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Abstract

We provide a new full-commitment intertemporal collective household model

to estimate resource shares, defined as the fraction of household expenditure

enjoyed by household members. Our model implies nonlinear time-varying

household quantity demand functions that depend on fixed e↵ects.

We provide new econometric results showing identification of a large class

of models that includes our household model. We cover fixed-T panel mod-

els where the response variable is an unknown monotonic function of a linear

latent variable with fixed e↵ects, regressors, and a nonparametric error term.

The function may be weakly monotonic and time-varying, and the fixed e↵ects

are unrestricted. We identify the structural parameters and features of the dis-

tribution of fixed e↵ects. In our household model, these correspond to features

of the distribution of resource shares.

Using Bangladeshi data, we show: women’s resource shares decline with

household budgets; and, half the variation in women’s resource shares is due to

unobserved heterogeneity.
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1 Introduction

Standard poverty and inequality measures, based on per-capita household income or

expenditure, assume that household resources are distributed equally across house-

hold members. These may be misleading if some members—such as women—have

poor access to household resources. We study resource shares, defined as the fraction

of the total expenditure of a household consumed by one of its members. Resource

shares are not directly observable, but are important because unequal resource shares

across household members signal within-household inequality. In this paper, we pro-

vide a new intertemporal collective household model that permits the use of short

panel data to estimate resource shares within households.

Compared to many cross-sectional approaches, resource shares in our model may

be arbitrarily correlated with observed variables, such as the household budget, and

may depend on unobserved household-level heterogeneity, such as unobserved bar-

gaining power shifters. Our household model embeds resource shares inside quantity

demand functions, where they appear as fixed e↵ects. The nonlinear quantity demand

functions in our model are time-varying because quantity demands depend on prices,

and prices are not observed but do vary across the waves of our panel.

We show point-identification of a general class of fixed-T time-varying nonlinear

panel models, which includes our household model. This class has a response variable

equal to a time-varying weakly monotonic transformation function of a linear index

of regressors, fixed e↵ects, and error terms. In contrast, almost all existing results for

this class of models require time-invariant transformation functions. Our theorems

imply novel identification results for time-varying versions of some commonly used

models, e.g., the time-varying ordered logit and multiple-spell GAFT models.

We point-identify regression coe�cients, transformation functions, and the mean

(up to location) and variance of the distribution of fixed e↵ects. The latter two are

of specific relevance to our collective household model.

Ours are the first empirical estimates of a full-commitment collective household

model in a short panel, and we demonstrate the importance of accounting for both ob-

served and unobserved heterogeneity in women’s resource shares. Using a two-period

Bangladeshi panel dataset on household expenditures, we show that less than half

of the variation in women’s resource shares can be explained by observed covariates.

This means that there is much more inequality within households than previously
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thought. We also find that women’s resource shares are negatively correlated with

household budgets, so that women in poorer households have larger resource shares.

This means that women face less economic inequality than would be revealed by

looking at the distribution of their household budgets.

Our micro-economic contribution begins with a new model of an e�cient full-

commitment intertemporal collective (FIC) household that builds on Browning et al.

(2013) and Chiappori and Mazzoco (2017). Collective household models posit that

household behavior is driven by the preferences of the individuals who comprise the

household. In e�cient models, the individuals together reach the Pareto frontier. In

full-commitment intertemporal models, the individuals in the household face uncer-

tainty, and are able to insure each other against risk by making state-contingent bind-

ing commitments over future actions. We show that quantity demand equations in

e�cient FIC household models must in general depend on this initial commitment—a

time-invariant feature of the household.

We then give a parametric model of individual utilities in our FIC household

model that delivers quantity demand equations. We model the demand for food by

adult women in the household. These demand equations are time-varying monotonic

nonlinear functions of a linear index of fixed e↵ects, logged household budgets, and

an error term. Here, the fixed e↵ects have an interpretation: they equal the log of

the resource share of the woman in the household. They may be correlated with

household budgets, and depend on household-level unobserved heterogeneity.

Many strategies to identify resource shares with cross-sectional data require that

they are conditionally independent of the household budget. We relax that restriction,

and find evidence that resource shares exhibit a slight negative conditional dependence

on household budgets.

Our econometric contribution is to provide su�cient conditions for point-identification

in a large class of models, with the outcome Yit given by:

Yit = ht(↵i +Xit� � Uit) (1.1)

for i = 1, . . . , n and time periods t = 1, . . . , T (with T � 2), where ht is an unknown

time-varying monotonic function, ↵i are fixed e↵ects, Xit is a vector of regressors with

coe�cients �, and Uit is an error term drawn from a stationary distribution.

Our setting has the following four features:

2



1. a fixed-T setting—in fact T = 2 is su�cient for our results;

2. the monotonic transformation function ht can be time-varying and weakly

monotonic;

3. the functions ht, and the distribution of the error term Uit, may be nonpara-

metric;

4. and, the fixed e↵ects ↵i are unrestricted.

We provide su�cient conditions for the identification of ht and � for two cases, where

the error term Uit is distributed as logistic and where it follows an unknown distribu-

tion. The panel model literature is very large, with many papers showing identifica-

tion of � (and sometimes ht) in models with two or three of these features. However,

ours is the first paper to cover all four features. An immediate implication of our work

is that extensions to time-varying and/or nonparametric counterparts of well-known

models, such as ordered choice, censored regression, and duration modeling, can now

be shown to be identified. And, of course, our collective household model is in the

class and therefore identified.

For the case where ht is strictly monotonic we provide additional results, identify-

ing the conditional mean (up to location) and conditional variance of the distribution

of fixed e↵ects. This relates directly to our microeconomic model, because in that

model fixed e↵ects have a clear economic interpretation: they are logged resource

shares. To the best of our knowledge, there are no results in the fixed-T , fixed-e↵ects,

nonlinear panel literature that cover this aspect of model identification.

In particular, we show identification of the response of the conditional mean of

↵i to observed covariates, and provide additional su�cient conditions for the iden-

tification of the conditional variance of ↵i. The former corresponds to identification

of coe�cients in the regression of logged resource shares on covariates; the latter

corresponds to identification of inequality in resource shares.

Section 2 provides a review of the related literature. In Sections 3 and 4, we

provide our main identification results. Section 5 introduces our collective household

model, which uses data described in Section 6. We present estimates of women’s

resource shares in Section 7. All proofs, descriptive statistics for the data, additional

robustness results and estimation details are in the Appendix.
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2 Existing Literature

Following the terminology in Abrevaya (1999), we refer to the model in this paper as

the fixed-e↵ects linear transformation (FELT) model. Note that we can express the

outcome equation in (1.1) using the latent variable notation

Yit = ht(Y
⇤
it ) = ht (↵i +Xit� � Uit) , (2.1)

where Y ⇤
it is a latent variable, ↵i are fixed e↵ects and Uit are stationary errors.1

Because ht can be weakly monotonic, FELT includes many previously studied

discrete choice models, such as binary choice, ordered choice and censored models.

When ht is strictly monotonic, it covers other previously studied models, such as

duration and Box-Cox regression models. As described below, our results provide

identification of some extensions of these models that were not previously shown to

be identified. Since ht can be time-varying, our framework generalizes typical discrete-

and continuous-choice models where the transformation function ht is fixed over time.

Our approach builds on classic results in binary choice, and extends those results

to the entire FELT class. FELT nests binary choice models with time e↵ects as

a special case when ht(Y ⇤
it ) = 1 {Y ⇤

it � �t}. In these models, the parameter � is

known to be identified for Uit parametric or nonparametric, see, e.g., Rasch (1960),

Chamberlain (1980), Manski (1987), Magnac (2004), and Chamberlain (2010). We

use the insights of Chamberlain (1980) and Manski (1987) about binary choice models

where the error Uit is logistic or nonparametric, respectively, to show identification of

all models nested in FELT.

Our theoretical work connects two sets of classic results with two new contribu-

tions. The first established result we invoke comes from the cross-sectional work of

Doksum and Gasko (1990) and Chen (2002) that shows that transformation models

can in general be binarized into a set of related binary choice models. The second

established result we invoke comes from Chamberlain (1980) and Manski (1987) who

show that fixed e↵ects binary choice models are identified.

We begin by showing that we can binarize in a panel data setting, even if the

transformation functions ht vary with time. Given the results of Chamberlain (1980)

1This setting excludes some important types of models: dynamic models (e.g. Honoré and
Kyriazidou (2000), Aguirregabiria et al. (ming), Khan et al. (2020)); and models of multinomial
choice (e.g., Shi et al. (2018)).

4



and Manski (1987), each of these binary choice models is identified, yielding the

(over)identification of the regression coe�cient � in the FELT model. Our first con-

tribution is to show that we can re-assemble the identified binarized models to obtain

identification of the transformation functions ht in the FELT model. Our second

contribution is specific to the case where ht is strictly monotonic. Here, we derive

su�cient conditions for the identification of the conditional variance of fixed e↵ects,

and for the response of the conditional mean of fixed e↵ects to observed covariates.

2.1 Fixed-T Nonlinear Panel Models with Fixed E↵ects

The literature on panel data methods is vast. There are excellent reviews of the litera-

ture, e.g., Arellano and Honoré (2001), Arellano (2003), and Arellano and Bonhomme

(2011). Despite the vastness of this literature, we are not aware of any paper that

delivers all four features discussed above, demanded by our empirical application.

We outline connections to the literature in the context of our list of four model fea-

tures. Below, we highlight the key di↵erences between our approach and approaches

in the literature that lack one or more of our key features.

Feature 1: We show identification in fixed-T panel models. The incidental

parameter problem occurs in fixed-e↵ect panel models with a finite number of time

periods, see Neyman and Scott (1948). Essentially, the problem arises from the

fact that the n fixed e↵ects ↵i cannot be consistently estimated if T does not tend

to infinity. Thus, identification of the parameters common across individuals must

be shown in a context where the incidental parameters ↵i cannot be identified or

consistently estimated.

Ours is a fixed-T approach, with n ! 1 and works even if T = 2. A large

literature analyzes the behavior of fixed e↵ects procedures under the alternative as-

sumption that the number of time periods goes to infinity, e.g., Hahn and Newey

(2004), Arellano and Hahn (2007), Arellano and Bonhomme (2009), Fernández-Val

(2009), Fernández-Val and Weidner (2016), and Chernozhukov et al. (2018). In this

setting, it is generally possible to identify each fixed e↵ect, and consequently, the

distribution of fixed e↵ects. In our model, we show identification of specific moments

of this distribution even though the number of time periods is fixed.

Feature 2: We allow weakly monotonic time-varying transformation

functions ht. Abrevaya (1999) provides a consistent estimator of � (the “leapfrog”
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estimator) in the FELT model under the restriction that the transformation func-

tions are strictly monotonic.2 However, because he di↵erences out the transformation

functions ht, his focus does not extend to their identification. Athey and Imbens

(2006) propose a “changes in changes” estimator, which is a generalization of the

linear di↵erences-in-di↵erences estimator, in both a cross-sectional and a panel data

setting. Their panel data fixed-e↵ects setting is a potential outcomes analog to our

model with strictly monotonic transformations. They show identification of the aver-

age treatment e↵ect, but not identification of ht or the distribution of ↵i. In compari-

son, we cover the weakly monotone case, and identify the transformation function ht.

In the strictly monotone case, we additionally identify moments of the distribution

of fixed e↵ects ↵i.

Abrevaya (2000) considers a model that allows for weak monotonicity but restricts

the transformation functions to be time-invariant (and allows for nonseparable errors).

He provides a consistent estimator for � only.3 A literature on duration models also

considers time-invariant transformation functions that are weakly monotonic due to

censoring, e.g., Lee (2008), Khan and Tamer (2007), Chen (2010a,b); Chen and Zhou

(2012); Chen (2012), and Chen and Zhou (2012); we review this below.

A more recent literature has focused on identification issues in a class of panel

models with potentially non-monotonic but time-invariant structural functions (or

strong assumptions on how those functions vary over time), e.g., Hoderlein and White

(2012), Chernozhukov et al. (2013), Chernozhukov et al. (2015). These papers focus

on (partial) identification of partial e↵ects. But, because they don’t impose mono-

tonicity, these approaches preclude identification of the structural function(s) or of

the distribution of fixed e↵ects.

Feature 3: We allow nonparametric transformation functions and non-

parametric errors. Bonhomme (2012) proposes a general-purpose likelihood-based

approach to obtain identification for models with parametric ht and parametric Uit,

even allowing for dynamics. These results exploit the fact that a likelihood function

can be constructed for such models and show identification in the presence of fixed

2Chen (2010c) in Remark 6 discusses a version of Abrevaya (1999) that allows for some weak
monotonicity due to censoring. He focuses on � and does not discuss identification of ht, although
his Remark 1 sketches an approach for estimation of ht = h for all t.

3Chernozhukov et al. (2018) uses a distribution regression technique that is closely related to our
binarization approach, and consequently accommodates weakly monotonic transformation functions.
However, theirs is a large-T setting.
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e↵ects in a finite-T setting. (Earlier work for the same setting by Lancaster (2002)

requires T ! 1, sacrificing feature 1.) Our model requires strictly exogenous regres-

sors, precluding many dynamic structures. But, our Theorems 1 and 2 apply even

when ht is nonparametric, Uit is nonparametric, or both are nonparametric.

The setting with parametric transformation functions and parametric errors cov-

ers many models previously shown to be identified, including the time-invariant

fixed-e↵ect panel versions of: binary choice (e.g., Rasch (1960), Chamberlain (1980),

Magnac (2004), and Chamberlain (2010)); the linear regression model with normal

errors; and the ordered logit model (e.g., Das and van Soest (1999); Baetschmann

et al. (2015); Muris (2017)). Application of our results immediately shows identifica-

tion of the time-varying versions of these models. This result is novel for the ordered

logit model, where our results imply identification of time-varying thresholds.

Parametric transformation models with nonparametric errors are widely studied,

starting with Manski (1987) for the binary choice fixed e↵ects model. (Aristodemou

(ming) provides partial identification results for ordered choice with nonparametric

errors.) Parametric panel data censored regression models also fit into our framework,

and were studied intensively starting with Honoré (1992) (e.g., Charlier et al. (2000),

Honoré and Kyriazidou (2000), Chen (2012)). These papers show identification of

the regression coe�cient � for the linear model with time-invariant censoring and

nonparametric errors. In this context, our results show identification of models that

were not previously known to be identified. In particular, the model is identified even

if the transformation function is nonparametric (as opposed to linear or Box-Cox)

and time-varying and/or where the censoring cuto↵ is time-varying.4

Duration models can be recast as transformation models like ours, with non-

parametric transformation functions (see Ridder (1990)). Consequently, the large

literature on identification of duration models is related to our work. A very common

feature in this literature is the use of error terms following the type 1 extreme value

distribution (EV1).

Consider the multiple-spell mixed proportional hazards (MPH) model with spell-

4Many papers in the literature on censored regression have focused on endogeneity. For example,
Honoré and Hu (2004) allow for endogenous covariates, and Khan et al. (2016) study the case of
endogenous censoring cuto↵s. Our results do not cover the case of endogenous regressors or cuto↵s.
Horowitz and Lee (2004) and Lee (2008) consider dependent censoring, where the censoring cuto↵
depends on observed covariates and the error term follows a parametric distribution. We do not
consider dependent censoring.
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specific baseline hazard, analyzed in Honoré (1993).5 This model can be obtained from

FELT by letting (i) h�1
t (v) = log

�R v

0 �0t (u) du
 
, where �0t is the baseline hazard for

spell t, (ii) ↵i and Uit are independent across t, and (iii) Uit is independent of Xi and

distributed as EV1. Honoré (1993) derives su�cient conditions for the identification

of this model (Lee (2008) provides consistent estimators under other parametric error

distributions). Our theorems immediately provide the novel result that this model is

identified when the error terms are drawn from a nonparametric distribution.

Consider the single-spell generalized accelerated failure time (GAFT) model intro-

duced by Ridder (1990) (see also van den Berg (2001)) that has non EV1 errors, and

is consistent with a duration model. Just like the MPH model, it can be extended to a

multiple-spell setting (e.g., Evdokimov (2011)). Abrevaya (1999) shows that the com-

mon parameter vector � in the multiple-spell GAFT model is consistently estimated.

However, he does not show identification of the transformation function ht, which

can be seen as dual to identification of the spell-specific baseline hazard function.6

Evdokimov (2011) considers identification of a related version of the multiple-spell

GAFT with spell-specific baseline hazard, but he requires continuity of ↵i and at least

3 spells (T � 3). Our results show identification of both � and ht in the multiple-spell

GAFT model, imposing no restrictions on ↵i and requiring just 2 spells (T = 2).

Feature 4: We allow for unrestricted fixed e↵ects. This contrasts with

identification strategies based on special regressors and with the literature on the

identification of correlated random e↵ects models. Special regressor approaches (see

the review in Lewbel (2014)) have identifying power in transformation models with

fixed e↵ects. They require the availability of a continuous variable that is independent

of the fixed e↵ects. With such a variable, one can show identification of transformation

models in the cross-sectional case (Chiappori et al. (2015)) and in the panel data case,

e.g., Honoré and Lewbel (2002), Ai and Gan (2010), Lewbel and Yang (2016), Chen

et al. (2019). Our results do not invoke a special regressor. Further, we are not

aware of any special regressor-based papers that identify time-varying transformation

5Horowitz and Lee (2004) show identification of this model under the restriction that the baseline
hazard is the same for all spells, analogous to time-invariant ht. Chen (2010b) considers the same
model, but relaxes the restriction that errors are type 1 EV, but shows identification of only the
common parameter vector �.

6Khan and Tamer (2007) establish consistency of an estimator of the regression coe�cient in
GAFT under the restriction that the baseline hazard is the same for all spells, analogous to time-
invariant ht.

8



functions or the distribution of fixed e↵ects.7

A related literature considers restrictions on the joint distribution of (↵i, Xi1, ..., XiT ).

For example, Altonji and Matzkin (2005) impose exchangeability on this joint distri-

bution, and Bester and Hansen (2009) restricts the dependence of ↵i on (Xi1, ..., XiT )

to be finite-dimensional. In our model this joint distribution is unrestricted.

A further group of papers establishes identification of panel models, including

the distribution of ↵i, by using techniques from the measurement error literature

that: (i) impose various assumptions on ↵i, such as full support and/or continuous

distribution; (ii) assume serial independence of Uit; and (iii) restrict the conditional

distribution of (↵i, Ui1, . . . , UiT ) conditional on (Xi1, ..., XiT ), see, Evdokimov (2010),

Evdokimov (2011), Wilhelm (2015), and Freyberger (2018). In contrast, our results

on the identification of the conditional variance of ↵i do not require (i). All our other

results, including identification of the dependence of ↵i on observed covariates, are

free of assumptions like (i), (ii) and (iii).

We also show identification of some aspects of the distribution of fixed

e↵ects. As we noted above, correlated random e↵ects models identify the distribution

of individual e↵ects, but at the cost of restricting their distribution. To our knowledge,

we are the first to show identification of moments of this distribution in a nonlinear

panel model, when that distribution is unrestricted.

We show the practical importance of these innovations in our empirical work

below. Identification of the conditional mean and variance of the distribution of fixed

e↵ects in a context with time-varying transformation functions is essential to our

investigation of women’s access to household resources in rural Bangladeshi.

2.2 Microeconomic Models of Collective Households

Dating back at least to Becker (1962), collective household models are those in which

the household is characterized as a collection of individuals, each of whom has a well-

defined objective function, and who interact to generate household level decisions such

as consumption expenditures. E�cient collective household models are those in which

the individuals in the household are assumed to reach the (household) Pareto frontier.

7We conjecture that the existence of a special regressor would be su�cient to identify time-
varying nonparametric transformation functions, and, with strict monotonicity, the distribution of
fixed e↵ects. However, we think that a setting with completely unrestricted fixed e↵ects is useful in
a variety of empirical applications, including our own.
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Chiappori (1988, 1992) showed that, like in earlier results in general equilibrium

theory, the assumption of Pareto e�ciency is very strong. Essentially, it implies

that the household can be seen as maximizing a weighted sum of individual utilities,

where the weights are called Pareto weights. This in turn implies that the household-

level allocation problem is observationally equivalent to a decentralized, person-level,

allocation problem.

In this decentralized allocation, each household member is assigned a shadow bud-

get. They then demand a vector of consumption quantities given their preferences

and their personal shadow budget, and the household purchases the sum of these de-

manded quantities (adjusted for shareability/economies of scale and for public goods

within the household).

Resource shares, defined as the ratio of each person’s shadow budget to the over-

all household budget, are useful measures of individual consumption expenditures. If

there is intra-household inequality, these resource shares would be unequal. Conse-

quently, standard per-capita calculations (assigning equal resource shares to all house-

hold members) would yield invalid measures of individual consumption and poverty

(see, e.g., Dunbar et al. (2013)). In this paper, we show identification of the condi-

tional mean (up to location) and conditional variance of the distribution of resource

shares in a panel data context.

The early literature on these models, including Bourguignon et al. (1993); Brown-

ing and Chiappori (1998); Vermeulen (2002); Chiappori and Ekeland (2006), con-

strains goods to be either purely private or purely public within a household. These

papers show that one can generally identify the response of resource shares to changes

in observed variables such as distribution factors. Like those papers, we can identify

the response of resource shares to observed variables, but we also can account for

unobserved household-level variables through the inclusion of fixed e↵ects.

We work with a more general model of sharing and scale economies based on

Browning et al. (2013). This model allows some or all goods to be partly or fully

shared, and the authors show that there is a one-to-one correspondence between

Pareto weights and resource shares. Dunbar et al. (2013) use this model, and show

how assignable goods, defined as goods consumed exclusively by a single known house-

hold member, may be used to identify resource shares (see also Chiappori and Ekeland

(2009)). Like them, we use an assignable good to support identification.

A key identifying assumption in Dunbar et al. (2013) is that resource shares are
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independent of household budgets in a cross-sectional sense. This identifying re-

striction has been used to estimate resource shares, within-household inequality and

individual-level poverty in many countries (DLP and DLP2 in Malawi; Bargain et al.

(2014) in Cote D’Ivoire; Calvi (2019) in India; Vreyer and Lambert (2016) in Senegal;

Bargain et al. (2018) in Bangladesh). In our model, we show identification of the

response of the conditional mean of resource shares to observed covariates, even if

resource shares are correlated with (lifetime) household budgets. Consequently, we

can test this identifying restriction.

Using cross-sectional data, Menon et al. (2012) and Cherchye et al. (2015) test

the restriction that resource shares are correlated with household budgets, and find

no evidence that they are. But, their estimators don’t have much power. In our

empirical work with panel data, we get a fairly precise estimate of this correlation,

allowing us to detect even a small dependence. We find evidence that women’s re-

source shares are slightly negatively correlated with household budgets (conditional

on other observed variables). This finding suggests that the cross-sectional identifica-

tion strategy proposed by Dunbar et al. (2013) may come at a cost that is not faced

in a panel data setting.

Dunbar et al. (2013) does not accommodate unobserved heterogeneity in resource

shares. Two newer papers, Chiappori and Kim (2017) and Dunbar et al. (2019)

consider identification in cross-sectional data with unobserved household-level het-

erogeneity in resource shares. Like Chiappori and Kim (2017) and Theorem 1 in

Dunbar et al. (2019), our work investigates identification of the distribution of re-

source shares up to an unknown normalization. However, the results in those papers

are of the random e↵ects type. That is, the authors impose the restriction that the

conditional distribution of resource shares is independent of the household budget.

In this paper, we consider a panel data setting with household-level unobserved het-

erogeneity in resource shares, without any restriction on the distribution of resource

shares. Further, we show su�cient conditions for identification of the conditional

variance of (logged) resource shares.

Sokullu and Valente (2019) use a one-period micro-economic model similar to

Dunbar et al. (2013), and estimate it on three waves of a Mexican panel dataset. In

contrast, our micro-economic model considers choice in the presence of unobserved

household-level heterogeneity, and over many periods under uncertainty.

The literature cited above considered one-period micro-economic models. But,
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many interesting questions about households, and the distribution of resources within

households, are dynamic in nature. For example: how do household members share

risk?; how do household investments relate to individual consumption?; how can we

use information from multiple time periods to estimate resource shares when there is

unobserved household-level heterogeneity?

Chiappori and Mazzoco (2017) give a lovely review of the literature on collective

household models in an intertemporal setting. These models generally come in two

flavours--limited commitment or full commitment---depending on whether or not the

household can commit to a permanent Pareto weight at the moment of household

formation. Full-commitment models answer “yes”, and limited-commitment model

answer “no”. Limited commitment models have commanded the most theoretical

attention. Much e↵ort has gone into testing the full-commitment model against a

limited-commitment alternative, e.g., Ligon (1998); Mazzocco (2007); Mazzocco et al.

(2014); Voena (2015).

Fewer papers study the identification of Pareto weights or resource shares in an

intertemporal context. Lise and Yamada (2019) use a long panel of Japanese house-

hold consumption data to estimate how Pareto weights (which are dual to resource

shares) depend on observed covariates and on unanticipated shocks. They find evi-

dence that the full-commitment model does not hold in Japan. Our model is one of

full-commitment and our data are a short (2 period) panel, so we provide a comple-

ment to the approach of Lise and Yamada (2019) for cases where the data are not

rich enough to estimate a limited-commitment model.

Full commitment models are more restrictive, but may be useful nonetheless.

Chiappori and Mazzoco (2017) write “In more traditional environments (such as

rural societies in many developing countries), renegotiation may be less frequent since

the cost of divorce is relatively high, threats of ending a marriage are therefore less

credible, and noncooperation is less appealing since households members are bound

to spend a lifetime together.” We use a full commitment setting to estimate resource

shares for rural Bangladeshi households.

In this paper, we adapt the general full-commitment framework of Chiappori and

Mazzoco (2017) to the scale economy and sharing model of Browning et al. (2013).

Then, like Dunbar et al. (2013) do in their cross-sectional analysis, we identify resource

shares on the basis of household-level demand functions for assignable goods. In

our general model, observed household-level quantity demand functions depend on
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resource shares, and resource shares depend a time-invariant factor (a fixed e↵ect)

representing the initial (and permanent) Pareto weights of household members.

We then provide a parametric form for utility functions that results in demand

equations for assignable goods that are nonlinear in shadow budgets, and have logged

shadow budgets that are linear in logged household budgets and a fixed e↵ect. Fur-

ther, demand equations are time-varying because prices vary over time. Such demand

equations fall into the FELT class, and are therefore identified in our short-panel set-

ting. The parametric model also gives meaning to the fixed e↵ect: it equals a logged

resource share, so its distribution is an economically interesting object. So, our micro-

economic theory demands an econometric model that allows for time-varying trans-

formation functions and that can identify moments of the conditional distribution of

fixed e↵ects.

3 Identification

Dropping the i subscript, let Y = (Y1, ..., YT )
0
and X = (X 0

1, ..., X
0
T )

0
. We write FELT

as a latent variable model using the notation in (2.1). For t = 1, ..., T and for all ↵

and X,

Yt = ht(Y
⇤
t ) = ht (↵ +Xt� � Ut) ,

Ut|↵, X ⇠ Ft(u|↵, X).
(3.1)

Denote the supports of Yt, Y ⇤
t , Xt by Y ✓ R, Y* = R, and X ✓ RK , respectively.8

We provide su�cient conditions for identification of (�, ht).9 We consider two

non-nested cases. The first case allows for nonparametric Ft(u|↵, X), requiring only

that it is conditionally stationary. In this case, the idiosyncratic errors may be serially

dependent. The second case assumes that Ut, t = 1, · · · , T , are serially independent,

standard logistic, and strictly exogenous. Of course, the second case has an error

distribution that is nested within that of the first case. But, the second case requires

weaker assumptions on the distribution of the regressors (c.f. Assumption 3 below).

For both cases, we maintain the assumption below:

8The supports may be indexed by t. We omit this index here for the sake of concise notation.
9Botosaru and Muris (2017) introduce four estimators, depending on whether the outcome vari-

able is discrete or continuous, and on whether the stationary distribution of the error term is non-
parametric or logistic.
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Assumption 1. [Weak monotonicity] For each t, the transformation function ht :

Y* ! Y is unknown, non-decreasing, right continuous, and non-degenerate.

Define the generalized inverse h�
t : Y ! Y⇤ as

h�
t (y) ⌘ inf

�
y⇤ 2 Y* : y  ht (y

⇤)
 
,

with the convention that inf (;) = inf (Y). Additionally, let Y ⌘ Y\ inf Y . For an

arbitrary y 2 Y , define the binary random variable

Dt (y) ⌘ 1 {Yt � y} (3.2)

= 1
�
Ut  ↵ +Xt� � h�

t (y)
 
,

where the equality follows from specification ((3.1)) and weak monotonicity. Here,

we use Y instead of Y because Dt (inf Y) = 1 almost surely for all t.

The key insight of our identification argument is to allow the threshold y in (3.2)

to be di↵erent across time periods, in addition to allowing it to vary across Y , the

support of the observed outcome. We thus compare outcomes observed at t = 1

with threshold y1 and outcomes observed at t = 2 with threshold y2, where y1 6=
y2 and (y1, y2) 2 Y2. This allows us to group individuals into switchers and non-

switchers, where an individual is a switcher provided that D1 (y1) + D2 (y2) = 1.

It is the existence of switchers that informs our identification of the time-varying

transformation function.10 In other words, in comparison with previous results where

the threshold is the same in each time period, using di↵erent thresholds in each

time period reveals new information about the response functions. It is this new

information that enables us to identify the time-dependence of ht.

3.1 Identification strategy: binarization

Two time periods are su�cient for our identification results, so we let T = 2 in what

follows.
10To the best of our knowledge, previous papers, see, e.g., Chen (2002), Chen (2010a); Cher-

nozhukov et al. (2018), restrict the two thresholds to be equal to each other. This is relevant since
this restriction essentially prevents identification of time-e↵ects or time-varying transformation func-
tions ht.

14



For any two points (y1, y2) 2 Y2, define the following vector of binary variables

D (y1, y2) ⌘ (D1 (y1) , D2 (y2)) .

Our identification strategy for (�, h1, h2), which we call binarization, is based on the

observation that the 2-vector D (y1, y2) follows a panel data binary choice model for

any (y1, y2) 2 Y2. This result is summarized in Lemma 1 below.

The identification proof proceeds in three steps. First, we show identification

of � and of h�
2 (y2) � h�

1 (y1) for arbitrary (y1, y2) 2 Y2. In the resulting binary

choice model, the di↵erence h�
2 (y2)�h�

1 (y1) is the coe�cient on the di↵erenced time

dummy, and � is the regression coe�cient on X2 � X1. For a given binary choice

model, identification of � and of h�
2 (y2) � h�

1 (y1) follows Manski (1987) for the

nonparametric version of our model, and Chamberlain (2010) for the logistic version.

This result is summarized in Theorem 1 below.

Second, we show that varying the pair (y1, y2) over Y2 obtains identification of

�
h�
2 (y2)� h�

1 (y1) , (y1, y2) 2 Y2
 
.

Third, we show that identification of this set of di↵erences obtains identification

of the functions h1 and h2 under a normalization assumption on h�
1 . That is, for an

arbitrary y0 2 Y , h�
1 (y0) = 0. This type of assumption is customarily made in the

literature on transformation models. This result is presented in Theorem 2.

In summary, we show that FELT can be converted into a collection of binary choice

models, which allows us to identify the transformation functions ht. Omitting the fact

that FELT can be transformed into many binary choice models obtains identification

of � only.

Figures 3.1 and 3.2 illustrate the intuition behind our identification strategy for

two arbitrary functions, h1 and h2, both accommodated by FELT. The line with kinks

and a flat part represents an arbitrary function h1, while the solid curve represents

an arbitrary function h2. Consider Figure 3.1. Pick a y1 2 Y on the vertical axis.

For all y  y1, h1 (y) gets mapped to zero, while for all y > y1, it gets mapped to

one. Now pick a y2 2 Y . For all y  y2, h2 (y) gets mapped to zero, while for all

y > y2, it gets mapped to one. This gives rise to a fixed e↵ects binary model for

(D1 (y1) , D2 (y2)), also plotted in the figure as the grey solid lines. Our first result
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Figure 3.1: FELT functions h1 and h2. Figure 3.2: Normalization and tracing.

in Theorem 1 identifies the di↵erence h�
1 (y1) � h�

2 (y2) at arbitrary points (y1, y2),

as well as the coe�cient �. It is clear that normalizing h�
1 (.) at an arbitrary point

identifies the function h�
2 (y2) at an arbitrary point y2. This is captured in Figure

3.2. There, for an arbitrary y0, h
�
1 (y0) = 0. Then, as y2 is arbitrary, Figure 3.2 shows

that moving y2 it on its support traces out the generalized inverse h�
2 on its domain.

Theorem 2 wraps up this argument by showing that h1 and h2 are identified from

their generalized inverses.

3.2 Nonparametric errors

In this section, we provide nonparametric identification results for (�, h1, h2). Parts

of our identification proof build on Manski (1987), who in turn builds on Manski

(1975, 1985).

Assumption 2. [Error terms]

(i) F1(u|↵, X) = F2(u|↵, X) ⌘ F (u|↵, X) for all (↵, X);

(ii) The support of F (u|↵, X) is R for all (↵, X).

Assumption 2 places no parametric distributional restrictions on the distribution

of Uit and allows the stochastic errors Uit to be correlated across time. The first

part of the assumption, 2(i), is a stationarity assumption, requiring time-invariance

of the distribution of the error terms conditional on the trajectory of the observed

regressors and on the unobserved heterogeneity. This assumption excludes lagged de-

pendent variables as covariates. Additionally, as noted by, e.g., Chamberlain (2010),
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although it allows for heteroskedasticity, it restricts the relationship between the ob-

served regressors and Uit by requiring that even when x1 6= x2, U1 and U2 have equal

skedasticities. This type of stationarity assumption is common in linear and nonlinear

panel models, e.g., Chernozhukov et al. (2013) and references therein.

Assumption 2(ii) requires full support of the error terms. It guarantees that, for

any pair (y1, y2) 2 Y2, the probability of being a switcher is positive. In our context,

being a switcher refers to the event D1 (y1)+D2 (y2) = 1, so that Assumption 2 guar-

antees that P (D1 (y1) +D2 (y2) = 1) > 0. This assumption is similar to Assumption

1 in Manski (1987).

Let �X ⌘ X2 �X1 and for an arbitrary pair (y1, y2) 2 Y2, define

� (y1, y2) ⌘ h�
2 (y2)� h�

1 (y1) . (3.3)

Lemma 1. Suppose that (Y,X) follows the model in (3.1). Let Assumptions 1 and

2 hold. Then for all (y1, y2) 2 Y2,

med (D2 (y2)�D1 (y1) |X, D1 (y1) +D2 (y2) = 1) = sgn (�X� � � (y1, y2)) . (3.4)

Proof. The proof builds on Manski (1985, 1987), and is presented in Appendix A.1.

Let W ⌘ (�X,�1)0 and ✓ (y1, y2) ⌘ (�, � (y1, y2)) , so that (3.4) can be written as

med (D2 (y2)�D1 (y1) |X,D1 (y1) +D2 (y2) = 1) = sgn (W✓ (y1, y2)) .

For identification of ✓ (y1, y2) we impose the following additional assumptions.

Assumption 3. [Covariates]

(i) The distribution of �X is such that at least one component of �X has positive

Lebesgue density on R conditional on all the other components of �X with probability

one. The corresponding component of � is non-zero.

(ii) The support of W is not contained in any proper linear subspace of RK+1.

Assumption 3(i) requires that the change in one of the regressors be continuously

distributed conditional on the other components. Assumption 3(ii) is a full rank

assumption. These assumptions are standard in the binary choice literature concerned

with point identification of the parameters.
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Assumption 3 resembles Assumption 2 in Manski (1987), the di↵erence being that

our assumption concerns W , which includes a constant that captures a time trend.

The presence of this constant requires su�cient variation in Xt over time. No linear

combination of the components of Xt can equal the time trend.

Assumption 4. [Normalization-�] For any (y1, y2) 2 Y2, ✓ (y1, y2) 2 ⇥ = B ⇥ R,
where B =

�
� : � 2 RK , k�k = 1

 
.

Assumption 4 imposes a normalization on �, namely that the norm of the re-

gression coe�cient equals 1. Scale normalizations are standard in the binary choice

literature, and are necessary for point identification when the distribution of the error

terms is not parameterized. Normalizing � (instead of ✓) avoids a normalization that

would otherwise depend on the choice of (y1, y2). In this way, the scale of � remains

constant across di↵erent choices of (y1, y2). Alternatively, one can normalize the co-

e�cient on the continuous covariate (cf. Assumption 3(i)) to be equal to one. In our

economic model in Section 5 the latter assumption holds automatically.11

Theorem 1. Suppose that (Y,X) follows the model in (3.1), and let the distribution

of (Y,X) be observed. Let Assumptions 1, 2, 3, and 4 hold. Then, for an arbitrary

pair (y1, y2) 2 Y2, ✓ (y1, y2) is identified.

Proof. The proof proceeds by showing that FELT can be converted into a binary

choice model for an arbitrary pair (y1, y2) , and then builds on Theorem 1 in Manski

(1987), which in turn uses results in Manski (1985). See Appendix A.2.

So far, we have identified the regression coe�cient � and the di↵erence in the

generalized inverses at arbitrary pairs (y1, y2). We consider now identification of the

functions h1 and h2 on Y .

Assumption 5. [Normalization-h1] For some y0 2 Y , h�
1 (y0) = 0.

Such a normalization is standard in transformation models, see, e.g., Horowitz

(1996). Without this normalization, all identification results hold up to h�
1 (y0). We

normalize the function in the first time period only, imposing no restrictions on the

11There are models with su�cient structure on the transformation function ht where identifica-
tion is possible without a normalization on the regression coe�cient. Examples include the linear
regression model, the censored linear regression model in Honoré (1992), and the interval-censored
regression model in Abrevaya and Muris (2020).
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function in the second period beyond that of weak monotonicity (cf. Assumption

1). In Section 4, we show that this normalization assumption is not necessary for

the identification of the conditional mean or of the conditional variance of the fixed

e↵ects conditional on the observed covariates.

Theorem 2. Suppose that (Y,X) follows the model in (3.1), and let the distribution

of (Y,X) be observed. Under Assumptions 1, 2, 3, 4, and 5, the transformation

functions h1 and h2 are identified.

Proof. The proof proceeds by identifying the generalized inverses of monotone func-

tions, which obtains identification of the pre-images of h1 and h2. This obtains

identification of the functions themselves. See Appendix A.3.

3.3 Logit errors

In this section, we show identification of (�, h1, h2) when the error terms are assumed

to follow the standard logistic distribution. The logistic case is not nested in the

nonparametric case. In particular, when the errors are logistic, we do not require

a continuous regressor. However, we require conditional serial independence of the

error terms.12

Assumption 6. [Logit] (i) F1(u|↵, X) = F2(u|↵, X) = ⇤ (u) = exp(u)
1+exp(u) , and U1 and

U2 are independent; (ii) E(W 0W ) is invertible.

Assumption 6(i) strengthens Assumption 2 by requiring the errors to follow the

standard logistic distribution and to be serially independent. Note that one conse-

quence of this assumption, which specifies the variance of the error terms to be equal

to 1, is to eliminate the need to normalize �. On the other hand, Assumption 6(ii)

imposes weaker restrictions on the observed covariates relative to Assumption 3, since

it does not require the existence of a continuous covariate. Su�cient variation in �X

is su�cient to obtain identification of the vector � when the error terms follow the

standard logistic distribution.

Theorem 3. Suppose that (Y,X) follow the model in (3.1), and let the distribution

of (Y,X) be observed. Let Assumptions 1 and 6 hold. Then, for an arbitrary pair

12See Chamberlain (2010) and Magnac (2004) for more details about identification under non-
parametric versus logistic errors in the panel data binary choice context.
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(y1, y2) 2 Y2, ✓ (y1, y2) is identified. Additionally, letting Assumption 5 hold, then the

transformation functions h1 (·) and h2 (·) are identified.

Proof. See Appendix A.4.

4 Conditional distribution of fixed e↵ects

If (h1, h2) are invertible, we can use the previous identification theorem to identify

features of the distribution of the fixed e↵ects conditional on observed regressors.

These features are the change in the conditional mean function of ↵ and the condi-

tional variance of ↵ conditional on X1, X2. These results are relevant since in our

collective household model, the fixed e↵ects represent the log of resource shares, and

both the standard deviation of these resource shares and the response of their con-

ditional mean to covariates are key parameters of interest in the empirical literature.

As this is relevant to our application, we note here that a normalization assumption,

such as 4, on the demand function in the first period is not necessary for these results

on the resource shares because, e.g., we only need their deviation with respect to the

mean of the fixed e↵ects.

In this section, we provide su�cient conditions for the identification of the change

in the conditional mean function of the fixed e↵ects, defined as:

µ (x) ⌘ E [↵|X = x] , for all x 2 X , (4.1)

as well as for the conditional variance of the fixed e↵ects. For these results, the

normalization assumption 4 is not necessary. To provide intuition for this, let

c1 ⌘ h�1
1 (y0) ,

at an arbitrary y0 2 Y and gt (y) ⌘ h�1
t (y)� c1 for all y 2 Y . Note that Theorem 1

recovers
eUt ⌘ ↵� Ut = h�1

t (Yt)�Xt�,

up to c1, so that the joint distribution of
⇣
eU1, eU2, X1, X2

⌘
is identified up to c1. By

placing restrictions on the distribution of (↵, U1, U2, X1, X2), we can then recover our

features of interest.
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Theorem 4. (i) Let the assumptions of Theorem 1 hold, and additionally assume

that (4a) (h1, h2) are strictly increasing, and (4b) let m 2 R be an unknown constant

such that E (Ut|X = x) = m, for all x 2 X . Then, for any x, x0 2 X , the change in

the conditional mean function µ (x)� µ (x0) is identified and given by

µ (x)� µ
⇣
x

0
⌘
= E [gt (Yt)�Xt�|X = x]� E

h
gt (Yt)�Xt�|X = x

0
i
.

Proof. See Appendix A.5.

Remark 1. As opposed to our main identification result in Theorem 2, Theorem 4

does not use a normalization on the functions (h1, h2). If we were to impose the nor-

malization in Assumption 5, the conditional mean function µ (x) would be identified

for all x 2 X . This result provides justification for nonparametric regression of ↵ on

observables (up to location).

Remark 2. Under slightly weaker conditions, we can obtain the projection coe�cients

of ↵ on Xt. This is of interest for our empirical application. Recall that the joint

distribution of
⇣
eU1, eU2, X1, X2

⌘
is identified up to c1. Then, assuming Cov (Us, Xt) =

0, we can identify the projection coe�cient of ↵ on Xt from

[Var (Xt)]
�1 Cov (↵, Xt) = [Var (Xt)]

�1 Cov (↵� Us, Xt) = [Var (Xt)]
�1 Cov

⇣
eUs, Xt

⌘
.

Second, define the conditional variance of the fixed e↵ects as

�2
↵ (x) ⌘ V ar [↵|X = x] , for all x 2 X . (4.2)

For this second result, we strengthen our assumptions to include, among others, serial

independence of the error term. This allows us to pin the persistence in unit i’s time

series on ↵i instead of on serial dependence in the errors.

Theorem 5. Let the assumptions of Theorem 1 and assume that (5a) (h1, h2) are

strictly increasing, and (5b) Cov [↵, Ut|X = x] = 0 for all x 2 X and t, and (5c)

Cov [U1, U2|X = x] = 0 for all x 2 X . Then for all x 2 X , the conditional variance

function �2
↵ (x) is identified and given by:

�2
↵ (x) = Cov (g2 (Y2)�X2�, g1 (Y1)�X1�|X = x) .
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Proof. See Appendix A.5.

It may be possible to obtain the entire conditional distribution of the fixed e↵ects

under the assumption that (↵, U1, U2) are mutually independent by using arguments

similar to those in Arellano and Bonhomme (2012).

5 Microeconomic model

In this section, we construct a new model of an e�cient full-commitment intertem-

poral collective (FIC) household. Essentially, we combine the models of Browning

et al. (2013) and Chiappori and Mazzoco (2017) to generate an empirically practical

model that allows identification of resource shares. Chiappori and Mazzoco (2017)

write their model in terms of pure public and pure private goods. We instead adapt

that model to the more general sharing model given in the collective household model

of Browning et al. (2013).

A feature of e�cient models like this is that the household-level problem can be

decentralized into an observationally equivalent set of individual decision problems.

Each individual problem is to choose demands based on an individual-level constraint

defined by a shadow price vector and a shadow budget constraint.

We use subscripts i, j, t. Let i = 1, ..., n index households and assume the house-

hold has a time-invariant composition, with Nij members of type j. Let j = m, f, c for

men, women and children. Let t = 1, 2. Let z be a vector of time-varying household-

level demographic characteristics, and let the numbers of household members of each

type, Nim, Nif and Nic, be (time-invariant) elements of zit. Like Chiappori and Maz-

zoco (2017), this is a model with uncertainty, so we use the superscript s = 1, 2 to

index states in the second period only.

Indirect utility, Vj(p, x, z), is the maximized value of utility given a budget con-

straint defined by prices p and budget x, given characteristics z. Let Vj be strictly

concave in the budget x. Indirect utility depends on time only through its dependence

on the budget constraint and time-varying demographics z. Let vijt ⌘ Vj(pt, xit, zit)

denote the utility level of a person of type j in household i in period t.

Browning et al. (2013) model sharing and household scale economies via a house-

hold consumption function that reflects the fact that shareable goods feel “cheap”

within the household. This is embodied in a shadow price vector for consumption
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within the household that is weakly smaller than the market price vector pt faced by

single individuals, because singles cannot take advantage of scale economies in house-

hold consumption. For example, goods that are not shareable at all—for which there

are no scale economies in household consumption—have shadow prices equal to the

market price. Goods that are fully shareable, so that each person in the household

can enjoy an e↵ective consumption equal to the amount purchased by the household,

have a shadow price equal to the market price divided by the number of members.

Let Ait ⌘ A(zit) be a diagonal matrix that gives the shareability of each good, and

let it depend on demographics zit (including the numbers of household members). For

nonshareable goods, the corresponding element of Ait equals 1; for shareable goods,

it is less than 1, possibly as small as 1/Ni where Ni is the number of household

members. Goods may be partly shareable, with an element of Ait between 1/Ni and

1. With market prices pt, within-household shadow prices are given by the linear

transformation Aitpt. Shadow prices are the same for all household members j.

Browning et al. (2013) also allow for inequality in the distribution of household

resources. Let ⌘ijt be the resource share of type j in household i in time period t.

It gives the fraction of the household budget consumed by that type. Each person

of the Nij people of type j consumes ⌘ijt/Nij of the household budget xit, so they

each have a budget of ⌘ijtxit/Nij. As we will see below, the resource share is a choice

variable for the household.

The resource shares and shadow price vector together define the decentralized

shadow budget constraints faced by each household member. The model has each

household member facing a shadow budget of ⌘ijtxit/Nij and shadow prices of Aitpt,

so that, within the household, utility vijt is given by

vijt = Vj(Aitpt, ⌘ijtxit/Nij, zit). (5.1)

Let Vxj(p, w, z) ⌘ @Vj(p, w, z)/@w be the monotonically decreasing marginal utility

of person j with respect to their (shadow) budget. Then,

Vxj(Aitpt, ⌘ijtxit/Nij, zit)

is the value of their marginal utility evaluated at their shadow budget constraint.

Let ps2, z
s
i2, x

s
i for s = 1, 2 be the possible realizations of state-dependent variables
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that occur with household-specific probabilities ⇡1
i and ⇡2

i (which sum to 1). Here, xs
i

is the state-specific lifetime wealth of household i, revealed in period 2. Information

about the joint distribution of these unobserved state-dependent variables is embodied

in �i, the information set available in period 1 to household i. The information

set can also include unobserved time-invariant features of the household. Pareto

weights �ij = �j(�i) depend on the information set �i, which varies arbitrarily across

households. This household-level time-invariant variable will form the basis of our

fixed-e↵ects variation.

Chiappori and Mazzoco (2017) let individuals have expected lifetime utilities given

by the sum of period 1 utility and the discounted probability-weighted sum of state-

specific period 2 utility.13 Using the Pareto weights, they then write the Bergson-

Samuelson Welfare Function, Wi, for the household as

Wi ⌘
JX

j=1

Nij�ij

"
vij1 +

2X

s=1

⇢i⇡
s
i v

s
ij2

#
. (5.2)

The term in square brackets is the expected lifetime utility of each member of type j

in household i. Each member of type j gets the Pareto weight �ij = �j(�i).

Next, substitute indirect utility (5.1) for utility vij1 and vsij2 into (5.2),14 and

form the Lagrangian using the intertemporal budget constraint with interest rate ⌧ ,

xi1 + xs
i2/(1 + ⌧) = xs

i , and the adding-up constraints on resource shares,
P

j ⌘ij1 =

13If the membership of the household changed over time, or if the household was choosing its
membership, we would need a household welfare function that used some kind of population ethics
principle (see Blackorby et al. (2005)). It is for this reason that we focus on households with fixed
membership.
Here, we only consider egotistic preferences. However, this is without loss of generality: “It is

important to point out, however, that the model with egotistical preferences ... plays a special role.
The reason for this is that the solution to the collective model with caring preferences must also be
a solution of the collective model ... with egotistical preferences.” (Chiappori and Mazzoco (2017),
page 21).
The restriction there there are only two periods and only two states is for convenience. None of

our conclusions about resource shares depend on it.
14In contrast, Chiappori and Mazzoco (2017) substitute direct utility for utility vij1 and v

s
ij2 using

a model of pure private and pure public goods. In that model, each individual’s utility is given by
their direct utility function, which is a function of their (unobserved) consumption of a vector of
private goods and their (observed) consumption of a vector of public goods.
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Because the optimand is additively separable across periods, it can be thought of as a

two-stage budgeting problem, where the household first chooses the period budgets,

xi1 and xs
i2, and then chooses resource shares conditional on this allocation of budget.

First-order conditions for ⌘ijt in each period and each state are given by:

�ijVxj(Ai1p1, ⌘ij1xi1/Nij, zi1)xi1 � �1 = 0,

⇢i�ijVxj(Ai2p
s
2, ⌘

s
ij2x

s
i2/Nij, z

s
i2)x

s
i2 � �s

2 = 0,

for s = 1, 2. Thus for any two types, j and k, we have the following equality:

�ij

�ik
=

Vxk(Ai1p1, ⌘ik1xi1/Nik, zi1)

Vxj(Ai1p1, ⌘ij1xi1/Nij, zi1)
=

Vxk(Ai2ps2, ⌘
s
ik2x

s
i2/Nik, zsi2)

Vxj(Ai2ps2, ⌘
s
ij2x

s
i2/Nij, zsi2)

, (5.3)

for s = 1, 2 for all i. That is, the household chooses resource shares so as to equate

ratios of marginal utilities with ratios of Pareto weights. There is a unique solution

to this problem because each person j has a utility function strictly concave in the

shadow budget.

Resource shares are implicitly determined by (5.3) and depend on the Pareto-

weights �i1, ...,�iJ . Because we are in a full-commitment world, these Pareto-weights

are time-invariant. And, because there are both observed and unobserved household-

level shifters to Pareto-weights, the Pareto-weights are heterogeneous across observ-

ably identical households. Consequently, the Pareto-weights are fixed e↵ects hiding

inside the resource share functions.

Household quantity demands given the sharing model of Browning et al. (2013)

are very simple: the household purchases the sum of what all the individuals would

demand if they faced the within-household shadow price vector Aitpt and had their

shadow budget ⌘ijtx/Nij, adjusted for sharing as defined by Ait. A key feature here

is that the household demand for a non-shareable good does not have to be adjusted
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for shareability: it is just the sum of what each individual would demand.

An assignable good is one where we observe the consumption of that good by a

specific person (or type of person). Assuming the existence of a scalar-value demand

function qj(p, x, z) for an assignable and non-shareable good (e.g., food or clothing)

for a person of type j, the household’s quantity demand, Qijt, for the assignable good

for each of the Nij people of type j is given by

Qijt = qj(Aitpt, ⌘ijtxit/Nij, zit).

Because only people of type j purchase this good, the household does not sum over the

demand of other household members. Assuming that the assignable good is a normal

good implies that qj is strictly increasing in its second argument, and is therefore

strictly monotonic.

Suppose pt is unobserved, but varies over time. Then, we may express the house-

hold demand for the assignable good of a member of type j as a time-varying function

of observed data. Defining eqjt(Atpt, x, z) = qj(pt, x, z), we have

Qijt = eqjt(⌘ijtxit/Nij, zit). (5.4)

This is the structural demand equation that we ultimately bring to the data.

This model is very general. It assumes only that: the household satisfies the in-

tertemporal budget constraint under uncertainty, can fully commit to future actions,

reaches the Pareto frontier, and has scale economies embodied in the shareability

matrix A(z). It places no additional restrictions on utility functions or the bargain-

ing model. It implies that quantity demands for assignable goods are time-varying

functions of resource shares, and that resource shares depend on Pareto weights that

are fixed over time (aka: fixed e↵ects).

5.1 PIGL Resource Shares

The model above has resource shares depend on a fixed e↵ect, but expresses those

resource shares as a vector of implicit functions, which may be hard to work with. To

make the model tractable, we impose su�cient structure on utility functions to find

closed forms for resource shares.

In our empirical example below, we work with data that have time-invariant de-
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mographic characteristics, so let zit = zi be fixed over time. This implies that the

shareability of goods embodied in A is time-invariant: Ait = Ai = A(zi).

Let indirect utilities be in the price-independent generalized logarithmic (PIGL)

class (Muellbauer (1975, 1976)) given by

Vj(p, x, z) = Cj(p, z) + (B(p, z)x)r(z) /r(z). (5.5)

Here, Vj is homogeneous of degree 1 in p, x if Cj is homogeneous of degree 0 in p and

B is homogeneous of degree �1 in p. V is increasing in x if B(p, z) is positive and V

is concave in x if r(z) < 1. In terms of preferences, this class is reasonably wide. It

gives quasihomothetic preferences if r(z) = 1, and PIGLOG preferences as r(z) ! 0

(this includes the Almost Ideal Demand System of Deaton and Muellbauer (1980)).

The functions Cj vary across types j, and so the model allows for preference

heterogeneity between types, e.g., between men and women. The restrictions that

B(p, z) and r(z) don’t vary across j and that r(z) does not depend on prices p are

important: as we see below, they imply that resource shares are constant over time.

Substituting the BCL model, observed demographics and period t budgets, we

have the utility of person j in household i in period t as

vijt = Vj(Aipt, ⌘ijtxit/Nij, zi) = Cj(Aipt, zi) + B(Aipt, zi)
r(zi) (⌘ijtxit/Nij)

r(zi) /r(zi),

and thus marginal utilities are given by

Vxj(Aitpt, ⌘ijtxit/Nij, zit) = B(Aipt, zi)
r(zi) (⌘ijtxit/Nij)

r(zi)�1 .

For r(zi) 6= 1, and for any pair of types j, k, we substitute into (5.3) and cancel terms,

�ij

�ik
=

Vxk(Aitpt, ⌘ijtxit/Nij, zit)

Vxj(Aitpt, ⌘ijtxit/Nij, zit)
=

✓
⌘ikt/Nik

⌘ijt/Nij

◆r(zi)�1

,

Rearranging, we get ✓
⌘ikt
⌘ijt

◆
=

Nik

Nij

✓
�ij

�ik

◆1/(r(zi)�1)

. (5.6)

The household chooses resource shares in each period and each state to satisfy

(5.6). Since the right-hand side has no variation over time or state, this implies that,

given PIGL utilities (5.5), the resource shares in a given household i are independent
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of period t and state s. However, resource shares do vary with both observed and

unobserved variables across households i. Let the fixed resource shares that solve the

first-order conditions with PIGL demands be denoted ⌘ij.

5.2 The Demand for Women’s Food

We will estimate the demand equation for women’s food in nuclear households com-

prised of 1 man, 1 woman and 1 � 4 children, so Nif = Nim = 1. Let the resource

share for adult women be ⌘if and define

↵i ⌘ ln
�
⌘if/Nif

�
= ln ⌘if , (5.7)

equal to the logged resource share of the woman in the household.

Let there be a multiplicative Berkson (1950) measurement error denoted exp (�U)

which multiplies the budget, so that if we observe x, the actual budget is x/ exp (U).

The measurement error is i.i.d. across time and households. Here, the measurement

error does not a↵ect resource shares, but does a↵ect the distribution of observed

quantity demands. Plugging this measurement error and the PIGL form for resource

shares given by (5.7) into the assignable goods demand equation (5.4) yields a house-

hold demand for women’s food, Qift, given by

Qift = eqft(exp (↵i) xit/ exp (Uit) , zi).

This is a FELT model, conditional on covariates:

Yit = ht(Y
⇤
it , zi), (5.8)

where ht(Y ⇤
it , zi) = eqft (exp (Y ⇤

it ) , zi) and

Y ⇤
it = ↵i +Xit � Uit (5.9)

and Xit = ln xit is the logged household budget.

The assumption that the assignable good is normal means that the time-varying

functions ht are strictly monotonic in Y ⇤
it . One could additionally impose that the

demand functions eqft come from the application of Roy’s Identity to the indirect utility

function (5.5). These demand functions equal a coe�cient times the shadow budget
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plus a coe�cient times the shadow budget raised to a power, where the coe�cients

are time-varying and depend on zi.15 We do not impose that additional structure

here; instead, we show in Section 7 that the estimated demand curves given by FELT

are close to the PIGL shape restrictions.

Here, the time-dependence of ht is economically important; it is driven by the

price-dependence of preferences and by the fact that prices are common to all house-

holds i but vary over time t. Further, the fixed e↵ects ↵i are economically meaningful

parameters: they are equal to the logged women’s resource shares in each household.

The standard deviation of the logs is a common inequality measure, and the standard

deviation of ↵i is identified by FELT given strict monotonicity, as we show in Section

4. Further, the covariation of ↵i with observed regressors is identified.

This model is useful to answer two important questions. First, are fixed e↵ects

(resource shares) fully explained by observed demographics and budgets, or do we

need to appeal to unobserved heterogeneity? Second, are fixed e↵ects correlated with

log-budgetsXit? Some results concerning identification of collective household models

in cross-sectional data rely on the assumption of independence.

6 Data

We use data from the 2012 and 2015 Bangladesh Integrated Household Surveys. This

data set is a household survey panel conducted jointly by the International Food

Policy Research Institute and the World Bank. In this survey, a detailed questionnaire

was administered to a sample of rural Bangladeshi households. This data set has two

useful features for our purposes: 1) it includes person-level data on food intakes and

household-level data on total household expenditures; and 2) it is a panel, following

roughly 6000 households over two (nonconsecutive) years. The former allows us to

use food as the assignable good to identify our collective household model parameters.

15Individual demands are derived by the application of Roy’s Identity to (5.5), and are:

qjt(x, z) = cjt (z)x
1�r(z) + bt (z)x

where cjt (z) = �rpCj(pt,z)
B(pt,z)r

, bt (z) = �rp lnB(pt, z). This notation makes clear that we have time-
varying demand functions, due to the fact that prices vary over time. In our application, prices
in each period are not observed, so we allow the (z�dependent) functions cjt and bt to vary over
time. We require that the assignable good be normal, meaning that its demand function is globally
increasing in x. This form for demand functions is globally increasing if cjt(z), bt(z) and 1 � r(z)
are all positive.
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The latter allows us to model household-level unobserved heterogeneity in women’s

resource shares.

The questionnaire was initially administered to 6503 households in 2012, drawn

from a representative sample frame of all rural Bangladeshi households. Of these,

6436 households remained in the sample in 2015. In these data, expenditures on food

include imputed expenditure from home production. We drop households with a

discrepancy between people reported present in the household and the personal food

consumption record, and households with no daily food diary data. Of the remaining

data, 6205 households have total expenditures reported for both 2012 and 2015.

In this paper, we focus on households that do not change members between pe-

riods.16 There are 1920 households whose composition is unchanged between 2012

and 2015. Roughly half of these households have more than one adult man or more

than one adult women. To simplify the interpretation of estimated resource shares

we focus on nuclear households. This leaves 871 nuclear households comprised of one

man, one woman and 1 to 4 children, where children are defined to be 14 years old

or younger.

The assignable good, Yit, is annual consumption of food by the woman. The sur-

veys contain 7-day recall data on household-level quantities (measured in kilograms)

of food consumption in 7 categories: Cereals, Pulses, Oils; Vegetables; Fruits; Pro-

teins; Drinks and Others. These consumption quantities include home-produced food

and purchased food and gifts. They include both food consumed in the home (both

cooked at home and prepared ready-to-eat food), as well as food consumed outside

the home (at food carts or restaurants). These weekly quantities are grossed up to

annual consumption expenditure by multiplying by 52 and multiplying by estimated

village-level unit-values (following Deaton (1997)).

Our household-level annual consumption, xit, is the sum of total expenditure on,

and imputed home-produced consumption of, the following categories of consumption:

rent, food, clothing, footwear, bedding, non-rent housing expense, medical expenses,

education, remittances, religious food and other o↵erings (jakat/ fitra/ daan/ sodka/

kurbani/ milad/ other), entertainment, fines and legal expenses, utensils, furniture,

personal items, lights, fuel and lighting energy, personal care, cleaning, transport

16That is, we exclude households with births, deaths, new members by marriage or adoption, etc.
Although a full-commitment model can accommodate such changes in household composition, it is
easier to think through the meaning of a person’s resource share if the composition is held constant.
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and telecommunication, use-value from assets, and other miscellaneous items. These

spending levels derive from one-month and three-month duration recall data in the

questionnaire, and are grossed up to the annual level. Estimation uses Xit = ln xit,

the natural logarithm of annual consumption.

Our model is also conditioned on a set of time-invariant demographic variables zi.

We include several types of observed covariates in zi that may a↵ect both preferences

and resource shares: 1) the age in 2012 of the adult male; 2) the age in 2012 of the

adult female; 3) the average age in 2012 of the children; 4) the average education in

years of the adult male; 5) the average education in years of the adult female; 6) an

indicator that the household has 2 children; 7) an indicator that the household has 3

or 4 children; and 8) the fraction of children that are girls.17

For the first five of these demographic variables, in order to reduce the support

of the regressors, we top- and bottom-code each variable so that values above (be-

low) the 95th (5th) percentiles equal the 95th (5th) percentile values. For all seven of

these variables, we standardize the location and scale so that their support is [0, 1].

This support restriction simplifies our monotonicity restrictions when it comes to

estimation, as explained in Section 7.

We do not trim the data for outliers in the budget or food quantity demands.

Instead, we trim the support of the estimated nonparametric regression functions to

account for fact that these estimators are high-variance near their boundaries.

Table 2 in the Appendix, Section C gives summary statistics on these data.

7 Estimation of Resource Shares

Following our identification results, estimation could be based on composite versions

of the maximum score estimator or the conditional logit estimator (see Botosaru and

Muris (2017)). Here, we instead follow a sieve GMM approach that facilitates the

inclusion of a large vector of demographic conditioning variables z and the imposition

of strict monotonicity on the demand functions (aka: normality of the assignable

good) .

17Since household membership is fixed for all households in our sample, age, number and gender
composition are time-invariant by construction. However, education level of men and women are
time-varying in roughly 20% of households. For our time-invariant education variables, we use the
average education across the two observed years.
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The women’s food demand equation (5.8) is a FELT model, conditional on ob-

served covariates z. Denote the inverse demand functions gt(Yit, zit) = h�1
t (·, zit).

Given (5.8) a two-period setting with t = 1, 2, and time-invariant demographics

zit = zi, we have

↵i +Xit � Uit = gt(Yit, zi), (7.1)

implying the conditional moment condition

E [g2(Yi2, zi)� g1(Yi1, zi)�4Xit|Xi1, Xi2, zi] = 0. (7.2)

We provide a detailed description of our GMM estimator in the Appendix. Briefly,

we approximate the inverse demand functions, gt, t = 1, 2, using Bernstein polyno-

mials. In the main text, we use 8th order Bernstein polynomials restricted so that

estimated demand curves are strictly monotonically increasing. In the Appendix, we

provide estimates for other orders.

We characterize several interesting features of the distribution of resource shares.

Recall from Theorems 4 and 5 that identification of features of this distribution does

not impose a normalization on assignable good demand functions, and only identifies

the distribution of logged resource shares (fixed e↵ects) up to location. Consequently,

we only identify features of the resource share distribution up to a scale normalization.

Let bgit = bgt(Yit, zi) equal the predicted values of the inverse demand functions at

the observed data. Recall that gt (Yit, zi) = ↵i+Xit�Uit, so we can think of bgit�Xit

as a prediction of ↵i � Uit. We then compute the following summary statistics of

interest, leaving the dependence of ĝit, t = 1, 2, on zi implicit:

1. an estimate of the standard deviation of ↵i given by

ˆstd (↵) =
p

ˆcov ((bgi2 �Xi2) , (bgi1 �Xi1)),

where ˆcov denotes the sample covariance. The standard deviation of logs is

a standard (scale-free) inequality measure. So this gives a direct measure of

inter-household variation in women’s resource shares.

2. an estimate of the standard deviation of the projection error, ei, of ↵i on X̄i =
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1
2 (Xi1 +Xi2) and Zi. Consider the projection

↵i = �1X̄i + �2Zi + ei,

where Zi contains a constant. We are interested in the standard deviation of

ei. To obtain this parameter, we compute estimators for �1, �2 from the pooled

linear regression of ĝit � Xit on X̄i and Zi. Call these estimators �̂1, �̂2. Then,

as in ˆstd (↵) in (1), an estimate of the standard deviation of ei is given by:

ˆstd (ei) =
q

ˆcov
��
bgi2 �Xi2 � �̂1X̄i � �̂2Zi

�
,
�
bgi1 �Xi1 � �̂1X̄i � �̂2Zi

��
.

This object measures the amount of variation in ↵i that cannot be explained

with observed regressors. If it is zero, then we don’t really need to account

for household-level unobserved heterogeneity in resource shares. It is much

larger than zero, then accounting for household-level unobserved heterogeneity

is important.

3. an estimate of the standard deviation of ↵i +Xit for t = 1, 2, computed as

ˆstd (↵i +Xit) =
p

ˆvar (↵i) + ˆvar (Xit) + 2 ˆcov (↵i, Xit),

where

ˆcov (↵i, Xi1) = cov (ĝi1 �Xi1, Xi1) ,

ˆcov (↵i, Xi2) = cov (ĝi2 �Xi2, Xi2) ,

and ˆvar (↵i) =
⇣

ˆstd (↵)
⌘2

and ˆvar (Xit) , t = 1, 2, is observed in the data. Since

↵i + Xit is a measure of the woman’s shadow budget, ˆstd (↵i +Xit) is a mea-

sure of inter-household inequality in women’s shadow budgets. This inequality

measure is directly comparable to the standard deviation of Xi (shown in Table

1), which measures inequality in household budgets.

4. an estimate of the covariance of ↵i, Xit for t = 1, 2, denoted ˆcov (↵i, Xit). This

object is of direct interest to applied researchers using cross-sectional data to

identify resource shares. If this covariance is non-zero, then the independence

of resource shares and household budgets is cast into doubt, and identification
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strategies based on this restriction are threatened.

Of these, the first 2 summary statistics are about the variance of fixed e↵ects, and

are computed using data from both years. Their validity requires serial independence

of the measurement errors Uit. In contrast, the second 2 summary statistics are

about the correlation of fixed e↵ects with the household budget, and are computed

at the year level. They are valid with stationary Uit, even in the presence of serial

correlation.

We also consider the multivariate relationship between resource shares, household

budgets and demographics. Recall that the fixed e↵ect ↵i subject to a location

normalization; this means that resource shares are subject to a scale normalization.

So, we construct an estimate of the woman’s resource share in each household as

b⌘i = exp
�
1
2 (ĝi1 �Xi1) + (ĝi1 �Xi1)

�
, normalized to have an average value of 0.33.

Then, we regress estimated resource shares b⌘i on X̄i and Zi, and present the estimated

regression coe�cients, which may be directly compared with similar estimates in the

cross-sectional literature.

The estimated coe�cient onXi gives the conditional dependence of resource shares

on household budgets, and therefore speaks to the reasonableness of the restriction

that resource shares are independent of those budgets (an identifying restriction used

in the cross-sectional literature). Finally, using the estimate of the variance of fixed

e↵ects, we construct an estimate of R2 in the regression of resource shares on observed

covariates. This provides an estimate of how much unobserved heterogeneity matters

in the overall variation of resource shares.

8 Results

Figure 8 shows our estimates of h1 and h2 (or, equivalently, of g1 and g2) for K = 8,

for a family with two children with mean values, z, of the other demographics. The

figures have food quantities qt on the vertical axis and bgt (qt) on the horizontal axis,

so the horizontal axis is like a predicted logged household budget. Solid lines give

the nonparametric estimates, and 95% pointwise confidence bands for the nonpara-

metric estimates are denoted by dotted lines. Additionally, to provide reassurance

that the PIGL utility model—which implies the FELT demand curves—fits the data

adequately, we display the PIGL demand curve closest to the FELT estimates in each
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Figure 8.1: Estimated demand functions. Solid line is the nonparametric estimate,
evaluated at the mean value of the demographics. The dotted lines indicate the
95% confidence interval. The dashed line is the PIGL closest to the nonparametric
estimate. Left panel is for period 1, right panel is for period 2.

time period with dashed lines.18

Note that since gt are identified only up to location (of g1), we normalize the

average of bgt to half the geometric mean of household budgets at t =1, x1. Because

estimated nonparametric regression functions can be ill-behaved near their bound-

aries, we truncate the estimated functions at the 5th and 95th percentiles of the

distribution of qt in each t. The key message from 8 is that these estimated demand

curves are somewhat nonlinear, estimated reasonably precisely, and not too far from

PIGL. The estimated PIGL curvature parameter is r(z) = 0.06, which means that

food demands are close to PIGLOG (as in Banks et al. (1997)). Table 2 gives our

summary statistics (items 1-4 above), with bootstrapped 95% confidence intervals,

for our estimates with 8 Bernstein polynomials (see the Appendix for other lengths of

the Bernstein sieve). In the lower panel, we provide estimated regression coe�cients,

also with bootstrapped 95% confidence intervals, where we regress estimated resource

shares b⌘i on log-budgets X i and demographics zi. Starting with the top panel of Table

18We compute these PIGL demand curves by nonlinear least squares estimation of a pooled qit

on bgit, where the demand curves have the form qit = ctx
1�r + btx. We estimate the model on a grid

of 198 points, one for each interior percentile of qit in each period t = 1, 2.
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Estimate q(2.5) q(97.5)
Variability of fixed e↵ects ↵i

ˆstd (↵i) 0.2647 0.1518 0.3707
ˆstd (ei) 0.1637 0.1262 0.1931
ˆcov (↵i, Xi1) -0.0901 -0.1292 -0.0429
ˆcov (↵i, Xi2) -0.1034 -0.1418 -0.0561
ˆstd (↵i +Xi1) 0.3537 0.2720 0.4605
ˆstd (↵i +Xi2) 0.3763 0.3010 0.4760
Regression estimates
R2: X i, zi on ⌘i 0.5205 0.3361 0.6508
X i -0.0452 -0.0700 -0.0196
age–woman -0.2513 -0.4437 -0.0545
age–man 0.2845 0.1389 0.4191
2 children -0.0502 -0.1694 0.0413
3 or 4 children -0.1248 -0.2407 0.0140
avg age of children -0.0095 -0.1979 0.2151
fraction girl children 0.0136 -0.0881 0.1246
education–woman -0.0325 -0.1519 0.1198
education–men -0.1330 -0.2589 -0.0015

Table 1: Estimates.

1, the standard deviation of ↵i is a measure of inter-household dispersion in women’s

resource shares. If this dispersion is very small, then variation in resource shares does

not induce much inequality, and we can reasonably use the household-level income

distribution as a proxy for person-level inequality. However, if the dispersion is large,

then household-level measures of inequality leave out a lot of the action.

The estimated value is roughly 0.26, with a 95% confidence interval covering

roughly 0.15 to 0.37. To get a sense of the magnitude for the standard deviation

of logged resource shares, suppose that women’s resource shares were lognormally

distributed. Then our estimated standard deviation of 0.26 is consistent with 95% of

the distribution of the resource shares lying in the range [0.25, 0.75], which represents

quite a bit of heterogeneity across households.

The next row of Table 1 considers how much of the variation in ↵i we can ex-

plain with observed covariates. The standard deviation of ei gives a measure of the

unexplained variation, and gives us an idea of whether household-level unobserved

heterogeneity is an important feature of the data. If the standard deviation of ei

is very small, then fixed e↵ects are not needed—conditioning on observed covari-
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ates would be su�cient. Our estimate of the standard deviation of the unexplained

variation in ↵i is about 0.16. This is large relative to the overall estimated stan-

dard deviation of 0.26, and suggests that accounting for household-level unobserved

heterogeneity is quite important.

The next two rows give the covariance of ↵i and Xit. Here, we see that log

resource shares ↵i strongly and statistically significantly negatively covary with ob-

served household budgets (the implied correlation coe�cients are close to �0.8). This

means that women in poor households are somewhat less poor than they appear (on

the basis of their household budget), and women in richer households are somewhat

more poor than they appear. This is consistent with households that are closer to

subsistence having a more equal distribution of resources.

The next two rows give the estimated standard deviation of women’s log shadow

budgets. This is a scale-free parameter: it does not depend on the location normal-

ization of ↵i (which corresponds to a scale normalization of shadow budgets). The

estimated standard deviations are 0.35 and 0.38 in the two periods, respectively. We

can compare these with the standard deviation of log-budgets, reported in Table 1,

of 0.49 and 0.53. The point estimates suggest that there is less inequality in women’s

shadow budgets than in household budgets. Although the confidence intervals are

large, the test of the hypothesis that the standard deviation of log-budgets equals the

standard deviation of log-shadow budgets rejects in both years.19

Thus, if we take these results at face value, there is less consumption inequality

among women than household-level analysis would suggest. However, another impli-

cation of this is that there is more gender inequality than household level data would

suggest. The reason is that household-level analysis of gender inequality pins gender

inequality on over-representation of one gender in poorer households. In our data, all

households have 1 man and 1 woman, so household-level analysis of gender inequality

would show zero gender inequality. But, because women in richer households have

smaller resource shares, this induces gender inequality even in these data.

Finding correlation between ↵i and household budgets is not su�cient to invalidate

previous identification strategies for cross-sectional settings that rely on independence

between resource shares and household budgets. The reason is that the independence

required is conditional on other observed covariates. To get a handle on this, the

19For H0 : V ar (Xit)� V ar (↵i +Xit), we have the following estimated test statistics and (confi-
dence intervals). Period 1: 0.110 (0.0236,0.165); Period 2: 0.137 (0.0527,0.191).
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Figure 8.2: Scatterplot of predicted resource shares and log budget.

bottom panel of Table 1 presents estimates of coe�cients in a linear regression of

normalized (to average 0.33) estimated resource shares b⌘i on log-budgets X i and

other covariates zi.

The figure below shows the scatterplot of predicted resource shares versus the log

household budget. Here, we see a lot of variation in resource shares, and it is clearly

correlated with household budgets. The overall variation here provides an estimate

of the explained sum of squares in an infeasible regression of true resource shares ⌘i

on X i and zi.20 We may construct an estimate of the total sum of squares of resource

shares from our estimate of the standard deviation of ↵i. This yields an estimate

of R2 in the infeasible regression, which we interpret as the fraction of variation in

resource shares explained by observables.

In the first row of the bottom panel, we see that observed variables explain roughly

half the variation in resource shares (the estimate of R2 is 0.52). This magnitude of

explained variation is very close to that reported in Dunbar et al. (2019) in their

random-e↵ects cross-sectional estimate based on Malawian data. This large magni-

tude of unexplained variation (roughly half) suggests that accounting for unobserved

heterogeneity in resource shares is quite important.

20This artificial regression is infeasible because we observe (through git) a prediction of ↵i + Uit,
not of ↵i itself. However, because we have an estimate of the variance of ↵i, we can construct an
estimate of the variance of ⌘i (subject to the scale normalization that it has a mean of 0.33). In our
regression, the LHS variable is exp ĝit, which is a prediction of ⌘iuit. Since uit are uncorrelated with
Xi and z by assumption, the explained sum of squares from this regression applies to ⌘i, and we can
use it to form an estimate of R2, which we report, along with a bootstrapped confidence interval.
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Consider first the coe�cient on X i. The estimated coe�cient is �0.045 and is

statistically significantly di↵erent from 0. This means that, even after conditioning

on other covariates (many of which are highly correlated with the budget), we still

see a significant relationship between resource shares and household budgets.

However, the magnitude of this e↵ect is small. Conditional on zi, the standard

deviation of Xit is 0.43 in year 1 and 0.47 in year 2. Thus, comparing two households

with identical z but which are one standard deviation apart in terms the household

budget, we would expect the woman in the poorer household to have a resource share

2 percentage points higher than the woman in the richer household. Thus, the bulk

of the variation the makes the standard deviation of women’s shadow budgets smaller

than that of household budgets is not running through the dependence of resource

shares on household budgets, but rather through the dependence of resource shares

on other covariates that are correlated with household budgets.

We get a very precise estimate of the conditional dependence of resource shares

on household budgets. Overall, then, we see that women’s resource shares are sta-

tistically significantly correlated with household budgets, even conditional on other

observed characteristics. But, the estimated di↵erence in resource shares at di↵erent

household budgets is quite small. So, we take this as evidence that the identifying re-

strictions used by Dunbar et al. (2013) (and Dunbar et al. (2019)) may be false, though

perhaps not very false. It does suggest that alternative identifying restrictions—such

as those developed here with a panel data model—may be useful.

The rows of Table 1 give several other coe�cients that are comparable to other

estimates in the literature. Calvi (2019) finds that women’s resource shares in India

decline with the age of the woman. In these Bangladeshi data, we find evidence that

women’s resource shares are strongly negatively correlated with the age of women

and positively correlated with the age of men.

Dunbar et al. (2013) find that women’s resource shares in Malawi decline with

the number of children. Here, we also see that pattern: households with 2 chil-

dren have women’s resource shares 5 percentage points less than households with 1

child; households with 3 or 4 children have resource shares 12 percentage points less.

Dunbar et al. (2013) also find that Malawian women’s resource shares are higher in

households with girls than households with boys. We do not see evidence of this in

rural Bangladesh: the estimated coe�cient on the fraction of children that are girls

statistically insignificantly di↵erent from 0.
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In the Appendix, we also provide estimates analogous to Table 1 using a di↵erent

assignable good: clothing. Under the model, using di↵erent assignable goods should

yield the same estimates of resource shares.21 This is roughly what we find in our

estimates using women’s clothing.

Our estimates use 8th order Bernstein polynomials to approximate the inverse

demand functionsD. In Appendix B, we present estimates using Bernstein polynomials

of orderK = 1, 4, 8, 10 and show that our finite-dimensional parameter estimates have

roughly the same value for K � 8.

In summary, in these rural Bangladeshi households, we find evidence that women’s

resource shares have substantial dependence on household-level unobserved hetero-

geneity and are slightly negatively correlated with household budgets. The former

suggests that random-e↵ects type approaches to the estimation of resource shares

may be inadequate. The latter suggests that consumption inequality faced by women

is actually smaller than household-level consumption inequality. It also suggests that

cross-sectional identification strategies invoking independence of resource shares from

household budgets, such as Dunbar et al. (2013), could be complemented by panel-

based identification strategies such as ours.
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ONLINE APPENDICES

A Proofs

A.1 Proof of Lemma (1)

Proof. Define D = 1 {D1 (y1) +D2 (y2) = 1}. The proof consists in showing the fol-
lowing:

med
�
D2 (y2)�D1 (y1) |X, D = 1

�
(A.1)

= sgn
�
P
�
D (y1, y2) = (0, 1) |X, D = 1

�
� P

�
D (y1, y2) = (1, 0) |X, D = 1

��
(A.2)

= sgn

 
P
�
D (y1, y2) = (0, 1) , D = 1|X

�

P (D = 1|X)
�

P
�
D (y1, y2) = (1, 0) , D = 1|X

�

P (D = 1|X)

!
(A.3)

= sgn
�
P
�
D (y1, y2) = (0, 1) , D = 1|X

�
� P

�
D (y1, y2) = (1, 0) , D = 1|X

��
(A.4)

= sgn (P (D (y1, y2) = (0, 1) |X)� P (D (y1, y2) = (1, 0) |X)) (A.5)

= sgn (P (D2 (y2) = 1|X)� P (D1 (y1) = 1|X)) (A.6)

= sgn (�X� � � (y1, y2)) (A.7)

where (A.2) follows since the random variable D2 (y2) � D1 (y1) 2 {�1, 1}, which
implies that

med
�
D2 (y2)�D1 (y1) |X, D = 1

�

=

⇢
1 if P

�
D (y1, y2) = (0, 1) |X, D = 1

�
> P

�
D (y1, y2) = (1, 0) |X, D = 1

�

�1 if P
�
D (y1, y2) = (0, 1) |X, D = 1

�
< P

�
D (y1, y2) = (1, 0) |X, D = 1

� ,

(A.3) follows from the definition of conditional probability, (A.4) follows since the
sign function is not a↵ected by scaling both quantities by the same positive factor
(the denominator), (A.5) follows by the definition of D, and (A.6) follows since:

P (D2 (y2) = 1|X) = P (D (y1, y2) = (0, 1) |X) + P (D (y1, y2) = (1, 1) |X)

P (D1 (y1) = 1|X) = P (D (y1, y2) = (1, 0) |X) + P (D (y1, y2) = (1, 1) |X)

Finally, (A.7) follows from Assumption 2(ii), which implies that, e.g.,

P (D2 (y2) = 1|↵, X) > P (D1 (y1) = 1|↵, X) , ↵ +X2� � h�
2 (y2) > ↵ +X1� � h�

1 (y1) .

Integrating both sides over the conditional distribution of ↵ given X obtains:

P (D2 (y2) = 1|X) > P (D1 (y1) = 1|X) , X2� � h�
2 (y2) > X1� � h�

1 (y1)

, �X� � � (y1, y2) > 0.
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Result (3.4) now follows.

A.2 Proof of Theorem 1

Proof. Following Manski (1985), it su�ces to show that for an arbitrary ✓ 2 ⇥,
✓ 6= ✓0 ⌘ ✓0 (y1, y2),

P (W✓ < 0  W✓0) + P (W✓0 < 0  W✓) > 0. (A.8)

Our proof follows very closely that in Manski (1985), with W✓ taking the role of xb
and W✓0 taking the role of x�. However, our scale normalization is di↵erent.

Without loss of generality, let XK be the continuous regressor in Assumption
3(i). Separate �X = (�X�K ,�XK) where the first component �X�K represents
all covariates except the K-th one. Similarly, for any ✓ = (�, �) 2 ⇥, separate
� = (��K , �K). Furthermore denote W�K = (�X�K ,�1) and ✓�K = (��K , �).

Assume that the associated regression coe�cient �0,K > 0. The case �0,K < 0
follows similarly. Let ✓ = (�, �) 2 ⇥, ✓ 6= ✓0. As in Manski (1985, p. 318), consider
three cases: (i) �K < 0; (ii) �K = 0; (iii) �K > 0.

Cases (i) and (ii). �K  0. The proof is identical to that in Manski (1985),
with X� replaced by W✓. The fact that we use a di↵erent scale normalization does
not come into play.

Case (iii). �K > 0. note that

P (W✓ < 0  W✓0) = P

✓
�W�K✓0,�K

�0,K
< �XK < �W�K✓�K

�K

◆
.

P (W✓0 < 0  W✓) = P

✓
�W�K✓�K

�K
< �XK < �W�K✓0,�K

�0,K

◆
.

By assumption 4, ��K

�K
6= �0,�K

�0,K
, which shows that the first K components of the vector

✓ are not a scalar multiple of the first K components of the vector ✓0. Therefore, ✓ is
not a scalar multiple of ✓0. In particular, ✓0,�K

�0,K
6= ✓�K

�K
. Additionally, assumption 3(ii)

implies that P
⇣

W�K✓0,�K

�0,K
6= W�K✓�K

�K

⌘
> 0. Hence at least one of the two probabilities

above is positive so that (A.8) holds.

A.3 Proof of Theorem 2

Proof. Under Assumption 5, h�
1 (y0) = 0. Using the pair (y0, y2) for binarization thus

obtains identification of

� (y0, y2) = h�
2 (y2)� h�

1 (y0)

= h�
2 (y2).
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By varying y2 2 Y , we identify the function h�
2 from the binary choice models asso-

ciated with {D (y0, y2) = (D1 (y0) , D2 (y2)) , y2 2 Y}.
The pairs (y0, y2) and (y1, y2) identify the di↵erence

� (y0, y2)� � (y1, y2) = (h�
2 (y2)� h�

1 (y0))� (h�
2 (y2)� h�

1 (y1))

= h�
1 (y1).

By varying y1 2 Y we therefore identify h�
1 .

Thus, the functions h�
1 and h�

2 are identified. Because of monotonicity of ht

(Assumption 1), and because Y is known, h�
t contains all the information about the

pre-image of ht. Knowledge of the pre-image of a function is equivalent to knowledge
of the function itself. Therefore, ht can be identified from h�

t .

A.4 Proof of Theorem (3)

Proof. For the panel data binary choice model with logit errors, we obtain

P (D2 (y2) = 1|D (y1, y2) = 1, X,↵) (A.9)

=
P (D2 (y2) = 1, D (y1, y2) = 1|X,↵)

P
�
D (y1, y2) = 1|X,↵

� (A.10)

=
P (D1 (y1) = 0, D2 (y2) = 1|X,↵)

P
�
D (y1, y2) = 1|X,↵

� (A.11)

=
P (D1 (y1) = 0, D2 (y2) = 1|X,↵)

P (D1 (y1) = 0, D2 (y2) = 1|X,↵) + P (D1 (y1) = 1, D2 (y2) = 0|X,↵)
(A.12)

=
1

1 + P (D1(y1)=1,D2(y2)=0|X,↵)
P (D1(y1)=0,D2(y2)=1|X,↵)

(A.13)

= ⇤(�X� � �(y1, y2)) (A.14)

where A.10 follows from the definition of a conditional probability; A.11 follows be-
cause D2 = 1 and D̄ = 1 are equivalent to D1 = 0 and D2 = 1; A.12 follows because
D1 + D2 = 1 happens precisely when either (D1, D2) = (1, 0) or (D1, D2) = (0, 1);
A.13 follows by dividing by the numerator; and the final expression follows by the
argument below.

Note that P (D1(y1)=1,D2(y2)=0|X,↵)
P (D1(y1)=0,D2(y2)=1|X,↵) equals
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P (D1 (y1) = 1|X,↵)P (D2 (y2) = 0|X,↵)

P (D1 (y1) = 0|X,↵)P (D2 (y2) = 1|X,↵)
(A.15)

=
⇤
�
↵ +X1� � h�

1 (y1)
� ⇥

1� ⇤
�
↵ +X2� � h�

2 (y2)
�⇤

⇥
1� ⇤

�
↵ +X1� � h�

1 (y1)
�⇤

⇤
�
↵ +X2� � h�

2 (y2)
� (A.16)

=
exp

�
↵ +X1� � h�

1 (y1)
�

exp
�
↵ +X2� � h�

2 (y2)
� (A.17)

= exp
�
(X1 �X2) � �

�
h�
1 (y1)� h�

2 (y2)
��

, (A.18)

where A.15 follows from serial independence of (U1, U2) conditional on (X,↵); A.16
from the logit model specification; and A.17 follows from

⇤ (u) / (1� ⇤ (u)) = exp (u) .

The discussion above implies that A.9 does not depend on ↵. Hence,

p (X, y1, y2) ⌘ P (D2 (y2) = 1|D (y1, y2) = 1, X)

= ⇤(�X� � �(y1, y2))

= ⇤ (W✓ (y1, y2)) .

and note that p (X, y1, y2) is identified from the distribution of (Y,X), which is as-
sumed to be observed. Then

✓(y1, y2) = [E(W 0W )]�1E(W 0⇤�1(p(X, y1, y2)))

by invertibility of ⇤ and the full rank assumption on E [W 0W ]. This establishes
identification of � and � (y1, y2). The proof in Section A.3 applies, which shows the
identification of h1 and h2.

A.5 Proof of Theorem 4

Proof. (a) Note that, without Assumption 5, it follows immediately from the proof of
Theorem 2 that we can only identify

�
h�1
t (y)� c1, y 2 Y , t = 1, 2

 
, i.e. we identify

the functions gt (y), t = 1, 2.
Because the functions g1, g2 are identified, and because the distribution of (Y,X)

is observable, we can identify the distribution of the left hand side of the relation
below:

gt (Yt)�Xt� = h�1
t (Yt)�Xt� � c1

= ↵� Ut � c1,
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for t = 1, 2.
It follows that for all x 2 X ,

µ (x) = E [↵|X = x]

= E [↵� Ut|X = x] + E [Ut|X = x]

= E
⇥
h�1
t (Yt)�Xt�

��X = x
⇤
+m

= E [gt (Yt)�Xt�|X = x] + c1 +m.

is identified up to the constants c1 and m.
The di↵erence in conditional means at any two values x, x0 2 X is therefore

identified and given by:

µ (x)� µ
⇣
x

0
⌘
=

(E [gt (Yt)�Xt�|X = x] + c1 +m)�
⇣
E
h
gt (Yt)�Xt�|X = x

0
i
+ c1 +m

⌘

= E [gt (Yt)�Xt�|X = x]� E
h
gt (Yt)�Xt�|X = x

0
i
.

(b) To see that the conditional variance is identified, note that for all x 2 X ,

Cov (g2 (Y2)�X2�, g1 (Y1)�X1�|X = x) =

= Cov
�
h�1
2 (Y2)�X2� � c1, h

�1
1 (Y1)�X1� � c1

��X = x
�

= Cov (↵� U1 � c1,↵� U2 � c1|X = x)

= V ar (↵|X = x)� Cov (↵, U1|X = x)� Cov (↵, U2|X = x) + Cov (U1, U2|X = x)

= V ar (↵|X = x) = �2
↵ (x) ,

where the first equality follows from the definition of gt; the second from the model;
the third equality follows from the linearity of the covariance; and the fourth equality
uses assumption (4c) and (4d).

B GMM Estimator

The women’s food demand equation (5.8) is a FELT model, conditional on observed
covariates z. Denote the inverse demand functions gt(Yit, zit) = h�1

t (·, zit). Given (5.8)
and a two-period setting with t = 1, 2, and time-invariant demographics zit = zi, we
have

↵i +Xit � Uit = gt(Yit, zi), (B.1)

implying the conditional moment condition

E [g2(Yi2, zi)� g1(Yi1, zi)�4Xit|Xi1, Xi2, zi] = 0. (B.2)
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Sieve estimators. We approximate the inverse demand functions, gt, t = 1, 2,
using Bernstein polynomials. This allows us to impose monotonicity in a straight-
forward way, see, e.g., Wang and Ghosh (2012). Let k = 0, ..., K index univariate
Bernstein functions denoted as Bk (·, K), where K is the degree of the Bernstein
polynomial and where the Bernstein functions are given by:

Bk (u,K) =

✓
K

k

◆
uk (1� u)K�k , u 2 [0, 1] .

Let l = 0, ..., L index the elements of zi, and let the first (index 0) element of zi be a
constant equal to 1, that is zi = [1, zi1, . . . , ziL].

Our approximation to gt (Yit, zi) is given by:

gt (Yit, zi) ⇡
KX

k=0

�kt (zi)Bk (Yit, K) ⇡
LX

l=0

KX

k=0

z(l)i �(l)
kt Bk (Yit, K) .

For example, when there are no covariates L = 0, the expression above reduces to the
standard Bernstein polynomial approximation gt (Yit) ⇡

PK
k=0 �

(0)
kt Bk (Yit, K) . The

Bernstein coe�cients are linear functions of the demographics, and the dependence
of the Bernstein coe�cients on the demographics is allowed to vary with time. In
this way, the relationship between the (nonlinear) demand Yit and the latent budget
Y ⇤
it depends on demographic characteristics and on prices, through t. Since Bernstein

polynomials are defined on the unit interval, we normalize Yit to be uniform on [0, 1]
by applying its empirical distribution function.22

Unconditional moments. To form GMM estimators, we construct the following
unconditional moments:

E

" 
LX

l=0

KX

k=0

z(l)i

⇣
�(l)
k2Bk (Yi2, K)� �(l)

k1Bk (Yi1, K)
⌘
�4Xit

!
Bk0(xit, K)z(l

0)
i

#
= 0

for k0 = 0, . . . , K, l0 = 0, . . . , L, and t = 1, 2, and

E

" 
LX

l=0

KX

k=0

z(l)i

⇣
�(l)
k2Bk (Yi2, K)� �(l)

k1Bk (Yi1, K)
⌘
�4Xit

!
Xitz

(l0)
i

#
= 0,

for l0 = 0, . . . , L and t = 1, 2. We include the second condition (where the logged
household budget Xit is exogenous) because we ultimately wish to consider the corre-
lation of ↵i and Xit. For a given order of the sieve approximation, K, the equations

22We use this normalization for the estimation of the Bernstein coe�cients, but we present our
results in terms of untransformed Yit. These results are obtained by applying the inverse transfor-
mation to the function estimated with transformed data.
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above amount to a parametric linear GMM problem.
We impose increasingness on the estimates of the functions g1 and g2 by imposing

�kt (zi) � �k�1,t (zi) , for all zi, for all t, and for k � 2. This results in a quadratic
programming problem with linear inequality restrictions, which we implement in R
using the quadprog package.

Degree of Bernstein polynomial. Implementing this method requires the selection
of the degree of the Bernstein polynomial, K. While developing a formal selection
rule for this parameter would be desirable, it is beyond the scope of the present
paper. Nonetheless, we adopt an informal selection rule for the number of Bernstein
basis functions – the smoothing parameter – based on the following observation. In
our semiparametric setting, the estimators are known to have the same asymptotic
distribution for a range of smoothing parameters (see, e.g., Chen (2007)). When the
number of Bernstein basis functions is small, the bias dominates and the estimates
exhibit a decreasing bias as the number of terms increases. On the other hand,
when the number of basis functions is large, the statistical noise dominates. We
implement our estimation method over a range of smoothing parameter values, that
is, K 2 {1, 2, . . . , 12}, in search of a region where the estimates are not very sensitive
to small variations in the smoothing parameter. We select the mid-point of that
region, so our main results use K = 8. We present results for K 2 {1, 4, 8, 10} in the
Appendix. In the Appendix table, “X” denotes a case where an estimated variance
is negative.

Confidence bands. We compute confidence bands via the nonparametric bootstrap,
although we do not provide a formal justification for it in this setting.23 We use 1,000
bootstrap replications for all our results. We report pointwise 95% confidence bands.
All reported estimates in the main text are bias-corrected using the bootstrap.

Estimates and parameters of interest. We present estimates for the demand func-
tions, bht(x, z) = bg�1

t (·, z) for t = 1, 2, where z̄ represents a household with 1 child and
has other observed characteristics that are the average of those of 1-child households.
The functions ht (demand functions) are not of direct interest, but identification of
the ht supports identification of moments of the distribution of fixed e↵ects ↵i. In
our context, ↵i equals the log of the resource share of the woman in household i.

We characterize the following interesting features of the distribution of resource
shares. Recall from Theorems 4 and 5 that identification of features of this distri-
bution does not impose a normalization on assignable good demand functions, and
only identifies the distribution of logged resource shares (fixed e↵ects) up to location.
Consequently, we only identify features of the resource share distribution up to a scale
normalization.

Let bgit = bgt(Yit, zi) equal the predicted values of the inverse demand functions at
the observed data. Recall that gt (Yit, zi) = ↵i+Xit�Uit, so we can think of bgit�Xit

as a prediction of ↵i � Uit. We then compute the following summary statistics of

23When the parameter is on the boundary and the bootstrap is not consistent, it is common in
the literature to perform an m-out-of-n bootstrap, see, e.g., Andrews (1999, 2000).
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interest, leaving the dependence of ĝit, t = 1, 2, on zi implicit:

1. an estimate of the standard deviation of ↵i given by

ˆstd (↵) =
p

ˆcov ((bgi2 �Xi2) , (bgi1 �Xi1)),

where ˆcov denotes the sample covariance. The standard deviation of logs is
a standard (scale-free) inequality measure. So this gives a direct measure of
inter-household variation in women’s resource shares.

2. an estimate of the standard deviation of the projection error, ei, of ↵i on X̄i =
1
2 (Xi1 +Xi2) and Zi. Consider the projection

↵i = �1X̄i + �2Zi + ei,

where Zi contains a constant. We are interested in the standard deviation of
ei. To obtain this parameter, we compute estimators for �1, �2 from the pooled
linear regression of ĝit � Xit on X̄i and Zi. Call these estimators �̂1, �̂2. Then,
as in ˆstd (↵) in (1), an estimate of the standard deviation of ei is given by:

ˆstd (ei) =
q

ˆcov
��
bgi2 �Xi2 � �̂1X̄i � �̂2Zi

�
,
�
bgi1 �Xi1 � �̂1X̄i � �̂2Zi

��
.

This object measures the amount of variation in ↵i that cannot be explained
with observed regressors. If it is zero, then we don’t really need to account
for household-level unobserved heterogeneity in resource shares. It is much
larger than zero, then accounting for household-level unobserved heterogeneity
is important.

3. an estimate of the standard deviation of ↵i +Xit for t = 1, 2, computed as

ˆstd (↵i +Xit) =
p

ˆvar (↵i) + ˆvar (Xit) + 2 ˆcov (↵i, Xit),

where

ˆcov (↵i, Xi1) = cov (ĝi1 �Xi1, Xi1) ,

ˆcov (↵i, Xi2) = cov (ĝi2 �Xi2, Xi2) ,

and ˆvar (↵i) =
⇣

ˆstd (↵)
⌘2

and ˆvar (Xit) , t = 1, 2, is observed in the data. Since

↵i + Xit is a measure of the woman’s shadow budget, ˆstd (↵i +Xit) is a mea-
sure of inter-household inequality in women’s shadow budgets. This inequality
measure is directly comparable to the standard deviation of Xi (shown in Table
1), which measures inequality in household budgets.

4. an estimate of the covariance of ↵i, Xit for t = 1, 2, denoted ˆcov (↵i, Xit). This
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object is of direct interest to applied researchers using cross-sectional data to
identify resource shares. If this covariance is non-zero, then the independence
of resource shares and household budgets is cast into doubt, and identification
strategies based on this restriction are threatened.

Of these, the first 2 summary statistics are about the variance of fixed e↵ects, and
are computed using data from both years. Their validity requires serial independence
of the measurement errors Uit. In contrast, the second 2 summary statistics are
about the correlation of fixed e↵ects with the household budget, and are computed
at the year level. They are valid with stationary Uit, even in the presence of serial
correlation.

We also consider the multivariate relationship between resource shares, household
budgets and demographics. Recall that the fixed e↵ect ↵i subject to a location
normalization; this means that resource shares are subject to a scale normalization.
So, we construct an estimate of the woman’s resource share in each household as
b⌘i = exp

�
1
2 (ĝi1 �Xi1) + (ĝi1 �Xi1)

�
, normalized to have an average value of 0.33.

Then, we regress estimated resource shares b⌘i on X̄i and Zi, and present the estimated
regression coe�cients, which may be directly compared with similar estimates in the
cross-sectional literature.

The estimated coe�cient onXi gives the conditional dependence of resource shares
on household budgets, and therefore speaks to the reasonableness of the restriction
that resource shares are independent of those budgets (an identifying restriction used
in the cross-sectional literature). Finally, using the estimate of the variance of fixed
e↵ects, we construct an estimate of R2 in the regression of resource shares on observed
covariates. This provides an estimate of how much unobserved heterogeneity matters
in the overall variation of resource shares.

We also provide estimates that use women’s clothing as the assignable non-shareable
good. Here, clothing expenditure is equal to four times the reported three-month re-
call expenditure on the following female-specific clothing items: Saree; Blouse/ pet-
ticoat; Salwar kameez; and Orna. We note that although clothing is a semi-durable
good, there are 3 years between the waves of the panel. Consequently, we do not think
that the demands across periods will be strongly correlated due to the durability of
clothing purchased.

Appendix table “Additional Estimates” gives results for K 2 {1, 4, 8, 10} for food
(top panel) and clothing (bottom panel). In the table, “X” denotes a case where an
estimated variance is negative.
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C Descriptive Statistics

Table 2: Descriptive Statistics
raw data top- and bottom-coded

and normalized
Variable Mean Std Dev Min Max Mean Std Dev
Xi1 11.68 0.49 10.24 13.68
Xi2 12.02 0.53 10.70 14.08
4Xi 0.34 0.43 -0.94 2.31
Yi1 1561 1277 0 13500
Yi2 1912 1727 0 15000
age of woman 32.76 7.64 19.00 90.00 0.35 0.25
age of man 39.77 10.76 15.00 105.00 0.37 0.25
2 children 0.47 0.50 0.00 1.00 0.47 0.50
3 or 4 children 0.19 0.39 0.00 1.00 0.19 0.39
age of children 8.37 2.75 1.00 14.00 0.50 0.25
fraction girl children 0.46 0.39 0.00 1.00 0.46 0.39
education of woman 4.10 3.43 0.00 10.00 0.44 0.37
education of man 3.41 3.74 0.00 10.00 0.34 0.37

Table 2: Summary statistics.
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