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We develop a multi-risk SIR model (MR-SIR) where infection, hospitalization and

fatality rates vary between groups—in particular between the “young”, “the middle-

aged” and the “old”. Our MR-SIR model enables a tractable quantitative analysis of

optimal policy similar to those already developed in the context of the homogeneous-

agent SIR models. For baseline parameter values for the COVID-19 pandemic applied

to the US, we find that optimal policies differentially targeting risk/age groups sig-

nificantly outperform optimal uniform policies and most of the gains can be realized

by having stricter lockdown policies on the oldest group. For example, for the same

economic cost (24.3% decline in GDP), optimal semi–targeted or fully-targeted poli-

cies reduce mortality from 1.83% to 0.71% (thus, saving 2.7 million lives) relative to

optimal uniform policies. Intuitively, a strict and long lockdown for the most vulnera-

ble group both reduces infections and enables less strict lockdowns for the lower-risk

groups. We also study the impacts of social distancing, the matching technology, the

expected arrival time of a vaccine, and testing with or without tracing on optimal

policies. Overall, targeted policies that are combined with measures that reduce inter-

actions between groups and increase testing and isolation of the infected can minimize

both economic losses and deaths in our model.
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1 Introduction1

The COVID-19 pandemic has already claimed the lives of more than 200,000 people (as of
April 27, 2020), necessitated widespread lockdowns in much of the world, and caused
the largest global recession of the last nine decades. A key tool for both researchers
and policymakers to understand and control the pandemic is the classic SIR (Susceptible-
Infectious-Recovered) model originally proposed by Kermack, McKendrick and Walker
(1927). The SIR framework and its various extensions model the spread and ultimate
containment of an infection in a setting where those who recover are immune to the dis-
ease and thus the susceptible population declines over time.2 The simplest version of the
model consists of three differential equations and provides a good first approximation to
the dynamics of a range of infections.3 Several recent papers have started incorporating
economic trade-offs and conducting optimal policy analysis within this framework (e.g.
Rowthorn and Toxvaerd, 2020, Eichenbaum, Rebelo and Trabandt 2020a, Alvarez, Ar-
gente and Lippi 2020, Jones, Philippon and Venkateswaran, 2020, Farboodi, Jarosch and
Shimer, 2020 and Garriga et al., 2020).4

Three sets of assumptions in the baseline SIR model may need to be relaxed both for
gaining a more holistic understanding of how an infection spreads and how it can be
contained, and for better informing public policy. These are:

I. Different subpopulations typically have different risks—different rates at which
they become infected, need hospitalization or intensive care and may suffer fatal-
ities. In addition, they may interact with other subpopulations at different rates,
thus necessitating a “network version” of the basic SIR model (e.g., Easley and
Kleinberg, 2010). Such network versions of the SIR model may behave very dif-
ferently from a basic homogeneous-agent version of the framework. Even more

1Visit our online MR-SIR simulator (GUI) to explore the model, the effect of simple policies and optimal
polices, as one varies parameters: https://mr-sir.herokuapp.com/

2The most common epidemiological extensions of the basic model include either the “Exposed” who
have not yet turned infectious (SEIR) or the “Asymptomatic” who may still infect others (SAIR) or both.
See, for example, Brauer, van den Driessche and Wu (2008).

3See the references in Lehman, Loberg and Clark (2019) and a recent incisive review by Avery, Bossert,
Clark, Ellison and Ellison, 2020.

4See Atkeson (2020b) and Stock (2020) for an introduction into the SIR framework and its implications
for COVID-19 in the US. Berger et al. (2020) study an SEIR model and examine simple policies with testing
and conditional quarantine; see also (Eichenbaum, Rebelo and Trabandt, 2020b) for macroeconomic model
with testing, showing the equilibrium response to simple policies. Chari, Kirpalani and Phelan (2020) con-
sider a single group SIR model but where agents engage in different forms of interactions, e.g. some more
contagious, and consider social distancing measures for each form of interaction. Fernández-Villaverde and
Jones (2020) fit a standard SIR model to multiple regions (countries, states and cities) and uses the model to
infer unobservables (such as number of recovered) and create forecasts.

2

https://mr-sir.herokuapp.com/


importantly, they may call for “targeted” policies that treat groups differentially.5

II. The “matching technology” in the basic SIR model is similar to the quadratic
matching technology of the famous Diamond (1982) coconut model, where the
number of matches between two groups (or within a group itself) is the product
of the size of the two groups. Though this quadratic technology is a good ap-
proximation to matching in geographic contexts where contact is random, it is not
necessarily so for other interactions (such as in workplaces, for matching between
firms and workers, or in the context of certain types of leisure activities that take
place in small groups). The form of the matching technology may have important
implications.6

III. The parameters of contact and infection are generally taken to be exogenously-
given, but economic and social adjustments that individuals adopt by themselves
and via changes in norms and policies of communities can significantly change
these parameters.7

In this paper, which is part of a broader research agenda, we focus on (I) and (II) to de-
velop a multi-risk version of the basic SIR model (which we refer to as the MR-SIR model).
After describing the laws of motion of the susceptible, infectious and recovered popu-
lations by group, we turn to a quantitative analysis of optimal policy in this extended
environment.

We focus on the special case of our model consisting of three groups—young (20-
44), middle-aged (45-65) and old (65+) and where the only differences in interactions
between the three groups come from differential lockdown policies. We base our param-
eter choices on other work on the COVID-19 pandemic and characterize different types
of optimal policies. Consistent with other works in which the value of life is sufficiently
high and the sizable fatality risk of the oldest group is taken into account, optimal uni-
form policies involve long lockdowns in order to keep the infection rate low. Despite
these aggressive lockdowns, total fatalities reach 1.83% of the population,8 and economic

5Targeting could also be by area (both to contain the disease in a given locality and also because of
differences in healthcare resources; e.g., Friedman et al. 2020) and by industry of employment (to protect
the supply chain and give priority to essential industries).

6The same issues are discussed in the epidemiology literature, sometimes contrasting models with
“mass action” (which correspond to quadratic matching) vs. “pseudo mass action” (which feature less
increasing returns to scale and matching). See, for example, McCallum et al. (2001).

7Eichenbaum, Rebelo and Trabandt (2020a), Jones, Philippon and Venkateswaran (2020), Farboodi,
Jarosch and Shimer (2020), Kudlyak, Smith and Wilson (2020) and Garibaldi, Moen and Pissarides (2020)
are recent papers that take important steps in this direction. Early contributions include Geoffard and
Philipson (1996) and Fenichel (2013).

8Throughout, by “population” we refer to the adult population (over 20 years old).
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Figure 1: Frontier: economic vs. lives lost.

losses amount to 23.4% of one year’s GDP (these losses include the forgone productive
contributions of those who die because of the pandemic). In contrast, targeted policies
can significantly improve both on public health and economic outcomes. Interestingly,
we find that semi-targeted policies that simply apply a strict lockdown on the oldest
group can achieve the majority of the gains from fully-targeted policies. For example,
a semi-targeted policy that involves the lockdown of those above 65 until a vaccine ar-
rives can release the young and middle-aged groups back into the economy much more
quickly, and still achieve a much lower fatality rate in the population (just above 1% of the
population instead of 1.83% with the optimal uniform policy). This policy also reduces
the economic damage from 24.3% to 12.8% of one year’s GDP. The reason is that, once
the most vulnerable group is protected, the other groups can be reincorporated into the
economy more quickly.9

We stress that there is much uncertainty about many of the key parameters for COVID-
19 (Manski and Molinari, 2020) and any optimal policy, whether uniform or not, will be
highly sensitive to these parameters (e.g., Atkeson, 2020a, Avery et al., 2020, Stock, 2020).
So our quantitative results are mainly illustrative and should be interpreted with caution.
Nevertheless, the qualitative finding that semi-targeted policies significantly outperform

9 Another interesting pattern is that optimal semi-targeted or fully-targeted policy waits for the vaccine
for the oldest group, while controlling the rate of infection for the younger groups. The second part of
this strategy has some similarity to the oft-discussed “herd immunity” property, which is defined as a
situation in which the number or fraction of susceptible individuals is sufficiently low that the disease
cannot propagate and infections decline. Herd immunity can be achieved by vaccination or by a sufficient
proportion of the community becoming infected and then gaining immunity.

4



uniform policies is more general and is a consistent feature of all of our results.
The qualitative implications of our analysis can also be seen from the (“Pareto”) fron-

tier between economic loss and loss of life, which represents the trade-off facing poli-
cymakers between output and lives lost and is illustrated in Figure 1. The frontier is
upward sloping after a certain point, indicating that the absence of any mitigation poli-
cies will lead to both greater economic loss and more lives lost. Notably, the frontier for
semi-targeted (or fully-targeted) policies is much closer to the “bliss point” represented
by the origin than the frontier for uniform policies. This figure also helps us understand
why targeted policies can save many lives—moving horizontally from the uniform policy
frontier to the targeted policy frontier keeps the economic loss the same but substantially
reduces fatalities.

We further show that when targeted policies are combined with measures to reduce
interactions between groups, lives lost and economic damages can be substantially re-
duced. For example, if the frequency of interactions between the younger groups and the
oldest group can be halved (for example, by changes in norms and laws segregating these
groups), then in our baseline parameterization semi-targeted policies can reduce fatalities
to 0.6% and the economic loss to less than 10%.

We also investigate the implications of the matching technology for the dynamics of
the pandemic and optimal policy. To do this, we generalize the quadratic matching tech-
nology to allow for a flexible degree of “increasing returns to scale”.10 We find that “in-
creasing returns to scale” in matching has important implications for optimal policy. With
a constant returns to scale matching technology, the recovered offer greater protection to
the susceptibles, while lockdowns are somewhat less effective (because the number of
matches not decline as a quadratic). All the same, semi-targeted and fully-targeted poli-
cies continue to significantly outperform uniform policies.

We additionally investigate the implications of a faster discovery of a vaccine and
more aggressive testing/tracing policies. These measures for containing and controlling
the pandemic have obvious social benefits, but they do not obviate the advantage of tar-
geted policies, which continue to significantly outperform uniform policies. The same
conclusion applies when we consider a range of robustness checks on our parameters
and other assumptions as well.

Overall, our results consistently highlight that targeted policies can improve both pub-
lic health and economic outcomes. Moreover, as illustrated in Figure 2, when combined

10Specifically, we introduce a matching technology parameterized by α ∈ [1, 2], where α = 2 corre-
sponds to a quadratic matching technology, while α = 1 is the constant returns to scale matching technol-
ogy that is popular and empirically well grounded in the context of worker-firm search (e.g., Pissarides,
1986, Blanchard and Diamond, 1989).
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Figure 2: Frontier: economic vs. lives lost with additional policies.

with social distancing between groups and testing and isolation of the infected, targeted
policies can significantly improve the trade-offs faced by policy-makers.

Several recent papers independently investigate the role of age-dependent hospital-
ization and fatality rates in SIR models (Gollier, 2020, Favero, Ichino and Rustichini, 2020,
Rampini, 2020 and Bairoliya and İmrohoroğlu, 2020). The main differences between these
papers and ours is: (1) our general treatment of dynamics of infection in an SIR model
with multiple risk groups, different interaction structures and potentially imperfect test-
ing and tracing, and (2) more importantly, our analysis of optimal policy. For example,
our results showing that semi-targeted policies can significantly improve over optimal
uniform policies and achieve the great majority of the gains of optimal fully-targeted
policies have no counterparts in these papers. Glover et al. (2020) also study infection
and economic dynamics in a model featuring heterogeneous risks. Their model incorpo-
rates sectoral differences (between an essential and a luxury industry) and redistribution
between different groups as well. Glover et al. (2020)’s main emphasis is on the conflict
between the young and the old about mitigation policies. Although they consider opti-
mal policy, this policy is chosen from a parametric family and the main focus is on the
contrast between this policy and those preferred by the young and the old.

The rest of the paper is organized as follows. The next section outlines the main el-
ements of our Multi-Risk SIR model, presenting the continuous-time laws of motion for
infectious, susceptible and recovered populations by group, as well as the objective func-
tion we employ in our optimal policy analysis. Section 3 describes our parameter choices
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across risk groups.

and numerical methods. Our main results are presented in Section 4, which also contains
a number of robustness exercises. Section 5 contains our conclusions..

2 MR-SIR model

Our Multi-Risk SIR model is set in continuous time t ∈ [0, ∞). Individuals are partitioned
into risk groups j = 1, . . . , J with Nj initial members.11 The total population is normalized
to unity so that ∑j Nj = 1.

At any point in time t, individuals in group j are subdivided into those susceptible (S),
those infected (I), those recovered (R) and those deceased (D),

Sj(t) + Ij(t) + Rj(t) + Dj(t) = Nj.

Agents move from susceptible to infected, then either recover or die.12 We write S(t) =

{Sj(t)}j and similarly for I(t), R(t) and D(t). Groups interact with themselves as well as
with each other, as described below.

Before describing the details, we anticipate one of our key equations. In the canonical

11See Heesterbeek and Roberts (2007) and Bayham, Kuminoff, Gunn and Fenichel (2015) and the refer-
ences therein for a discussion of age or stage structured compartmental epidemiological models.

12As is standard, we focus on the pandemic and abstract from other sources of deaths as well as new
births

In addition, one could easily include an intermediate stage between S and I to capture exposed agents (E),
leading to a standard SEIR model, instead of SIR. Adding this state is important for some diseases, when
there is a significant lag between exposure and transmission. Arguably, this is not the case for COVID-19,
as even asymptomatic individuals have been found to transmit the virus.
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single group model, the key evolution equation is quadratic:

new infections = βSI.

In our model, absent lockdowns and isolations, we have

new infections in group j = Sj
∑k β jk Ik(

∑k β jk(Sk + Ik + Rk)
)2−α

where {β jk} are parameters that control the contact rate between group j and k. Here
α ∈ [1, 2] allows us to control the returns to scale in matching: when α = 1 we have con-
stant returns: infections double if S, I and R double; when α = 2 we obtain the quadratic
specification that, with a single group, boils down to the canonical SIR model. Below
we develop the full model, complementing and extending this basic equation to include
testing, isolation, lockdowns, hospital capacity, the arrival of a vaccine and other consid-
erations etc.

2.1 Model Assumptions

Here we discuss the basic elements of our model and then turn to the dynamic equations
describing the evolution of the state variables.

Infection, ICU, Fatality and Recovery. Susceptible individuals may become infected by
coming into contact with infected individuals. Those infected may or may not require
“ICU care”, a catch all label which we use to capture the need for ventilators and other
specialized medical care. We suppose that the need for ICU is immediately realized upon
infection. This saves us from having to carry around an additional state variable. Let ιj

denote the constant fraction of infected people of type j needing ICU care. With Poisson
arrival δr

j an ICU patient of type j recovers. Non-ICU patients do not die, and recover
with Poisson arrival γj.

Only those needing ICU care may die. While in the ICU, patients die with Poisson
arrival δd

j (t). We allow this death rate to be a function of total ICU needs relative to
capacity, which may vary over time. We assume that

γj = δd
j (t) + δr

j (t)

,so that the proportions of ICU and non-ICU patients among the infected in group j do
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not change over time.13

Let Hj(t) denote the number of type j individuals needing ICU care at time t, so that
Hj(t) = ιj Ij(t). Total ICU needs are H(t) = ∑

j
Hj(t). We assume that the death probability

conditional on ICU is a non-decreasing function of the number of patients

δd
j (t) = ψj(H(t)),

for some given function ψj.14

Detection: Infection and Immunity. Detection of infected individuals as well as their
isolation is assumed to be imperfect. To avoid additional state variables, for each infected
individual it is determined immediately upon infection whether detection and isolation
is possible. Let us denote by τj the constant probability that an infected individual of type
j not needing ICU care is detected as infected and becomes isolated. Detection includes
the presentation of symptoms as well as testing without symptoms. Similarly, we let
φj denote the probability that an individual of type j needing ICU care is detected and
isolated. While it may be reasonable to set φj = 1, we allow φj < 1 to nest earlier work,
such as Alvarez et al. (2020), that did not model ICU needs explicitly (by setting τj = φj).
Summing up, the probability that an infected person is detected and isolated is given by
ιj · φj + (1− ιj)τj.

We assume that recovered agents are immune.15 Individuals that recover can be re-
leased from lockdown at no risk to themselves or others. However, due to imperfect
testing, we suppose that only a fraction κj of recovered agents are identified as such and
allowed to work freely. The remaining fraction is either not identified or treated iden-
tically to those that are not deemed recovered. Once again, to simplify we assume this
status is determined immediately after recovery.16

13Relaxing this assumption is possible, but requires keeping track of an additional state variable.
14One may extend the model to incorporate increasing capacity by allowing ψj(H(t), t) to depend on t.
15Although many experts agree that this is currently the leading hypotheses for COVID-19, it is im-

portant to stress that, due to the recency of the pandemic, at this time this hypothesis is not backed
by conclusive evidence. Indeed, the World Health Organization has stated “There is currently no ev-
idence that people who have recovered from COVID-19 and have antibodies are protected from a
second infection.” (April 24, 2020, briefing: https://www.who.int/news-room/commentaries/detail/
immunity-passports-in-the-context-of-covid-19).

16If the only constraint were detection, it might be reasonable to suppose κj ∈ [ιj · φj + (1 − ιj)τj, 1]
capturing the notion that we do not forget those that were identified as being infected. However, we do not
require this condition.
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Lockdown and Social Distancing. We now consider lockdown and social distancing
measures that affect the rate of transmission of infections. To simplify our discussion
we label all of these as “lockdown” policies, although they could represent other social
distancing behavior and policies as well.

Workers in group j produce wj when they are not in lockdown and zero otherwise.
The latter is just a normalization: if some production is possible during lockdown, then
wj captures the extra output produced outside of lockdown.17

Let Lj(t) denote the share of group j that is in “lockdown”, away from work, with
Lj(t) = 1 designating full lockdown and Lj(t) = 0 no lockdown. Intermediate values of
Lj(t) ∈ (0, 1) represent less extreme situations. One interpretation is that at each instant t
a random fraction Lj(t) is drawn from group j and sent into lockdown, with the fraction
being independently drawn at each moment.18

Following Alvarez, Argente and Lippi (2020), we assume full lockdown may not be
feasible, so Lj(t) ≤ L̄j ≤ 1. This may capture that some goods are deemed essential,
so their production cannot be shut down. Alternatively, it may be hard to monitor and
prevent some people from going to their workplace. We also assume that even if full
lockdown were feasible, so that nobody can work, it would not necessarily eliminate all
human interactions and contagion. In particular, we assume that lockdown Lj(t) reduces
actual work by Lj(t), but, as far as contagions, reduces the presence of group j by a factor
1− θjLj(t) with θj ≤ 1. This may capture the people are still allowed on the streets and
transmission occurs when they cross paths, or it may capture people disobeying lock-
downs or quarantines, or cheating at the margin by visiting each other socially. It may
also capture transmission that occurs without direct person-to-person contact, as when
someone touches an object recently touched by an infected person. Basically, for a num-
ber of reasons, lockdown is not fully efficient at removing transmission and θj < 1 is a
measure of this inefficiency.

Cost of Death (Value of Life). Any analysis studying optimal lockdown policy must
confront modeling the cost of death, or, equivalently, the value of life.19 We approach this

17Note that wj summarizes both the wage and employment level of group j. In the data, as people age
wages rise but labor participation falls. More generally, wj may also capture more than production, such
as utility benefits experienced by consumers or leisure outside of lockdown, but we focus on the narrow
interpretation of this variable to facilitate our quantitative analysis.

18This implies that intermediate lockdowns are not selecting the same workers to be locked down per-
sistently. These types of policies can be incorporated into our framework by splitting identical workers into
different groups that can be treated differently.

19Correctly interpreted, the economic concept for the value of a statistical life, or the value of life years,
is the value of increasing the survival probabilities marginally. The value of a life may be above or below
the income lost from life. In general, one could use revealed preference choices over risk of death, but there
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issue in a general way by introducing a free parameter χj that represents an additional
emotional cost of death in group j. This cost is in addition to any lost output from the lost
worker. By varying χj we will trace out a frontier between output and lives that are saved,
and we can explore results that are not dependent on particular values for the value of
life.

Cure and Vaccine. We assume a vaccine and cure become available at some date T. To
simplify, we assume that a cure for all those currently infected also becomes available
at the same date.20 In the case of COVID-19, experts currently estimate the time for de-
veloping, testing and rolling out a vaccine to be around 1-2 years, although extraordinary
efforts are underway to speed up vaccine developments. We may allow T to be stochastic,
but assume no news about T is forthcoming before T.

2.2 Dynamics

Before the vaccine and cure, infections for group j evolve according to the differential
equation for all t ∈ [0, T)

İj = Mj(S, I, R, L)(1− θjLj)Sj ∑
k

β jk(1− θkLk)Ik − γj Ij,

with effective-contact coefficients

β jk = ρjk(1− ιkφk − (1− ιk)τk),

for given contact coefficients ρjk ≥ 0 and

Mj(S, I, R, L) ≡
(

∑
k

β jk[(Sk + ηk Ik + (1− κk)Rk)(1− θjLk) + κkRk]

)α−2

,

where ηk = 1− ιkφk − (1− ιk)τk.
To gain some insight into this key equation, note that if α = 2 then M = 1 and also R

drops out of the equation, so only S and I matter. If in addition we have a single group

is a wide range of estimates depending on the kind of choices that are used to infer the value of life.
20In fact, anti-viral drugs to treat an infection and vaccines require two separate medical advances and

implementations. In practice, this simplifying assumption makes little difference as long as infection at date
T are low, so that the value of a cure for the currently infected is small relative to the benefit of preventing
further infections.
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then the equation reduces to

İj = βSI(1− θL)2 − γI

which is the standard quadratic matching specification adopted by Atkeson (2020b); Al-
varez et al. (2020); Stock (2020).

With more than a single group, the coefficients {ρjk} allow for different contact rates
across groups. For instance, it may be natural to suppose that ρjj > ρjk for k 6= j, so that
individuals of a given group tend to have a higher contact rate within their own group
(i.e., the young may work and socialize with each other more than with the old).

Although much of the literature focuses on the quadratic matching case with α = 2,
as noted above we allow a more general formulation. For example, the case with α = 1 is
a matching technology that exhibits constant returns to scale. Doubling S, I and R (while
fixing the lockdown policy L) doubles the number of infections, leaving the rate of growth
in infections unchanged. In contrast, with quadratic matching, it would quadruple it.
Intuitively, the constant returns case with α = 1 assumes that the number of contacts
for each individual are not affected when the total number of people not in lockdown
doubles. In contrast, the quadratic case with α = 2 assumes the number of contacts would
double in this case. This captures the idea that a more densely occupied environment
leads to more contacts. Reality is likely somewhere between these two extremes, so we
treat α ∈ [1, 2] as a free parameter.

One special implication of α = 2 is that the number of recovered agents in the pop-
ulation (outside of lockdown) does not affect the number of new infections. In contrast,
whenever α ∈ [1, 2) a greater number of recovered agents lowers the number of new in-
fections. For example, when α = 1 what matters is the ratio of infected relative to the
entire pool of those that are not in lockdown, so more recovered agents help reduce this
ratio. This notion, that recovered agents help protect the susceptible seems appealing to
us, but is absent in the quadratic α = 2 case. This has implications for the fraction of the
population at which herd immunity is reached.

The rest of the laws of motion is for t ∈ [0, T) given by

Ṡj = − İj − γj Ij

Ḋj = δd
j (H)Hj

Ṙj = δr
j Hj + γj(Ij − Hj)

where Hj = ιj Ij denote the number of ICU patients in groups j and H = ∑j Hj denotes

12



the total.
The equations above describe the dynamics before T. After the vaccine and cure ar-

rives we have I(t) = 0 and R(t) = S(T−) + R(T−) and D(t) = D(T−) for t ≥ T. Natu-
rally, we can set lockdowns to zero, L(t) = 0, for all t ≥ 0.

Employment is given by

Ej(t) = (1− Lj(t))(Sj(t) + (1− ιjφj − (1− ιj)τj)Ik(t) + (1− κj)Rj(t)) + κjRj(t).

Note that lockdown enters asymmetrically in employment relative to the infections equa-
tion: it is (1− Lk) that determines employment, but it is (1− θkLk) that determines the
number of new infections.

An Aggregation Result. Before moving on, we point out that our MR-SIR model dis-
plays a nice aggregation property, behaving like a single group SIR model in special cases.

Suppose that effective contact rates and resolution rates out of infection the same
across groups, so that β jk = β and γj = γ, and consider lockdown policies that are uni-
form across groups as well, so that Lj(t) = L(t) for all j. Suppose further that infection
rates are initially identical across groups, so that Sj(0)/Nj, Ij(0)/Nj and Rj(0)/Nj are in-
dependent of j. Then it is straightforward to see that, despite differences in fatality rates,
the evolution of infections within each group, and hence aggregate infections, is identical
to that of a single group SIR model. The same is not true for deaths—these are different
across groups but do not affect the evolution of infections.

2.3 Planning Problem

Our planner controls {Lj(t)}j for all t ∈ [0, T) taking the dynamical system described
above. We next describe the objective function.

Deterministic Vaccine Arrival. The objective is to minimize the expected present value
social cost ∫ ∞

0
e−rt ∑

j
(wj(Nj − Ej(t)) + χjδ

d
j (t)ιj Ij(t)) dt

The term χjιjδ
d
j (t)Ij(t) captures the non-pecuniary costs of deaths, since the flow of death

is given by δd
j (t)ιj Ij(t). Note that even though the vaccine arrives at T, earlier deaths have

a permanent impact on Ej(t) and thus affect the integrand for t ≥ T. However, after
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integration-by-parts we can write the objective as

∫ T

0
e−rt ∑

j
Ψj(t) dt, (1)

where the flow cost for group j is given by

Ψj(t) = wjSj(t)Lj(t) + wj Ij(t)(1− ηk(1− Lj(t))) + wj(1− κj)Rj(t)Lj(t) + χ̂jιjδ
d
j (t)Ij(t)

where χ̂j =
wj
r + χj represents the total cost of a death. Note that the integral now inte-

grates only over a finite horizon up to T.

Stochastic Vaccine Arrival. Allowing the vaccine arrival time to be stochastic is simple.
Suppose T has cumulative distribution F(T) and assume there is no information about
the vaccine arrival before its arrival. Then the objective can be shown to equal∫ ∞

0
(1− F(t))e−rt ∑

j
Ψj(t)dt

Previously 1− F(t) = 0 for t < T and 1− F(t) = 0 for t ≥ T. Note that this last expression
coincides with Alvarez et al. (2020) for the single group case when rj = 1 , ηk = 1 and a
Poisson distribution 1− F(t) = e−νt with arrival ν > 0.

Marginal Value of Vaccine Innovations. Suppose we have a marginal improvement in
the arrival distribution F(t), so that F(t) rises at all values of t. For example, if the vaccine
was arriving deterministically, we may consider a change dT < 0.

Consider a marginal changes δF in the distribution. Applying the Envelope Theorem,
we compute the marginal change in the planner objective to be:21

∫ ∞

0
−δF(t)e−rt ∑

j
Ψj(t)dt

As usual, the planner will react to a change in F to achieve a new optimum, but the
Envelope Theorem allows us to evaluate the marginal value of small changes without
computing the change in the solution. Intuitively, when the vaccine arrives earlier, the

21This calculation presumes the solution is continuous in the arrival c.d.f. F at the original optimal
point. Because the problem is not convex, solutions may be discontinuous. If the solution is discontinuous,
a similar formula holds for the directional derivative.
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distribution of F(t) shifts up, lowering the cost because the future flow costs from lock-
down, represented by integrand, are no longer incurred.

Note that the marginal value of innovations in vaccines depends crucially on lock-
down and infection rates. For example, if both are vanishingly small wherever δF(t) 6= 0,
then there is only a vanishingly small improvement. Intuitively, if the original solution is
“going for herd immunity”, then a slightly earlier vaccine arrival is of little value.

The special case where the vaccine arrives deterministically at T and we consider a
change dT gives a change in value

−dT · e−rT ∑
j

Ψj(T).

3 A Simple Specification and Calibration

In our analysis in the remainder of the paper, we focus on targeting policies based on
age.22 Here, as a first exercise, we focus on just a few parameters, and thus simplify the
model in various ways.

We consider a setting with three groups, the “young” (y) who are ages 20-49, the
“middle-aged” (m) who are 50-64, and the “old” (o) who are 65 and above. We do not in-
clude those under 20 in our analysis. We take the population share of these three groups
among those over 20 years of age from BLS population data for 2019, setting Ny = 0.53,
Nm = 0.26, and No = 0.21. In our baseline, we assume that the old are retired and thus set
wo = 0.23 We assume equal earnings per capita for the young and middle-aged groups,
which we normalize by setting wy = wm = 1.24

As in Alvarez, Argente and Lippi (2020), in our baseline calibration we set L̄ =0.7
when we consider uniform policies, and set L̄o = 1 and L̄j =0.7 for the other groups
when considering targeted policies. We also follow their paper and assume that there is
no testing and isolation of those who are infected (even those requiring medical care),
so that φj = τj = 0, while there is perfect identification of those individuals who have
recovered and can safely go back to work, so that κj = 1. These testing parameters are

22Another factor that targeted policies could depend on is the presence of co-morbidities, which have
been shown to lead to significantly higher mortality and ICU needs.

23In reality, about 20% of those over 65 are employed (33% of those 65-69, 19% of those 70-74, and 9% of
those 75 and above) versus 78% of those 20-49 and 68% of those 50-64. We verify in our robustness checks
that using these higher numbers for the “wage” of the older group does not change our main conclusions,
since it remains optimal to keep this group under a severe lockdown.

24From BLS statistics, for those employed full time, the middle-aged have 12% higher weekly earnings,
but are 13% less likely to be employed. The share of workers who are employed full-time versus part-time
is roughly equal in the two groups.
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Age Group Mortality rate δd
j

20-49 0.001× (1/18)
50-64 0.01× (1/18)
65+ 0.06× (1/18)

Table 1: Mortality Parameters from COVID-19.

likely to have an important effect on optimal policies, but other than a preliminary look
in subsection 4.5, we defer that issue to future analysis.

We assume that a COVID-19 case reaches a conclusion, with the individual either
recovering or dying, in 18 days on averages, giving γ = 1/18.

For the nature of interactions we start by assuming that there is a single pool in which
all of those who are not effectively locked down (share (1− θLj) of each group j) interact.
We examine various values of θ in our analysis. We set

ρij =

β̄ i = j

β̄ρ i 6= j

In our baseline we set ρ = 1. We then consider the case in which the intra-group matching
is lowered so that ρ < 1. We set β̄ equal to 0.2, reflecting common estimates of the value
of R0 (which is the ratio β̄/γ of the number of new infections generated in a day by an
infectious individual when the whole population is susceptible to the daily probability of
an infectious case’s resolution) without social distancing and isolation measures.

We set base daily mortality rates (δd
y, δd

m, δd
o) for an infected individual described in

Table 1 to roughly match mortality rates used by Ferguson et al. (2020) and that reflect the
18 day illness duration: For the young and middle-aged groups, these numbers closely
match mortality rates we derived from recent South Korea data, a country with ample
ICU capacity relative to needs and widespread testing (and thus hopefully relatively little
selection of the more seriously ill among those tested).25 For those over 70, however,
the South Korean data give a much higher fatality rate than that used by Ferguson et
al. (2020). Given even lower fatality rates for older cohorts from the Diamond Princess
cruiseship, we opted to use mortality rates close to Ferguson et al. (2020) for those ages
65+ as our baseline and then verified the robustness of our results to Korean rates.

25We used age-specific deaths reported on April 11 and divided by the total number of age- specific cases
reported 18 days earlier. The data are available in the Korean language press releases of the Korean Central
Disease Control Headquarters & Central Disaster Management Headquarters: http://ncov.mohw.go.kr/
tcmBoardList.do?brdId=3
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Finally, we model the effect of the population infection rate on mortality due to limited
hospital capacity by assuming that ICU needs are proportional to these base mortality
rates, setting ιj = σδd

j for some parameter σ > 0.26 Hence, ICU needs at time t are
H(t) = σ ∑k δd

j Ik(t). We then specify that, for some parameter λ > 0,

δd
j (t) = δd

j · [1 + λH(t)]

= δd
j · [1 + λ̂ ∑

k
δd

k Ik(t)]

where λ̂ = λσ. It is difficult to know how high mortality rates would go if ICU needs
massively exceeded available capacity. We set λ̂ such that if there is a 30% infection rate
in the overall population, then mortality rates are 5 times the base mortality rates.27

We adjust the value of life to reflect finite working horizons and also include a constant
non-pecuniary value of life, χ. In equation (1) the total cost of death is given by χ̂j =

wj
r +

χj, with the
wj
r term reflecting the infinite worklife into the future. In our calibration, we

adjust this factor to account for the differential working horizons for the different groups
j. Specifically, we choose χj such that χj = χ − wj

r e−r∆j where ∆j represents remaining
work time for group j. We set ∆y = 15× 365 and ∆m = 7.5× 365. In what follows, we
interpret

wj
r (1− e−r∆j) as the pecuniary cost of a death, while χ is the non-pecuniary cost.

Finally, in our baseline we treat the arrival time of the vaccine, T, as deterministic.
We have experimented with some specifications including uncertainty, such as Poisson
arrival rates with mean arrival times of 1 or 1.5 years, and the results are very similar. We
prefer deterministic arrival times as our baseline, since these make it easier to interpret
our solution. For example, with deterministic T it is easier to judge whether the solution
is attempting to avoid infections and hold out for the vaccine or giving up on this and
going for herd immunity before its arrival.28 Specifically, we suppose that a vaccine will
arrive in one and a half years, and so set T = 548 days, and let the daily interest rate be
r = .01/365.

26The Korea data, which report the numbers of current “critical” and “severe” active cases, provide some
support for this assumption.

27Alvarez, Argente and Lippi (2020) also assume that mortality rates increase five-fold at the highest
possible peak of infections.

28We have also experimented with a Poisson specification with mean arrival time of 1-1.5 year and it
does not alter substantially the quantitative results presented below.

17



4 Optimal Policies

In this section we present our main quantitative results for the baseline parameter val-
ues described in the previous section. Throughout our main focus is on the comparison
between optimal uniform policies (where all three age groups are treated uniformly), op-
timal semi-targeted policies (where the oldest age group is treated differently than the
young and middle-aged groups) and optimal fully-targeted policies (where policy is fully
heterogeneous by group). The main message from our baseline results in the next sub-
section is that targeting has a major benefit in terms of both lives saved and reduced eco-
nomic damage relative to optimal uniform policies, and interestingly, most of this benefit
can be achieved with the semi-targeted policies. The rest of the section investigates how
the comparison between these different types of policies changes when we modify some
of the key parameters. We emphasize, in particular, that whether different age groups can
be partially isolated from each other and the form of the matching technology are both
important, but the relative performance of the different types of policies is scarcely af-
fected by these variations. Reducing the arrival time of a vaccine has more major effects,
since it changes the form of optimal policies towards longer lockdowns in order to wait
for the vaccine. Nevertheless, targeted policies again perform much better than uniform
policies. We also investigate the effects of the ability to test and isolate the infected, and
show that successful testing and isolation of infected individuals leads to large improve-
ments in outcomes but does not alter our main results about the value of targeted policies.
We also report a range of other robustness results.

4.1 Baseline Results

Figure 4 depicts the optimal uniform policy and its implications for infections, economic
loss and fatalities for our baseline parameter values. In this baseline we have α = 2, so
that the matching technology is quadratic; ρ = 1 so that, absent differential lockdowns,
individuals match with members from their group and different groups at the same rate;
θ = 0.75 for all groups so that a full lockdown will be disobeyed a quarter of the time;
T = 548, so that the vaccine will arrive in one and a half years time; and χ = 20, which
implies that the non-pecuniary cost from a lost life is equal to 20 times the annual eco-
nomic contribution of a typical individual. Throughout, we take the initial conditions of
the dynamical system to be 98% susceptible, 1% infected and 1% recovered within each
group.

Figure 4 depicts the optimal uniform policy (which applies the same lockdown to
all three groups). It shows a relatively lengthy lockdown that starts at around 0.6 and
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Figure 4: Optimal uniform policy for baseline.

then is gradually reduced, reaching (essentially) a full release of all workers only on day
434. This form of policy is similar to optimal policies in other SIR models fitted to the
COVID-19 parameters and that assume a sufficiently large value of life. Consistent with
our aggregation result, the figure shows that the overall infection rate peaks around 6%
early on and follows the hump-shaped pattern typical in SIR models. As documented
in the table within the figure, fatalities are high with a relatively large economic cost.
Total fatalities are 1.83% of the population. The economic cost is 24.3% of one year’s GDP
(this number includes the economic loss from the forgone future contributions of those
who die but excludes the non-pecuniary cost captured by χ; if we only look at decline in
current GDP, the loss would be 19.3%). By comparison, no lockdown results in a peak
infection rate over 30%, fatalities equal 5.44% of the population, and an economic loss of
14.4% of one year’s GDP (in this case, all due to lost future output from workers who
die).29

Figure 5 turns to the optimal semi-targeted policy for the same parameter values. Re-
call that this policy targets a different policy for the retired older group than for the work-
ing age groups (young and middle-aged). Since the oldest group has no economic contri-
bution in our baseline parameterization, it is optimal to have a strict lockdown for them
throughout. We can also see that the other two groups now experience a less severe and
shorter lockdown. This represents a combination of waiting for a vaccine but with some
elements of partial herd immunity—the right panel indicates a higher peak infection rate
for the young and middle-aged groups than in the full uniform policy, reaching over 11%
at the early stages and then declining rapidly thereafter, combined with a lower infection

29The costs of the no lockdown policy may be lower than this in practice because of social distancing
measures taken by individuals themselves in the absence of lockdowns.
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Figure 5: Optimal semi-targeted policies for baseline.

rate for the oldest group, who remain locked down until the vaccine arrives.3031 The rea-
son why the old are experiencing a 4% peak infection rate is because their lockdown is
not fully enforceable—as captured by θ = 0.75. Despite the much less severe lockdown
for the majority (79%) of the population who are young or middle-aged, fatality rates are
lower. This is because the older group, which has the highest risk from the infection,
is kept locked down throughout the non-vaccine period, and the younger groups have
lower risk, so their higher infection rates do not lead to much higher fatalities. The ta-
ble in the figure shows that, now, the overall fatalities have fallen approximately 45% to
1.02% of the population. There is a sizable reduction in economic damages as well, from
24.3% of one year’s GDP under uniform policies to 12.8% under the semi-targeted policy.

Figure 6 depicts the optimal fully-targeted policy, again for the same parameter values.
The oldest group is once more fully locked down for the duration of the non-vaccine pe-
riod, while the other two groups are put under a less severe lockdown, so that the overall
form of optimal policy is once more a mixture of waiting for the vaccine and partial herd
immunity for the younger groups. Specifically, in this case, the youngest group has a very
limited lockdown, starting with only 30% of their cohort being subject to lockdown and
with these restrictions being lifted very rapidly, while the middle-aged group experiences
a more extensive lockdown than under the semi-targeted policy (but much less than the
uniform policy). This difference notwithstanding, the overall performance of the optimal

30We refer to this pattern as “partial herd immunity” because infections come down without a vaccine,
but this is only because the older group is kept in lockdown.

31Despite this high peak infection rate, the overall fatality rate among younger groups is essentially the
same under semi-targeted and uniform policies—namely, the respective fatality rates among the young and
the middle-aged change from 0.1% and 1.2% under the optimal uniform policy to 0.1% and 1.3% under the
optimal semi-targeted policy.
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Figure 6: Optimal fully-targeted policies for baseline.

fully-targeted policy is very similar to that of the optimal semi-targeted policy: overall
fatalities are 1.00% of the population and there is a loss of 12.7% of one year’s GDP. This
similarity between the semi-targeted and fully-targeted policies is a recurrent theme of
our results and reflects two features. First, the big social gain is from locking down the
oldest group, which has no (or in our robustness checks limited) economic contribution
but is most vulnerable to the infection. Once this is achieved, the additional targeting has
more limited benefits. Second, additional targeting makes the middle-aged group stay
home for longer and the younger group go to work sooner. The fatality and economic
effects of these two opposing changes are small.

The previous three figures presented the optimal policy for a specific value of χ. Figure
7, instead, depicts the frontier between lives lost and economic damages under different
policies, by tracing out the implied optimal policies and their implications for different
values of χ. As in Figure 1 in the Introduction, the bliss point in this figure is the origin,
where there are no lives lost and no economic damage. Each curve represents the frontier
arising under a different class of policies: the top (red) frontier is for uniform policies, then
below it (green) is the frontier for semi-targeted policies, and slightly below this (in blue)
is the frontier fully targeted policies. The convex shape of the frontiers represents the
diminishing returns to pursuing one objective at the expense of the other.32 The point at
the southeast end of the frontier for a given class of policies represents the policy outcome
that maximizes GDP in that class. For example, the GDP-maximizing outcome with a
uniform policy results in a 3.86% fatality rate and an economic loss of 13.0% of one year’s
GDP, which dominates the uncontrolled outcome in which 5.44% of the population dies

32Note, however, that we are computing nine points and constructing the frontier by interpolating be-
tween them.
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Figure 7: Frontiers of output loss vs. death for baseline specification for different levels
of targeting.

and the economic loss is 14.4% of one year’s GDP.
This figure confirms the main message from Figures 4, 5 and 6: there are substantial

gains from semi-targeting (because we are locking down the most vulnerable subpopula-
tion) and considerably smaller gains from full targeting (in fact, the blue frontier for the
fully-targeted policy is only slightly to the left of the green frontier for the semi-targeted
policy). The frontier presented in Figure 7 also enables us to illustrate how targeted poli-
cies can reduce lives saved without any worse economic outcomes. For example, by
adopting a semi-targeted policy we can keep economic damages the same as the 24.3%
GDP decline we obtained above with an optimal uniform policy, but reduce the fatality
rate of the (adult) population from 1.83% to approximately 0.71%. This would amount
to 2.7 million lives saved out of the 241 million US adult (over 20) population because of
better designed lockdown policy. The same reduction in fatalities could be accomplished
using a uniform policy, but only by increasing the economic loss from 24.3% of one year’s
GDP to approximately 57.2%.

The policies we described in Figures 4, 5 and 6 are optimal when the non-pecuniary
cost of death equals χ = 20. As Figure 7 makes clear, the gains from targeting depend
on the location on the frontier, which depends on χ. As χ → ∞ full lockdown becomes
optimal and there are no gains from targeting, but even for very large values of χ semi-
targeted policies do much better than uniform policies.33

33For example, if χ = 100, a semi-targeted policy could generate the same GDP loss as the optimal
uniform policy, while reducing deaths by approximately 120,000.
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4.2 The Role of Group Distancing

Our model with different risk groups enables us to investigate the implications of policies
that reduce inter-group interactions. In our baseline parameterization, individuals are as-
sumed to match others from their group and other groups at the same rate, leading to the
common infection rate β̄, absent any lockdowns. A natural alternative is to assume that
matches between groups can be reduced, say by a fraction 1− ρ, so that the infection rate
from between-group matches is reduced to β̄ρ. Our baseline parameterization is the case
with ρ = 1. There are various policy tools for achieving such reductions, such as norm-
based interventions (so that people visit their elderly relatives less often) or law-based
interventions (e.g., allowing the oldest age group to go to supermarkets and pharmacies
only during certain hours or restricting who can visit and work in nursing homes).34

Figure 8 presents the optimal policies (again for χ = 20) when ρ is reduced to ρ = 0.5.
There is once more a long lockdown, even if it now ends somewhat earlier before the
arrival of the vaccine than when ρ = 1. Because there are fewer matches between groups,
the fatality rate declines (1.34% of the population), and the reduced length and severity
of the lockdown keeps economic damage to 17.6% of one year’s GDP. Reiterating our
main message, the figure shows that we can improve both social objectives significantly
by going to semi-targeted policies. Now there is a much shorter lockdown, which peaks
in about 30% of the young and middle-aged population being locked down around four
months into the spread of the virus and comes to an end completely in about six months.
The optimality of these reduced lockdowns for the young and middle-aged arise because
of the lower risk they impose on the old: this leads to higher peak infection rates among
the young and middle-aged than in our baseline (reaching as high as 12% for the youngest
group), but because the oldest group, which is most vulnerable, is kept comparatively
more isolated, away from these younger groups, the overall fatalities are much lower,
amounting to 0.63% of the population (as compared to about 1% with the targeted policies
but uniform matching rates between groups). Economic damages are also kept to 8.0% of
one year’s GDP.

The figure also shows the optimal fully-targeted policy, which as usual differs from the
semi-targeted one (in particular, involving a much stricter early lockdown on the middle-
aged), but the gains it produces relative to the semi-targeted optimal policy are again
relatively small. Figure 9 depicts the three frontiers in this case and confirms these con-

34With our baseline quadratic matching technology, any change in between-group matching will influ-
ence the total number of matches and do so in ways that depend on group size. With the interventions we
have in mind, we believe this is the right type of variation to consider, though it should be borne in mind
that reduced number of matches will directly decrease infection rates as well.
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Figure 8: Optimal uniform, semi-targeted and fully-targeted policies with greater group
distancing.
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Figure 9: Frontier of output loss vs. death with greater group distancing.

clusions.
The overall message from this subsection is that, if it is feasible to reduce interactions

between high-risk groups and the rest of society with policies similar to those used for
lockdown, then fatality rates can be reduced significantly and optimal targeted policy
can allow both a faster economic recovery and one that is less risky in terms of its public
health consequences.

4.3 The Role of the Matching Technology

As noted in the Introduction, our baseline model follows the epidemiology literature (and
a number of recent economics papers) in assuming quadratic matching. As in other eco-
nomic settings, there are reasons why high numbers of individuals may generate conges-
tion (especially when extreme lockdowns are not in effect) and thus reduce matching to
rates less than those implied by a quadratic technology. Moreover, while quadratic tech-
nology is attractive when matching happens randomly in a geographic space, it is less
natural when individuals interact in a given workplace or with their close friends and
relatives. It is therefore useful to understand what the implications of departing from
this quadratic benchmark are. Another important reason for considering richer match-
ing technologies is that the strong form of “herd immunity” where immune individuals
protect the susceptible from infections does not take place with quadratic matching be-
cause the matching rate between any two subpopulations is independent of the presence
or absence of others in the population (and, specifically, the recovered).
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Figure 10: Optimal uniform, semi-targeted and fully-targeted policies with constant re-
turns matching.
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Figure 11: Frontier of output loss and deaths with constant returns matching.

To highlight the role of the matching technology we now present optimal policies
when the matching technology has constant returns to scale (α = 1).35 Figure 10 shows
the optimal policies in this case. Because herd immunity becomes more attractive with
α = 1, the lockdown with uniform policy is now shorter than in Figure 4, ending around
day 350, but is more intense, with the infection rate in the population peaking at 8%. Total
fatalities are 2.08%, while economic losses are 25.5% of one year’s GDP.36

The figure once again shows significant improvements when we treat different age
groups differentially. With just semi-targeted policies, we can reduce fatalities to 1.33%
and economic damages to 15.7% of one year’s GDP. Figure 11 shows the frontiers for the
three types of policies, and highlights that there are major gains from targeting.

4.4 The Promise of a Vaccine

In this subsection, we consider the implications of an earlier arrival date for the vaccine.
Namely, we reduce T from one and a half years to one year. Figure 12 shows that when
a uniform policy is followed, it is now optimal to have a much more aggressive “wait-
for-the-vaccine” strategy. The entire population is locked down at about 60% intensity
almost until the arrival of the vaccine. This is intuitive: when we expect the vaccine to

35We focus on constant returns to scale matching to clarify the contrast with quadratic matching. In prac-
tice, increasing returns to scale between these two may be more plausible, but we currently lack sufficient
evidence to pin down the exact matching technology for COVID-19.

36These costs are a somewhat higher than in our baseline specification because, for any S and I, infections
are mechanically higher in the constant returns case than in the quadratic case.
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Figure 12: Optimal uniform, semi-targeted and fully-targeted policies with earlier vaccine
arrival.
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Figure 13: Frontier of output loss and deaths with earlier vaccine arrival.

come soon, we prefer to have less of the population exposed to the virus, favoring a more
strict and longer lockdown. As a result, the peak infection rate is lower, just a little under
5% in the entire population. With more aggressive lockdown, fatalities are kept to 0.88%
of the population.

The figure illustrates that, even in this case, there are significant gains from more
targeted policies. In this case, the “wait-for-the-vaccine” strategy is tempered and the
younger groups are allowed to return back to work sooner despite this imminent arrival
of the vaccine. This leads to higher fatalities in the population (about 0.95% as compared
to 0.88% with uniform policy), but economic damages are significantly lower—13.8% of
one year’s GDP (compared to 36.8% with a uniform policy). The economic losses and
fatalities with full targeting are similar.

The frontier in Figure 13 shows the trade-off facing policymakers in this case and indi-
cates that, instead of the optimal targeted policies, which result in slightly higher fatalities
than the optimal uniform policy, we can find a semi-targeted policy that dominates the
optimal uniform policy, for example, achieving a fatality rate of 0.51% with economic
losses equal to 26.9% of one year’s GDP.

4.5 The Effects of Testing and Tracing

We next investigate how the ability to test and isolate infected individuals affects optimal
policies and outcomes. We consider one case in which the probability that an infected
individual is identified and isolated is 0.4, and another case in which it is 0.6. The former
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Figure 14: Optimal semi-targeted policies with improved testing and isolation.

is about what we might expect if everyone who is symptomatic is isolated.37 The latter
corresponds to a situation where, thanks to testing and contact tracing, there is an addi-
tional 1/3 chance that an asymptomatic individual is immediately isolated. We keep all
other parameters at the levels in our base specification.

Figure 14 shows the semi-targeted optimal policy when the probability that an in-
fected individual is identified and isolated is 0.4. The lockdown for the young and middle-
aged is now much less strict than the baseline (it has about half of the intensity and half of
the duration of the optimal semi-targeted policy in the baseline). Resulting fatalities are
0.57% compared to 1.02% in our base semi-targeted specification, while economic loss is
5.9% of a year’s GDP compared to 12.8% before.

Raising the probability that an infected individual is identified and isolated to 0.6 re-
sults in further dramatic reductions in economic loss and lives saved (not depicted): the
economic loss with an optimal semi-targeted policy is now only 1.2% of a year’s GDP,
while fatalities fall to 0.21% of the population. Notably, in this case, the semi-targeted
policy has no lockdown for the young and middle-aged.

It is also worth emphasizing that, as before, in both cases the semi-targeted policy
yields large gains compared to the optimal uniform policy, and the additional gain from
full targeting is small. In particular, the optimal uniform policy leads to a 1.28% fatality
rate and an economic loss of 16.6% of one year’s GDP when the probability is 0.4, and to
a 0.73% fatality rate and an economic loss of 8.4% when this probability is 0.6.

Finally, Figure 15 shows the optimal semi-targeted policy when there is both social
distancing between groups ρ =0.5 and improved testing and isolation (with testing and

37This number is based on the following reasoning: approximately 50% of infected individuals are as-
sume to be asymptomatic and it takes 5 days for the remaining 50% to exhibit symptoms.

30



0 200 400

0.00

0.25

0.50

0.75

1.00
Lockdown Policy

y
m
o

Outcomes

Economic Loss  0.0203

Pop. Fatalities 0.003

Y Fatality Rate 0.0006

M Fatality Rate 0.0045

O Fatality Rate 0.007

0 200 400
0.00

0.05

0.10

0.15
Normalized Infection Rates

y
m
o

Group Dist and Testing: SemiTargeted Policy for  = 0.75 = 2.0 = 0.5 = 20

Figure 15: Optimal Semi-Targeting with group distancing and testing.

isolation probability equal to 0.4). In this case, there is no need for any lockdown for the
younger groups provided that the oldest group is kept in lockdown until the arrival of the
vaccine. This is sufficient to keep the overall fatality rate to 0.3% of the (adult) population
and ensures a very small economic loss, equivalent to about 2% of one year’s GDP.

4.6 Other Robustness Exercises

In Table 2 we show that our broad conclusions are robust to plausible variations in other
parameters. Different rows of this table consider various parameter changes relative to
the baseline, with three sub-rows corresponding to each of uniform, semi-targeted and
fully-targeted policies. The columns report the economic loss, fatality rate and the aver-
age level of lockdown over the pre-vaccine period for each of the three groups. In all cases,
we continue to find that semi-targeting leads to substantial benefits in terms of reduced
economic loss and saved lives, while the additional gains from going to full targeting are
small.

The first row records our baseline case for ease of comparison. The next two report
the results of lowering θ to 0.5 and those for the case where θ = 0.9. Not surprisingly,
lockdown is less effective the lower is θ, and losses are greater. Moreover, a lower value
of θ reduces the effectiveness of targeted policies relative to optimal uniform policy. This
is intuitive, since in this case the strict lockdown of the older population is not very effec-
tive, and thus there is less room for improving economic and public health outcomes by
releasing the younger groups sooner.

The next row pushes the vaccine arrival out from 1.5 years to 2 years. As expected, this
makes the optimal uniform policy, which in the baseline involved partially waiting for the
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Average Lockdown

Parameterization Policy Type Econ Loss Fatality Rate Young Middle Old

Baseline Uniform 0.2429 0.0183 0.2403 0.2403 0.2467
Semi-targeted 0.1281 0.0102 0.1023 0.1023 1.0000
Fully-targeted 0.1268 0.0100 0.0661 0.1714 1.0000

θ = 0.5 Uniform 0.2543 0.0212 0.2357 0.2357 0.2421
(less effective lockdown) Semi-targeted 0.1871 0.0165 0.1544 0.1544 1.0000

Fully-targeted 0.1853 0.0165 0.1221 0.2145 1.0000

θ = 0.9 Uniform 0.2537 0.0161 0.2601 0.2601 0.2665
(more effective lockdown) Semi-targeted 0.0916 0.0064 0.0635 0.0635 1.0000

Fully-targeted 0.0907 0.0060 0.0355 0.1256 1.0000

T = 365× 2 Uniform 0.2247 0.0195 0.1581 0.1581 0.1610
(two years for vaccine) Semi-targeted 0.1275 0.0102 0.0758 0.0758 1.0000

Fully-targeted 0.1261 0.0100 0.0485 0.1276 1.0000

ρo = 0.5 Uniform 0.1921 0.0139 0.1867 0.1867 0.1931
(less interaction of old with others) Semi-targeted 0.1006 0.0073 0.0715 0.0715 1.0000

Fully-targeted 0.0996 0.0070 0.0388 0.1379 1.0000

θo = 0.9 Uniform 0.2434 0.0181 0.2420 0.2420 0.2485
(more effective lockdown for old) Semi-targeted 0.1256 0.0100 0.0994 0.0994 1.0000

Fully-targeted 0.1243 0.0098 0.0636 0.1679 1.0000

δd
o = 0.12× 1

18 Uniform 0.5145 0.0155 0.4845 0.4845 0.4909
(doubling fatality rate for old) Semi-targeted 0.1536 0.0147 0.1437 0.1437 1.0000

Fully-targeted 0.1529 0.0146 0.1158 0.1984 1.0000

wo = 0.26 Uniform 0.2427 0.0190 0.2212 0.2212 0.2276
(positive cost of lockdown for old) Semi-targeted 0.1615 0.0114 0.0744 0.0744 0.6791

Fully-targeted 0.1603 0.0112 0.0374 0.1465 0.6817

S(0) = 0.84, I(0) = 0.01, R(0) = 0.15; Uniform 0.1759 0.0148 0.1772 0.1772 0.1837
(different initial conditions) Semi-targeted 0.0888 0.0075 0.0765 0.0765 1.0000

Fully-targeted 0.0883 0.0073 0.0456 0.1390 1.0000

Table 2: Robustness exercises.
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vaccine, less effective. Because targeted policies release the younger groups significantly
before the arrival of the vaccine, this change has little impact on the form of optimal
targeted policies and on the implied economic loss and fatality rates.

Next, we reduce the interaction of the old with the younger groups, ρo. This leads to
less severe lockdowns, and lower harm. Continuing down the table, next we increase θ

to 0.9, but only for the old group. This leads to almost no change from the baseline case.
In the next row, we increase the mortality rate of the oldest group from the Ferguson et al.
(2020) numbers to the higher South Korean numbers. In the optimal uniform policy, we
now find much larger economic losses but far more limited increases in fatalities as the
(uniform) lockdown becomes much more strict. With targeted policies, the worsening of
outcomes is more evenly split between economic loss and additional fatalities.

Next, we relax the assumption that the economic contribution of the oldest group is
zero. This is important for two reasons. First, as we previously noted, in the US, 20% of
those above 65 work and have earnings comparable to, and in fact slightly greater than,
the average for those under 65. Second, w in our model may also represent the value of
consumption outside of the home, and this generates an additional social benefit from
releasing the old from their lockdown. As a robustness check, we set wo for the old to
26% of the wages of the other two groups, which is the value one gets by taking account
of both the older group’s somewhat higher wage and their much lower labor market
participation. The form of optimal targeted policy remains similar. The older group is
placed under a more strict lockdown than the other demographic groups and this lasts
for much longer, about 300 days, even if not quite as long as in our baseline. It is also
worth noting that the optimal targeted policy locks down the young and the middle-
aged for a shorter period than in our baseline, which helps protect the older group when
they are released from lockdown.

In our last exercise, we change the initial state to reflect what may be the current sit-
uation in some areas of the US with COVID-19: all three groups start with 15% of their
members already recovered, 84% susceptible, and 1% infected. This leads to large reduc-
tions in both economic losses and mortality for all policies.38

38In results not reported in the table, we also experimented with different values of β, with proportion-
ately higher mortality rates for all groups, and a higher mortality penalty λ for exceeding ICU capacity.
None of these variations altered our main conclusions that semi-targeted policies significantly outperform
uniform policies and the additional gain from fully-targeted policies relative to semi-targeted policies are
small.
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5 Conclusions

In this paper, we took a first step in introducing different risk groups into an otherwise
standard SIR model. This generalization is important in the context of the COVID-19
pandemic, since existing evidence shows very large differences in hospitalization and
fatality rates between age groups. After providing a basic analysis of the dynamics of in-
fections in this multi-risk setting, we proceeded to a quantitative investigation of optimal
policy. Optimal uniform policy, which treats different demographic groups uniformly,
behaves in a similar manner in our analysis to other works in which the high mortality
rates of older individuals are recognized and a relatively high value of life is used as part
of the social objective. Specifically, for our baseline parameters, optimal uniform policy
involves a relatively strict and long lockdown. Despite these strict lockdowns, fatalities
reach 1.83% of the (adult) population and the lockdowns cost about 24.3% of one year’s
GDP. These significant public health and economic costs highlight the grim choices facing
policymakers in the midst of the pandemic.

Our main result, however, is that better social outcomes are possible with targeted
policies. Differential lockdowns on groups with differential risks can reduce both the
number of lives lost and the economic damages significantly. We also find that the major-
ity of these gains can be achieved with a simple targeted policy that applies an aggressive
lockdown on the oldest group and treats the rest uniformly. These qualitative conclu-
sions are quite consistent across different parameterizations of our model and are the
main take away message from the paper. For our baseline parameterization, the optimal
semi-targeted policy can reduce fatalities to 1% of the population and economic dam-
ages to 10% of one year’s GDP. Alternatively, if we keep the loss of output the same as
the baseline uniform policy, we can reduce the overall fatality rates to 0.71% and save
approximately 2.7 million lives.

We showed that these conclusions are robust to a range of changes in parameters and
the gains from targeted policies can be substantially increased if we also combine them
with additional measures to reduce interactions between groups. For example, increas-
ing the “social distance” between the oldest group and the rest of the population—by
norms that temporarily reduce visits to older relatives or regulations that segregate the
times when different demographic groups can go to grocery stores and pharmacies—can
reduce fatalities to as little as 0.6% of the population (as compared to 1.83% in the baseline
with uniform policies). Semi-targeted policies combined with identification and isolation
of infected individuals can lead to even larger gains, especially when there is social dis-
tancing between groups as well, and may obviate the need to have lengthy or even any
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lockdown of younger age groups.
One issue we did not address is how lockdown policies can be implemented, espe-

cially when they are heterogeneous by group and also involve various between-group
social distancing elements. The “mechanism design” aspect of lockdowns is an area for
future research, but here it is useful to note that semi-targeted policies may be easier to
implement because the strictest lockdowns are for the older group and can be interpreted
as a form of “protective custody” for that group, meaning that it is mostly to protect the
group itself not to reduce the externalities they create on others. The same applies to
measures to reduce interactions between this group and the rest of the population.

We view our paper as a first step in enriching the SIR model, which has become a
workhorse tool for understanding and combating the COVID-19 pandemic. It is worth
reiterating that many aspects of our model are highly stylized (the recovered are fully
immune and do not suffer long-term health consequences; there is no endogenous social
distancing; and many other relevant aspects of economic heterogeneity between sectors,
occupations and skills are ignored) and there is huge uncertainty about some of the key
parameters for COVID-19. The quantitative results from our analysis must therefore be
taken as illustrative and interpreted with caution—and hence our greater emphasis on
the qualitative patterns. There is much to be done to incorporate richer forms of eco-
nomic and epidemiological interactions within and between different groups—especially
to study how changes in economic and social incentives impact the dynamics of infec-
tions. We hope to be able to study some of these questions in future work.
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