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Abstract

This paper studies the properties of generalised empirical likelihood (GEL)
methods for the estimation of and inference on partially identified parameters in
models specified by unconditional moment inequality constraints. The central re-
sult is, as in moment equality condition models, a large sample equivalence between
the scaled optimised GEL objective function and that for generalised method of mo-
ments (GMM) with weight matrix equal to the inverse of the efficient GMM metric
for moment equality restrictions. Consequently, the paper provides a generalisa-
tion of results in the extant literature for GMM for the non-diagonal GMM weight
matrix setting. The paper demonstrates that GMM in such circumstances delivers
a consistent estimator of the identified set, i.e., those parameter values that satisfy
the moment inequalities, and derives the corresponding rate of convergence. Based
on these results the consistency of and rate of convergence for the GEL estimator
of the identified set are obtained. A number of alternative equivalent GEL criteria
are also considered and discussed. The paper proposes simple conservative consis-
tent confidence regions for the identified set and the true parameter vector based
on both GMM with a non-diagonal weight matrix and GEL. A simulation study
examines the efficacy of the non-diagonal GMM and GEL procedures proposed in
the paper and compares them with the standard diagonal GMM method.
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1 Introduction

The primary concern of this paper is an examination of the properties of generalised em-

pirical likelihood (GEL) methods for the estimation of and inference on partially iden-

tified parameters in models specified by unconditional moment inequality constraints.

The central result is, as in moment equality condition models, a large sample equivalence

between the scaled optimised GEL objective function and that for generalised method of

moments (GMM) with weight matrix equal to the inverse of the sample outer product

of the moment indicators, i.e., the efficient GMM metric for moment equality restric-

tions. Consequently, the paper provides a generalisation of results in the extant GMM

literature from the diagonal to the non-diagonal GMM weight matrix setting; see, inter

alia, Chernozhukov et al. (2007), henceforth CHT. The paper demonstrates that GMM

in such circumstances delivers a consistent estimator of the identified set, i.e., those pa-

rameter values that satisfy the moment inequalities, and derives the corresponding rate

of convergence. Based on these results the consistency of and rate of convergence for

the GEL estimator of the identified set are obtained. A number of alternative equivalent

GEL criteria are also considered and discussed. The paper proposes simple conservative

consistent confidence regions for the identified set and the true parameter vector based on

GMM with a non-diagonal weight matrix and GEL. A simulation study corroborates the

main theoretical results of this paper and indicates that empirical likelihood and expo-

nential tilting confidence region estimators have favourable coverage properties relative

to GMM with a diagonal weight matrix and continuous updating which has very poor

coverage outside the identified set.

The econometric literature concerned with partially identified models has grown

rapidly in recent years, especially that for models defined by moment inequality restric-

tions. The impetus for this research originally arose from the recognition that unten-

able and thus undesirable assumptions may often be imposed in econometric research to

achieve point identification of model parameters thereby reducing the credibility of any

resultant inference. The analysis of the properties of extremum-type parameter estima-

tors in partially identified models specified by moment inequality restrictions has received

particular attention. CHT provides general conditions under which the consistency of

estimators for the identified set and the validity of resampling methods to generate con-

sistent confidence regions for either the identified set or the true parameter vector are

established. To date much of this literature has concentrated on the GMM criterion and

associated GMM estimators. CHT section 4, pp.1261-1267, develops confidence region
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estimators for the identified set and true vector of parameters based on GMM with a

diagonal weight matrix whereas Rosen (2008) does so for the latter based on the GMM

criterion with the equality moment constraints efficient metric which avoids the necessity

of CHT resampling techniques. An important recent contribution, Chen et al. (2016),

develops confidence regions for the identified set based on inverting an optimal sample

criterion where cut-off values are computed directly from MCMC simulations of a quasi-

posterior distribution of the criterion. However, not unlike CHT for GMM, this method

also requires a diagonal variance matrix assumption; see Chen et al. (2016) Assumption

3.2 and Theorem 3.1. Menzel (2014) extends the CHT results for GMM to the case of

many moment inequalities; cf. the many moment equalities GMM results of Han and

Phillips (2008). Moment inequality selection methods and corresponding methods of

inference based on GMM-type estimators are developed in Andrews and Guggenberger

(2009), Andrews and Soares (2010) and Andrews and Barwick (2012). Extensions of

GMM to conditional moment inequality models have also been considered; see, e.g., An-

drews and Shi (2013, 2014), Armstrong (2014, 2015), Armstrong and Chan (2016) and

Khan and Tamer (2009). Misspecified moment inequalities are studied in Ponomareva

and Tamer (2011) and Bugni et al. (2012).

The criterion function approach of CHT and others, although of general applicabil-

ity, can be computationally demanding. Another strand of research has focussed on

econometric models with compact convex identified sets enabling the identified set to be

characterised by its support function which thus provides a computationally tractable

representation. See, e.g., Beresteanu and Mollinari (2008), Beresteanu et al. (2011) and

Kaido and Santos (2014). Kaido (2016) presents a unification of the two approaches for

compact convex identified sets, illustrating the applicability of the results in a number

of examples and for models defined by a finite number of moment inequalities.

Despite the many substantial theoretical contributions to research on the estimation

of set-identified parameters relatively little is known about the properties of GEL-type es-

timators. Exceptions are Moon and Schorfheide (2009), which adopts an empirical likeli-

hood approach when parameters are point-identified by over-identifying moment equality

restrictions and also subject to moment inequality restrictions, and Canay (2010), which

obtains EL-based confidence regions for the true parameter vector when it is partially

identified by a set of unconditional moment inequalities. More generally, the asymptotic

properties of GEL methods of inference for the identified set and the true parameter

vector, the topic of this paper, remain to be developed.

The paper is organised as follows. Section 2 briefly reviews the set-up describing mod-
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els specified by unconditional moment inequality constraints. Section 3 details GMM and

GEL criteria and associated constructs appropriate for estimation and inference in such

models. The equivalence of definitions of the identified set based on population GMM

and GEL criteria is also discussed and established here. Consistent estimators for the

identified set based on GMM and GEL criteria are described in section 4 with, in par-

ticular, the asymptotic equivalence of various GEL criteria also shown. Conservative

confidence region estimators for the identified set and the true parameter vector based

on GMM with a non-diagonal weight matrix and GEL are proposed in section 5. Sec-

tion 6 provides a simulation study for interval outcomes in a nonlinear regression model

to examine the efficacy of GEL procedures proposed in the paper compared with the

standard diagonal GMM method. Section 7 summarises and concludes. The appendices

contain the technical conditions of CHT, their verification for nondiagonal metric GMM

and GEL together with the proofs of results stated in the text.

Throughout the text zi, (i = 1, ..., n), denotes a random sample of size n on the

observation dz-dimensional vector z. Positive (semi-) definite is abbreviated as p.(s.)d.,

f.c.r. full column rank and f.o.c. first order condition. The interior of a set A is denoted

as int(A). Superscripted vectors denote the requisite element, e.g., aj is the jth element

of vector a; ‖x‖− = ‖[x]−‖ with [x]− = min{x, 0}. UWL denotes a uniform weak

law of large numbers such as Lemma 2.4 of Newey and McFadden (1994) and CLT

is the Lindeberg-Lévy central limit theorem. The symbols “⇒”, “
p→” and “

d→” denote

weak convergence, convergence in probability and convergence in distribution respectively

and “with probability (approaching) 1” written as “w.p.(a.)1”. The Hausdorff distance

between sets A and B is defined as dH(A,B) = max[supa∈A d(a,B), supb∈B d(b, A)] where

d(b, A) = infa∈A ‖b− a‖ and dH(A,B) =∞ if either A or B are empty.

2 Moment Inequality Restrictions

Let m(z, θ) denote a dm-vector of known functions of the data observation vector z

and the dθ-vector θ ∈ Θ of unknown parameters where Θ ⊂ Rdθ is the correspond-

ing parameter space. The moment indicator vector m(z, θ) will form the basis for

inference in the following discussion and analysis. Also let m(θ) = EP0 [m(z, θ)] and

Ω(θ) = EP0 [m(z, θ)m(z, θ)′], θ ∈ Θ, where EP0 [·] denotes expectation taken with respect

to the true population probability law (P0) of z.
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Assumption A.1. (a) The parameter space Θ is a non-empty and compact subset

of Rdθ ; (b) m(z, θ) is continuous at each θ ∈ Θ w.p.1, EP0 [supθ∈Θ ‖m(z, θ)‖2] < C <∞
for suitably large C > 0; (c) Ω(θ) is finite and uniformly p.d. θ ∈ Θ; (d) the data zi,

(i = 1, ..., n), are defined on a complete probability space (Ω,F , P ).

Remark 2.1. Assumption A.1 repeats aspects of CHT Condition M.2(a), p.1265.

It is assumed that the true value θ0 taken by θ satisfies the population unconditional

moment inequality condition under P0

EP0 [m(z, θ)] ≥ 0. (2.1)

Remark 2.2. Moment inequalities such as (2.1) arise in many settings, e.g., interval

outcomes in regression models of relevance for empirical models of auctions which forms

the basis for the experimental design of the simulation study of section 6. See, inter alia,

the CHT introduction and CHT section 2.2 which provide several more examples and

the associated discussion in Romano and Shaikh (2008) for other common examples.

In many situations the common assumption that θ0 uniquely satisfies the inequality

restrictions (2.1) and is thus point identified would need the, implicit or otherwise, im-

position of further potentially stringent and untenable assumptions. In the absence of

such additional assumptions a more general and less restrictive approach requires that

there exists a subset of Θ, here denoted by ΘP0 and referred to as the identified set, for

which these inequality constraints hold, i.e., the identified set ΘP0 consists of all those

elements θ ∈ Θ that satisfy the moment inequality restrictions (2.1)

ΘP0 = {θ ∈ Θ : EP0 [m(z, θ)] ≥ 0}. (2.2)

It is convenient for the following analysis to define a dm-vector of complementary slackness

parameters t(θ) by the identity

t(θ) = EP0 [m(z, θ)] (2.3)

with the consequent equivalent re-expression of the moment inequality constraints (2.1)

as the equality restrictions t(θ)−EP0 [m(z, θ)] = 0 together with the parametric inequality

restrictions t(θ) ≥ 0. Thus, the identified set ΘP0 may now be re-defined as

ΘP0 = {θ ∈ Θ : t(θ)− EP0 [m(z, θ)] = 0, t(θ) ≥ 0}. (2.4)

In the following the identified set ΘP0 and the true value θ0 are of primary inferential

interest.
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3 GMM and GEL

This section first discusses GMM for models specified by the moment inequality restric-

tions (2.1). A description of the application of GEL then follows; equivalent GEL variants

and their properties are detailed in Appendix E. The section is concluded by an analysis

and comparison of the corresponding GMM and GEL definitions of the identified set.

Let mi(θ) = m(zi, θ), (i = 1, ..., n), m̂n(θ) =
∑n

i=1 mi(θ)/n and Ω̂n(θ) =∑n
i=1mi(θ)mi(θ)

′/n. Assumptions A.1(b) and (c) above ensure m̂n(θ)
p→ m(θ) and

Ω̂n(θ)
p→ Ω(θ) uniformly θ ∈ Θ by UWL.

3.1 GMM

Define the norm ‖x‖2
W = x′Wx where W is a p.s.d. matrix. A general formulation for

GMM appropriate for the moment inequality constraints (2.1) is based on the objective

function

Q̂W
n (θ) = inf

t≥0
(m̂n(θ)− t)′Wn(θ)(m̂n(θ)− t)

= inf
t≥0
‖m̂n(θ)− t‖2

Wn(θ) , (3.1)

where Wn(θ) is assumed to be uniformly p.s.d. θ ∈ Θ′. The solution t̂n(θ) to (3.1) sat-

isfies t̂jn(θ) = 0 if m̂j
n(θ) < 0 and m̂j

n(θ) if m̂j
n(θ) ≥ 0, (j = 1, ..., dm). Cf. Rosen (2008);

also see CHT and Romano and Shaikh (2008).

Assumption A.2-GMM. (a) The GMM criterion function Q̂W
n (θ) is defined on a

neighbourhood Θ′ of Θ, and is measurable in θ ∈ Θ′; (b) there exists W (θ) such that

supθ∈Θ′ |Wn(θ)−W (θ)| = op(1) where W (θ) is continuous with finite elements and uni-

formly p.d. θ ∈ Θ′.

Remark 3.1. Assumption A.2-GMM together with Assumption A.1 reproduces

CHT Conditions M.2(a) and M.2(e), p.1265, with an important exception; cf. Rosen

(2008) Assumptions A4 and A5, p.110. That is, CHT Assumption M.2(e), p.1265, which

imposes diagonality on the asymptotic GMM weight matrix W (θ), is relaxed here. Con-

sequently, the GMM criterion Q̂W
n (θ) in (3.1) may no longer be equivalently expressed

asymptotically as the CHT sample criterion
∥∥m̂n(θ)′Wn(θ)1/2

∥∥2

− unless W (θ) is diago-

nal. Assumption A.2-GMM(b) may be straightforwardly verified by application of UWL.
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Remark 3.2. Of particular interest is the GMM objective function with the optimal

GMM metric in the unconditional moment equality context, i.e., Wn(θ) = Ω̂n(θ)−1,

Q̂Ω−1

n (θ) = inf
t≥0

(m̂n(θ)− t)′Ω̂n(θ)−1(m̂n(θ)− t)

= inf
t≥0
‖m̂n(θ)− t‖2

Ω̂n(θ)−1 . (3.2)

The population counterpart QW (θ) to the GMM criterion (3.1) is defined by

QW (θ) = inf
t≥0

(m(θ)− t)′W (θ)(m(θ)− t)

= inf
t≥0
‖m(θ)− t‖2

W (θ) . (3.3)

3.2 GEL

It is well know that appropriately scaled GEL is first order asymptotically equivalent

to optimal GMM in the standard moment equality constraint setting. As is also widely

appreciated, GEL includes as special cases empirical likelihood (EL) [Qin and Lawless

(1994), Imbens (1997)], exponential tilting (ET) [Kitamura and Stutzer (1997), Imbens et

al. (1998)], continuous updating estimation (CUE) [Hansen et al. (1996)] and estimators

based on the Cressie-Read power divergence family [Cressie and Read (1984)]. See inter

alia Newey and Smith (2004) and Smith (1997, 2011). Canay (2010) develops an EL-

based confidence region for the true parameter vector θ0, but does not study the large

sample properties of the EL estimator of the identified set.

To describe GEL let ρ(v) be a function of a scalar v that is concave on its domain

V , an open interval containing zero. For expositional convenience but without loss of

generality ρ(0) is set equal to 0 below. The standard GEL criterion is then defined as

P̂ ρ
n(θ, λ) =

n∑
i=1

ρ(λ′mi(θ))/n, (3.4)

in which each element of the auxiliary parameter vector λ ∈ Rdm is associated with a

corresponding element of the moment indicator vector mi(θ), (i = 1, ..., n); cf. Newey

and Smith (2004) and Smith (1997, 2011).

Let Λ̂+
n (θ) = Λ̂n(θ) ∩ {λ ≥ 0} where Λ̂n(θ) = {λ : λ′mi(θ) ∈ V , (i = 1, ..., n)}

constrains the domain of ρ(·) to the concavity region V identically to the standard moment

equality restrictions case; see Newey and Smith (2004). Optimization of P̂ ρ
n(θ, λ) (3.4)

with respect to λ is taken over Λ̂+
n (θ), where the non-negativity restriction λ ≥ 0 reflects
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the moment inequality constraints (2.1). The profile GEL criterion function P̂ ρ
n(θ) is

then defined by

P̂ ρ
n(θ) = sup

λ∈Λ̂+n (θ)

P̂ ρ
n(θ, λ). (3.5)

Let ρ1(·) and ρ2(·) denote the first and second derivatives of ρ(·) respectively. The

next assumption provides the requisite conditions on the profile GEL criterion P̂ ρ
n(θ)

(3.5) and the function ρ(·).

Assumption A.2-GEL. (a) P̂ ρ
n(θ) is defined on a neighbourhood Θ′ of Θ and is

measurable in θ ∈ Θ′; (b) ρ(·) is strictly concave and twice continuously differentiable

on an open interval V that includes 0 such that ρ(0) = 0 and ρ1(v) < 0 for all v ∈ V.

Remark 3.3. Cf. Assumption A.2-GMM. Assumption A.2-GEL(b) is satisfied

by the Cressie-Read (1984) family of divergence measures. In the following, without

loss of generality, the first two derivatives of ρ(·) at zero are set to minus unity, i.e.,

ρ1(0) = ρ2(0) = −1.

For any θ ∈ Θ, define λ̂n(θ) = arg maxλ∈Λ̂+n (θ) P̂
ρ
n(θ, λ) as the solution to the f.o.c.

with respect to λ for given θ, i.e.,

n∑
i=1

ρ1(λ̂n(θ)′mi(θ))mi(θ)/n ≤ 0, λ̂n(θ) ≥ 0. (3.6)

In particular
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))m
j
i (θ)/n = 0 and λ̂jn(θ) > 0 or

∑n
i=1 ρ1(λ̂n(θ)′mi(θ))

×mj
i (θ)/n < 0 and λ̂jn(θ) = 0, (j = 1, ..., dm), i.e., λ̂n(θ)′

∑n
i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n =

0.

The GEL empirical or implied probabilities are then defined correspondingly by

π̂ρi (θ, λ) =
ρ1(λ′mi(θ))∑n
k=1 ρ1(λ′mk(θ))

, (i = 1, ..., n); (3.7)

cf. Back and Brown (1993), Newey and Smith (2004) and Brown and Newey (1992, 2002).

Remark 3.4. The GEL implied probabilities π̂ρi (θ) = π̂ρi (θ, λ̂n(θ)), (i = 1, ..., n),

(3.7), are non-negative by Assumption A.2-GEL(b), sum to unity and satisfy the sample

moment inequality condition
∑n

i=1 π̂
ρ
i (θ)mi(θ) ≥ 0 (3.6) defining the f.o.c. for λ̂n(θ).
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Remark 3.5. The above optimisation problem may be cast alternatively in terms

of the Lagrangean P̃ ρ
n(θ, λ, τ) =

∑n
i=1 ρ(λ′mi(θ))/n + τ ′λ where τ is the dm-vector of

Lagrange multipliers associated with the inequality constraint λ ≥ 0. Cf. Moon and

Schorfheide (2009) (16), p.140. The Lagrange multiplier estimator satisfies τ̂n(θ) ≥ 0

with λ̂n(θ)′τ̂n(θ) = 0 and, in particular, λ̂jn(θ) = 0 and τ̂ jn(θ) > 0 or λ̂jn(θ) > 0 and

τ̂ jn(θ) = 0, (j = 1, ..., dm). The auxiliary parameter estimator λ̂n(θ) is the solution to

the f.o.c. with respect to λ, i.e.,
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n + τ̂n(θ) = 0. Thus τ̂n(θ)

satisfies τ̂n(θ) = −
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n; cf. (3.6).

Remark 3.6. Appendix E gives alternative equivalent forms of GEL criteria; viz.

P̃ ρ,a
n (θ, λ, τ) =

∑n
i=1 ρ(λ′(mi(θ)−τ))/n (E.1), P̃ ρ,b

n (θ, λ, τ) =
∑n

i=1[ρ(λ′mi(θ))−ρ(λ′τ)]/n

(E.3) and P̃ ρ
n(θ, λ, τ) =

∑n
i=1 ρ(λ′mi(θ))/n+ λ′τ (E.6), cf. Remark 3.5. Lemmas E.1-E.3

in Appendix E.1 provide detailed statements and, in particular, demonstrate that both

the solutions to and the optimised values of the corresponding GEL saddle point problems

(3.4), (E.6) and (E.1), (E.3) are identical. More specifically, define the slackness para-

meter space T = {τ ∈ Rdm : τ ≥ 0, ‖τ‖ ≤ C} with C > 0 defined by the boundedness

condition in Assumption A.1(b). Then, if (θ̃, λ̃, τ̃), where τ̃ ∈ int(T ), is a saddlepoint of

P̃ ρ
n(θ, λ, τ) or P̃ ρ,k

n (θ, λ, τ), (k = a, b), then (θ̃, λ̃) is also a saddlepoint of P̂ ρ
n(θ, λ) and, if

(θ̂, λ̂) is a saddlepoint of P̂ ρ
n(θ, λ) and τ̂ ∈ int(T ) for suitable definitions of the slackness

parameter τ̂ , then (θ̂, λ̂, τ̂) is also saddlepoint of P̃ ρ
n(θ, λ, τ) or P̃ ρ,k

n (θ, λ, τ), (k = a, b).

Cf. Moon and Schorfheide (2009) Lemma A.1, p.150.

3.3 Identified Set

The identified set ΘP0 (2.2) is clearly identical to the GMM population counterpart

ΘW
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

QW (θ)} (3.8)

where QW (θ) is defined in (3.3).

Let P̂ ρ(θ) denote the population counterpart to the profile GEL criterion P̂ ρ
n(θ) (3.5),

i.e., P̂ ρ(θ) = supλ≥0 EP0 [ρ(λ′m(z, θ))]. The GEL population counterpart Θ̂ρ
P0

to the

identified set ΘP0 (2.2) is then defined as

Θ̂ρ
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̂ ρ(θ)} (3.9)

which similarly to Canay (2010) for EL may be shown to be identical to the identified

set ΘP0 (2.2).
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Remark 3.7. Alternative but equivalent population counterparts Θ̃ρ
P0

(E.8) and

Θ̃ρ,k
P0

, (k = a, b), (E.9) may be defined corresponding to the GEL criteria P̃ ρ
n(θ, λ, τ) (E.6)

and P̃ ρ,k
n (θ, λ, τ), (k = a, b), (E.1) and (E.3). See Appendix E.3 for a detailed description.

Lemma D.1 in Appendix D formally demonstrates the equivalence of Θ̂ρ
P0

(3.9) with

the identified set ΘP0 (2.2). Lemmas E.4 and E.5 in Appendix E do likewise for Θ̃ρ
P0

(E.8) and Θ̃ρ,k
P0

(E.9), (k = a, b), with Θ̂ρ
P0

(3.9). Theorem 3.1 summarises these results.

Theorem 3.1. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then the

GEL population counterparts Θ̂ρ
P0

(3.9), Θ̃ρ
P0

(E.8) and Θ̃ρ,k
P0

(E.9), (k = a, b), are identical

to the identified set ΘP0 (2.2).

4 Set Estimation

Let vn(θ) = n1/2(m̂n(θ)− EP0 [m(z, θ)]), θ ∈ Θ′, Ω(θa, θb)= EP0 [vn(θa)vn(θb)
′], θa, θb ∈ Θ′,

and Ω(θ) = Ω(θ, θ), θ ∈ Θ′, where Θ′ is a neighbourhood of Θ. The following assump-

tions mimic CHT Conditions M.2(c), M.2(d) and M.2(f), pp.1265-1266, respectively.

Assumption A.3. The collection {mi(θ) : θ ∈ Θ′} satisfies a P -Donsker property. In

particular, vn(·)⇒ v(·) where v(θ), θ ∈ Θ′, is a zero-mean Gaussian process with almost

sure continuous paths and covariance function Ω(θa, θb), θa, θb ∈ Θ′, such that Ω(θ) is

uniformly p.d. θ ∈ Θ′.

Assumption A.4. There exist positive constants C and δ such that ‖EP0 [m(z, θ)]‖− ≥
C · (d(θ,ΘP0) ∧ δ) for all θ ∈ Θ with continuous Jacobian M(θ) = ∂m(θ)/∂θ′ for each

θ ∈ Θ′.

Assumption A.5. There exist positive constants (C,M, δ) such that, for all θ ∈ Θ−εP0 ,

min1≤j≤dm ‖EP0 [mj(z, θ)]‖− ≥ C · (ε ∧ δ) and dH(Θ−εP0 ,ΘP0) ≤Mε for all ε ∈ [0, δ] where

Θ−εP0 = {θ ∈ ΘP0 : d(θ,Θ\ΘP0) ≥ ε}.

Proofs for the following results are provided in Appendices B and C respectively for

GMM and GEL.

[9]



4.1 GMM

Let

Θ̂W
n (c) = {θ ∈ Θ : nQ̂W

n (θ) ≤ c} (4.1)

where c denotes a positive scalar. Cf. CHT, eqs. (3.1) and (3.2), p.1253. The GMM

estimator of the identified set ΘP0 (2.2) is then defined as the set estimator Θ̂W
n (ĉW ) (4.1)

for some possibly data dependent level ĉW .

Appendix B establishes the validity for non-diagonal weighted GMM of CHT Con-

ditions C.1, p.1252, C.2, p.1253, and C.3, p.1255, under Assumptions A.1, A.2-GMM

and A.3-A.5. These conditions are therefore sufficient for the statement of the following

theorem on the consistency and rate of convergence of the GMM set estimator Θ̂n(ĉW )

for the identified set ΘP0 given rate restrictions on ĉW as provided in CHT Theorem 3.2,

p.1255.

Theorem 4.1. Let ĉW ≥ qn = infθ∈Θ nQ̂
W
n (θ) w.p.1 and ĉW = Op(1). Then, under

Assumptions A.1, A.2-GMM and A.3-A.5, (a) Θ̂W
n (ĉW ) is a consistent estimator of the

identified set ΘP0, i.e., dH(Θ̂W
n (ĉW ),ΘP0) = op(1); (b) dH(Θ̂W

n (ĉW ),ΘP0) = Op(n
−1/2).

Remark 4.1. Theorem 4.1 is established by verifying the conditions required for

CHT Theorem 3.2, p.1255. Unlike CHT Condition M.2(e), p.1265, and the consequent

Theorem 4.2, p.1266, Theorem 4.1 does not require the diagonality of the population

GMM weight matrix W (θ), θ ∈ Θ, although similarly mild restrictions on the choice

of the value ĉW to those of CHT are imposed. CHT Theorem 4.2, p.1266, also obtains

a limiting representation for the statistic supθ∈ΘP0
nQ̂W

n (θ) when the population GMM

weight matrix W (θ), θ ∈ Θ, is diagonal. To the best of our knowledge there are as yet

no results for the non-diagonal case. Section 5.1 proposes conservative bounds appropri-

ate for GMM criteria with a non-diagonal population weight matrix W (θ), θ ∈ Θ, and,

likewise, GEL criteria.

Remark 4.2. Alternatively, cf. CHT Theorem 3.1, p.1254, a similar result holds

if ĉW ≥ supθ∈ΘP0
nQ̂W

n (θ) w.p.a.1 and ĉW/n = op(1) with Theorem 4.1(b) restated as

dH(Θ̂W
n (ĉW ),ΘP0) = Op((1∨ ĉW )/n)1/2; cf. Rosen (2008) Proposition 2, p.110, which sets

ĉW →∞ and ĉW/n = o(1). Since, in general, supθ∈ΘP0
nQ̂W

n (θ) is unknown, CHT, p.1254,

suggests the choice ĉW = o(log(n)) which yields a rate of convergence of (log(n)/n)1/2.
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4.2 GEL

Let

Θ̂ρ
n(ĉρ) = {θ ∈ Θ : 2nP̂ ρ

n(θ) ≤ ĉρ} (4.2)

where the profile GEL criterion P̂ ρ
n(θ) is defined in (3.5). The GEL estimator of ΘP0

based on (3.4) is the solution to a saddle point problem and is described by the set esti-

mator Θ̂ρ
n(ĉρ) (4.2) for some possibly data dependent ĉρ.

Remark 4.3. The scale factor 2 introduced in the definition of the GEL set estima-

tor Θ̂ρ
n(ĉρ) (4.2) reflects the first order asymptotic equivalence between the scaled profile

GEL 2nP̂ ρ
n(θ) (3.5) and optimal moment equality GMM nQ̂Ω−1

n (θ) (3.2) criteria thus

ensuring comparability between the respective set estimators. See Appendix C Lemmas

C.4 and C.5.

Remark 4.4. Write P̃ ρ
n(θ) = infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ) (E.6) and P̃ ρ,k

n (θ) = infτ∈T

supλ∈Λ̂kn(θ,τ) P̃
ρ,k
n (θ, λ, τ), (k = a, b), (E.1, E.3), see Remark 3.6, and define

Θ̃ρ
n(ĉρ) = {θ ∈ Θ : 2nP̃ ρ

n(θ) ≤ ĉρ} (4.3)

and

Θ̃ρ,k
n (ĉρ) = {θ ∈ Θ : 2nP̃ ρ,k

n (θ) ≤ ĉρ}, (k = a, b). (4.4)

Consequently, the set estimators Θ̂ρ
n(ĉρ) (4.2), Θ̃ρ

n(ĉρ) (4.3) and Θ̃ρ,k
n (ĉρ), (k = a, b), (4.4)

based on the respective GEL criteria (3.4), (E.6), (E.1) and (E.3) evaluated using the

same critical value ĉρ are identical given their numerical equivalence established in Ap-

pendix E.1.

Appendix C establishes the corresponding validity of CHT Conditions C.1, p.1252,

C.2, p.1253, and C.3, p.1255, under Assumptions A.1, A.2-GEL and A.3-A.5. Hence, a

similar result to Theorem 4.1 for GMM may be stated on the consistency and rate of

convergence of the GEL set estimator Θ̂ρ
n(ĉρ) (4.2) for the identified set ΘP0 with some

possibly data-dependent ĉρ.

Theorem 4.2. Let ĉρ ≥ qρn = infθ∈Θ 2nP̂ ρ
n(θ) w.p.1 and ĉρ = Op(1). Then, under

Assumptions A.1, A.2—GEL and A.3-A.5, (a) Θ̂ρ
n(ĉρ) is a consistent estimator of the

[11]



identified set ΘP0, i.e., dH(Θ̂ρ
n(ĉρ),ΘP0) is op(1); (b) dH(Θ̂ρ

n(ĉρ),ΘP0) is Op(n
−1/2).

Remark 4.5. Theorem 4.2 is proved for the alternative GEL criterion P̃ ρ
n(θ, λ, τ)

(E.6) but given the equivalence established in Appendix E.1 therefore applies to P̂ ρ
n(θ, λ)

(3.4). Proofs analogous to those of Newey and Smith (2004) are developed to show these

results. In particular, the scaled GEL criterion function is shown to be first-order equiv-

alent to the scaled optimal GMM criterion (3.2) in the unconditional moment equality

context and then Theorem 4.1 with population GMM weight matrix Ω(θ)−1, θ ∈ Θ, is

invoked.

Remark 4.6. Similarly to Remark 4.2 above, if ĉρ ≥ supθ∈ΘP0
2nP̂ ρ

n(θ) w.p.a.1 and

ĉρ/n = op(1), then dH(Θ̂ρ
n(ĉρ),ΘP0) is Op((1 ∨ ĉρ)/n)1/2.

5 Confidence Region Estimation

Confidence regions for the identified set ΘP0 and the true parameter value θ0 are of par-

ticular interest. Section 5.1 constructs a conservative confidence region for the identified

set ΘP0 . Section 5.2 develops conservative GEL-based confidence regions for the true

parameter value θ0 similar to those of Rosen (2008) section 4, pp.111-113.

5.1 Conservative Confidence Regions for ΘP0

A critical matter is a suitable choice for the possibly data dependent ĉW or ĉρ respec-

tively satisfying the hypotheses of Theorems 4.1 and 4.2 thereby ensuring that the GMM

Θ̂W
n (ĉW ) = {θ ∈ Θ : nQ̂W

n (θ) ≤ ĉW}, cf. (4.1), or GEL Θ̂ρ
n(ĉρ) = {θ ∈ Θ : 2nP̂ ρ

n(θ) ≤ ĉρ},
cf. (4.2), estimators possess a confidence region property; see CHT section 3.3, pp.1256-

1257. CHT section 4.2, pp.1265-1267, addresses this issue for moment inequalities when

the GMM asymptotic weighting matrix W (θ) is diagonal; see CHT Condition M.2(e),

p.1265.

Suppose b moment inequalities bind, i.e., mj(θ) = 0, (j = 1, ..., b), and the remain-

der do not, i.e., mj(θ) > 0, (j = b + 1, ..., dm), and c = dm − b; note that b and

thus c depend on θ. In principle, the critical value ĉW describing the GMM confidence

region estimator Θ̂W
n (ĉW ) = {θ ∈ Θ : nQ̂W

n (θ) ≤ ĉW} would be obtained from con-

sideration of the distribution of the limit quantity CW = supθ∈ΘP0
CW (θ) for the opti-

mised GMM criterion supθ∈ΘP0
nQ̂W

n (θ), where CW (θ) = (v(θ)− s(θ))′W (θ)(v(θ)− s(θ)),
s(θ) = arg minsb∈Rb+,sc∈Rc(v(θ) − s)′W (θ)(v(θ) − s), s = (s′b, s

′
c)
′ with sb those b ele-
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ments of s corresponding to the b binding moment inequalities and sc the remainder.

See Lemmas A.2 and A.3 in Appendix A together with the Proof of CHT Condition

C.1(d) in Appendix B. Let ĉW (1 − α) denote a consistent estimator of the 1 − α quan-

tile cW (1 − α) of the limit quantity CW . Then the GMM confidence region estimator

{ΘP0 ⊆ Θ̂W
n (ĉW (1−α))} defines an asymptotically (1−α) level confidence region for ΘP0

as limn→∞P{ΘP0 ⊆ Θ̂W
n (ĉW (1−α))} = 1−α with Θ̂W

n (ĉW (1−α))(4.1) a consistent esti-

mator of ΘP0 in Hausdorff distance at rate n−1/2; see Theorem 4.1 and CHT, p.1266. Sim-

ilar results may be stated for the GEL confidence region estimator {ΘP0 ⊆ Θ̂ρ
n(ĉρ(1−α))}

and Θ̂ρ
n(ĉρ(1− α)) (4.2) given the limiting relationship of the scaled GEL criterion (3.5)

to the GMM criterion nQ̂W
n (θ) (3.1) when Wn(θ) = Ω̂n(θ)−1; see Theorem 4.2 and Ap-

pendix C.

Remark 5.1. To the best of our knowledge, no formal results yet exist establishing

the asymptotic validity of sub-sampling methods for approximating the distribution of

the limit GMM quantity CW with a non-diagonal GMM weight matrix W (θ), in par-

ticular, Ω(θ)−1, required for simulating the GEL confidence region quantile estimator

ĉρ(1− α). Cf. CHT section 3.4, pp.1257-1258.

To deal with the difficulty outlined in Remark 5.1, a simple valid but conservative

confidence region estimator for the identified set ΘP0 is now described. The difficulty is

easily circumvented by replacing the optimal GMM slackness parameter estimator t̂n(θ)

by [m̂n(θ)]−, i.e., the estimator that solves a GMM criterion with diagonal weight-matrix

as metric, thereby bounding the GMM criterion nQ̂W
n (θ) (3.1) above; cf. CHT Condition

M.2(e), p.1265. Let

Q̂
W

n
(θ) = [m̂n(θ)]′−Wn(θ)[m̂n(θ)]−

=
∥∥[m̂n(θ)]′−Wn(θ)1/2

∥∥2
. (5.1)

Then, by definition,

Q̂W
n (θ) ≤ Q̂

W

n
(θ)

for all n and θ ∈ Θ.

Remark 5.2. The population counterpart QW (θ) to the bounding GMM crite-

rion Q̂
W

n
(θ) (5.1) is defined by QW (θ) = [m(θ)]′−W (θ)[m(θ)]− =

∥∥[m(θ)]′−W (θ)1/2
∥∥2

;

cf. QW (θ) (3.3).

[13]



The Proofs of CHT Conditions C.4, p.1256, and C.5, p.1257, in Appendix B establish

the limiting behaviour of the scaled bounding GMM criterion nQ̂
W

n
(θ) (5.1); cf. CHT

Proof of Theorem 4.2 Steps 4 and 5, pp.1279-1280. The Proof of CHT Condition C.4 in

Appendix B, in particular, see (B.2) and (B.3) of Appendix B, establishes that the limit

CW of CWn = supθ∈ΘP0
nQ̂

W

n
(θ) is described by

CW = sup
θ∈ΘP0

||[v(θ) + ξ(θ)]−||2W (θ)

where ξj(θ) = 0 if mj(θ) = 0, (j = 1, ..., b), and ξj(θ) =∞ if mj(θ) > 0, (j = b+1, ..., dm),

for θ ∈ ΘP0 .

Correspondingly the 1−α quantile cW (1−α) of the limit CW of the scaled bounding

GMM criterion nQ̂
W

n
(θ) (5.1) satisfies

P{CW ≤ cW (1− α)} = 1− α,

i.e., limn→∞P{supθ∈ΘP0
nQW

n
(θ) ≤ cW (1 − α)} = 1 − α. It is then immediate that

limn→∞P{supθ∈ΘP0
nQ̂W

n (θ) ≤ cW (1−α)} ≥ limn→∞P{supθ∈ΘP0
nQ̂

W

n
(θ) ≤ cW (1−α)}.

Hence the asymptotic level of the GMM confidence region estimator {ΘP0 ⊆ Θ̂W
n (cW (1−

α))} is bounded below by 1− α, i.e.,

lim
n→∞

P{ΘP0 ⊆ Θ̂W
n (cW (1− α))} ≥ 1− α. (5.2)

Remark 5.3. To implement the confidence region estimator {ΘP0 ⊆ Θ̂W
n (cW (1−α))}

requires a consistent estimate of the quantile cW (1 − α) of the limit CW of CWn =

supθ∈ΘP0
nQ̂

W

n
(θ). A simulation procedure similar to that outlined in CHT Remarks

4.2, pp.1263-1264, and 4.5, p.1267, suffices. In particular, let z∗i , (i = 1, ..., n), denote n

i.i.d. draws from the standard normal N(0, 1) distribution. Thus, the process v∗n(θ) =

n−1/2
∑n

i=1mi(θ)z
∗
i is zero-mean Gaussian with covariance function

∑n
i=1mi(θa)mi(θb)

′/n.

Define ξ̂jn(θ) = 0 if m̂j
n(θ) ≤ cj((log n)/n)1/2 and ∞ if m̂j

n(θ) > cj((log n)/n)1/2 for some

positive constants cj > 0, (j = 1, ..., dm). Also let Θ̂n denote a consistent estimator of

ΘP0 ; see section 4. Quantiles of the limit CW can then be estimated by simulation from

the distribution of Ĉ
W∗
n = supθ∈Θ̂n

Q̂
W∗
n

(θ) where Q̂
W∗
n

(θ) = ||[v∗n(θ) + ξ̂n(θ)]−||Wn(θ).

5.2 Confidence Regions for θ0

This section is concerned with GMM and GEL estimation of confidence regions for

the true parameter value θ0. Of central interest here is the optimal GMM criterion

in the unconditional moment equality context, i.e., Q̂Ω−1
n (θ) (3.2) when the GMM metric

[14]



Wn(θ) = Ω̂n(θ)−1. CHT section 5, pp.1267-1270, analyses the issue with an asymptoti-

cally diagonal GMM weight matrix whereas Rosen (2008) deals with the optimal GMM

criterion.To ease the notational burden the optimal GMM metric Ω−1 is omitted in the

following discussion.

Let b(θ) denote the number of binding moments for θ ∈ ΘP0 . Define c(θ) = dm− b(θ),
θ ∈ ΘP0 . Without loss of generality also let mj(θ) = 0, (j = 1, ..., b(θ)), and mj(θ) > 0,

(j = b(θ) + 1, ..., dm), θ ∈ ΘP0 .

By Lemma A.3 in Appendix A

nQ̂n(θ) = inf
sb∈Rb+,sc∈Rc

(v(θ)− s)′Ω(θ)−1(v(θ)− s) + op(1)

= (v(θ)− s(θ))′Ω(θ)−1(v(θ)− s(θ)) + op(1)

uniformly θ ∈ ΘP0 . Therefore, cf. Rosen (2008) Proposition 3, p.110, uniformly θ ∈ ΘP0 ,

lim
n→∞

P{nQ̂n(θ) > c} =

b(θ)∑
j=1

w(b(θ), b(θ)− j),Ω(θ))P{χ2
j > c}, (5.3)

a weighted chi-bar square distribution, where χ2
j , (j = 1, ..., b(θ)), denote independent chi-

square random variates with j degrees of freedom respectively. The weights w(b(θ), b(θ)−
j),Ω(θ)), (j = 1, ..., b(θ)), in (5.3) are defined in Kudo (1963) and Wolak (1987) and

correspond to the probability that exactly j of the b(θ) binding inequality constraints

bind, i.e., P{s(θ) has j zero components}, (j = 1, ..., b(θ)); e.g., b(θ)Cj/2
b(θ) if Ω(θ) is

diagonal. See the discussion in Rosen (2008), p.111.

Clearly the GMM statistic (3.2) nQ̂n(θ) (3.2) is asymptotically non-pivotal. As noted

in Rosen (2008), if both b(θ) and Ω(θ) were known, the limiting distribution (5.3) could

easily be simulated with a valid confidence region for the true value θ0 obtained by

inversion of the non-rejection region {nQ̂n(θ) ≤ c} with c determined to deliver the

desired confidence level from (5.3). The limiting distribution (5.3), however, is discon-

tinuous in b(θ) rendering an estimator for this limiting distribution based on simulation

after substitution of consistent estimators b̂n(θ) and Ω̂n(θ) for bn(θ) and Ω(θ) respec-

tively inconsistent. Consequently, Rosen (2008), p.111, suggests using a least favourable

asymptotic distribution approach based on an estimated upper bound for b(θ). In par-

ticular, define b̂n(θ) =
∑dm

j=1 1[m̂j
n(θ) < C((log n)/n)1/2] for some constant C > 0. Then,

since limn→∞P{b̂n(θ) = b(θ)} = 1, uniformly θ ∈ ΘP0 , see CHT Remark 4.2, p.1267,

Rosen (2008) proposes the upper bound estimator b̂sup
n = supθ∈Θ̂n(ĉ) b̂n(θ) where Θ̂n(ĉ) is

the consistent GMM identified set estimator (4.1) with level ĉ satisfying Theorem 4.1.

[15]



Let bsup = supθ∈ΘP0
b(θ). Then

sup
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) > c} ≤ 1

2
P{χ2

bsup > c}+
1

2
P{χ2

bsup−1 > c};

see Rosen (2008) Corollary 1, p.113. Therefore, setting c such that

α =
1

2
P{χ2

bsup > c}+
1

2
P{χ2

bsup−1 > c},

a conservative 1− α level confidence region for θ0 is given by

inf
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) ≤ c} = 1− sup
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) > c}

≥ 1− α.

See the associated discussion in Rosen (2008) section 4, pp.111-113.

Remark 5.4. The scaled optimised GEL criterion 2nP̂ ρ
n(θ) (3.4) is asymptotically

equivalent to the GMM criterion nQ̂n(θ) (3.2), uniformly θ ∈ ΘP0 ; see Lemma C.4 in

Appendix C. Therefore, a valid conservative GEL confidence region for θ0 asymptotically

equivalent to that defined in (5.4) is given by substitution of this GEL criterion for

nQ̂n(θ) in (5.4) based on the respective consistent GEL identified set estimator Θ̂ρ
n(ĉρ)

(4.2) in place of the GMM identified set estimator Θ̂n(ĉ) (4.1).

6 Simulation Evidence

This section reports the results from a simulation study for interval outcomes in a non-

linear conditional mean regression model to assess the performance of some GMM and

GEL confidence region estimators for the identified set ΘP0 . Cf. CHT Example 2, p.1248.

6.1 Experimental Design

The nonlinear conditional mean regression for the latent scalar variable y given the scalar

covariate x is described by

y = xθ0 + u

where u|x ∼ N(0, 1), x is uniformly distributed on the unit interval [0, 1] and θ0 = 0 is

the true value of the scalar parameter θ.

The regressand y is only partially observed according to the interval observation rule

y1 ≤ y ≤ y2
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with y1 = y − ω1x
2 and y2 = y + ω2x observed where ω1, ω2 ≥ 0. Hence

EP0 [y1|x] ≤ xθ0 ≤ EP0 [y2|x] a.s. x.

and thus

EP0 [y1x] ≤ EP0 [xθ0+1] ≤ EP0 [y2x]

Defining the moment indicator vector m(z, θ) =
(
−(y1 − xθ)x, (y2 − xθ)x

)′
,

EP0 [m(z, θ)] =

(
−(E[x]− ω1E[x3]− E[xθ+1])
E[x] + ω2E[x2]− E[xθ+1]

)
=

(
−1

2
+ ω1

4
+ 1

θ+2
1
2

+ ω2
3
− 1

θ+2

)
.

Therefore, with the moment inequality contraint EP0 [m(z, θ)] ≥ 0, the identified set ΘP0

is given by the interval

ΘP0 =

[
− 4ω2

3 + 2ω2

,
ω1

1− ω1/2

]
.

To obtain the moment matrix Ω(θ0) = EP0 [m(z, θ0)m(z, θ0)′], note that m1(z, θ0) =

−ux+ ω1x
3 and m2(z, θ0) = ux+ ω2x

2. Hence

Ω(θ0) =

(
1
3

+
ω21
7

ω1ω2
6
− 1

3
ω1ω2

6
− 1

3
1
3

+
ω22
5

)
which is diagonal when ω1ω2 = 2.

The experiments consider two designs.

• Design 1.

ω1 =
2

3
, ω2 = 3.

In this case, Ω(θ0) is diagonal, the identified set

ΘP0 = [−4

3
, 1]

and moment matrix

Ω(θ0) =

(
25
63

0
0 32

15

)
.

• Design 2.

ω1 =
2

5
, ω2 =

1

2
.

Now Ω(θ0) is non-diagonal, the identified set

ΘP0 = [−1

2
,
1

2
]
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and moment matrix

Ω(θ0) =

(
187
515

− 3
10

− 3
10

23
60

)
.

Remark 6.1. Design 1 studies GMM with a diagonal metric under somewhat

favourable conditions since Ω(θ0) is diagonal. In this design, though, the moment ma-

trix Ω(θ) cannot be diagonal everywhere on ΘP0 , as is likely to be the case in practice.

When θ = θ0 diagonal weighted GMM and GEL criteria are asymptotically equivalent

but, importantly, this is not generally so for θ ∈ ΘP0\{θ0}. Indeed, as the width of ΘP0

decreases, corresponding to a lessening failure of point identification, the moment matrix

Ω(θ0) approaches singularity. Intuitively, as ω1 and ω2 approach 0 and, thus, y1 and

y2 both approach y, the difference between the moment indicators decreases and their

correlation tends to minus unity as ΘP0 approaches θ0. Indeed, for Design 2, in which

the identified set is less than half the width of that in Design 1, the correlation between

elements of the moment indicator vector m(z, θ0) is now −0.894.

Experimental data are generated as random samples of size n = 50, 100, 500 and

1000 from the joint distribution of (y, x) . Each simulation experiment comprises 500

replications.

6.2 Criteria

The criteria nQ̂j
n(θ), (j =EL, ET, CUE, GMM), are considered where Q̂j

n(θ) = 2P̂ ρ
n(θ)

(3.5), (j =EL, ET, CUE), with ρ(v) = log(1 − v) [EL] empirical likelihood, ρ(v) =

− exp(v) + 1 [ET] exponential tilting and ρ(v) = −v2/2− v [CUE] continuous updating

estimator respectively and Q̂GMMn (θ) = Q̂
Ω−1D
n (θ) [GMM] the GMM objective function

with diagonal metric Wn(θ) = Ω̂D
n (θ)−1, where Ω̂D

n (θ) = diag(Ω̂n(θ)), i.e., the diagonal

elements of the efficient moment equality metric Ω̂n(θ)−1, thus mimicing the approach

in CHT section 4.2, pp.1265-67.

Each criterion is evaluated across the grids Θn = {−8.3̇, ..., 0, ..., 8} and Θn = {−6, 5,

..., 0, ..., 6.5} for Designs 1 and 2 respectively.1

1To reduce computer processing time the grid spacing was increased for values of θ in Θn further
away from the bounds defining ΘP0 , though always maintaining dH(ΘP0 ,Θn) = O(1/n).
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6.3 Level

The definitions of the level cjn used to evaluate the coverage probability P{nQ̂j
n(θ) ≤ cjn}

are

cjn ∈ {ĉjn, log log n/2, log n/2,
√
n/2},

where ĉjn = infΘn nQ̂
j
n(θ) + 0.001, (j =EL, ET, CUE, GMM), with the grids Θn given

in section 6.2.

Remark 6.2. Hence, the moment function satisfies the degeneracy condition CHT

Condition C.3, p.1255, see Appendix B, rendering each set estimator a consistent esti-

mator of the identified set ΘP0 ; see section 4.

6.4 Results

Figures 1 and 2 about here

Figures 1 and 2 for Designs 1 and 2 respectively indicate that the coverage probability

P{nQ̂j
n(θ) ≤ cjn} converges to unity for θ ∈ ΘP0 for ĉjn providing empirical support

for the GMM and GEL consistency results of Theorems 4.1 and 4.2 respectively and

with ĉjn/n → 0; cf. Remarks 4.2 and 4.6. With faster rates of growth for the level

cjn the coverage probability P{nQ̂j
n(θ) ≤ cjn} is closer to 1 for a higher proportion of

θ ∈ ΘP0 . However, there is also a tendency for an increase in the coverage probability

P{nQ̂j
n(θ) ≤ cjn} for θ ∈ Θn\ΘP0 ; this is especially marked in the smaller samples, e.g.,

see Figures 1 and 2 with n = 50 and 100 when θ > 1 and θ > 1/2, the respective

upper bounds of the identified set ΘP0 . There are major differences between the criteria

for θ < −4/3 and θ < −1/2, the lower bounds of ΘP0 . Both CUE and, to a slightly

lesser extent, GMM exhibit very high coverage probabilities whereas those for both EL

and ET (and CUE and GMM with level ĉjn) are close to zero. Overall, there is very

little difference in coverage probabilities when θ > 1 and θ > 1/2 between all criteria; the

differences between EL and ET as compared to CUE and GMM are far less pronounced

than those for θ < −4/3 and θ < −1/2. For the larger sample sizes n = 500 and 1000 the

coverage probabilities are very similar for EL, ET, CUE and GMM for both θ ∈ ΘP0

and θ > 1 and θ > 1/2 but CUE and GMM (except with level ĉjn) continue to display

very poor properties, especially CUE, for θ < −4/3 and θ < −1/2.

Tables 1 and 2 about here
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To cast further light on these results Tables 1 and 2 provide some summary statistics

on the coverage properties of Θ̂j
n(cjn), (j =EL, ET, CUE, GMM), in Designs 1 and 2

respectively for levels cjn ∈ {ĉjn, log log n/2, log n/2}.2 Let θ0L = min{θ ∈ ΘP0} and θ0U =

max{θ ∈ ΘP0}. Likewise define θ̂j0L = min{θ ∈ Θ̂j
n(cjn)} and θ̂j0U = max{θ ∈ Θ̂j

n(cjn)},
(j =EL, ET, CUE, GMM). By Theorems 4.1(b) and 4.2(b) θ̂j0L− θ0L = Op(n

−1/2) and

θ̂j0U − θ0U = Op(n
−1/2), (j =EL, ET, CUE, GMM). The “Bounds”columns provide

intervals whose lower and upper bounds are the empirical means of respectively θ̂j0L and

θ̂j0U whereas those headed “MSE” are the empirical means of [(θ̂j0L−θ0L)2+(θ̂j0U−θ0U)2]1/2,

these last columns providing an indication of the precision of the identified set estimators.

The final columns headed “pΘP0
” record the average percentage of the identified set ΘP0

covered by the identified set estimator; from Theorems 4.1 and 4.2 the expectation is

that pΘP0
should approach 100 as sample size n increases.

With cjn = ĉjn, in both designs, the performances of EL, ET and GMM are more or

less identical and are relatively superior to CUE according to all comparators. Similarly

to Figures 1 and 2, there is a marked deterioration for GMM and especially CUE as the

level cjn increases from log log n/2 to log n/2 with the lower bound of the identified set

severely underestimated and consequential and substantial rises in MSE. In contradis-

tinction, both EL and ET perform well although less so than with the level cjn = ĉjn.

To study the properties of the conservative inferential procedures described in sec-

tion 5.1 based on the GEL confidence region estimator Θ̂ρ
n(ĉρ(1 − α)) (4.2), the quan-

tiles of the bounding statistic supθ∈ΘP0
Q̂

Ω−1

n
(θ) (5.1) are required where Q̂

Ω−1

n
(θ) =

[m̂n(θ)]′−Ω̂n(θ)−1[m̂n(θ)]−. As described in Remark 5.3 of section 5.1 suitable estimates

are provided by simulation of the quantiles from Ĉ
Ω−1∗
n = supθ∈Θ̂n

Q̂
Ω−1∗
n

(θ) where Q̂
Ω−1∗
n

(θ)

= ||[v∗n(θ)+ξ̂n(θ)]−||Ω̂n(θ)−1 setting c1 = c2 = 1/5. Likewise, for the GMM confidence region

estimator Θ̂n(ĉΩ−1D
(1 − α)) (4.1) based on the GMM criterion Q̂GMMn (θ) = Q̂

Ω−1D
n (θ), the

quantiles from Ĉ
Ω−1D ∗
n = supθ∈Θ̂n

Q̂
Ω−1D ∗
n (θ) where Q̂

Ω−1D ∗
n (θ) =

∥∥∥(v∗n(θ) + ξ̂n(θ))′Ω̂D
n (θ)−1/2

∥∥∥2

−
need to be simulated. Note that if interest is in ascertaining whether a hypothesised

identified set Θ0
P0

is credible by examining whether Θ0
P0
⊆ Θ̂n(ĉ∗

Ω−1D
(1 − α)) or Θ0

P0
⊆

Θ̂ρ
n(ĉ∗Ω−1(1−α)), where ĉ∗

Ω−1D
(1−α) and ĉ∗Ω−1(1−α) are the 1−α quantiles of Ĉ

Ω−1D ∗
n and

Ĉ
Ω−1∗
n respectively, it is only necessary to take the suprema of Q̂

Ω−1D ∗
n (θ) and Q̂

Ω−1∗
n

(θ) over

Θ0
P0

rather than an estimator Θ̂n. As a consequence, inference is greatly simplified and no

further sampling uncertainty is added to the estimate of the distribution of the limit vari-

2Results for cjn =
√
n/2 are omitted for brevity being less likely to be used in practice to form an

estimator of ΘP0 but are available from the authors upon request.
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ates CΩ−1 and CΩ−1D = supθ∈ΘP0

∥∥(v(θ) + ξ(θ))′ΩD(θ)−1/2
∥∥2

− where ΩD(θ) = diag(Ω(θ));

see below Remark 5.2.

Figure 3 about here

Figure 3 displays for Designs 1 and 2 the estimated quantiles of supθ∈ΘP0
nQ̂j

n(θ),

(j =ET, EL, CUE, GMM), together with those of the GEL bounding variate Ĉ
Ω−1∗
n =

supθ∈Θ
P0

nQ̂
Ω−1∗
n

(θ) (5.1), and Ĉ
Ω−1D ∗
n = supθ∈Θ

P0

nQ̂
Ω−1D ∗
n (θ). As expected the quantiles

of the GEL variates supθ∈ΘP0
nQ̂n(θ)j, (j =ET, EL, CUE), are bounded below by those

of Ĉ
Ω−1∗
n with the bound rather conservative for the range 1 − α ∈ (0.9, 1.0) typically

used for inference in practice; this is especially the case in Design 2 with the more highly

correlated moments and thus larger elements of the inverse Ω̂n(θ)−1. The ET, EL and

CUE quantiles are almost identical at all sample sizes which corroborates empirically

their first order equivalence on ΘP0 detailed in Theorem 4.2. Rather surprisingly, the

quantiles of the diagonally weighted GMM criterion supθ∈Θ
P0

nQ̂GMMn (θ) provides a close

approximation to those for EL, ET and CUE as do the simulated quantiles of Ĉ
Ω−1D ∗
n .

Tables 3 and 4 about here

Finally, Tables 3 and 4 detail the empirical volume and coverage of the confidence re-

gions in both designs. As expected from Figure 3, the empirical coverage of the confidence

regions based on the bounding conservative Ĉ
Ω−1∗
n quantiles exceeds the nominal coverage

probabilities in almost all cases no matter the sample size; this finding is especially the

case in Design 2. The confidence regions for the identified set ΘP0 are correspondingly

wide although those for EL and ET are substantially smaller than those of CUE. Al-

though the simulated quantiles of Ĉ
Ω−1D ∗
n are appropriate for diagonally weighted GMM,

the empirical coverage probabilities still deviate substantially from nominal values with

correspondingly wide confidence regions. Again, surprisingly, the simulated quantiles of

Ĉ
Ω−1D ∗
n provide quite close approximations to those for EL and ET with the corresponding

EL and ET confidence regions substantially smaller than those of GMM and CUE.

7 Concluding Remarks

This paper examines the properties of GEL methods for the estimation of the identified

set in models specified by unconditional moment inequality constraints.
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The paper extends the results for GMM estimation in CHT section 4, pp.1261-1267,

to permit a non-diagonal weight matrix in the GMM criterion, in particular, the inverse of

the moment variance matrix, the optimal GMM metric appropriate for moment equality

conditions. Unlike the moment equality context, this extension of GMM to GEL is

relatively non-trivial. Analogously to moment equality condition models, an asymptotic

equivalence exists between various scaled optimised GEL criteria and that for GMM with

optimal moment equality weight matrix. Consequently, similarly to CHT, conditions

are provided for consistent GEL estimation of the identified set at the parametric rate

n1/2. When the moment matrix is non-diagonal on the identified set the limit of the

scaled optimised GEL statistic differs from that for GMM with diagonal weight matrix

which the case studied in CHT section 4, pp.1261-1267. To the best of our knowledge

there are, as yet, no results for the asymptotic validity of a bootstrap or sub-sampling

approximation to the limiting distribution of these statistics; cf. the application of CHT

section 3.4, pp.1257-1258, to GMM with a diagonal weight matrix given in CHT section 4,

pp.1261-1267. A conservative confidence region estimator for the identified set is therefore

developed. The GMM criterion with non-diagonal weight matrix may be bounded above

by a statistic the limit of which can be approximated using a resampling method similar

to that described in CHT Remarks 4.2, pp.1263-1264, and 4.5, p.1267, for GMM with a

diagonal weight matrix. Conservative GMM and GEL confidence region estimators for

the true parameter, cf. Rosen (2008), are also described.

A simulation study for interval outcomes in a nonlinear conditional mean regression

model corroborates the main theoretical results of the paper with favourable small sample

properties for EL and ET estimators of the identified set and conservative EL and ET

confidence region estimators for the identified set. Somewhat surprisingly the simulated

quantiles associated with diagonally weighted GMM provide rather better approxima-

tions to those for EL and ET than the simulated quantiles based on the conservative

approach.

Appendix

The argument θ is suppressed for expositional simplicity throughout the Appendices

where there is no possibility of confusion.

Throughout the Appendices, C will denote a generic positive constant that may be

different in different uses with CS, M and T the Cauchy-Schwarz, Markov and triangle

inequalities respectively. In addition CMT is the continuous mapping theorem and λmin(·)
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and λmax(·) denote the minimum and maximum eigenvalues respectively of ·.
The following convention is employed. EP0 [mj(z, θ)] < 0, (j = 1, ..., a), EP0 [mj(z, θ)] =

0, (j = a+1, ..., a+b), and EP0 [mj(z, θ)] > 0, (j = a+b+1, ..., dm). Defining c = dm−a−b,
a, b and thus c depend on θ. Vectors are correspondingly partitioned, e.g., s = (s′a, s

′
b, s
′
c)
′

such that sa corresponds to EP0 [mj(z, θ)] < 0, (j = 1, ..., a), i.e., those a elements of s

for which (2.1) is false, sb to EP0 [mj(z, θ)] = 0, (j = a+ 1, ..., a+ b), i.e., those b elements

of s corresponding to the b binding moment inequalities and sc to EP0 [mj(z, θ)] > 0,

(j = a+ b+ 1, ..., dm), i.e., the remainder.

Let Λn = {λ ∈ Rdm : ‖λ‖ ≤ Cn−1/2}. Also let Θ−εP0 = {θ ∈ ΘP0 : d(θ,Θ\ΘP0) ≥ ε}
where ε > 0. A closed ball of radius δ > 0 is denoted by Bδ = {θ ∈ Rdθ : ‖θ‖ ≤ δ}.
Recall Θ′ is a neighbourhood of Θ in Rdθ .

Recall the GMM sample criterion (3.1) Q̂W
n (θ) = inft≥0 ‖m̂n(θ)− t‖2

Wn(θ). Also define

Q̄W
n (θ) = inft≥0 ‖m̂n(θ)− t‖2

W (θ) and nQW
n (θ) = infsb∈Rb+,sc∈Rc ‖vn(θ)− s‖2

Wn(θ). Recall

the corresponding GMM population criterion QW (θ) = inft≥0 ‖m(θ)− t‖2
W (θ), θ ∈ Θ,

where m(θ) = EP0 [m(z, θ)].

Define

t̂n(θ) = arg min
t≥0
‖m̂n(θ)− t‖2

Wn(θ) ,

i.e., Q̂W
n (θ) =

∥∥m̂n(θ)− t̂n(θ)
∥∥2

Wn(θ)
.

Appendix A: Preliminary Lemmas

To simplify the Proofs for CHT Conditions C.1, p.1252, and C.2, p.1253, Lemmas A.1

and A.2 show that the weighting matrix Wn(θ) in the GMM criterion Q̂W
n (θ) (3.1) may

be replaced by W (θ) w.p.a.1 uniformly θ ∈ Θ, i.e., nQ̂W
n (θ) = nQW

n (θ) + op(1) uniformly

θ ∈ Θ.

Lemma A.1. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

sup
θ∈ΘP0

∣∣∣nQ̂W
n (θ)− nQW

n (θ)
∣∣∣ = op(1).

Proof. The proof closely follows that for Rosen (2008) Proposition 3, pp.115-116.

Consider

nQ̂W
n (θ) = inf

t≥0
n ‖m̂n(θ)− t‖2

Wn(θ)

= inf
s≥−n1/2m(θ)

‖vn(θ)− s‖2
Wn(θ)
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where s = n1/2(t−m(θ)). Write ŝn(θ) = arg min
s≥−n1/2m(θ)

‖vn(θ)− s‖2
Wn(θ).

Suppose θ ∈ ΘP0 . Thus, sa is empty, i.e., a = 0; also c = dm − b and m(θ) ≥ 0,

θ ∈ ΘP0 . Let mc(θ) = (mb+1(θ), ...,mdm(θ))′. In this case

nQ̂W
n (θ) = inf

sb≥0,sc≥−n1/2mc(θ)
‖vn(θ)− s‖2

Wn(θ)

= ‖vn(θ)− ŝn(θ)‖2
Wn(θ)

with solution ŝn(θ) = (ŝbn(θ)′, ŝcn(θ)′)′ = arg minsb≥0,sc≥−n1/2mc(θ) ‖vn(θ)− s‖2
Wn(θ). Now

nQW
n (θ) = inf

sb∈Rb+,sc∈Rc
‖vn(θ)− s‖2

Wn(θ)

= ‖vn(θ)− sn(θ)‖2
Wn(θ)

with solution sn(θ) = (sbn(θ)′, scn(θ)′)′ = arg minsb∈Rb+,sc∈Rc ‖vn(θ)− s‖2
Wn(θ). Note that

scn(θ) = vcn(θ), θ ∈ ΘP0 , and thus, from Rosen (2008) Lemma 1, p.115, w.p.a.1 nQW
n (θ) =

vbn(θ)′(W bb
n (θ))−1vbn(θ) where W bb

n (θ) denotes the top left hand b × b sub-matrix of

Wn(θ)−1.

To show that supθ∈ΘP0

∣∣∣nQ̂W
n (θ)− nQW

n (θ)
∣∣∣ = op(1), i.e., supθ∈ΘP0

‖ŝn(θ)− sn(θ)‖ =

op(1), it is only necessary to demonstrate

sup
θ∈ΘP0

‖ŝcn(θ)− scn(θ)‖ = op(1)

or supθ∈ΘP0
‖ŝcn(θ)− vcn(θ)‖ = op(1). Now, since vn is P -Donsker, supθ∈Θ ‖vn(θ)‖ =

Op(1) by Assumption A.3, i.e., for any ε, δ > 0, there exists N(ε, δ) such that, for all

n > N(ε, δ), P{supθ∈ΘP0
‖vn(θ)‖ < ε} > 1 − δ. Choose ε = maxj supθ∈ΘP0

mj(θ) such

that for all n > N(ε, δ)

P{ sup
θ∈ΘP0

‖vn(θ)‖ < max
j

sup
θ∈ΘP0

mj(θ)} > 1− δ.

In particular, for all n > N(ε, δ), with probability at least 1 − δ, supθ∈ΘP0
|vjn(θ)| <

maxj supθ∈Θm
j(θ) and, thus, ŝjn(θ) = vjn(θ), (j = b+ 1, ..., dm), uniformly θ ∈ ΘP0 , i.e.,

P{ sup
θ∈ΘP0

‖ŝcn(θ)− vcn(θ)‖ = 0} > 1− δ.

Therefore,

nQ̂W
n (θ) = nQW

n (θ) + op(1)

uniformly θ ∈ ΘP0 .�
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Lemma A.2. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

inf
θ∈Θ\ΘP0

nQ̂W
n (θ)

p→∞.

Proof. Let θ ∈ Θ\ΘP0 . In this case, since sa is no longer empty, define ma(θ) =

(m1(θ), ...,ma(θ))′. Hence,

nQ̂W
n (θ) = inf

s≥−n1/2m(θ)
‖vn(θ)− s‖2

Wn(θ)

= inf
sa≥−n1/2ma(θ),sb≥0,sc≥−n1/2mc(θ)

‖vn(θ)− s‖2
Wn(θ)

≥ inf
sa≥−n1/2ma(θ),sb∈Rb+,sc∈Rc

‖vn(θ)− s‖2
Wn(θ)

≥ inf
sa≥−n1/2ma(θ)

‖van(θ)− sa‖2
(Waa

n (θ))−1

w.p.a.1 where W aa
n (θ) denotes the a×a top left hand sub matrix of Wn(θ)−1 corresponding

to ma(θ); see Rosen (2008) Lemma 1, p.115. Now supθ∈Θ ‖vn(θ)‖ = Op(1) by Assumption

A.3. Thus, since −n1/2ma(θ) → ∞ if θ ∈ Θ\ΘP0 and supθ∈Θ ‖Wn(θ)−W (θ)‖ = op(1)

with W (θ) uniformly p.d. from Assumption A.2-GMM(b), the statistic nQ̂W
n (θ) diverges,

i.e., nQ̂W
n (θ)

p→∞, uniformly θ ∈ Θ\ΘP0 .�

Lemma A.3. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖v(θ)− s‖2

W (θ) + op(1)

uniformly θ ∈ ΘP0 .

Proof. Now supθ∈Θ ‖Wn(θ)−W (θ)‖ = op(1) by Assumption A.2-GMM(b). Thus,

nQW
n (θ) = vbn(θ)′(W bb(θ))−1vbn(θ) + op(1)

∥∥vbn(θ)
∥∥2

− from Rosen (2008) Lemma 1, p.115,

as scn(θ) = vcn(θ), θ ∈ ΘP0 , where W bb(θ) denotes the top left hand b × b sub-matrix of

W (θ)−1. Then, from Lemma A.1,

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖vn(θ)− s‖2

W (θ) + op(1)

uniformly θ ∈ ΘP0 , noting supθ∈Θ

∥∥vbn(θ)
∥∥ = Op(1). Now supθ∈Θ ‖vn(θ)− v(θ)‖ = op(1)

by vn P -Donsker from Assumption A.3 yielding

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖v(θ)− s‖2

W (θ) + op(1)
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uniformly θ ∈ ΘP0 .�

Define

s(θ) = arg min
sb∈Rb+,sc∈Rq−b

‖v(θ)− s‖2
W (θ) .

Lemma A4. Suppose that Assumptions A.1, A.2-GMM and A.3 hold. Then

sup
θ∈ΘP0

‖s(θ)‖ = Op(1).

Proof. The dependence on θ is ignored for ease of exposition.

Now,

inf
sb∈Rb+,sc∈Rc

‖v − s‖2
W = inf

sb∈Rb+
‖(v − s)b‖2

Wbb

where (·)b denotes the first b elements of (·); see Rosen (2008) Lemma 1, p.115.

Therefore, from the first order conditions, either (a) [−Wbb(v−s)b]j = 0 and sj > 0 or

(b) [−Wbb(v−s)b]j > 0 and sj = 0, (j = 1, ..., b). Define J = {j : [−Wbb(v−s)b]j = 0 and

sj > 0, (j = 1, ..., b)}. Now, from (a) and (b),
∑

k∈J Wbbjk(v − s)k = −
∑

k/∈J Wbbjkv
k =

Op(1), j ∈ J , uniformly θ ∈ ΘP0 , since supθ∈Θ ‖v(θ)‖ = Op(1) and supθ∈Θ ‖W (θ)‖ =

O(1) by Assumptions A.2-GMM(b) and A.3. Hence, sj = Op(1), j ∈ J , uniformly

θ ∈ ΘP0 and sj = 0, j ∈ J c. Hence the result follows because (v−s)c = −WccWcb(v−s)b;
see Rosen (2008) eq. (22), p.115.�

Appendix B: Proofs for GMM

Appendix B establishes the validity of CHT Conditions C.1-C.3 for the GMM criterion

nQ̂W
n (θ) (3.1) under Assumptions A.1, A.2-GMM and A.3-A.5. CHT Conditions C.4 and

C.5 are established for the bounding GMM statistic nQ̂
W

n
(θ) (5.1). The relevant CHT

constants and sequences are defined as γ = 2, an = n and bn = n1/2. See CHT Theorem

4.2, p.1266.

CHT Condition C.1. Consistency: (a) The parameter space Θ is a nonempty com-

pact subset of Rdθ . (b) There is a lower semi-continuous population criterion function

Q : Θ → R+ such that infΘQ = 0. Let ΘP0 = arg infΘQ be the set of its minimisers,

called the identified set. (c) There is a sample criterion function Q̂n(θ) = Q̂n(θ, {zi}ni=1)

that takes values in R+ and is jointly measurable in the parameter θ ∈ Θ and the data zi,

(i = 1, ..., n) defined on a complete probability space (Ω,F , P ). (d) The sample criterion

function is uniformly no smaller than the population function in large samples, that is,
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supΘ(Q − Q̂n)+ = Op(n
−1/2). (e) The sample criterion converges to the limit criterion

function over the identified set ΘP0 at the rate 1/n, that is, supΘP0
Q̂n = Op(n

−1).

Proof. (a) Holds by Assumption A.1(a). (b) Recall the population GMM criterion

function QW (θ) = inft≥0 ‖m(θ)− t‖2
W (θ) ≥ 0; see (3.3). Now, tj(θ) = mj(θ) if mj(θ) > 0

and 0 if mj(θ) = 0, (j = 1, ..., dm), θ ∈ ΘP0 . Hence, QW (θ) takes a zero value on ΘP0 , i.e.,

infθ∈ΘQ
W (θ) = 0. (c) Holds by Assumptions A.1(b) and A.1(d). (d) Lemmas A.1 and

A.3 establish that nQ̂W
n (θ) = infsb∈Rb+,sc∈Rdm−b ‖v(θ)− s‖2

W (θ) + op(1) uniformly θ ∈ ΘP0

and Lemma A.2 that nQ̂W
n (θ)

p→ ∞ uniformly θ ∈ Θ\ΘP0 . (e) By (b) QW (θ) = 0 uni-

formly θ ∈ ΘP0 . Thus supθ∈ΘP0

∣∣∣Q̂W
n (θ)−QW (θ)

∣∣∣ = supθ∈ΘP0

∣∣∣Q̂W
n (θ)

∣∣∣ = Op(n
−1) again

using Lemmas A.1 and A.3.�

CHT Condition C.2. Existence of a Polynomial Minorant: There exist positive

constants (δ, κ) such that for an ε ∈ (0, 1) there are (κε, nε) such that for all n ≥ nε,

Q̂n(θ) ≥ κ · [d(θ,ΘP0) ∧ δ]2 uniformly on {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2} with probability

at least 1− ε.

Proof. Write W (θ) = X(θ)Λ(θ)X(θ)′, θ ∈ Θ, where the matrix of eigenvectors

X(θ) is orthonormal, i.e., X(θ)−1 = X(θ)′, and eigenvalue matrix Λ(θ) diagonal, θ ∈ Θ.

Hence, since X(θ)X(θ)′ = Idm , as supθ∈Θ ‖Wn(θ)−W (θ)‖ = op(1) from Assumption

A.2-GMM(b), w.p.a.1 uniformly θ ∈ Θ,

nQ̂W
n (θ) ≥ inf

θ∈Θ
λmin(Wn(θ)) · nmin

t≥0
‖m̂n(θ)− t‖2

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥n1/2m̂n(θ)

∥∥2

−

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥vn(θ) + n1/2m(θ)

∥∥2

−

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥n1/2m(θ)

∥∥2

−

×
∥∥vn(θ) + n1/2m(θ)

∥∥2

− /
∥∥n1/2m(θ)

∥∥2

−

where the inequality follows from Assumption A.2-GMM(b) since infθ∈Θ λmin(W (θ)) > 0

as W (θ) is uniformly p.d. θ ∈ Θ. Now, by Assumption A.4,
∥∥n1/2m(θ)

∥∥2

− ≥ C · n ·
(d(θ,ΘP0) ∧ δ)2 for some C > 0 and δ > 0. Therefore, as in CHT Proof of Theorem 4.2

Step 1, p.1278, for any ε > 0, with probability at least 1− ε,

nQ̂W
n (θ) ≥ 1

2
inf
θ∈Θ

λmin(W (θ)) · C · n · (d(θ,ΘP0) ∧ δ)2
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uniformly {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2}, n > nε, for some (κε, nε), from supθ∈Θ ‖vn(θ)‖ =

Op(1) by the P -Donsker property of Assumption A.3 and ‖y + x‖− / ‖x‖− → 1 as

‖x‖− →∞ for any y ∈ Rdm .�

CHT Condition C.3. Degeneracy: There is a sequence of subsets Θn of Θ, which

could be data dependent, such that Q̂n vanishes on these subsets, that is, Q̂n(θ)−infθ∈Θ Q̂n(θ)

= 0 for each θ ∈ Θn, for each n, and these sets can approximate the identified set ar-

bitrarily well in the Hausdorff distance, that is, dH(Θn,ΘP0) ≤ εn for some sequence

εn = Op(n
−1/2).

Proof. Similarly to the Proof of CHT Condition C.2 above, w.p.a.1 uniformly θ ∈
ΘP0 ,

nQ̂W
n (θ) ≤ sup

θ∈Θ
λmax(W (θ)) · nmin

t≥0
‖m̂n(θ)− t‖2

= sup
θ∈Θ

λmax(W (θ)) ·
∥∥vn(θ) + n1/2m(θ)

∥∥2

−

≤ sup
θ∈Θ

λmax(W (θ)) ·
dm∑
j=1

[vjn(θ) + n1/2mj(θ)]2−

≤ sup
θ∈Θ

λmax(W (θ)) · dm · [Op(1) + n1/2 · C · (d(θ,Θ\ΘP0) ∧ δ)]2−

where the first inequality follows from W (θ) uniformly p.d. θ ∈ Θ and bounded by As-

sumption A.2-GMM(b), the second by T and the third inequality by Assumption A.5.

The conclusion follows as in CHT Proof of Theorem 4.2 Step 2, p.1278, since, with

εn = Op(n
−1/2), Q̂W

n (θ) = 0 for θ ∈ Θ−εnP0
.�

The Proofs of CHT Conditions C.4, p.1256, and C.5, p.1257, given below concern

the bounding statistic nQ̂
W

n
(θ) (5.1) for the GMM criterion nQ̂W

n (θ) (3.1). These re-

sults establish the validity of the asymptotically conservative inference procedure for ΘP0

described in section 5.1.

Define CWn = supθ∈ΘP0
Q̂
W

n
(θ) and CW = supθ∈ΘP0

||[v(θ) + ξ(θ)]−||2W (θ) where ξj(θ) = 0

if mj(θ) = 0, (j = 1, ..., b), and ξj(θ) =∞ if mj(θ) > 0, (j = b+ 1, ..., dm), θ ∈ ΘP0 .

CHT Condition C.4. Convergence of CWn : P [CWn ≤ cW ] → P [CW ≤ cW ] for each

cW ∈ [0,∞), where the distribution function of CW is non-degenerate and continuous on

[0,∞).

[28]



Proof. Define θn(λ) = θ + n−1/2λ and lWn (θ, λ) = nQ̂
W

n
(θn(λ)). Then, for (θ, λ) ∈

Θ× Bδ,

lWn (θ, λ) = [n1/2m̂n(θn(λ))]′−Wn(θn(λ))[n1/2m̂n(θn(λ))]−

= [vn(θn(λ)) + n1/2m(θn(λ))]′−Wn(θn(λ))[vn(θn(λ)) + n1/2m(θn(λ))]−

=
∥∥[vn(θn(λ)) + n1/2m(θn(λ))]−

∥∥2

Wn(θn(λ))

First, by the P -Donsker property of vn(θ) of Assumption A.3, vn(θ) ⇒ v(θ) and

v(θ) stochastically equicontinuous. Hence, vn(θn(λ)) ⇒ v(θ) uniformly (θ, λ) ∈ Θ × Bδ.
Secondly, from Assumption A.2-GMM(b), supθ∈Θ |Wn(θ)−W (θ)| = op(1) and W (θ)

continuous, thus Wn(θn(λ))
p→ W (θ) uniformly (θ, λ) ∈ Θ × Bδ. Therefore, uniformly

(θ, λ) ∈ Θ× Bδ,

lWn (θ, λ) =
∥∥[v(θ) + n1/2m(θn(λ))]−

∥∥2

W (θ)
+ op(1). (B.1)

Next define

lW∞ (θ, λ) = [v(θ) +M(θ)λ+ ξ(θ)]′−W (θ)[v(θ) +M(θ)λ+ ξ(θ)]−

= ‖[v(θ) +M(θ)λ+ ξ(θ)]−‖2
W (θ) .

By Assumption A.4 n1/2m(θn(λ)) = M(θ)λ + ξ(θ) + o(1) uniformly (θ, λ) ∈ ΘP0 × Bδ.
Therefore, from (B.1),

lWn (θ, λ)− lW∞ (θ, λ) = op(1) (B.2)

uniformly L∞(ΘP0 × Bδ).
Now, by definition, CWn = supθ∈ΘP0

lWn (θ, 0) and CW = supθ∈ΘP0
lW∞ (θ, 0). Therefore,

by (B.2),

CWn
d→ CW .� (B.3)

CHT Condition C.5. Approximability of CWn : Let Θn be any sequence of subsets of

Θ such that dH(Θn,ΘP0) = op(n
−1/2) and define CW ′n = supθ∈Θn nQ̂

W

n
(θ). Then for any

cW ≥ 0, we have that P [CW ′n ≤ cW ] = P [CWn ≤ cW ] + o(1).

Proof. By arguments similar to those in CHT Proof of Theorem 4.2 Step 4, pp.1279-

80,

CW ′n = sup
θ∈Θn

nQ̂
W

n
(θ)

= sup
θ∈Θn

∥∥[v(θ) + n1/2m(θ) + op(1)]−
∥∥2

W (θ)

= sup
θ∈ΘP0

∥∥[v(θ) + n1/2m(θ) + op(1)]−
∥∥2

W (θ)

[29]



using the approximation device in the Proof of CHT Condition C.4 above, cf. CHT

Proof of Theorem 4.2 Step 2, p.1278, the stochastic equicontinuity of θ → (v(θ),W (θ))

and
∥∥n1/2(m(θ)−m(θ′))

∥∥ = o(1) uniformly on {θ, θ′ ∈ Θ : ‖θ − θ′‖ ≤ op(n
−1/2)}. The

conclusion then follows as in CHT Proof of Theorem 4.2 Step 3, p.1279.�

Appendix C: Proofs for GEL

In the following Q̂n(θ) and Q(θ) refer to sample and population GMM criteria that re-

spectively employ the efficient metrics Ω̂n(θ)−1 and Ω(θ)−1 appropriate for unconditional

moment equaility restrictions.

Lemma C.1. If Assumptions A.1 and A.2-GEL hold then (a) max1≤i≤n supθ∈Θ,λ∈Λn

|λ′mi(θ)|
p→ 0; (b) w.p.a.1, Λn ⊆ Λ̂n(θ) for all θ ∈ Θ.

Proof. Follows directly from Newey and Smith (2004, Lemma A1, p.239) and the

extension Parente and Smith (2011, Lemma A.1, p.101).�

Statements and proofs are given for the alternative GEL criterion P̃ ρ
n(θ) (E.6) defined

in Appendix E; those for the GEL criterion P̂ ρ
n(θ) (3.4) and alternative GEL criteria

P̃ ρ,k
n (θ), (k = a, b), (E.1) and (E.3), follow similarly.

Recall Ω̂n(θ) =
∑n

i=1mi(θ)mi(θ)
′/n. The next Lemma and its proof mirror Newey

and Smith (2004, Lemma A2, p.239) for the moment equality case.

Lemma C.2. Let θ ∈ ΘP0. Let the arbitrary sequence τn(θ) obey ‖m̂n(θ)− τn(θ)‖ =

Op(n
−1/2) uniformly θ ∈ ΘP0. If Assumptions A.1 and A.2-GEL are satisfied, then

λ̃n(θ) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τn(θ)) exists w.p.a.1, λ̃n(θ) = Op(n

−1/2) and supλ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τn(θ)) ≤ Op(n

−1).

Proof. By Assumption A.2-GEL and UWL Ω̂n(θ)
p→ Ω(θ) uniformly θ ∈ Θ. Then,

by Ω(θ) p.d. uniformly θ ∈ Θ from Assumption A.1(c), the smallest eigenvalue of Ω̂n(θ)

is bounded away from zero w.p.a.1. By Lemma C.1 and twice continuous differentiability

of ρ(·) in a neighborhood of zero from Assumption A.2-GEL(b), P̃ ρ
n(θ, λ, τn(θ)) is twice

continuously differentiable on Λn w.p.a.1 uniformly θ ∈ Θ. Write λn = λn(θ). Then,

λn = arg maxλ∈Λn P̃
ρ
n(θ, λ, τn(θ)) exists w.p.a.1. Furthermore, for any λ̇ on the line

segment joining λn and 0, by Lemma C.1 and ρ2(0) = −1, max1≤i≤n ρ2(λ̇′mi(θ)) < −1/2

[30]



w.p.a.1. Hence, by a Taylor expansion around λ = 0 with Lagrange remainder, there is

λ̇ on the line joining λn and 0 such that

0 = P̃ ρ
n(θ, 0, τn(θ))

≤ P̃ ρ
n(θ, λn, τn(θ)) = −(m̂n(θ)− τn(θ))′λn +

1

2
λ′n[

n∑
i=1

ρ2(λ̇′mi(θ))mi(θ)mi(θ)
′/n]λn

≤ −(m̂n(θ)− τn(θ))′λn −
1

4
λ′nΩ̂n(θ)λn ≤ ‖λn‖‖m̂n(θ)− τ(θ)‖ − C‖λn‖2

w.p.a.1 uniformly θ ∈ ΘP0 . Adding C‖λn‖2 to both sides and dividing by ‖λn‖ yields

C‖λn‖ ≤ ‖m̂n(θ)− τn(θ)‖ w.p.a.1. By hypothesis, m̂n(θ)− τn(θ) = Op(n
−1/2), θ ∈ ΘP0 ,

and, thus, ‖λn‖ = Op(n
−1/2). Therefore, w.p.a.1 λn ∈ int(Λn) and hence ∂P̃ ρ

n(θ, λn, τn(θ))/∂λ =

0, the first order conditions for an interior maximum. By Lemma C.1, w.p.a.1 λn ∈
Λ̂n(θ), so by the concavity of P̃ ρ

n(θ, λ, τn(θ)) and convexity of Λ̂n(θ) it follows that

P̃ ρ
n(θ, λn, τn(θ)) = supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τn(θ)), giving the first and second conclusions with

λn = λ̃n. Then, by the last inequality of the above equation, ‖m̂n(θ)−τn(θ)‖ = Op(n
−1/2),

and ‖λn‖ = Op(n
−1/2), we obtain P̃ ρ

n(θ, λ̃n, τn(θ)) ≤ ‖λ̃n‖‖m̂n(θ) − τn(θ)‖ − C‖λ̃n‖2 =

Op(n
−1) uniformly θ ∈ ΘP0 .�

Lemma C.3. Let θ ∈ ΘP0. If Assumptions A.1 and A.2-GEL are satisfied, then

λ̃n(θ) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τ̃n(θ)) exists w.p.a.1, λ̃n(θ) = Op(n

−1/2), supθ∈ΘP0
‖m̂n(θ)− τ̃n(θ)‖

≤ Op(n
−1/2) and supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ̃n(θ)) ≤ Op(n

−1).

Proof. From the Proofs of Lemmas E.1 and E.3 below the population auxiliary

paramater λ(θ) = 0, θ ∈ ΘP0 . Thus, the population slackness parameter τ(θ) =

EP0 [m(z, θ)] ≥ 0. In particular, τ j(θ) > [=]0 if and only if mj(θ) > [=]0, (j = 1, ..., dm).

Let λ̃n satisfy P̃ ρ
n(θ, λ̃n, τ(θ)) = supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ(θ)). Then, P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤
P̃ ρ
n(θ, λ̃n(θ), τ(θ)) ≤ P̃ ρ

n(θ, λ̃n, τ(θ)) uniformly θ ∈ ΘP0 . Therefore, from the Proof of

Lemma C.2, λ̃n(θ) = Op(n
−1/2) and P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤ Op(n
−1), i.e.,

inf
τ∈T

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≤ Op(n

−1)

uniformly θ ∈ ΘP0 .

Let λ̄n = −n−1/2(m̂n(θ) − τ̃n(θ))/‖m̂n(θ) − τ̃n(θ)‖ and, thus, λ̄n ∈ Λn, θ ∈ ΘP0 . By

Lemma C.1, max1≤i≤n |λ̄′nmi(θ)|
p→ 0 and λ̄n ∈ Λ̂n(θ) w.p.a.1. Thus, for any λ̇ on the

line joining λ̄n and 0, w.p.a.1 ρ2(λ̇′mi(θ)) ≥ −C, (i = 1, ..., n). Also, by UWL and

Assumption A.2, the largest eigenvalue of
∑n

i=1mi(θ)mi(θ)
′/n is bounded above w.p.a.1.
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An expansion then gives

P̃ ρ
n(θ, λ̄n, τ̃n(θ)) = −(m̂n(θ)− τ̃n(θ))′λ̄n +

1

2
λ̄′n[

n∑
i=1

ρ2(λ̇′mi(θ))mi(θ)mi(θ)
′/n]λ̄n

≥ n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − C 1

2
λ̄′nΩ̂n(θ)λ̄n

≥ n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − Cn−1

w.p.a.1. uniformly θ ∈ ΘP0 . Hence,

n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − Cn−1 ≤ P̃ ρ
n(θ, λ̄, τ̃n(θ)) ≤ P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤ Op(n
−1).

(C.1)

Solving eq. (C.1) for ‖m̂n(θ)− τ̃n(θ)‖ then gives

‖m̂n(θ)− τ̃n(θ)‖ ≤ Op(n
−1/2). (C.2)

uniformly θ ∈ ΘP0 .�

Recall P̃ ρ
n(θ) = infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ).

Lemma C.4. Under Assumptions A.1 and A.2-GEL

2nP̃ ρ
n(θ) = nQ̂n(θ) + op(1)

= inf
sb∈Rb+,sc∈Rdm−b

‖v(θ)− s‖2
Ω(θ)−1 + op(1),

uniformly θ ∈ ΘP0.

Proof. Cf. Canay (2010) Proof of Theorem 3.1, pp.418-419. Let the arbitrary

sequence τn obey ‖m̂n(θ)− τn‖ = Op(n
−1/2); cf. Lemmas C.1 and C.2 above. Define

λ̃n(τn) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τn). Therefore, cf. the Proof of Lemma C.2 above,

w.p.a.1, λ̃n(τn) ∈ int(Λ̂n(θ)) and λ̃n(τn) satisfies the first order conditions for an interior

maximum ∂P̃ ρ
n(θ, λ, τn)/∂λ = 0, i.e., λ̃n(τn) = −Ω̂−1

n (m̂n(θ) − τn) + op(n
−1/2) uniformly
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θ ∈ ΘP0 . Hence, defining λ̇(τ) on the line joining λ̃n(τ) and 0,

2nP̃ ρ
n(θ, λ̃n(τ̃n), τ̃n) = 2 inf

τ∈T

n∑
i=1

ρ(λ̃n(τ)′mi(θ)) + λ̃n(τ)′τ

= 2 inf
τ∈T
−n(m̂n(θ)− τ)′λ̃n(τ)

+
1

2
nλ̃n(τ)′[

n∑
i=1

ρ2(λ̇(τ)′mi(θ))mi(θ)mi(θ)
′/n]λ̃n(τ)

= 2 inf
τ∈T
−n(m̂n(θ)− τ)′λ̃n(τ)− 1

2
nλ̃n(τ)′Ω̂n(θ)λ̃n(τ) + op(1)

= inf
τ∈T

n ‖m̂n(θ)− τ‖2
Ω̂−1n

+ op(1)

= nQ̂n(θ) + op(1),

uniformly θ ∈ ΘP0 , using Lemmas C.1 and C.3.

It then follows by Lemma A.3 in Appendix A that, uniformly θ ∈ ΘP0 ,

2nP̃ ρ
n(θ, λ̃n, τ̃n) = inf

t≥0
n ‖m̂n(θ)− t‖2

Ω(θ)−1 + op(1)

= inf
sb∈Rb+,sc∈Rdm−b

‖v(θ)− s‖2
Ω(θ)−1 + op(1).�

Lemma C.5. Under Assumptions A.1-A.2-GEL, 2nP̃ ρ
n(θ)

p→ ∞ uniformly θ ∈
Θ\ΘP0.

Proof. The structure of the following argument closely resembles that of Smith

(2007) Proof of Theorem 4.1, pp.112-114; cf. Kitamura et al. (2004), Proof of Theorem

3.1, pp.1686-1688, for EL.

Let c > 0 such that (−c, c) ∈ V . Define Cn = {z ∈ Rdz : supθ∈Θ ‖m(z, θ)‖ ≤
cn1/2} and mni(θ) = Iimi(θ), where Ii = I{zi ∈ Cn}. Let λ̄(θ, τ) = −(m(θ) − τ)/(1 +

‖m(θ)− τ‖); note that n−1/2λ̄(θ, τ) ∈ Λn.

Then,

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≥ Q̃ρ

n(θ, τ) (C.3)

=
n∑
i=1

ρ(n−1/2λ̄(θ, τ)′mni(θ))/n+ n−1/2λ̄(θ, τ)′τ.

Now

ρ(n−1/2λ̄(θ, τ)′mni(θ)) + n−1/2λ̄(θ, τ)′τ = −n−1/2λ̄(θ, τ)′(mi(θ)− τ) + rni(t),

[33]



for some t ∈ (0, 1) and remainder

rni(t) = n−1/2λ̄(θ, τ)′mi(θ)(1− Ii) (C.4)

+n−1/2λ̄(θ, τ)′mni(θ)[ρ1(tn−1/2λ̄(θ, τ)′mni(θ))− ρ1(0)].

From Lemma C.4 supθ∈Θ,n−1/2λ∈Λn,1≤i≤n
∣∣ρ1(n−1/2λ′mi(θ))− ρ1(0)

∣∣ p→ 0. Also max1≤i≤n(1−
Ii) = op(1). Hence, from eq. (C.4),

n1/2

n∑
i=1

rni(t)/n = op(1)λ̄(θ, τ)′m̂n(θ) + op(1)λ̄(θ, τ)′m̂n(θ)

−op(1)λ̄(θ, τ)′
n∑
i=1

mi(θ)(1− Ii)/n

= op(1)λ̄(θ, τ)′m̂n(θ)

uniformly θ ∈ Θ and τ ∈ T . Thus,

n1/2 sup
θ∈Θ,τ∈T

∣∣∣∣∣
n∑
i=1

rni(t)/n

∣∣∣∣∣ ≤ op(1) sup
θ∈Θ
‖m̂n(θ)‖

= op(1)Op(1) = op(1)

as supθ∈Θ ‖m̂n(θ)‖ ≤ supθ∈Θ ‖m(θ)‖+ op(1) by T and UWL. Therefore, substituting eq.

(C.3), n1/2Q̃ρ
n(θ, τ) = −λ̄(θ, τ)′(m̂n(θ)− τ) + op(1) uniformly θ ∈ Θ and τ ∈ T . By UWL

n1/2 sup
θ∈Θ,τ∈T

∣∣∣Q̃n(θ, τ)− Q̃(θ, τ)
∣∣∣ = op(1), (C.5)

where

n1/2Q̃(θ, τ) = −λ̄(θ, τ)′(m(θ)− τ)

=
‖m(θ)− τ‖2

1 + ‖m(θ)− τ‖ .

Thus, from eqs. (C.3) and (C.5), cf. Kitamura et al. (2004) eqs. (A.6) and (A.7), p.1687,

n1/2 inf
τ∈T

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≥ n1/2 inf

τ∈T
Q̃(θ, τ) + op(1) (C.6)

uniformly θ ∈ Θ.

The function ‖m(θ)− τ‖2 /(1 + ‖m(θ)− τ‖) is continuous in θ and τ . By definition

of the identified set ΘP0 , infτ∈T ‖m(θ)− τ‖2 /(1 + ‖m(θ)− τ‖) takes the value zero for

all θ ∈ ΘP0 and is strictly positive for all θ ∈ Θ\ΘP0 , i.e.,

inf
τ∈T

Q̃(θ, τ) = 0⇐⇒ θ ∈ ΘP0

[34]



and

inf
τ∈T

Q̃(θ, τ) > 0⇐⇒ θ /∈ ΘP0 .

Therefore, from eq. (C.6), uniformly θ ∈ Θ\ΘP0 , n
1/2 infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ)

p→
∞.

Similarly to the Proof of Condition C.1(d) for GMM, 2nP̃ ρ
n(θ) = 2nP̃ ρ

n(θ, λ̃n(θ), τ̃n(θ))
p→

∞ uniformly θ ∈ Θ\ΘP0 .�

Recall from section 3.4 above the GEL population criterion defined by P̃ ρ(θ) =

infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ) with P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ)) − ρ0] + λ′τ correspond-

ing to the alternative GEL criterion P̃ ρ
n(θ) (E.6). Proofs are presented for P̃ ρ

n(θ) (E.6);

those for P̂ ρ
n(θ) (3.4) and P̃ ρ,k

n (θ), (k = a, b), (E.1) and (E.3), follow similarly. In the

following discussion P̃ ρ(θ) substitutes for Q̂n(θ) in the statements of CHT Conditions

C.1-C.3 in Appendix B.

Proof of CHT Condition C.1. (a) Holds by Assumption A.1. (b) Follows for

P̃ ρ(θ) from Lemmas E.1 and E.3 below as P̃ ρ(θ) = P̂ ρ(θ) = 0 for all θ ∈ ΘP0 , i.e.,

infθ∈Θ P̃
ρ(θ) = 0. (c) Holds by Assumption A.2-GEL(a). (d) Lemma C.4 establishes

that 2nP̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = nQ̂n(θ) + op(1) uniformly θ ∈ ΘP0 and Lemma C.5 that

2nP̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))

p→ ∞ uniformly θ ∈ Θ/ΘP0 . (e) By (b) P̃ ρ(θ) = 0 uniformly

θ ∈ ΘP0 . Thus supθ∈ΘP0

∣∣∣P̃ ρ
n(θ)− P̃ ρ(θ)

∣∣∣ = supθ∈ΘP0

∣∣∣P̃ ρ
n(θ)

∣∣∣ = Op(n
−1) using Lemma

C.3.�

Proof of CHT Condition C.2. Similarly to the Proof of Condition C.2 for GMM

in Appendix B, from Lemmas C.4 and C.5, w.p.a.1 uniformly θ ∈ Θ,

2nP̃ ρ
n(θ) = nQ̂n(θ)

≥ inf
θ∈Θ

∥∥n1/2m(θ)
∥∥2

−

×
∥∥vn(θ) + n1/2m(θ)

∥∥2

− /λmax(Ω(θ))
∥∥n1/2m(θ)

∥∥2

− .

Therefore, for any ε > 0, with probability at least 1− ε,

2nP̃ ρ
n(θ) ≥ 1

2
inf
θ∈Θ

C · n · (d(θ,ΘP0) ∧ δ)2/λmax(Ω(θ))

uniformly {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2}, n > nε, for some (κε, nε), from supθ∈Θ ‖vn(θ)‖ =

Op(1) by the P -Donsker property of Assumption A.3, Assumption A.4 and ‖y + x‖− / ‖x‖− →
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1 as ‖x‖− →∞ for any y ∈ Rdm .�

Proof of CHT Condition C.3. Similarly to the Proof of Condition C.3 for GMM

in Appendix B, w.p.a.1 uniformly θ ∈ ΘP0 ,

2nP̃ ρ
n(θ) = nQ̂n(θ)

≤ sup
θ∈Θ

dm · [Op(1) + n1/2 · C · (d(θ,Θ\ΘP0) ∧ δ)]2−/λmin(Ω(θ))

where the inequality follows from Ω(θ) uniformly p.d. θ ∈ Θ and bounded by Assumption

A.2-GMM(b) and Assumption A.5. The conclusion follows as in the Proof of Condition

C.3 for GMM, since with εn = Op(n
−1/2), P̃ ρ

n(θ) = 0 on Θ−εnP0
.�

Appendix D: Identified Set

Recall the partition of the index set {1, ..., dm} according to mj(θ) < 0, (j = 1, ..., a),

mj(θ) = 0, (j = a+ 1, ..., a+ b) and mj(θ) > 0, (j = a+ b+ 1, ..., dm). Let c = dm−a− b.
Note again that a, b and thus c depend on θ. Also recall the notation m(θ) = EP0 [m(z, θ)].

Recall Θ̂ρ
P0

= {θ ∈ Θ : θ = arg minθ∈Θ P̂
ρ(θ)} (3.9).

Lemma D.1. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̂ρ
P0

= ΘP0.

Proof. Now

P̂ ρ(θ) = sup
λ≥0

EP0 [ρ(λ(θ)′m(z, θ))]

= EP0 [ρ(λ(θ)′m(z, θ))] ≥ 0

since ρ(λ′m(z, θ)) = 0 at λ = 0.

Fix θ ∈ ΘP0 ; thus a = 0. Consider j ∈ {b + 1, ..., dm}, i.e., mj(θ) > 0. Suppose that

the associated auxiliary parameter λj(θ) > 0. Now

EP0 [ρ(λ(θ)′m(z, θ))] ≤ ρ(λ(θ)′m(θ))

< 0;

a contradiction. The first inequality holds by Jensen’s inequality from ρ(·) < 0 and the

strict concavity of ρ(·) on V by Assumption A.2-GEL(b). The second inequality follows

from λ(θ)′m(θ) > 0 since mj(θ) = 0, j ∈ {1, ..., b}, and λj(θ) ≥ 0 with at least one
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λj(θ) > 0, j ∈ {b + 1, ..., dm}, from above. Hence, the associated auxiliary parameter

λj(θ) = 0, j ∈ {b + 1, ..., dm}, and EP0 [ρ(λ(θ)′m(z, θ))] is maximised at ρ(0) by setting

λj(θ) = 0, j ∈ {1, ..., dm}. Therefore, P̂ ρ(θ) = 0 if θ ∈ ΘP0 , i.e., ΘP0 ⊆ Θ̂ρ
P0

.

To conclude, suppose a 6= 0, i.e., θ ∈ Θ/ΘP0 , and so there exists j ∈ {1, ..., a} such that

mj(θ) < 0. Now, as above, EP0 [ρ(λ′m(z, θ))] = 0 and ∂EP0 [ρ(λ′m(z, θ)) − ρ(0)]/∂λj =

EP0 [ρ1(λ′m(z, θ))mj(z, θ)] > 0 at λ = 0. Define λ such that λj = ε for some small ε > 0

and λk = 0 for k 6= j. Then, by continuity, P̂ ρ(θ) ≥ EP0 [ρ(λjmj(z, θ))] > 0. Cf. Canay

(2010) Proof of Lemma B.3, p.423. Hence, θ ∈ Θ\Θ̂ρ
P0

, i.e., Θ̂ρ
P0
⊆ ΘP0 .�

Appendix E: Alternative GEL Criteria

A number of alternative but equivalent GEL criteria may also be defined.

Mirroring the GMM criterion (3.1), the introduction of the dm-vector of complemen-

tary slackness parameters τ ≥ 0, cf. (2.3), directly into (3.4) defines the alternative GEL

criterion

P̃ ρ,a
n (θ, λ, τ) =

n∑
i=1

ρ(λ′(mi(θ)− τ))/n. (E.1)

The GEL criterion P̃ ρ,a
n (θ, λ, τ) (E.1) is then optimised over λ ∈ Λ̃a

n(θ, τ), where Λ̃a
n(θ, τ) =

{λ : λ′(mi(θ) − τ) ∈ V , i = 1, ..., n}, and τ ∈ T for given θ ∈ Θ with the slackness pa-

rameter space T = {τ ∈ Rdm : τ ≥ 0, ‖τ‖ ≤ C} and C > 0 defined by the boundedness

condition in Assumption A.1(b). The slackness parameter estimator τ̃an(θ) solves the

corresponding f.o.c. with respect to τ , i.e., ∂P̃ ρ,a
n (θ, λ̃an(θ), τ̃an(θ))/∂τ ≥ 0, τ ≥ 0. Now

λ̃an(θ) ≥ 0 since ∂P̃ ρ,a
n (θ, λ̃an(θ), τ̃an(θ))/∂τ = −

∑n
i=1 ρ1(λ̃an(θ)′(mi(θ)− τ̃an(θ)))λ̃an(θ)/n and∑n

i=1 ρ1(λ̃an(θ)′(mi(θ) − τ̃an(θ))) < 0 from Assumption A.2-GEL(b). In particular, either

λ̃a,jn (θ) = 0 and τ̃a,jn (θ) > 0 or λ̃a,jn (θ) > 0 and τ̃a,jn (θ) = 0, (j = 1, ..., dm), and, thus,

λ̃an(θ)′τ̃an(θ) = 0. Hence, the auxiliary parameter constraint space Λ̃a
n(θ, τ) simplifies to

Λ̂n(θ). The auxiliary parameter estimator λ̃an(θ) solves the corresponding f.o.c. with

respect to λ, i.e.,
∑n

i=1 ρ1(λ̃an(θ)′(mi(θ) − τ̃an(θ)))(mi(θ) − τ̃an(θ))/n = 0. Consequently,

the slackness parameter estimator τ̃an(θ) satisfies

τ̃an(θ) =

∑n
i=1 ρ1(λ̃an(θ)′(mi(θ)− τ̃an(θ)))mi(θ)∑n

k=1 ρ1(λ̃an(θ)′(mk(θ)− τ̃an(θ)))

=

n∑
i=1

π̂ρi (θ, λ̃
a
n(θ))mi(θ),
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since λ̃an(θ)′τ̃an(θ) = 0; cf. (3.6). Therefore, λ̃an(θ) = λ̂n(θ) and, thus, P̃ ρ,a
n (θ, λ̃n(θ), τ̃n(θ)) =

P̂ ρ
n(θ).

Remark E.1. Note that limn→∞P{τ̃an(θ) ∈ T } = 1 since supθ∈Θ ‖m̂n(θ)−m(θ)‖ =

op(1) by UWL from Assumption A.1(b). Thus, the upper bound C is not binding in T
w.p.a.1.

Remark E.2. The GEL implied probabilities defined from (E.2),

π̃ρ,ai (θ, λ, τ) =
ρ1(λ′(mi(θ)− τ))∑n
k=1 ρ1(λ′(mk(θ)− τ))

, (i = 1, ..., n), (E.2)

are non-negative and sum to unity. Moreover, since λ̃an(θ)′τ̃an(θ) = 0, π̃ρ,ai (θ, λ̃an(θ), τ̃an(θ)) =

π̂ρi (θ, λ̃
a
n(θ)), (i = 1, ..., n).

The GEL criterion (E.1) may be re-centred by separating out the slackness parameter

τ ≥ 0 to form

P̃ ρ,b
n (θ, λ, τ) =

n∑
i=1

[ρ(λ′mi(θ))− ρ(λ′τ)]/n, (E.3)

which is then optimised over λ ∈ Λ̃b
n(θ, τ), where Λ̃b

n(θ, τ) = {λ : λ′mi(θ) ∈ V , i =

1, ..., n, λ′τ ∈ V} and τ ∈ T for given θ ∈ Θ. As above λ̃an(θ) ≥ 0 since it follows that

∂P̃ ρ,b
n (θ, λ̃bn(θ), τ̃ bn(θ))/∂τ = −ρ1(λ̃n(θ)′τ̃n(θ))λ̃n(θ) ≥ 0 noting ρ1(λ̃n(θ)′τ̃n(θ)) < 0 from

Assumption A.2-GEL(b). Similarly, either λ̃b,jn (θ) = 0 and τ̃ b,jn (θ) > 0 or λ̃b,jn (θ) > 0

and τ̃ b,jn (θ) = 0, (j = 1, ..., dm), and, thus, λ̃bn(θ)′τ̃ bn(θ) = 0. Examining the f.o.c. with

respect to λ, i.e.,
∑n

i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n−ρ1(λ̃bn(θ)′τ̃ bn(θ))τ̃ bn(θ)) = 0, the slackness

parameter estimator τ̃ bn(θ) satisfies

τ̃ bn(θ) =

∑n
i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n

ρ1(λ̃bn(θ)′τ̃ bn(θ))
. (E.4)

Hence, the auxiliary parameter constraint space Λ̃b
n(θ, τ) is not fully binding and reduces

to Λ̂n(θ) as previously. Consequently, P̃ ρ,b
n (θ, λ̃bn(θ), τ̃ bn(θ)) = P̂ ρ

n(θ).

Remark E.3. Noting ρ1(0) = −1, since λ̃bn(θ)′τ̃ bn(θ), the slackness parameter esti-

mator (E.4) τ̃ bn(θ) = −
∑n

i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n; cf. (3.6). The GEL implied prob-

abilities implicitly defined from (E.4) as ρ1(λ′mi(θ))/nρ1(θ′τ), (i = 1, ..., n), although

non-negative by Assumption A.2-GEL(b), do not sum to unity. Even if evaluated at
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λ̃bn(θ) and τ̃ bn(θ), the GEL implied probabilities −ρ1(λ̃bn(θ)′mi(θ))/n, (i = 1, ..., n), do not

sum to unity. Exploiting (3.7) guarantees non-negativity and unit summability, i.e.,

π̃ρ,bi (θ, λ, τ) =
ρ1(λ′mi(θ))∑n
k=1 ρ1(λ′mk(θ))

, (i = 1, ..., n). (E.5)

Moreover, π̃ρ,bi (θ, λ̃bn(θ), τ̃ bn(θ)) = π̂ρi (θ, λ̃
b
n(θ)), (i = 1, ..., n).

Consider the Lagrangean

P̃ ρ
n(θ, λ, τ) =

n∑
i=1

ρ(λ′mi(θ))/n+ λ′τ (E.6)

in which the slackness parameter vector τ now denotes a dm-vector of Lagrange multipli-

ers associated with the inequality constraint λ ≥ 0; cf. G∗(θ, v, λ) defined in Moon and

Schorfheide (2009) eq. (16), p.140. Here the GEL criterion P̃ ρ
n(θ, λ, τ) (E.6) is optimised

over λ ∈ Λ̂n(θ) and τ ∈ T for given θ ∈ Θ. The Lagrange multiplier parameter esti-

mator τ̃n(θ) satisfies ∂P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))/∂τ ≥ 0, τ ≥ 0. Thus, the auxiliary parameter

estimator λ̃n(θ) ≥ 0 as ∂P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))/∂τ = λ̃n(θ). Moreover, λ̃n(θ)′τ̃n(θ) = 0 with,

in particular, λ̃jn(θ) = 0 and τ̃ jn(θ) > 0 or λ̃jn(θ) > 0 and τ̃ jn(θ) = 0, (j = 1, ..., dm). From

the f.o.c. with respect to λ, i.e.,
∑n

i=1 ρ1(λ̃n(θ)′mi(θ))mi(θ)/n+ τ̃n(θ) = 0, the Lagrange

multiplier estimator τ̂n(θ) ≥ 0 satisfies

τ̃n(θ) = −
n∑
i=1

ρ1(λ̃n(θ)′mi(θ))mi(θ)/n, (E.7)

cf. (3.6). Substituting λ̃n(θ) and τ̃n(θ), P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = P̂ ρ

n(θ, λ̃n(θ)). Therefore,

from the strict concavity of ρ(·) on V by Assumption A.2-GEL(b), λ̃n(θ) = λ̂n(θ) and,

likewise, P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = P̂ ρ

n(θ).

Remark E.4. The GEL implied probabilities defined from (E.7) as−ρ1(λ̃n(θ)′mi(θ))/n,

(i = 1, ..., n), are non-negative by Assumption A.2-GEL(b) but do not sum to unity.

The redefinition π̃ρi (θ, λ̃n(θ), τ̃n(θ)) = ρ1(λ̃n(θ)′mi(θ))/
∑n

k=1 ρ1(λ̃n(θ)′mk(θ)) guarantees

non-negativity and unit summability; cf. Remark D.3. Moreover, π̃ρi (θ, λ̃n(θ), τ̃n(θ)) =

π̂ρi (θ, λ̃n(θ)), (i = 1, ..., n).

E.1 GEL Estimator Equivalence

Lemma E.1. The solutions to the saddle point problems (3.4) and (E.1) are identical,

i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ,a
n (θ, λ, τ) then λ̃(θ) is
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also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and τ̂(θ) ∈ int(T ),

where τ̂ j(θ) =
∑n

i=1 π̂
ρ
i (θ, λ̂(θ))mj

i (θ) if λ̂j(θ) = 0 and 0 if λ̂j(θ) > 0, (j = 1, ..., dm), then

(λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ,c
n (θ, λ, τ).

Proof. To prove (a), note that λ̃ ≥ 0, since the solution τ̃ satisfies ∂P̃ ρ,a
n (θ, λ̃, τ̃)/∂τ ≥

0 and ∂P̃ ρ,a
n (θ, λ, τ)/∂τ = −

∑n
i=1 ρ1(λ′(mi(θ)− τ))λ/n with

∑n
i=1 ρ1(λ′(mi(θ)− τ))/n <

0 by Assumption A.2-GEL(b). In particular, λ̃j = 0 and τ̃ j > 0 or λ̃j > 0 and

τ̃ j = 0, (j = 1, ..., dm), and λ̃′τ̃ = 0. The solution λ̃ satisfies ∂P̃ ρ,a
n (θ, λ̃, τ̃)/∂λ =

0, i.e.,
∑n

i=1 ρ1(λ̃′(mi(θ) − τ̃))(mi(θ) − τ̃)/n = 0, and, thus, τ̃ j = 0 if λ̃j > 0 or∑n
i=1 ρ1(λ̃′mi(θ))m

j
i (θ)/

∑n
k=1 ρ1(λ̃′mk(θ)) > 0 if λ̃j = 0, (j = 1, ..., dm). Now P̃ ρ,a

n (θ, λ, τ̃) =

P̂ ρ
n(θ, λ) −

∑n
i=1 ρ1(λ′(mi(θ) − τ∗))λ

′τ̃ /n ≥ P̂ ρ
n(θ, λ) for τ∗ ∈ (0, τ̃) since λ ≥ 0 and∑n

i=1 ρ1(λ′(mi(θ) − τ∗)) < 0 by Assumption A.2-GEL(b). Therefore, from the saddle-

point property with respect to λ, P̂ ρ
n(θ, λ̃) = P̃ ρ,a

n (θ, λ̃, τ̃) ≥ P̃ ρ,a
n (θ, λ, τ̃) ≥ P̂ ρ

n(θ, λ).

For (b), λ̂′τ̂ = 0 from the definition of τ̂ with τ̂ j = 0 and λ̂j > 0 or τ̂ j > 0 and

λ̂j = 0 (j = 1, ..., dm), from the first order condition ∂P̂ ρ
n(θ, λ)/∂λ ≤ 0, λ ≥ 0, cf.

(3.6). For the saddle point property with respect to τ ≥ 0, P̃ ρ,a
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤
P̃ ρ,a
n (θ, λ̂, τ) since λ̂ ≥ 0 and P̃ ρ,a

n (θ, λ̂, τ) = P̂ ρ
n(θ, λ̂) −

∑n
i=1 ρ1(λ̂′(mi(θ) − τ∗))λ̂′τ/n for

τ∗ ∈ (0, τ) with
∑n

i=1 ρ1(λ̂′(mi(θ) − τ∗))/n < 0 from Assumption A.2-GEL(b). For λ,

P̃ ρ,a
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≥ P̃ ρ,a
n (θ, λ, τ̂) since, noting ∂P̃ ρ,a

n (θ, λ̂, τ̂)/∂λ = 0, P̂ ρ,a
n (θ, λ, τ̂) =

P̃ ρ,a
n (θ, λ̂, τ̂)+

∑n
i=1 ρ2(λ′∗(mi(θ)−τ̂))[(mi(θ)−τ̂)′(λ−λ̂)]2/2n ≤ P̃ ρ,a

n (θ, λ̂, τ̂) for λ∗ ∈ (λ, λ̂)

and ρ2(·) < 0 by the concavity of ρ(·) from Assumption A.2-GEL(b).�

Lemma E.2. The solutions to the saddle point problems (3.4) and (E.3) are iden-

tical, i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ,b
n (θ, λ, τ)

then λ̃(θ) is also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and

τ̂(θ) ∈ int(T ), where τ̂ j(θ) = −
∑n

i=1 ρ1(λ̂(θ)′m(θ))mj
i (θ)/n if λ̂j(θ) = 0 and 0 if

λ̂j(θ) > 0, (j = 1, ..., dm), then (λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ,b
n (θ, λ, τ).

Proof. The proof follows on similar lines to that for Lemma E.1.

For (a), λ̃ ≥ 0 since τ̃ satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂τ ≥ 0 and ∂P̃ ρ,b

n (θ, λ, τ)/∂τ = −ρ1(λ′τ)λ

with ρ1(λ′τ) < 0 by Assumption A.2-GEL(b). Likewise, λ̃′τ̃ = 0 with λ̃j = 0 and τ̃ j > 0

or λ̃j > 0 and τ̃ j = 0, (j = 1, ..., dm). In this case λ̃ satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂λ = 0, i.e.,∑n

i=1 ρ1(λ̃′mi(θ))mi(θ)/n − ρ1(λ̃′τ̃)τ̃ = 0, and, thus, τ̃ j = −
∑n

i=1 ρ1(λ̃′mi(θ))m
j
i (θ)/n if

λ̃j = 0 or 0 if λ̃j > 0, (j = 1, ..., dm), from the normalisation ρ1(0) = −1 of Remark 3.3.

Now P̃ ρ,b
n (θ, λ, τ̃) = P̂ ρ

n(θ, λ)− ρ1((λ′τ̃)∗)λ
′τ̃ ≥ P̂ ρ

n(θ, λ) for (λ′τ̃)∗ ∈ (0, (λ′τ̃)) since λ ≥ 0
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and ρ1((λ′τ̃)∗) < 0 by Assumption A.2-GEL(b). Therefore, P̂ ρ
n(θ, λ̃) = P̃ ρ,b

n (θ, λ̃, τ̃) ≥
P̃ ρ,b
n (θ, λ, τ̃) ≥ P̂ ρ

n(θ, λ).

For the proof of (b), as in the Proof of Lemma E.1(b), λ̂′τ̂ = 0 with τ̃ j = 0 and

λ̂j > 0 or τ̃ j > 0 and λ̂j = 0, (j = 1, ..., dm). For the saddle point property with respect

to τ ≥ 0, P̃ ρ,b
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤ P̃ ρ,b
n (θ, λ̂, τ) since λ̂ ≥ 0 and P̃ ρ,b

n (θ, λ̂, τ) = P̂ ρ
n(θ, λ̂)−

ρ1(λ̂′τ∗)λ̂
′τ for τ∗ ∈ (0, τ) with ρ1(λ̂′τ∗) < 0. For λ, P̃ ρ,b

n (θ, λ̂, τ̂) = P̂ ρ
n(θ, λ̂) ≥ P̃ ρ,b

n (θ, λ, τ̂)

since, noting ∂P̃ ρ,b
n (θ, λ̂, τ̂)/∂λ = 0 and ρ2(·) < 0, it follows that P̂ ρ,b

n (θ, λ, τ̂) = P̃ ρ,b
n (θ, λ̂, τ̂)+∑n

i=1 ρ2(λ′∗mi(θ))[mi(θ)
′(λ − λ̂)]2/2n +

∑n
i=1 ρ2(λ′∗τ̂)[τ̂ ′(λ − λ̂)]2/2n ≤ P̃ ρ,a

n (θ, λ̂, τ̂) for

λ∗ ∈ (λ, λ̂).�

Lemma E.3. The solutions to the saddle point problems (3.4) and (E.6) are iden-

tical, i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ
n(θ, λ, τ) then

λ̃(θ) is also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and τ̂(θ) ∈
int(T ), where τ̂ j(θ) = −

∑n
i=1 ρ1(λ̂(θ)′mi(θ))m

j
i (θ)/n if λ̂j(θ) = 0 and 0 if λ̂j(θ) > 0,

(j = 1, ..., dm), then (λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ
n(θ, λ, τ).

Proof. The proof again follows along similar lines to the Proof of Lemma E.1. Cf.

Moon and Schorfheide (2009) Lemma A.1, p.150.

For (a), λ̃ ≥ 0 since τ̃ satisfies ∂P̃ ρ
n(θ, λ̃, τ̃)/∂τ ≥ 0 and ∂P̃ ρ

n(θ, λ, τ)/∂τ = λ. Likewise,

λ̃′τ̃ = 0 with λ̃j = 0 and τ̃ j > 0 or λ̃j > 0 and τ̃ j = 0, (j = 1, ..., dm). In this case λ̃

satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂λ = 0, i.e.,

∑n
i=1 ρ1(λ̃′mi(θ))mi(θ)/n + τ̃ = 0, and, thus, τ̃ j =

−
∑n

i=1 ρ1(λ̃′mi(θ))m
j
i (θ)/n if λ̃j = 0 or 0 if λ̃j > 0, (j = 1, ..., dm). Now P̃ ρ

n(θ, λ, τ̃) =

P̂ ρ
n(θ, λ) + λ′τ̃ ≥ P̂ ρ

n(θ, λ) since λ ≥ 0. Therefore, P̂ ρ
n(θ, λ̃) = P̃ ρ

n(θ, λ̃, τ̃) ≥ P̃ ρ
n(θ, λ, τ̃) ≥

P̂ ρ
n(θ, λ).

For (b), λ̂′τ̂ = 0 with τ̃ j = 0 and λ̂j > 0 or τ̃ j > 0 and λ̂j = 0, (j = 1, ..., dm), from

the first order condition ∂P̂ ρ
n(θ, λ)/∂λ ≤ 0, λ ≥ 0. For the saddle point property with

respect to τ ≥ 0, P̃ ρ
n(θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤ P̃ ρ
n(θ, λ̂, τ) since λ̂ ≥ 0. For λ, P̃ ρ

n(θ, λ̂, τ̂) =

P̂ ρ
n(θ, λ̂) ≥ P̃ ρ

n(θ, λ, τ̂) since, noting ∂P̃ ρ
n(θ, λ̂, τ̂)/∂λ = 0 and ρ2(·) < 0, P̂ ρ

n(θ, λ, τ̂) =

P̃ ρ
n(θ, λ̂, τ̂) +

∑n
i=1 ρ2(λ′∗mi(θ))[mi(θ)

′(λ− λ̂)]2/2n ≤ P̃ ρ,a
n (θ, λ̂, τ̂) for λ∗ ∈ (λ, λ̂).�

E.2 Identified Set

Alternative but equivalent population versions of the GEL identified set Θ̂ρ
P0

(3.9), cf.

Canay (2010) for EL, may be defined corresponding to the alternative GEL criteria

P̃ ρ
n(θ, λ, τ) (E.6) and P̃ ρ,k

n (θ, λ, τ), (k = a, b), (E.1), (E.3), described in Appendix E.1. The

respective population criteria are defined by P̃ ρ(θ) = infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ) with
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P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ))] + λ′τ and P̃ ρ,k(θ) = infτ∈T supλ∈Rdm P̃
ρ,k(θ, λ, τ), (k =

a, b), with P̃ ρ,a(θ, λ, τ) = EP0 [ρ(λ′(m(z, θ) − τ))] and P̃ ρ,b(θ, λ, τ) = EP0 [ρ(λ′m(z, θ)) −
ρ(λ′τ)]. The respective GEL population counterparts to identified set ΘP0 are

Θ̃ρ
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̃ ρ(θ)}, (E.8)

and

Θ̃ρ,k
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̃ ρ,k(θ)}, (k = a, b). (E.9)

Recall the notation m(θ) = EP0 [m(z, θ)] and Θ̂ρ
P0

= {θ ∈ Θ : θ = arg minθ∈Θ P̂
ρ(θ)}

(3.9).

Lemma E.4. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̃ρ,k
P0

= ΘP0, (k = a, b).

Proof. Let P̂ ρ(θ, λ) = EP0 [ρ(λ′m(z, θ))].

First, consider the alternative GEL population criterion P̃ ρ,a(θ, λ, τ) = EP0 [ρ(λ′(m(z, θ)−
τ))] corresponding to (E.1). Now P̃ ρ,a(θ) = infτ∈T supλ∈Rdm P̃

ρ,a(θ, λ, τ). The solution

τ(θ) ≥ 0 satisfies ∂P̃ ρ,a(θ, λ, τ)/∂τ ≥ 0. Thus, since ∂P̃ ρ,a(θ, λ, τ)/∂τ = −EP0 [ρ1(λ′(m(z, θ)−
τ))]λ and EP0 [ρ1(λ′(m(z, θ)−τ))] < 0 by Assumption A.2-GEL(b), λj ≥ 0, (j = 1, ..., dm),

and λ′τ(θ) = 0. The solution λ(θ) satisfies ∂P̃ ρ,a(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ(θ)′(m(z, θ)−
τ(θ)))(m(z, θ)− τ(θ))] = 0 and, thus,

τ(θ) =
EP0 [ρ1(λ(θ)′(m(z, θ)− τ(θ)))m(z, θ)]

EP0 [ρ1(λ(θ)′(m(z, θ)− τ(θ)))]

=
EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)]

EP0 [ρ1(λ(θ)′m(z, θ))]
≥ 0.

Now P̃ ρ,a(θ, λ, τ(θ)) = P̂ ρ(θ, λ) − EP0 [ρ1(λ′(m(z, θ) − τ∗))]λ
′τ(θ) ≥ P̂ ρ(θ, λ) for τ∗ ∈

(0, τ(θ)) since λ ≥ 0 and EP0 [ρ1(λ′(m(z, θ) − τ∗))] < 0 by Assumption A.2-GEL(b).

Hence, as P̂ ρ(θ, λ(θ)) = P̃ ρ,a(θ, λ(θ), τ(θ)) ≥ P̃ ρ,a(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ).

That is, λ(θ) also optimises the GEL criterion P̂ ρ(θ, λ) (3.4) and therefore Θ̃ρ,a
P0

= Θ̂ρ
P0

.

Secondly, the population criterion for the GEL criterion (E.3) is P̃ ρ,b(θ, λ, τ) =

EP0 [ρ(λ′m(z, θ))−ρ(λ′τ)] with P̃ ρ,b(θ) = infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ). The solution τ(θ) ≥

0 satisfies ∂P̃ ρ,b(θ, λ, τ)/∂τ ≥ 0. Likewise, since ∂P̃ ρ,b(θ, λ, τ)/∂τ = −ρ1(λ′τ)λ, by As-

sumption A.2-GEL(b), λj(θ) ≥ 0, (j = 1, ..., dm), and λ′τ(θ) = 0 as above. The solution
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λ(θ) satisfies ∂P̃ ρ,b(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)]−ρ1(λ(θ)′τ(θ))τ(θ) =

0 or

τ(θ) =
EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)]

ρ1(λ(θ)′τ(θ))
≥ 0.

By similar reasoning P̃ ρ,b(θ, λ, τ(θ)) = P̂ ρ(θ, λ) − ρ1(λ′τ∗)λ
′τ(θ) ≥ P̂ ρ(θ, λ) for τ∗ ∈

(0, τ(θ)) since λ ≥ 0 and ρ1(·) < 0 by Assumption A.2-GEL(b). Hence, as P̂ ρ(θ, λ(θ)) =

P̃ ρ,b(θ, λ(θ), τ(θ)) ≥ P̃ ρ,b(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ), i.e., λ(θ) also optimises the

GEL criterion P̂ ρ(θ, λ) (3.4). Therefore, Θ̃ρ,b
P0

= Θ̂ρ
P0

.�

Lemma E.5. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̃ρ
P0

= ΘP0.

Proof. The population criterion corresponding to the alternative sample GEL

criterion (E.6) is given by P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ)) − ρ(0)] + λ′τ with P̃ ρ(θ) =

infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ). The solution τ(θ) satisfies ∂P̃ ρ(θ, λ, τ)/∂τ ≥ 0. Thus, since

∂P̃ ρ(θ, λ, τ)/∂τ = λ, λj ≥ 0, (j = 1, ..., dm), and λ′τ(θ) = 0. The solution λ(θ) satisfies

∂P̃ ρ(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ′m(z, θ))m(z, θ)] + τ(θ) = 0 or

τ(θ) = −EP0 [ρ1(λ′m(z, θ))m(z, θ)] ≥ 0.

Now P̃ ρ(θ, λ, τ(θ)) = P̂ ρ(θ, λ) + λ′τ(θ) ≥ P̂ ρ(θ, λ) since λ ≥ 0. Hence, as P̂ ρ(θ, λ(θ)) =

P̃ ρ(θ, λ(θ), τ(θ)) ≥ P̃ ρ(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ), i.e., λ(θ) also optimises the

GEL criterion P̂ ρ(θ, λ) (3.4). Therefore, Θ̃ρ
P0

= Θ̂ρ
P0

.�
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Figure 1: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn} Design 1.
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Figure 2: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn} Design 2.
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Table 1: Small Sample Properties of Identified Set Estimators. Design 1.

cn = ĉn cn = log log(n)/2 cn = log(n)/2

Bounds MSE pΘP0
Bounds MSE pΘP0

Bounds MSE pΘP0

n = 50 GMM (-1.327, 1.280) 1.198 87.24 (-4.333, 2.946) 4.719 97.65 (-8.178, 4.735) 8.236 99.55

CUE (-1.482, 1.281) 1.586 87.30 (-6.707, 2.946) 6.767 97.74 (-8.321, 4.735) 8.337 99.55

ET (-1.327, 1.281) 1.199 87.24 (-1.467, 2.965) 2.936 97.38 (-1.587, 4.694) 4.515 99.42

EL (-1.327, 1.281) 1.199 87.24 (-1.463, 3.030) 3.004 97.44 (-1.564, 4.912) 4.701 99.51

n = 100 GMM (-1.340, 1.143) 0.714 90.91 (-7.008, 2.180) 6.536 98.75 (-8.333, 3.516) 7.691 99.84

CUE (-1.523, 1.142) 1.336 90.97 (-7.202, 2.180) 6.640 98.8 (-8.333, 3.516) 7.691 99.84

ET (-1.340, 1.143) 0.714 90.91 (-1.442, 2.197) 1.796 98.58 (-1.528, 3.543) 3.224 99.79

EL (-1.340, 1.143) 0.714 90.91 (-1.440, 2.229) 1.831 98.63 (-1.517, 3.721) 3.407 99.82

n = 500 GMM (-1.330, 1.011) 0.261 95.22 (-7.333, 1.380) 6.496 99.46 (-8.333, 1.788) 7.057 99.98

CUE (-2.379, 1.011) 2.714 95.37 (-8.021, 1.380) 6.845 99.48 (-8.333, 1.788) 7.057 99.98

ET (-1.330, 1.011) 0.261 95.22 (-1.380, 1.383) 0.505 99.38 (-1.426, 1.798) 0.908 99.97

El (-1.330, 1.011) 0.261 95.22 (-1.380, 1.387) 0.508 99.40 (-1.423, 1.816) 0.924 99.98

n = 1000 GMM (-1.329, 0.996) 0.188 96.19 (-7.622, 1.248) 6.641 99.61 (-8.333, 1.522) 7.024 99.98

CUE (-2.886, 0.996) 3.304 96.36 (-8.188, 1.248) 6.903 99.61 (-8.333, 1.522) 7.024 99.98

ET (-1.329, 0.996) 0.188 96.19 (-1.365, 1.249) 0.329 99.55 (-1.400, 1.526) 0.593 99.98

EL (-1.329, 0.996) 0.188 96.19 (-1.365, 1.250) 0.329 99.55 (-1.398, 1.537) 0.603 99.98



Table 2: Small Sample Properties of Identified Set Estimators. Design 2.

cn = ĉn cn = log log(n)/2 cn = log(n)/2

Bounds MSE pΘP0
Bounds MSE pΘP0

Bounds MSE pΘP0

n = 50 GMM (-0.468, 0.633) 0.759 81.44 (-4.667, 1.591) 5.260 95.64 (-6.478, 2.763) 6.672 99.51

CUE (-0.480, 0.633) 0.805 81.44 (-4.667, 1.591) 5.260 95.64 (-6.478, 2.763) 6.672 99.51

ET (-0.469, 0.633) 0.759 81.44 (-0.672, 1.597) 1.745 94.29 (-0.799, 2.745) 2.955 98.85

EL (-0.468, 0.633) 0.759 81.44 (-0.677, 1.636) 1.793 94.45 (-0.815, 2.904) 3.116 98.92

n = 100 GMM (-0.476, 0.540) 0.448 86.31 (-5.066, 1.133) 5.301 97.99 (-6.500, 1.857) 6.253 99.52

CUE (-0.537, 0.540) 0.749 86.31 (-5.078, 1.133) 5.308 97.99 (-6.500, 1.857) 6.253 99.52

ET (-0.476, 0.540) 0.448 86.31 (-0.630, 1.136) 0.956 97.24 (-0.732, 1.858) 1.778 99.73

EL (-0.476, 0.540) 0.448 86.31 (-0.634, 1.145) 0.969 97.33 (-0.742, 1.941) 1.873 98.77

n = 500 GMM (-0.500, 0.482) 0.175 92.61 (-5.372, 0.710) 5.407 99.07 (-6.500, 0.949) 6.021 100

CUE (-0.609, 0.482) 0.824 92.61 (-0.543, 0.710) 5.440 99.07 (-6.500, 0.949) 6.021 100

ET (-0.500, 0.482) 0.175 92.61 (-0.557, 0.711) 0.297 98.89 (-0.634, 0.954) 0.531 99.99

EL (-0.500, 0.482) 0.175 92.61 (-0.578, 0.713) 0.298 98.91 (-0.637,0.967) 0.526 99.99

n = 1000 GMM (-0.493, 0.509) 0.125 95.77 (-5.489, 0.665) 5.470 99.64 (-6.500, 0.834) 6.011 100

CUE (-0.590, 0.509) 0.769 95.77 (-0.565, 0.665) 5.557 99.65 (-6.500, 0.834) 6.011 100

ET (-0.493, 0.509) 0.125 95.77 (-0.551, 0.666) 0.215 99.42 (-0.600, 0.836) 0.385 99.99

EL (-0.493, 0.509) 0.125 95.77 (-0.551, 0.666) 0.215 99.42 (-0.602, 0.841) 0.375 99.99



Table 3: Confidence Region Volume and Coverage. Design 1.

Ĉ
Ω−1∗
n Ĉ

Ω−1
D ∗

n

1− α = 0.90 1− α = 0.95 1− α = 0.99 1− α = 0.90 1− α = 0.95 1− α = 0.99

vol cov vol cov vol cov vol cov vol cov vol cov

n = 50 GMM 13.62 0.984 14.52 0.992 15.89 0.998 12.41 0.946 13.35 0.976 14.72 0.994

CUE 13.65 0.984 14.52 0.992 15.89 0.998 12.68 0.946 13.40 0.976 14.72 0.994

ET 6.87 0.956 7.71 0.988 9.23 0.994 5.92 0.902 6.62 0.948 7.92 0.990

EL 7.08 0.964 7.95 0.988 9.25 0.994 6.07 0.908 6.81 0.950 8.14 0.990

n = 100 GMM 11.93 0.984 12.70 0.994 14.55 1.000 11.30 0.970 11.77 0.982 13.13 0.996

CUE 11.93 0.984 12.70 0.994 14.55 1.000 11.30 0.970 11.77 0.982 13.13 0.996

ET 5.16 0.968 5.96 0.986 7.78 0.996 4.54 0.938 4.99 0.964 6.39 0.994

EL 5.32 0.972 6.22 0.986 8.10 0.998 4.65 0.942 5.15 0.962 6.70 0.994

n = 500 GMM 9.85 0.970 10.07 0.992 10.31 0.998 9.69 0.946 9.89 0.972 10.13 0.996

CUE 9.90 0.970 10.07 0.992 10.31 0.998 9.74 0.948 9.93 0.972 10.13 0.996

ET 2.99 0.936 3.17 0.976 3.44 0.996 2.89 0.900 3.01 0.938 3.23 0.982

EL 3.00 0.936 3.19 0.980 3.47 0.996 2.90 0.904 3.02 0.940 3.25 0.982

n = 1000 GMM 9.68 0.970 9.79 0.982 9.95 0.998 9.57 0.956 9.69 0.972 9.83 0.988

CUE 9.71 0.970 9.79 0.982 9.95 0.998 9.66 0.956 9.71 0.972 9.83 0.988

ET 2.76 0.946 2.85 0.968 3.04 0.998 2.70 0.920 2.77 0.948 2.90 0.984

EL 2.77 0.948 2.86 0.970 3.05 1.000 2.70 0.918 2.77 0.950 2.91 0.986



Table 4: Confidence Region Volume and Coverage. Design 2.

Ĉ
Ω−1∗
n Ĉ

Ω−1
D ∗

n

1− α = 0.90 1− α = 0.95 1− α = 0.99 1− α = 0.90 1− α = 0.95 1− α = 0.99

vol cov vol cov vol cov vol cov vol cov vol cov

n = 50 GMM 11.38 0.998 12.35 1.000 12.99 1.000 8.56 0.938 9.25 0.978 10.83 0.998

CUE 11.40 0.998 12.35 1.000 13.00 1.000 8.56 0.938 9.25 0.978 10.83 0.980

ET 5.52 0.986 6.49 0.998 7.54 1.000 3.02 0.870 3.55 0.922 5.04 0.984

EL 5.86 0.988 6.71 0.998 7.57 1.000 3.13 0.876 3.73 0.932 5.34 0.984

n = 100 GMM 9.70 1.000 10.69 1.000 12.74 1.000 7.82 0.970 8.28 0.988 8.98 1.000

CUE 9.69 1.000 10.70 1.000 12.70 1.000 7.82 0.970 8.28 0.988 8.98 1.000

ET 3.95 0.996 4.88 1.000 6.89 1.000 2.20 0.924 2.51 0.958 3.25 1.000

EL 4.29 0.996 5.37 1.000 7.20 1.000 2.26 0.926 2.59 0.964 3.45 0.994

n = 500 GMM 7.64 1.000 7.81 1.000 8.28 1.000 7.17 0.946 7.36 0.980 7.55 1.000

CUE 7.64 1.000 7.81 1.000 8.28 1.000 7.17 0.946 7.36 0.980 7.55 1.000

ET 1.82 1.000 2.01 1.000 2.55 1.000 1.40 0.924 1.49 0.970 1.70 1.000

EL 1.85 1.000 2.05 1.000 2.69 1.000 1.40 0.924 1.50 0.974 1.72 1.000

n = 1000 GMM 7.40 1.000 7.47 1.000 7.60 1.000 7.08 0.978 7.20 0.980 7.30 0.996

CUE 7.40 1.000 7.47 1.000 7.60 1.000 7.09 0.978 7.20 0.980 7.30 0.996

ET 1.52 1.000 1.61 1.000 1.75 1.000 1.28 0.922 1.32 0.940 1.40 0.982

EL 1.53 1.000 1.62 1.000 1.77 1.000 1.28 0.924 1.32 0.946 1.40 0.984
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