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ables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance

parameters. Our simple kernel-based double debiased machine learning (DML) estimators for the

average dose-response function (or the average structural function) and the partial effects are

asymptotically normal with a nonparametric convergence rate. The nuisance estimators for the

conditional expectation function and the generalized propensity score can be nonparametric kernel

or series estimators or ML methods. Using doubly robust influence function and cross-fitting, we
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1 Introduction

We propose a nonparametric inference method for continuous treatment effects on the outcome Y ,

under the unconfoundedness assumption1 and in the presence of high-dimensional or nonpara-

metric nuisance parameters. We focus on the heterogenous effect with respect to the continuous

treatment or policy variables T . To identify the causal effects, it is plausible to allow the number

of the control variables X to be large relative to the sample size n. To obtain precise estimation, it

is useful to include control variables that account for residual variation. To achieve valid inference

and to estimate nuisance parameters by machine learning (ML) methods, we employ a double

debiased ML approach using doubly robust influence function and cross-fitting. Our work builds

upon the results for semiparametric problems in Chernozhukov, Escanciano, Ichimura, Newey,

and Robins (2018) and Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins

(2018) and extends the literature to nonparametric continuous treatment effects.

We show that the proposed estimator is asymptotically normal and converges at a nonpara-

metric rate. Such asymptotic theory is fundamental for inference, such as constructing confidence

intervals and testing hypotheses. We provide tractable conditions under which the nuisance es-

timators do not affect the first-order asymptotic distribution of the final double debiased ML

estimator. Thus the nuisance estimators of the conditional expectation function E[Y |T,X] and

the conditional density (or generalized propensity score) fT |X can be conventional nonparametric

estimators, such as kernels or series, as well as modern ML methods, such as lasso or deep neu-

ral nets (see, e.g., Athey and Imbens (2019) for potential methods, such as ridge, boosted trees,

random forest, and various ensembles of these methods).

We consider the outcome equation to be fully nonparametric Y = g(T,X, ε). No functional

form assumption is imposed on the general disturbances ε, like monotonicity, dimensionality, or

separability. The potential outcome is Y (t) = g(t,X, ε) indexed by the hypothetical treatment

value t. The causal object of interest is the average dose-response function as a function of t, defined

by the mean of the potential outcome across observations with the observed and unobserved

heterogeneity (X, ε), i.e., βt = E[Y (t)] =
∫ ∫

g(t,X, ε)dFXε. It is also known as the average

structural function in nonseparable models in Blundell and Powell (2003). We further define the

marginal or partial effect of the first element of the continuous treatment T at t = (t1, ...tdt)
′ to be

θt ≡ ∂βt/∂t1. In an example of demand analysis when T contains price and income, βt can be the

Engel curve. The partial effect θt can reveal the average price elasticity at given values of price

1This commonly used identifying assumption, also known as conditional independence or selection on observ-
ables, assumes that conditional on a set of observables X, the treatment T is independent of the unobservable
disturbances in the outcome equation. In other words, T is conditionally exogenous, or as good as randomly
assigned.
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and income and hence captures the unrestricted heterogenous effects.

We introduce a doubly robust estimator for continuous treatments, defined by

β̂DRt =
1

n

n∑
i=1

γ̂(t,Xi) +
Kh(Ti − t)
f̂T |X(t|Xi)

(
Yi − γ̂(t,Xi)

)
, (1)

where γ̂(t, x) is an estimator of γ(t, x) ≡ E[Y |T = t,X = x], f̂T |X(t|x) is an estimator of fT |X(t|x),

Kh(Ti − t) = Πdt
j=1k((Tji − tj)/h)/h is a product kernel with a standard second-order kernel

function k() and bandwidth h that is a positive sequence vanishing as n grows. Based on β̂DRt , we

propose a double debiased machine learning (DML) estimator where γ̂ and λ̂ use cross-fitting and

ML or traditional nonparametric methods. Then we estimate the partial effect θt by a numerical

differentiation. We also propose an estimator for the conditional density fT |X(t|x) for the low-

dimensional T and high-dimensional X, which could be of independent interest.

Our estimators use doubly robust influence function and cross-fitting, inspired by the DML

method in semiparametric problems in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018) (CCDDHNR, hereafter). The doubly robust influence function can

reduce sensitivity in estimating βt with respect to nuisance parameters. In particular, Neyman

orthogonality holds for the moment function in the estimator β̂DRt in (1) as h → 0. Using

cross-fitting via sample-splitting can remove bias induced by overfitting and achieve stochastic

equicontinuity without strong entropy condition. In particular CCDDHNR point out that the

commonly used results in empirical process theory, such as Donsker properties, can break down

in the high-dimensional setting. For example, the nuisance lasso estimator may require strong

sparsity assumption.

It is useful to note that the doubly robust estimator for a binary/multivalued treatment replaces

the kernel Kh(Ti − t) with the indicator function 1{Ti = t} in equation (1) and has been widely-

studied, especially in the recent growing ML literature.2 We show that the advantageous properties

of the DML estimator for the binary treatment carry over to the continuous treatments case.

Moreover, our primitive condition on the convergence rates of the nuisance parameters can be

weaker due to the bandwidth h in our nonparametric DML estimator. We further make novel

observations of unique features of continuous treatments: First we motivate the kernel-based

2Our estimator is doubly robust in the sense that the causal effect remains identified and consistently estimated
if either one of the nuisance functions E[Y |T,X] or fT |X is misspecified. The recent ML literature has been utilizing
this doubly robust property to reduce regularization and modeling biases in estimating the nuisance parameters by
ML or nonparametric methods; for example, Belloni, Chernozhukov, and Hansen (2014), Farrell (2015), Belloni,
Chernozhukov, Fernández-Val, and Hansen (2017), Farrell, Liang, and Misra (2018), Chernozhukov, Escanciano,
Ichimura, Newey, and Robins (2018), CCDDHNR, Rothe and Firpo (2018), and references therein. The benefit of
cross-fitting is further investigated by Wager and Athey (2018) for heterogeneous causal effects, Newey and Robins
(2018) for double cross-fitting, and Cattaneo and Jansson (2019) for cross-fitting bootstrap.
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moment function in β̂DRt by the limit of the Gateaux derivative, as in Ichimura and Newey (2017)

and Carone, Luedtke, and van der Laan (2018). The kernel function in β̂DRt is a natural choice

to approximate the distribution of a point mass. Further the kernel function provides a simple

moment function for the partial mean structure of βt that fixes T at t and averages out X (Newey,

1994; Lee, 2018). A second motivation of the moment function is adding to the influence function

of the regression estimator n−1
∑n

i=1 γ̂(t,Xi) the adjustment term from a kernel-based estimator γ̂.

A series estimator γ̂ would yield a different adjustment. These two distinct features of continuous

treatments are in contrast to the binary treatments case, where different nonparametric estimators

of γ result in the same efficient influence function.

The main contribution of this paper is a formal inference theory for the fully nonparametric

causal effects of continuous variables, allowing for high-dimensional nuisance parameters. To un-

cover the causal effect of the continuous variable T on Y , our nonparametric model Y = g(T,X, ε)

is compared to the partial linear model Y = θT + g(X) + ε in Robinson (1988) that specifies

the homogenous effect by θ and hence is a semiparametric problem. The important partial linear

model has many applications and is one of the leading examples in Chernozhukov, Escanciano,

Ichimura, Newey, and Robins (2018), CCDDHNR, and references therein, where the nuisance

function g(X) allows for high-dimensional X and can be estimated by a ML method. Demirer,

Syrgkanis, Lewis, and Chernozhukov (2019) and Oprescu, Syrgkanis, and Wu (2019) extend to

more general functional forms. In contrast, our average structural function βt and the partial

effect θt capture the fully nonparametric heterogenous effect of T . Our simple estimator utilizes

the kernel function Kh(Ti − t) for the low-dimensional continuous treatments T and averages out

the high-dimensional covariates X, so we can maintain the nonparametric feature and circumvent

the complexity of the nuisance parameter space.

To the best of our knowledge, we are among the first to apply the double debiased ML approach

for inference on the average structural function and the partial effect of continuous treatments.

There is a small yet growing literature on employing the DML approach for objects that cannot

be estimated at the regular root-n rate. For example, the conditional average binary treatment

effect E[Y (1)−Y (0)|X1] for a low-dimensional subset X1 ⊂ X is studied in Chernozhukov, Newey,

Robins, and Singh (2019), Chernozhukov and Semenova (2019), Fan, Hsu, Lieli, and Zhang (2019),

and Zimmert and Lechner (2019). Their setups do not cover our average structural function and

the partial effect of continuous treatments. The causal objects of interest are different.3

3In particular, Chernozhukov, Newey, Robins, and Singh (2019) provide sparse regression methods for non-
regular linear functionals of the conditional expectation function, such as E[m(Z, γ(T,X))|T = t] where γ 7→ m(z, γ)
is a linear operator for each z = (y, t, x). For a simple example that m(z, γ) = γ, their perfectly localized
functional limh→0

∫ ∫
γ(T,X)Kh(T − t)/E[Kh(T − t)]dFTX(T,X) =

∫
γ(t,X)dFX|T (X|t) = E[γ(t,X)|T = t] =

E[Y (t)|T = t], while we identify the average structural function βt = E[Y (t)] by limh→0

∫ ∫
γ(T,X)Kh(T −
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We also contribute to the literature of continuous treatment effects estimation. In high-

dimensional settings, Su, Ura, and Zhang (2019) propose a doubly robust estimator β̂DRt as in

equation (1). Assuming approximate sparsity, they use lasso-type estimators γ̂(t, ·) and f̂T |X(t|·)
to select the high-dimensional covariates X via a localized method of L1-penalization at each t. In

contrast, we estimate γ(t, x) and fT |X(t|x) with cross-fitting and provide high-level conditions that

allow us to use a variety of nonparametric and ML methods with weaker assumptions. Kennedy,

Ma, McHugh, and Small (2017) and Kallus and Zhou (2018) propose some versions of the doubly

robust estimators.4 In low-dimensional settings, see Hirano and Imbens (2004), Flores (2007),

and Lee (2018) for examples of a class of regression estimators n−1
∑n

i=1 γ̂(t,Xi). Galvao and

Wang (2015) and Hsu, Huber, Lee, and Pipoz (2018) study a class of inverse probability weighting

estimators. For examples of empirical applications, see Flores, Flores-Lagunes, Gonzalez, and

Neumann (2012) and Kluve, Schneider, Uhlendorff, and Zhao (2012). We extend this literature

to high-dimensional settings enabling ML methods for inference.

The paper proceeds as follows. We introduce the framework and estimation procedure in

Section 2. Section 3 presents the asymptotic theory. All the proofs are in the Appendix.

2 Setup and estimation

We give identification assumptions and introduce the double debiased ML (DML) estimator.

Assumption 1 Let {Yi, T ′i , X ′i}ni=1 be an i.i.d. sample from Z = {Y, T ′, X ′}′ ∈ Z = Y × T ×
X ⊆ R1+dt+dx and Y = g(T,X, ε). (i) (Conditional independence) Conditional on X, T

and ε are independent, or equivalently T and Y (t) = g(t,X, ε) are independent for any t ∈ T .

(ii) (Common support) For any t ∈ T and x ∈ X , fT |X(t|x) is bounded away from zero.

Assumption 2 (Kernel) The second-order symmetric kernel function k() is bounded differen-

tiable and has a convex bounded support.

By Assumptions 1-2 and the same reasoning for the binary treatment, it is straightforward to

show the identification of βt = E[Y (t)] = E[E[Y |T = t,X]] = limh→0 E
[
Kh(T − t)Y/fT |X(t|X)

]
.

Estimation procedure

t)/fT |X(t|X)dFTX(T,X) =
∫
γ(t,X)dFX(X) = E[γ(t,X)].

4Kallus and Zhou (2018) use a known fT |X . Kennedy, Ma, McHugh, and Small (2017) construct a “pseudo-
outcome” based on the doubly robust mapping, by plugging in the nuisance estimators under high-level assumptions.
In particular, their efficient influence function uses fT (T ) rather than a kernel function Kh(T−t). Then they regress
the pseudo-outcome on the treatment variable using ML or nonparametric methods.
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Step 1. (Cross-fitting) For some L ∈ {2, ..., n}, partition the observation indices into L groups Il,

l = 1, ..., L. For each l = 1, ..., L, the estimators γ̂l(t, x) for γ(t, x) and f̂l(t|x) for fT |X(t|x)

use observations not in Il and satisfy Assumption 3 below.

Step 2. (Doubly robust) The double debiased ML (DML) estimator is defined as

β̂t =
1

n

L∑
l=1

∑
i∈Il

γ̂l(t,Xi) +
Kh(Ti − t)
f̂l(t|Xi)

(Yi − γ̂l(t,Xi)) . (2)

Step 3. (Partial effect) Let t+ = (t1 + η/2, t2, ..., tdt)
′ and t− = (t1 − η/2, t2, ..., tdt)

′, where η

is a positive sequence converging to zero as n → ∞. Define the estimator to be θ̂t =

(β̂t+ − β̂t−)/η.

When L = n, β̂t is known as the leave-one-out estimator. When there is no sample splitting

L = 1, γ̂1 and λ̂1 use all observations in the full sample. Then the DML estimator β̂t in (2) is the

doubly robust estimator β̂DRt in equation (1). When the dependent variable Y is continuous, we

can further estimate the distributional effects by replacing Y with 1{Y ≤ y} in our procedure.

Denote the L2-norm ‖f̂l − fT |X‖L2 ≡
( ∫
T

∫
X

(
f̂l(t|x)− fT |X(t|x)

)2
fTX(t, x)dxdt

)1/2
and ‖γ̂l −

γ‖L2 ≡
( ∫
T

∫
X

(
γ̂l(t, x)− γ(t, x)

)2
fTX(t, x)dxdt

)1/2
for each l = 1, ..., L.

Assumption 3 (Nuisance estimators) For each l = 1, ..., L, (i) ‖γ̂l − γ‖L2

p−→ 0, ‖f̂l −
fT |X‖L2

p−→ 0; (ii)
√
nhdt‖γ̂l − γ‖L2‖f̂l − fT |X‖L2

p−→ 0.

In Assumption 3, (i) requires mean square consistency of the first step estimator γ̂ and f̂T |X .

The only convergence rate condition is in (ii) that requires the product of estimation errors for

the two estimators to vanish fast than 1/
√
nhdt that is slower than 1/

√
n in the semiparametric

problem. The convergence rates in Assumption 3 are available for kernel or series estimators,

the deep neural network in Farrell, Liang, and Misra (2018), the lasso in Belloni, Chernozhukov,

and Hansen (2014), Farrell (2015), Su, Ura, and Zhang (2019), for example. The numerical

differentiation estimator θ̂t is simple and circumvents estimating the derivatives of the nuisance

parameters.

2.1 Conditional density estimation

We can estimate the generalized propensity score (GPS) fT |X by a kernel density estimator. The

ML method for estimating the conditional density is less developed comparing with estimating

the conditional mean. We propose an estimator that allows us to use the ML methods designed
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for the conditional mean. Let Ê [W |X] be an estimator of the conditional mean E [W |X] for a

bounded random variable W . Suppose the convergence rate is available,
∥∥Ê [W |X]−E [W |X]

∥∥
∞ ≡

supx∈X
∣∣Ê [W |X = x]− E [W |X = x]

∣∣ = Op(R1); for example, the deep neural network in Farrell,

Liang, and Misra (2018). Let G(u) =
∫ u
−∞ g(v)dv with a standard second-order kernel function

g(). When dT = 1, the CDF estimator F̂T |X(t|x) = Ê [G ((t− T )/h1)], where h1 and ε are positive

sequences vanishing as n grows. Then we estimate the GPS by the numerical derivative estimator

f̂T |X(t|x) = (2ε)−1
(
F̂T |X(t + ε|x) − F̂T |X(t − ε|x)

)
. Lemma 2.1 shows that the convergence rate∥∥f̂T |X−fT |X∥∥∞ = Op(R1ε

−1+h21ε
−1+ε2). Similar numerical derivative approaches have been used

in Belloni, Chernozhukov, Fernández-Val, and Hansen (2017) and Su, Ura, and Zhang (2019).5

When T is multi-dimensional, let G ((t− T )/h1) = Πdt
j=1G ((tj − Tj)/h1). We illustrate the

GPS estimator for dT = 2. The general GPS estimator for dT > 2 can be implemented by the

same procedure. The estimator of the partial derivative of FT |X(t1, t2|x) with respect to t1 is
∂̂FT |X
∂t1

(t1, t2|x) =
(
F̂T |X(t1 + ε, t2|x)− F̂T |X(t1 − ε, t2|x)

)/
(2ε). Then the GPS estimator for dT = 2

is

f̂T |X(t|x) =
∂̂2FT |X
∂t2∂t1

(t|x) =

(
∂̂FT |X
∂t1

(t1, t2 + ε|x)−
∂̂FT |X
∂t1

(t1, t2 − ε|x)

)
1

2ε

=
(
F̂T |X(t1 + ε, t2 + ε|x)− F̂T |X(t1 − ε, t2 + ε|x)

− F̂T |X(t1 + ε, t2 − ε|x) + F̂T |X(t1 − ε, t2 − ε|x)
) 1

4ε2
.

Lemma 2.1 (GPS) Let fT |X(t|x) be (dT +1)-times differentiable with respect to t for any x ∈ X .

Then
∥∥f̂T |X − fT |X∥∥∞ = Op(R1ε

−dT + h21ε
−dT + ε2).

Alternatively, we may use a mixture density network in Hartford, Lewis, Leyton-Brown, and

Taddy (2017) and Bishop (2006) that model fT |X as a mixture of Gaussian distributions. There

is some recent development for random forest, e.g., Athey and Wager (2019), Pospisil and Lee

(2018) and Criminisi, Shotton, and Konukoglu (2012).

3 Asymptotic theory

We first derive the asymptotic linear representation and normality for β̂t, showing that the nuisance

estimators have no first-order effect. Then we discuss the construction of the doubly robust

moment function by Gateaux derivative in Section 3.1. In Section 3.2, we discuss the adjustment

5Su, Ura, and Zhang (2019) use Lasso to approximate FT |X by a Logistic CDF. In contrast, we suggest a kernel
g to smooth CDF estimates (such as a Gaussian kernel). And we allow for various nonparametric and ML methods.
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for the first-step kernel estimators in the influence functions of the regression estimator and inverse

probability weighting estimator that do not use the doubly robust moment function and cross-

fitting. We illustrate how the DML estimator assumes weaker conditions. Section 3.3 gives a

heuristic overview of deriving the asymptotic linear representation.

Theorem 1 (Asymptotic normality) Let Assumptions 1-3 hold. Let h → 0, nhdt → ∞, and

nhdt+4 → C ∈ [0,∞). Assume that for (y, t′, x′)′ ∈ Z, fY TX(y, t, x) is three-times differentiable

with respect to t, and var(Y |T = t,X = x)fT |X(t|x) is bounded above uniformly over x ∈ X . Then

for any t in the interior of T ,

√
nhdt

(
β̂t − βt

)
=

√
hdt

n

n∑
i=1

{
Kh(Ti − t)
fT |X(t|Xi)

(Yi − E[Y |T = t,X = Xi])

+ E[Y |T = t,X = Xi]− βt
}

+ op(1) (3)

and
√
nhdt

(
β̂t − βt − h2Bt

)
d−→ N (0,Vt), where Vt ≡ E

[
var[Y |T = t,X]/fT |X(t|X)

] ∫∞
−∞ k(u)2du

and Bt ≡
∑dt

j=1 E
[
1
2
∂2

∂t2j
E [Y |T = t,X] + ∂

∂tj
E [Y |T = t,X] ∂

∂tj
fT |X(t|X)/fT |X(t|X)

] ∫∞
−∞ u

2k(u)du.

Theorem 1 is fundamental for inference, such as constructing confidence intervals and the

optimal bandwidth h that minimizes the asymptotic mean squared error. Theorem 1 can be

generalized to provide inference that is uniformly valid over the classes of data-generating processes

for which our assumptions hold uniformly, following Theorem 3.1 in CCDDHNR, for example, at

the cost of notational complication.

Note that the second part in the influence function in (3) n−1
∑n

i=1 E[Y |T = t,X = Xi]−βt =

Op(1/
√
n) = op(1/

√
nhdt) and hence does not contribute to the first-order asymptotic variance Vt.

We keep these terms to show that the nuisance estimators do not affect the first-order asymptotic

linear representation. This is in contrast to the binary treatment case, where Kh(Ti−t) is replaced

by 1{Ti − t} and β̂t converges at a root-n rate, so this second part in (3) is of first-order. Then

we obtain the well-studied efficient influence function in estimating the binary treatment effect in

Hahn (1998). For the continuous treatment case here, it is crucial to include this adjustment term

in the moment function in β̂t to achieve double robustness.

There is a bias term arising from the kernel function Kh(T − t). We may estimate the leading

bias h2Bt by the sample analogue. We can estimate the asymptotic variance Vt by the sample

variance of the influence function (3). Specifically V̂t = hdtn−1
∑L

l=1

∑
i∈Il ψ̂

2
li, where the estimated

influence function ψ̂li = Kh(Ti − t)(Yi − γ̂l(t,Xi))/f̂l(t|Xi) + γ̂l(t,Xi)− β̂t. Then we can estimate
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the optimal bandwidth that minimizes the asymptotic mean squared error given in the following

corollary.

Corollary 1 (AMSE optimal bandwidth) Let the conditions in Theorem 1 hold. If Bt is non-

zero, then the bandwidth that minimizes the asymptotic mean squared error is

h∗ =
(
dtVt

/(
4B2

t

))1/(dt+4)
n−1/(dt+4).

By choosing an undersmoothing bandwidth h smaller than h∗, the bias is first-order asymptot-

ically negligible, i.e., h2
√
nhdt → 0. Then we can construct the usual (1 − α) × 100% confidence

interval
[
β̂t ± Φ(1 − α/2)

√
V̂t
/(
nhdt

)]
. Alternatively, we may consider a further bias correction

following Calonico, Cattaneo, and Farrell (2018) to allow for a wider range of bandwidth choice.

Such robust bias-corrected inference is beyond the scope of the current paper and left for future

research.

Next we present the asymptotic theory for θ̂t. We consider two conditions for the tuning

parameter η via η/h→ ρ for (i) ρ = 0 and (ii) ρ ∈ (0,∞]. Let ∂νt ≡ ∂νg(t, ·)/∂tν denote the ν-th

order partial derivative of a generic function g with respect to t.

Theorem 2 (Asymptotic normality - Partial effect) Let the conditions in Theorem 1 hold.

Assume that for (y, t′, x′)′ ∈ Z, fY TX(y, t, x) is four-times differentiable with respect to t, and βt

is twice differentiable.

(i) Let η/h → 0, nhdt+2 → ∞, and nhdt+2η2 → 0. Assume (a) η−1h‖γ̂l − γ‖L2

p−→ 0,

η−1h‖f̂l−fT |X‖L2

p−→ 0; (b) η−1h
√
nhdt‖f̂l−fT |X‖L2‖γ̂l−γ‖L2

p−→ 0. Then for any t ∈ T ,

√
nhdt+2(θ̂t − θt) =

√
hdt+2

n

n∑
i=1

∂

∂t1
Kh(Ti − t)

Yi − γ(t,Xi)

fT |X(t|Xi)
+ op(1)

and
√
nhdt+2(θ̂t − θt − h2Bθt )

d−→ N (0,Vθt ), where Bθt ≡
∑dt

j=1 E
[(

1
2
∂2tj∂t1γ(t,X)fT |X(t|X) +

∂tj∂t1γ(t,X)∂tjfT |X(t|X)+∂tjγ(t,X)
(
∂tj∂t1fT |X(t|X)−∂tjfT |X(t|X)∂t1fT |X(t|X)fT |X(t|X)−1

))
fT |X(t|X)−1

] ∫
u2k(u)du and Vθt ≡ E

[
var(Y |T = t,X)/fT |X(t|X)

] ∫
k′(u)2du.

(ii) Let η/h → ρ ∈ (0,∞], nhdtη2 → ∞, and nhdtη4 → 0. Then
√
nhdtη2(θ̂t − θt − h2Bθt )

d−→
N (0,Vθt ), where Vθt ≡ 2E

[
var[Y |T = t,X]/fT |X(t|X)

]( ∫∞
−∞ k(u)2du− k̄(ρ)

)
with the convo-

lution kernel k̄(ρ) =
∫∞
−∞ k(u)k(u− ρ)du and Bθt ≡ ∂Bt/∂t1 given in Theorem 1.
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Theorem 2(i) is for the case when η is chosen to be of smaller order than h. The conditions (a)

and (b) imply that η cannot be too small and depends on the precision of the nuisance estimators.

In Theorem 2(ii) when η/h → ∞, k̄ (η/h) = 0 and hence Vθt = 2Vt. This is consistent with the

special case of a fixed η implied by the result in Theorem 1.

3.1 Gateaux derivative limit

One way to obtain the influence function is to calculate the limit of the Gateaux derivative with

respect to a smooth deviation, as the deviation approaches a point mass, following Ichimura and

Newey (2017) for semiparametric estimators. The partial mean βt is a marginal integration over

(Y,X), fixing the value of T at t. As a result, the Gateaux derivative depends on the choice of

the distribution fhT that belongs to a family of distributions approaching a point mass at T as

h→ 0. We construct the locally robust estimator based on the influence function derived by the

Gateaux derivative, so the asymptotic distribution of β̂t depends on the choice of fhT that is the

kernel function Kh(T − t).
More specifically, for any t ∈ T , let βt(·) : F → R, where F is a set of CDFs of Z ≡

(Y, T ′, X ′)′ that is unrestricted except for regularity conditions. The estimator converges to βt(F )

for some F ∈ F , which describes how the limit of the estimator varies as the distribution of a data

observation varies. Let F 0 be the true distribution of Z. Let F h
Z approach a point mass at Z as

h→ 0. Consider F τh = (1− τ)F 0 + τF h
Z for τ ∈ [0, 1] such that for all small enough τ , F τh ∈ F

and the corresponding pdf f τh = f 0 + τ(fhZ − f 0). We calculate the Gateaux derivative of the

functional βt(F
τh) with respect to a deviation F h

Z − F 0 from the true distribution F 0.

In the Appendix, we show that the Gateaux derivative for the direction fhZ − f 0 is

lim
h→0

d

dτ
βt(F

τh)
∣∣∣
τ=0

= γ(t,X)− βt + lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx (4)

= γ(t,X)− βt +
Y − γ(t,X)

fT |X(t|X)
lim
h→0

fhT (t).

Note that the last term in (4) is a partial mean that is a marginal integration over Y × X , fixing

the value of T at t (Newey, 1994). Thus the Gateaux derivative depends on the choice of fhT .

In particular we choose fhZ(z) = Kh(Z − z)1{f 0(z) > h}, following Ichimura and Newey (2017).

Then

Y − γ(t,X)

fT |X(t|X)
lim
h→0

fhT (t) =
Y − γ(t,X)

fT |X(t|X)
lim
h→0

Kh(T − t).

Theorem 1 in Ichimura and Newey (2017) shows that if a semiparametric estimator is asymp-
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totic linear and locally regular, then the influence function is limh→0 dβt(F
τh)/dτ |τ=0. Here, we

use the Gateaux derivative limit calculation to motivate our estimator that depends on F h
T . Then

we show that the estimator is asymptotically linear with such influence function. This is the

estimator-based approach in Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018)

(CEINR, hereafter) in the sense that the influence function is determined by the limit βt(F
τh) of

an estimator β̂t or the adjustment from the first step estimator γ̂ discussed in the next section.

3.2 Adjustment for first-step kernel estimation

We discuss another way to motivate our moment function. We consider two alternative estimators

for the dose response function, or the average structural function, βt: the regression estimator

β̂REGt =
1

n

n∑
i=1

γ̂(t,Xi)

and the inverse probability weighting (IPW) estimator

β̂IPWt =
1

n

n∑
i=1

Kh(Ti − t)Yi
f̂T |X(t|Xi)

.

Adding the influence function that accounts for the first-step estimation partials out the first-order

effect of the first-step estimation on the final estimator, as in Section 2.2.5 in CCDDHNR.

For β̂REGt , when γ̂(t, x) is a local constant or local polynomial estimator with bandwidth h,

Newey (1994) and Lee (2018) have derived the asymptotic linear representation of β̂REGt that

is first-order equivalent to that of our DML estimator given in Theorem 1. Specifically we can

obtain the adjustment term by the influence function of the partial mean
∫
X γ̂(t, x)f(x)dx =

n−1
∑n

i=1Kh(Ti − t)(Yi − γ(t,Xi))/fT |X(t|Xi) + op((nh
dt)−1/2) with a suitably chosen h and regu-

larity conditions. Thus the moment function can be constructed by adding the influence function

adjustment for estimating the nuisance function γ(t,X) to the original score function γ(t,X).

Similarly for β̂IPWt , when f̂T |X is a standard kernel density estimator with bandwidth h,

Hsu, Huber, Lee, and Pipoz (2018) derive the asymptotic linear representation of β̂IPWt that

is first-order equivalent to our DML estimator. We can show that the partial mean
∫
Z Kh(T −

t)Y/f̂T |X(t|X)dFY TX = n−1
∑n

i=1 γ(t,Xi)
(
1−Kh(Ti − t)/fT |X(t|Xi)

)
+op((nh

dt)−1/2) with a suit-

ably chosen h and regularity conditions. Thus the moment function can be constructed by adding

the influence function adjustment for estimating the nuisance function fT |X to the original score

function Kh(T − t)Y/fT |X(t|X).
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Remark 1 (First-step bias reduction) In general, nonparametric estimation of an infinite-

dimensional nuisance parameter contributes a finite-sample bias to the final estimator. It is note-

worthy that although the kernel function in the DML estimator β̂t introduces the first-order bias

h2Bt, β̂t requires a weaker bandwidth condition for controlling the bias of the first-step estima-

tor than the regression estimator β̂REGt and the IPW estimator β̂IPWt . Our DML estimator for

continuous treatments inherits this advantageous property from the DML estimator for a binary

treatment. Therefore the DML estimator can be less sensitive to variation in tuning parameters of

the first-step estimators. To illustrate with a simple example of β̂REGt , consider the first-step γ̂ to

be a local constant estimator with bandwidth h1 and a kernel of order r. To control the bias of γ̂

to be asymptotically negligible for β̂REGt , we assume hr1

√
nhdt1 → 0. In contrast, when γ̂ and f̂T |X

in the DML estimator β̂t are local constant estimators with bandwidth h1 and a kernel of order r,

Assumption 3(ii) requires h2r1
√
nhdt → 0. Moreover we observe that the condition is weaker than

hr1
√
n→ 0 for the binary treatment that has a regular root-n convergence rate.

Remark 2 (First-step series estimation) When γ̂(t, x) is a series estimator in β̂REGt , com-

puting the partial mean
∫
X γ̂(t, x)f(x)dx for the influence function results in a different adjust-

ment term than the kernel estimation discussed above.6 Heuristically, let us consider a basis

function R(T,X) that contains (T,X) as well as interactions and other transformations of these

regressors, such as power series or splines. Computing
∫
γ̂(t, x)f(x)dx implies the adjustment

term of the form E[R(t,X)] (n−1
∑n

i=1R(Ti, Xi)R(Ti, Xi)
′)
−1
n−1

∑n
i=1R(Ti, Xi)

′(yi−γ(Ti, Xi)
)

=

n−1
∑n

i=1 λti
(
yi − γ(Ti, Xi)

)
, resulting in a form of an average weighted residuals in estimation

or projection of the residual on the space generated by the basis functions. Notice that the gen-

eralized propensity score fT |X(t|X) is not explicit in the weight λti. Such adjustment term may

motivate different estimators of βt, such as the minimum distance estimator with first-step se-

ries estimation. That is beyond the scope of this paper and left for future research. For similar

debiased estimation for binary treatment effects, see Athey, Imbens, and Wager (2018) for the

approximate residual balancing estimator and Chernozhukov, Newey, Robins, and Singh (2019)

for Riesz representers. See also CEINR and Demirer, Syrgkanis, Lewis, and Chernozhukov (2019).

3.3 Asymptotic linear representation

We give an outline of deriving the asymptotic linear representation in Theorem 1, following CEINR.

Let γ(t, x) ≡ E[Y |T = t,X = x] and λ(t, x) ≡ 1/fT |X(t|x). The moment function for identification

is m(Zi, βt, γ) = γ(t,Xi)− βt, i.e., E[m(Zi, βt, γ(t,Xi))] = 0 uniquely defines βt. The adjustment

6For example, Lee and Li (2018) derive the asymptotic theory of a partial mean of a series estimator, in
estimating the average structural function with a special regressor.
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term is φ(Zi, βt, γ, λ) = Kh(Ti − t)λ(t,Xi) (Yi − γ(t,Xi)). The doubly robust moment function is

ψ(Zi, βt, γ, λ) = m(Zi, βt, γ(t,Xi)) + φ(Zi, βt, γ(t,Xi), λ(t,Xi)).

Let γi = γ(t,Xi) and λi = λ(t,Xi) for notational ease. We decompose the remainder term

√
nhdt

1

n

n∑
i=1

(
ψ̂(Zi, βt, γ̂i, λ̂i)− ψ(Zi, βt, γi, λi)

)
=

√
hdt

n

n∑
i=1

{
γ̂i − γi − E[γ̂i − γi] +Kh(Ti − t)λi(γi − γ̂i)− E

[
Kh(Ti − t)λi(γi − γ̂i)

]}
(R1-1)

+

√
hdt

n

n∑
i=1

{
Kh(Ti − t)(λ̂i − λi)(Yi − γi)− E

[
Kh(Ti − t)(λ̂i − λi)(Yi − γi)

]}
(R1-2)

+

√
hdt

n

n∑
i=1

{
E[(γ̂i − γi)(1−Kh(Ti − t)λi)] + E[(λ̂i − λi)Kh(Ti − t)(Yi − γi)]

}
(R1-DR)

−
√
hdt

n

n∑
i=1

Kh(Ti − t)
(
λ̂i − λi

)(
γ̂i − γi

)
. (R2)

The remainder terms (R1-1) and (R1-2) are stochastic equicontinuous terms that are controlled

to be op(1) by the mean square consistency conditions Assumption 3(i) and cross-fitting.

The remainder term (R1-DR) is controlled by the doubly robust property. Note that in the bi-

nary treatment case whenKh(Ti−t) is replaced by 1{Ti = t}, the term (R1-DR) is zero because ψ is

the Neyman-orthogonal score. In our continuous treatment case, the Neyman orthogonality holds

as h→ 0. Under the conditions in Theorem 1, (R1-DR) is Op

(
(‖γ̂−γ‖L2 +‖λ̂−λ‖L2)

√
nh4+dt

)
=

op(1).

The second-order remainder term (R2) is controlled by Assumption 3(ii).7 To control these

remainder terms to be of smaller order, we follow the proofs of Theorem 13 in CEINR.

4 Conclusion and outlook

This paper provides a nonparametric inference method for continuous treatments effects under

unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters.

The proposed double debiased machine learning estimator uses a doubly robust moment func-

tion and cross-fitting. We provide tractable primitive conditions for the nuisance estimators and

asymptotic theory for inference on the average dose-response function (or the average structural

function) and the partial effect. Numerical examples of Monte Carlo simulations and empirical

7We can follow Newey and Robins (2018) and Rothe and Firpo (2018) to further investigate weaker conditions

for variance terms, but still require that the product of biases of γ̂ and λ̂ converge to zero faster than 1/
√
nhdt .
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illustration using various ML methods are in progress. For a future extension, our DML estimator

serves as the preliminary element for policy learning and optimization with a continuous decision,

following Kitagawa and Tetenov (2018), Kallus and Zhou (2018), Demirer, Syrgkanis, Lewis, and

Chernozhukov (2019), Athey and Wager (2019), for example.

When unconfoundedness is violated, we can use the control function approach in triangular

simultaneous equations models by including in the covariates some estimated control variables

using instrumental variables. For example, Imbens and Newey (2009) show that the conditional

independence assumption holds when the covariates X include the additional control variable V =

FT |Z(T |Z), the conditional distribution function of the endogenous variable given the instrumental

variables Z. The influence function that accounts for estimating the control variables as generated

regressors has derived in Corollary 2 in Lee (2015). Lee (2015) shows that the adjustment terms for

the estimated control variables are of smaller order in the influence function of the final estimator,

but it may be important to include them to achieve local robustness. This is a distinct feature of

the dose-response function/the average structural function of continuous treatments, as discussed

in Section 3. Using such influence function to construct the corresponding double debiased ML

estimator is left for future research.
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Appendix

Proof of Lemma 2.1 Denote f̃T |X(t|X) to be the infeasible estimator using the true FT |X ;

for example of dT = 1, f̃T |X(t|x) = (2ε)−1
(
FT |X(t+ ε|x)− FT |X(t− ε|x)

)
. By the triangular

inequality, it suffices to show that∥∥∥f̂T |X(t|X)− fT |X(t|X)
∥∥∥
∞
≤
∥∥∥Ê [G((T − t)/h1)|X = x]− E[G((T − t)/h1)|X]

∥∥∥
∞
ε−dT (5)

+
∥∥E[G((T − t)/h1)|X]− FT |X(t|X)

∥∥
∞ ε
−dT (6)

+ ‖(f̃T |X(t|X)− fT |X(t|X)‖∞ (7)

= Op(R1ε
−dT + h21ε

−dT + ε2).

For (5), we give a crude bound by exploiting the convergence rate of the ML or nonparametric
estimators. For (6), we follow the standard algebra for kernel, using integration by parts and
change of variables. We analyze (7) below.

We first prove the results for dT = 1. By a Taylor expansion, FT |X(t ± ε|x) = FT |X(t|x) ±
εfT |X(t|x) + ε2

2
d
dt
fT |X(t|x) ± ε3

3!
d2

dt2
fT |X(t±|x) for some t+ ∈ (t, t + ε) and t− ∈ (t − ε, t). Thus,

‖(2ε)−1(FT |X(t+ ε|X)− FT |X(t− ε|X))− fT |X(t|X)‖∞ = O(ε2).
Next we prove the results for dT = 2. The general dT > 2 can be derived by induction. Consider

any x ∈ X and t = (t1, t2)
′ ∈ T . Let F ≡ FT |X(t1, t2|x). For any positive sequences ε = (ε1, ε2)

′ →
0, let F++ ≡ FT |X(t1 + ε1, t2 + ε2|x), F+− ≡ FT |X(t1 + ε1, t2 − ε2|x), F−+ ≡ FT |X(t1 − ε1, t2 + ε2|x),

F−− ≡ FT |X(t1− ε1, t2− ε2|x), and ∂νj F = ∂l

∂tνj
FT |X(t|x) that is the νth partial derivative of F with

respect to tj.
By a Taylor expansion,

F++ = F + ε1∂1F + ε2∂2F +
ε21
2
∂21F +

ε21
2
∂22F + ε1ε2∂1∂2F

+
ε31
3!
∂31F +

ε21ε2
2
∂21∂2F +

ε1ε
2
2

2
∂1∂

2
2F +

ε32
3!
∂32F

+
ε41
4!
∂41 F̄++ +

4ε31ε2
4!

∂31∂2F̄++ +
6ε21ε

2
2

4!
∂21∂

2
2 F̄++ +

4ε1ε
3
2

4!
∂1∂

3
2 F̄++ +

ε42
4!
∂42 F̄++,

where F̄++ = FT |X(t̄|x) with the mean value t̄ ∈ (t, t+ ε). Similarly,

F+− = F + ε1∂1F − ε2∂2F +
ε21
2
∂21F +

ε21
2
∂22F − ε1ε2∂1∂2F

+
ε31
3!
∂31F −

ε21ε2
2
∂21∂2F +

ε1ε
2
2

2
∂1∂

2
2F −

ε32
3!
∂32F

+
ε41
4!
∂41 F̄+− −

4ε31ε2
4!

∂31∂2F̄+− +
6ε21ε

2
2

4!
∂21∂

2
2 F̄+− −

4ε1ε
3
2

4!
∂1∂

3
2 F̄+− +

ε42
4!
∂42 F̄+−,

where F̄+− = FT |X(t̄|x) with the mean values t̄1 ∈ (t1, t1 + ε1) and t̄2 ∈ (t2− ε2, t2). We implement
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the same Taylor expansions on F−+ and F−−. Then

f̃T |X = (F++ − F+− − F−+ + F−−)/(4ε1ε2) = ∂1∂2F +
ε22
3!
∂32∂1F +

ε21
3!
∂2∂

3
1F + o((ε1 + ε2)

4/(ε1ε2)),

assuming (ε1 + ε2)
4/(ε1ε2) = O(1) that holds for ε1 = ε2 = ε.

For a general dT , by induction, we can obtain f̃T |X = fT |X + O(ε2), where the error O(ε2) is
from the (dT + 2)th derivatives of F . We can allow εj to be different for j = 1, ..., dT by assuming

(
∑dT

j=1 εj)
dT+2/ΠdT

j=1εj = O(1). �

We present more primitive conditions on estimating the nuisance parameters in Assumption 4
that is implied by Assumption 3.

Assumption 4 For each l = 1, ..., L and for any t ∈ T ,

(i)
∫
X

(
γ̂l(t, x)− γ(t, x)

)2
fX(x)dx

p−→ 0 and
∫
X

(
f̂l(t|x)− fT |X(t|x)

)2
fX(x)dx

p−→ 0.

(ii) Either (a)
√
nhdtn−1

∑n
i=1Kh(Ti − t)

(
1/f̂l(t|Xi)− 1/fT |X(t|Xi)

)(
γ̂l(t,Xi)− γ(t,Xi)

) p→ 0,

or (b)
√
nhdt

∫
X

∣∣(f̂l(t|x)− fT |X(t|x))(γ̂l(t, x)− γ(t, x))
∣∣fTX(t, x)dx

p→ 0, or

(c)
√
nhdt

( ∫
X

(
f̂l(t|x)−fT |X(t|x)

)2
fTX(t, x)dx

)1/2( ∫
X

(
γ̂l(t|x)−γ(t, x)

)2
fTX(t, x)dx

)1/2 p→ 0.

Under Assumption 1(ii), Assumption 4 is implied by Assumption 3.8 Moreover, a weaker condition
on the first step estimators is possible by the choice of h. In the proof of Theorem 1, we note that
in Assumption 4(ii), the condition (c) implies (b), which then implies (a).

Proof of Theorem 1 The proof modifies Assumptions 4 and 5 and extends Lemma A1, Lemma
12, and Theorem 13 in CEINR. Let Zc

l denote the observations zi for i 6= Il. Let γ̂il = r̂l(t,Xi) using
Zc
l for i ∈ Il. Following the proof of Lemma A1 in CEINR, define ∆̂il = γ̂il − γi − E [γ̂il − γi] for

i ∈ Il. By construction and independence of Zc
l and zi, i ∈ Il, E[∆̂il|Zc

l ] = 0 and E[∆̂il∆̂jl|Zc
l ] = 0

for i, j ∈ Il. For i ∈ Il and for all t, hE[∆̂2
il|Zc

l ] = h
∫

(γ̂il−γi)2fX(Xi)dXi
p→ 0 by Assumption 4(i).

Then E
[(√

hdt/n
∑

i∈Il ∆̂il

)2 ∣∣∣Zc
l

]
= (h/n)

∑
i∈Il E

[
∆̂2
il

∣∣∣Zc
l

]
≤ h

∫
(γ̂il−γi)2fX(Xi)dXi

p→ 0. The

conditional Markov inequality implies that
√
hdt/n

∑
i∈Il ∆̂il

p→ 0.

The analogous results also hold for ∆̂il = Kh(Ti − t)λi(γi − γ̂il) − E [Kh(Ti − t)λi(γi − γ̂il)]
in (R1-1) and ∆̂il = Kh(Ti − t)(λ̂il − λi)(Yi − γi) − E

[
Kh(Ti − t)(λ̂il − λi)(Yi − γi)

]
in (R1-2).

In particular, for (R1-2), hE[∆̂2
il|Zc

l ] = Op

(∫
k(u)2du

∫
X

(
λ̂il − λi

)2
fX(Xi)dXi

)
p→ 0 by the

smoothness condition and Assumption 4(i). So (R1-1)
p−→ 0 and (R1-2)

p−→ 0.

8We claim that Assumption 3(i) is implied by Assumption 4(i). Other conditions can be shown by analogous

arguments. Denote Â(t) ≡
∫ (
γ̂l(t, x) − γ(t, x)

)2
fTX(t, x)dx ≥ 0. The following shows

∫
T Â(t)dt = op(1) implies

Â(t) = op(1) for ant t ∈ T . For any positive C and ε, there exists a positive integer N such that Pr(
∫
T Â(t)dt ≥

C) ≤ ε for n ≥ N . Under Assumption 1(ii), Â(t) ≥ C for all t ∈ T implies
∫
T Â(t)dt ≥ C. So Pr(Â(t) ≥ C,∀t ∈

T ) ≤ Pr(
∫
T Â(t)dt ≥ C) ≤ ε for n ≥ N .
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For (R2),

E
[√

hdt/n
∑
i∈Il

Kh(Ti − t)(λ̂il − λi)(γi − γ̂il)
∣∣∣∣Zc

l

]
≤
√
nhdt

∫
X

∫
T

∣∣∣Kh(Ti − t)(λ̂il − λi)(γi − γ̂il)
∣∣∣fTX(Ti, Xi)dTidXi

≤
√
nhdt

∫
X
fT |X(t|Xi)

∣∣∣(λ̂il − λi)(γi − γ̂il)∣∣∣fX(Xi)dXi + op(
√
nhdth2)

≤
√
nhdt

(∫
X
fT |X(t|Xi)(λ̂li − λi)2fX(Xi)dXi

)1/2(∫
X
fT |X(t|Xi)(γ̂li − γi)2fX(Xi)dXi

)1/2
+ op(1)

p−→ 0

by Cauchy-Schwartz inequality, Assumption 4(ii)(c), and nhdt+4 → C. So (R2)
p−→ 0 follows by

the conditional Markov and triangle inequalities.

For (R1-DR), in the first part E
[
1 − Kh(Ti − t)λi

∣∣Xi

]
= E

[
fT |X(t|Xi) − Kh(Ti − t)

∣∣Xi

]
λi =

h2f
′′

T |X(t|Xi)λi
∫
u2K(u)du/2 + Op(h

3). A similar argument yields (R1-DR)= Op((‖γ̂ − γ‖L2 +

‖λ̂− λ‖L2)
√
nhdth2) = op(1).

By the triangle inequality, we obtain the asymptotic linear representation√
nhdtn−1

∑n
i=1

(
ψ̂(Zi, βt, γ̂t, λ̂t)− ψ(Zi, βt, γt, λt)

)
= op(1).

For Bt, E
[
Kh(T−t)
fT |X(t|X)

(Y − γ(t,X))
]

= E
[

1
fT |X(t|X)

E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]
]
. Let

∂t ≡ ∂/∂t and ∂2t ≡ ∂2/∂t2. A standard algebra for kernel yields

E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]

=

∫
T
Kh(T − t) (γ(T,X)− γ(t,X)) fT |X(T |X)dT

=

∫
k(u) (γ(t+ uh,X)− γ(t,X)) fT |X(t+ uh|X)du

=

∫
k(u1) · · · k(udt)

(
dt∑
j=1

ujh∂tjγ(t,X) +
u2jh

2

2
∂2tjγ(t,X)

)

×

(
fT |X(t|X) +

dt∑
j=1

ujh∂tjfT |X(t|X) +
u2jh

2

2
∂2tjfT |X(t|X)

)
du1 · · · dudt +O(h3)

= h2
∫
u2k(u)du

dt∑
j=1

(
∂tjγ(t,X)∂tjfT |X(t|X) +

1

2
∂2tjγ(t,X)fT |X(t|X)

)
+O(h3)
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for all X ∈ X . Thus

E
[

1

fT |X(t|X)
E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]

]
= h2

∫
u2k(u)du

dt∑
j=1

E
[
∂tjγ(t,X)

∂tjfT |X(t|X)

fT |X(t|X)
+

1

2
∂2tjγ(t,X)

]
+O(h3).

The asymptotic variance is determined by hE
[(

(Y − γ(t,X))Kh(Ti − t)/fT |X(t|X)
)2]

. A stan-

dard algebra for kernel as above yields Vt. Asymptotic normality follows directly from the central
limit theorem. �

Proof of Corollary 1 By Theorem 1, the asymptotic mean squared error is h4B2 + Vt/(nh
dt).

The result follows. �

Proof of Theorem 2 We decompose θ̂t− θt = (θ̂t− θtη) + (θtη − θt), where θtη ≡ (βt+ − βt−)/η.
By a Taylor expansion, the second part θtη − θt = O(η) if ∂2βt/∂t

2
1 exists.

Let β̂t = n−1
∑n

i=1 ψ̂ti = n−1
∑n

i=1

(
ψti+Rti

)
, where ψti = ψ(Zi, βt, γi, λi), ψ̂ti = ψ(Zi, βt, γ̂i, λ̂i),

and the remainder terms Rti are defined in Section 3.3. Thus θ̂t−θtη = η−1n−1
∑n

i=1

(
ψt+i−ψt−i+

Rt+i −Rt−i

)
.

(i) By η/h→ 0 and a Taylor expansion, the variance of η−1n−1
∑n

i=1

(
ψt+i−ψt−i

)
is dominated

by the variance of n−1
∑n

i=1 ∂t1ψti, where

∂t1ψti = ∂t1Kh(Ti − t)
Yi − γ(t,Xi)

ft|Xi
+Kh(Ti − t)∂t1

(
Yi − γ(t,Xi)

ft|Xi

)
+ ∂t1γ(t,Xi)− θt.

Thus the leading term of the variance of η−1n−1
∑n

i=1

(
ψt+i − ψt−i

)
is
∫ (

∂t1Kh(T − t)
)2E[(Y −

γ(t,X))2|T,X
]fT |X
f2
t|X
dT = h−(dt+2)E

[
var(Y |T = t,X)/fT |X(t|X)

] ∫
k′2(u)du+o(h−(dt+2)) = O

(
h−(dt+2)

)
.

To control
√
nhdt+2η−1n−1

∑n
i=1

(
Rt+i−Rt−i

)
= op(1), the conditions (a) and (b) give a coarse

bound
√
hdt/n

∑n
i=1Rtihη

−1 = op(1) following the proof of Theorem 1.
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For the bias Bθt ,∫ {
∂t1Kh(Ti − t)

γ(Ti, Xi)− γ(t,Xi)

ft|Xi
+Kh(Ti − t)∂t1

(
γ(Ti, Xi)− γ(t,Xi)

ft|Xi

)}
fTi|XidTi

=

∫
Kh(Ti − t)

{
∂t1γ(Ti, Xi)fTi|Xi

ft|Xi
+ (γ(Ti, Xi)− γ(t,Xi))

∂t1fTi|Xi
ft|Xi

−
∂t1γ(t,Xi)fTi|Xi

ft|Xi
− (γ(Ti, Xi)− γ(t,Xi))

∂t1ft|Xi
f 2
t|Xi

fTi|Xi

}
dTi

=

∫ {(
ft|Xi +

dt∑
j=1

∂tjft|Xiujh+ ∂2tjft|Xi
u2jh

2

2

)(
dt∑
j=1

∂tj∂t1γ(t,Xi)ujh+ ∂2tj∂t1γ(t,Xi)
u2jh

2

2

)

+
( dt∑
j=1

∂tjγ(t,Xi)ujh+ ∂2tjγ(t,Xi)
u2jh

2

2

)(
∂t1ft|Xi +

dt∑
j=1

∂tj∂t1ft|Xiujh+ ∂2tj∂t1ft|Xi
u2jh

2

2

−
(
ft|Xi +

dt∑
j=1

∂tjft|Xiujh+ ∂2tjft|Xi
u2jh

2

2

)∂t1ft|Xi
ft|Xi

)}
1

ft|Xi
k(u1) · · · k(udt)du1 · · · dudt +O(h3)

= h2
dt∑
j=1

(
1

2
∂2tj∂t1γ(t,Xi) + ∂tj∂t1γ(t,Xi)

∂tjft|Xi
ft|Xi

+
∂tjγ(t,Xi)

ft|Xi

(
∂tj∂t1ft|Xi − ∂tjft|Xi

∂t1ft|Xi
ft|Xi

))
∫
u2k(u)du+O(h3),

where the first equality is by integration by parts. �

(ii)
√
nhdtη2(θ̂t− θtη) =

√
nhdt

(
β̂t+− β̂t−− (βt+−βt−)

)
=
√
nhdtn−1

∑n
i=1

(
ψt+i−ψt−i+Rt+i−

Rt−i

)
=
√
nhdtn−1

∑n
i=1

(
ψt+i − ψt−i

)
+ op(1) by Theorem 1.

For Vθt , the term involved the convolution kernel comes from the covariance of ψt+i and ψt−i in
the following. E

[
ψt+iψt−i

]
is bounded by the order of

E
[∫ ∫

Kh(T − t+)Kh(T − t−)(Y − γ(t+, X))(Y − γ(t−, X))
fY |TX(Y |T,X)fT |X(T |X)

ft+|Xft−|X
dY dT

]
=

1

h
E
[ ∫ (

E[Y 2|T = t+ + uh,X]− γ(t+ + uh,X)(γ(t+, X) + γ(t−, X)) + γ(t+, X)γ(t−, X)
)

k(u)k
(
u− η

h

) fT |X(t+ + uh|X)

ft+|Xft−|X
du

]
=

1

h
k̄
(η
h

)
E
[
var(Y |T = t,X)

fT |X(t|X)

]
+O(h).

�
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Gateaux derivative Let the Dirac delta function δt(T ) = ∞ for T = t, δt(T ) = 0 for T 6= t,
and

∫
g(s)δt(s)ds = 1, for any continuous compactly supported function g.9 For any F ∈ F ,

βt(F ) =

∫
X
E[Y |T = t,X = x]fX(x)dx

=

∫
X

∫
T
E[Y |T = s,X = x]δt(s)dsfX(x)dx

=

∫
X

∫
T

∫
Y
yδt(s)

fY TX(y, s, x)fX(x)

fTX(s, x)
dydsdx.

d

dτ
βt(F

τh) =

∫
X

∫
T

∫
Y
yδt(s)

d

dτ

(
fY TX(y, s, x)fX(x)

fTX(s, x)

)
dydsdx

=

∫
X

∫
T

∫
Y

yδt(s)

fTX(s, x)

( (
−f 0

Y TX(y, s, x) + fhY TX(y, s, x)
)
fX(x)

+ fY TX(y, s, x)
(
−f 0

X(x) + fhX(x)
) )
dydsdx

−
∫
X

∫
T

∫
Y
yδt(s)

fY TX(y, s, x)fX(x)

fTX(s, x)2
(
−f 0

TX(s, x) + fhTX(s, x)
)
dydsdx.

The influence function can be calculated as

lim
h→0

d

dτ
βt(F

τh)
∣∣∣
τ=0

= γ(t,X)− βt + lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx.

In particular, we specify F h
Z following equation (3.1) in Ichimura and Newey (2017). Let

Kh(Z) = Πdz
l=1k(Zl/h)/h, where Z = (Z1, ..., Zdz)

′ and k satisfies Assumption 2 and is continuously
differentiable of all orders with bounded derivatives. Let F τh = (1 − τ)F 0 + τF h

Z with pdf with
respect to a product measure given by f τh(z) = (1−τ)f 0(z)+τf 0(z)δhZ(z), where δhZ(z) = Kh(Z−
z)1{f 0(z) > h}/f 0(z), a ratio of a sharply peaked pdf to the true density. Thus fhY TX(y, t, x) =
Kh(Y − y)Kh(T − t)Kh(X − x)1{f 0(z) > h}. It follows that

lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx =

Y − γ(t,X)

fT |X(t|X)
lim
h→0

Kh(T − t).

9Note that a nascent delta function to approximate the Dirac delta function is Kh(T − t) ≡ k((T − t)/h)/h such
that δt(T ) = limh→0Kh(T − t).
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