(a7y) = |:1—R_1 (}/min - Cmin)a R(a +y - Cmin)



Now for the final practical example!



