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Abstract

This paper reconciles the asymptotic disagreement between Bayesian and frequentist in-

ference in set-identified models by adopting a multiple-prior (robust) Bayesian approach. We

propose new tools for Bayesian inference in set-identified models and show that they have a

well-defined posterior interpretation in finite samples and are asymptotically valid from the fre-

quentist perspective. The main idea is to construct a prior class that removes the source of the

disagreement: the need to specify an unrevisable prior for the structural parameter given the

reduced-form parameter. The corresponding class of posteriors can be summarized by reporting

the ‘posterior lower and upper probabilities’ of a given event and/or the ‘set of posterior means’

and the associated ‘robust credible region’. We show that the set of posterior means is a consis-

tent estimator of the true identified set and the robust credible region has the correct frequentist

asymptotic coverage for the true identified set if it is convex. Otherwise, the method provides

posterior inference about the convex hull of the identified set. For impulse-response analysis

in set-identified Structural Vector Autoregressions, the new tools can be used to overcome or

quantify the sensitivity of standard Bayesian inference to the choice of an unrevisable prior.
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1 Introduction

It is well known that the asymptotic equivalence between Bayesian and frequentist inference breaks

down in set-identified models. First, the sensitivity of Bayesian inference to the choice of the

prior does not vanish asymptotically, unlike in the point identified case (Poirier (1998)). Second,

any prior choice can lead to ‘overly informative’ inference, in the sense that Bayesian interval

estimates asymptotically lie inside the true identified set (Moon and Schorfheide (2012)). This paper

reconciles this disagreement between Bayesian and frequentist inference by adopting a multiple-prior

robust Bayesian approach.

In a set-identified structural model the prior for the model’s parameter can be decomposed

into two components: the prior for the reduced-form parameter, which is revised by the data; and

the prior for the structural parameter given the reduced-form parameter, which cannot be revised

by data. Our robust Bayesian approach removes the need to specify the prior for the structural

parameter given the reduced-form parameter, which is the component of the prior that is responsible

for the asymptotic disagreement between Bayesian and frequentist inference. This is accomplished

by constructing a class of priors that shares a single prior for the reduced-form parameter but allows

for arbitrary conditional priors for (or ambiguous beliefs about) the structural parameter given the

reduced-form parameter. By applying Bayes’ rule to each prior in this class, we obtain a class of

posteriors and show that it can be used to perform posterior sensitivity analysis and to conduct

inference about the identified set.

In practice, we propose summarizing the information contained in the class of posteriors by

reporting the ‘posterior lower and upper probabilities’ of an event of interest and/or the ‘set of pos-

terior means (or quantiles)’ in the class of posteriors and the associated ‘robust credible region’. All

of these outputs can be expressed in terms of the (single) posterior of the reduced-form parameter,

so they can be obtained numerically if it is possible to draw the reduced-form parameter randomly

from this posterior.

We show that, if the true identified set is convex, the set of posterior means converges asymp-

totically to the true identified set and the robust credible region attains the desired frequentist

coverage for the true identified set asymptotically (in a pointwise sense). If the true identified set

is not convex, the method provides posterior inference about the convex hull of the identified set.

The paper further proposes diagnostic tools that measure the plausibility of the identifying re-

strictions, the information contained in the identifying restrictions, and the information introduced

by the unrevisable prior that is required by a standard Bayesian approach.

The second part of the paper presents a detailed illustration of the method in the context of

impulse-response analysis in Structural Vector Autoregressions (SVARs) that are set-identified due

to under-identifying zero and/or sign restrictions (Faust (1998); Canova and Nicolo (2002); Uhlig

(2005); Mountford and Uhlig (2009), among others). As is typical in this literature, we focus

on pointwise inference about individual impulse responses. A scalar object of interest facilitates
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computing the set of posterior means and the robust credible region, since the posterior of an interval

can be reduced to the posterior of a two-dimensional object (the upper and lower bounds).1

Most empirical applications of set-identified SVARs adopt standard Bayesian inference and

select a ‘non-informative’ – but unrevisable – prior for the ‘rotation matrix’ which transforms

reduced-form shocks into structural shocks2. Baumeister and Hamilton (2015) strongly caution

against this approach and show that it may result in spuriously informative posterior inference.

Our method overcomes this drawback by removing the need to specify a single prior for the rotation

matrix.

We give primitive conditions that ensure frequentist validity of the robust Bayesian method

in the context of SVARs. The conditions are mild or easy to verify, and cover a wide range of

applications in practice. In particular, the results on the types of equality and/or sign restrictions

that give rise to a convex identified set with continuous and differentiable endpoints are new to

the literature and may be of separate interest regardless of whether one favours a Bayesian or a

frequentist approach.

We provide an algorithm for implementing the procedure, which in practice consists of adding an

optimization step to the algorithms already used in the literature, such as those of Uhlig (2005) and

Arias et al. (2018) (we provide a Matlab toolbox that implements the method and automatically

checks many of the conditions for its validity).

Our practical suggestion in empirical applications is to report the posterior lower (or upper)

probability of an event and/or the set of posterior means and the robust credible region, as an

alternative or addition to the output that is reported in a standard Bayesian setting. Reporting

the outputs from both approaches, together with the diagnostic tools, can provide useful information

to help empirical researchers separate the information contained in the data and in the imposed

identifying restrictions from that introduced by choosing a particular unrevisable prior.

As a concrete example of how to interpret the robust Bayesian output in an SVAR application,

the finding that the posterior lower probability of the event ‘the impulse response is negative’

equals, say, 60%, means that the posterior probability of a negative impulse response is at least

60%, regardless of the choice of unrevisable prior for the rotation matrix. The set of posterior

means can be interpreted as an estimate of the impulse-response identified set. The robust credible

region is an interval for the impulse-response such that the posterior probability assigned to it is

greater than or equal to, say, 90%, regardless of the prior for the rotation matrix.

The empirical illustration applies the method to a standard monetary SVAR that imposes var-

ious combinations of equality and sign restrictions that are typically used in the literature. The

findings show that all reported 90% robust credible regions contain zero, casting doubts on the in-

1Extending the analysis to the vector case would in principle be possible, but would be challenging in terms of

both visualization and computation. This is also true in point-identified SVARs (see the discussion in Inoue and

Kilian (2013)).
2Gafarov et al. (2018) and Granziera et al. (2018) are notable exceptions that consider a frequentist setting.
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formativeness of such restrictions. In particular, sign restrictions alone have little identifying power,

which means that standard Bayesian inference is largely driven by the choice of the unrevisable

prior for the rotation matrix. The addition of zero restrictions tightens the estimated identified

set, makes standard Bayesian inference less sensitive to the choice of prior for the rotation matrix

and can lead to informative inference about the sign of the output response to a monetary policy

shock.

This paper is related to several literatures in econometrics and statistics.

Robust Bayesian analysis in statistics has been considered by DeRobertis and Hartigan (1981),

Berger and Berliner (1986), Wasserman (1989, 1990), Wasserman and Kadane (1990) and Berger

(1994). In econometrics, pioneering contributions using multiple priors are Chamberlain and

Leamer (1976) and Leamer (1982), who obtain the bounds for the posterior mean of regression

coefficients when a prior varies over a certain class. No previous studies explicitly consider set-

identified models, but rather focus on point identified models, and view the approach as a way to

measure the global sensitivity of the posterior to the choice of prior (as an alternative to a full

Bayesian analysis requiring the specification of a hyperprior over the priors in the class).

In econometrics, there is a large literature on estimation and inference in set-identified models

from the frequentist perspective, including Horowitz and Manski (2000), Imbens and Manski (2004),

Chernozhukov et al. (2007), Stoye (2009), Romano and Shaikh (2010), to list a few. See Canay

and Shaikh (2017) for a survey of the literature. In the context of certain sign-restricted SVARs,

Granziera et al. (2018) propose frequentist inference by inverting tests for a minimum-distance type

criterion function, while Gafarov et al. (2018) apply the delta-method using directional derivatives.

Our approach accommodates a broader class of identifying restrictions than considered in these

works, while attaining asymptotic frequentist validity for the same types of restrictions.

There is also a growing literature on Bayesian inference for set-identified models. Some propose

posterior inference based on a single prior irrespective of the posterior sensitivity introduced by the

lack of identification (Epstein and Seo (2014); Baumeister and Hamilton (2015); Gustafson (2015)).

Our paper does not intend to provide any normative argument as to whether one should adopt

a single prior or multiple priors in set-identified models: our main goal is to offer new tools for

inference and to show that they have a well-defined posterior interpretation in finite samples and

yield asymptotically valid frequentist inference. In parallel work, Norets and Tang (2014) and Kline

and Tamer (2016) consider Bayesian inference about the identified set. Norets and Tang (2014)

focus on the specific setting of dynamic discrete choice models. Kline and Tamer (2016) focus on

moment inequality models and propose constructing confidence regions that share some relation

with our robust credible regions. Their proposal does not have a formal Bayesian interpretation,

and their credible sets do not minimize volume, so the coverage can be conservative. If one were to

extend our framework to moment inequality models (as we do in the example in Appendix C), one

could view our approach as providing a formal posterior interpretation for the confidence regions
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in Kline and Tamer (2016), while ensuring that they have minimum volume. In addition, we show

how to construct the set of posterior means as a consistent estimator of the true identified set.

We also provide more concrete and transparent assumptions and discuss their validity in practical

applications. Liao and Jiang (2010), Wan (2013), and Chen et al. (forthcoming) propose using

Bayesian Markov Chain Monte Carlo methods to overcome some computational challenges of the

frequentist approach to perform inference about the identified set (e.g., for the criterion-function

approach considered in Chernozhukov et al. (2007)).

Some of the technical aspects of this paper relate to the literature on random sets (Beresteanu

and Molinari (2008); Beresteanu et al. (2012); Galichon and Henry (2009); Molchanov and Molinari

(2018)), since the set of posterior means can be viewed as the Aumann expectation of the random

identified set. The main difference is that in our case the source of randomness for the identified

set is the posterior uncertainty about the reduced-form parameter, not the sampling distribution

of the observations.

The remainder of the paper is organized as follows. Section 2 considers the general setting of

set identification and introduces the multiple-prior robust Bayesian approach. Section 3 analyzes

the asymptotic properties of the method. Section 4 illustrates the application to SVARs. Section

5 discusses the numerical implementation of the method. Sections 4 and 5 are self-contained, so a

reader who is interested in SVARs can focus on these two sections. Section 6 contains the empirical

application and Section 7 concludes. The proofs are in Appendix A and Appendix B contains

additional results on convexity of the impulse-response identified set.

2 Set Identification and Robust Bayesian Inference

2.1 Notation and Definitions

This section describes the general framework of set-identified structural models. In particular, it

introduces the definitions of structural parameter θ, reduced-form parameter φ and parameter of

interest η that are used throughout the paper.

Let (Y,Y) and (Θ,A) be measurable spaces of a sample Y ∈ Y and a parameter vector θ ∈ Θ,

respectively. We restrict attention to parametric models, so Θ ⊂ Rd, d < ∞. Assume that the

conditional distribution of Y given θ exists and has a probability density p(y|θ) at every θ ∈ Θ

with respect to a σ-finite measure on (Y,Y), where y ∈ Y indicates sampled data.

Set identification of θ arises when multiple values of θ are observationally equivalent, so that for θ

and θ′ 6= θ, p(y|θ) = p(y|θ′) for every y ∈ Y (Rothenberg (1971), Drèze (1974), and Kadane (1974)).

Observational equivalence can be represented by a many-to-one function g : (Θ,A) → (Φ,B),

such that g(θ) = g(θ′) if and only if p(y|θ) = p(y|θ′) for all y ∈ Y (see, e.g., Barankin (1960)).

This relationship partitions the parameter space Θ into equivalent classes, in each of which the

likelihood of θ is “flat” irrespective of observations, and φ = g(θ) maps each of the equivalent
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classes to a point in a parameter space Φ. In the language of structural models in econometrics

(Hurwicz (1950), and Koopmans and Reiersol (1950)), φ = g(θ) is the reduced-form parameter

that indexes the distribution of the data. The reduced-form parameter carries all the information

for the structural parameter θ through the value of the likelihood function, in the sense that there

exists a B-measurable function p̂(y|·) such that p(y|θ) = p̂(y|g(θ)) for every y ∈ Y and θ ∈ Θ.3

Let the parameter of interest η ∈ H be a subvector or a transformation of θ, η = h(θ) with

h : (Θ,A)→ (H,D), H ⊂ Rk, k <∞. The identified sets of θ and η are defined as follows.

Definition 1 (Identified Sets of θ and η). (i) The identified set of θ is the inverse image of g(·):
ISθ(φ) = {θ ∈ Θ : g(θ) = φ}, where ISθ(φ) and ISθ(φ

′) for φ 6= φ′ are disjoint and {ISθ(φ) : φ ∈ Φ}
constitutes a partition of Θ.

(ii) The identified set of η = h(θ) is a set-valued map ISη : Φ⇒ H defined by the projection of

ISθ(φ) ontoH through h(·), ISη(φ) ≡ {h(θ) : θ ∈ ISθ(φ)} .
(iii) The parameter η = h(θ) is point-identified at φ if ISη(φ) is a singleton, and η is set-

identified at φ if ISη (φ) is not a singleton.

We define the identified set for θ in terms of the likelihood-based definition of observational

equivalence of θ. As a result, ISθ(φ) and ISη(φ) are ensured to give sharp identification regions at

every distribution of data indexed by φ. In some structural models, including SVARs, the space of

the reduced-form parameter Φ on which the reduced-form likelihood is well-defined can be larger

than the space of the reduced-form parameter generated from the structure (g(Θ)); that is, the

model is observationally restrictive in the sense of Koopmans and Reiersol (1950). In this case, the

model is falsifiable, and ISθ(φ) can be empty for some φ ∈ Φ.

2.2 Multiple Priors

In this section we discuss how set identification induces unrevisable prior knowledge and we intro-

duce the use of multiple priors.

Let πθ be a prior (distribution) of θ and πφ be the corresponding prior of φ, obtained as the

marginal probability measure on (Φ,B) induced by πθ and g(·):

πφ(B) = πθ(ISθ(B)) for all B ∈ B. (2.1)

Since the likelihood for θ is flat on ISθ(φ) for any Y , conditional independence θ ⊥ Y |φ holds.

The posterior of θ, πθ|Y , is accordingly obtained as

πθ|Y (A) =

∫
Φ
πθ|φ(A)dπφ|Y (φ), A ∈ A, (2.2)

3In Bayesian statistics, φ = g(θ) is referred to as the (minimal) sufficient parameters that satisfy conditional

independence Y ⊥ θ|φ (Barankin (1960); Dawid (1979); Florens and Mouchart (1977); Picci (1977); Florens et al.

(1990)).
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where πθ|φ denotes the conditional distribution of θ given φ,4 and πφ|Y is the posterior of φ.

Expression (2.2) shows that the prior of the reduced-form parameter, πφ, can be updated by

the data, whereas the conditional prior of θ given φ is never updated because the likelihood is flat

on ISθ(φ) ⊂ Θ for any realization of the sample. In this sense, one can interpret πφ as the revisable

prior knowledge and the conditional priors,
{
πθ|φ (·|φ) : φ ∈ Φ

}
, as the unrevisable prior knowledge.

In a standard Bayesian setting the posterior uncertainty about θ is summarized by a single

probability distribution. This requires specifying a single prior for θ, which induces a conditional

prior πθ|φ that is unique up to πφ-almost sure equivalence. If one could justify this choice of

conditional prior, the standard Bayesian updating formula (2.2) would yield a valid posterior for θ.

A challenging situation arises if a credible conditional prior is not readily available. In this case,

a researcher who is aware that πθ|φ is never updated by the data might worry about the influence

that a potentially arbitrary choice can have on posterior inference.

The robust Bayesian analysis in this paper focuses on this situation, and removes the need to

specify a single conditional prior by introducing ambiguity for πθ|φ in the form of multiple priors.

Definition 2 (Multiple-Prior Class). Given a unique πφ supported only on g(Θ), the class of

conditional priors for θ given φ is:

Πθ|φ =
{
πθ|φ : πθ|φ(ISθ(φ)) = 1, πφ − almost surely

}
. (2.3)

Πθ|φ consists of arbitrary conditional priors as long as they assign probability one to the identified

set of θ. Πθ|φ induces a class of proper priors for θ, Πθ ≡ {πθ =
∫
πθ|φdπφ : πθ|φ ∈ Πθ|φ}, which

consists of all priors for θ whose marginal distribution for φ coincides with the prespecified πφ. Our

proposal requires a researcher to specify a single prior only for the reduced-form parameter φ, but

it otherwise leaves the conditional prior πθ|φ unspecified.5

In this paper we shall not discuss how to select the prior πφ for the reduced-form parame-

ter, and treat it as given. As the influence of this prior choice on posterior inference disappears

asymptotically, any sensitivity issues in this respect would potentially only concern small samples.

Another practical reason for not introducing multiple priors for φ is to avoid possible issues of

non-convergence of the class of posteriors for φ, as discussed in the literature on global sensitivity

analysis, e.g. Ruggeri and Sivaganesan (2000).

4To avoid the Borel paradox, we follow the definition of conditional distribution πθ|φ via the conditional expecta-

tion, i.e., πθ|φ(A) ≡ E(1A(θ)|φ), where E(·|φ) is the B-measurable, πφ-integrable function such that for any B ∈ B,

E(ξ(θ) · 1B(θ)) =
∫
B
E(ξ(θ)|φ)dπφ. The regular conditional distribution πθ|φ is unique up to a πφ-null set of φ.

5The reduced-form parameter φ is defined by examining the entire model {p (y|θ) : y ∈ Y, θ ∈ Θ}, so the prior

class is, by construction, model dependent. This distinguishes the approach here from the robust Bayesian analysis

of, e.g., Berger (1985), where a prior class represents the researcher’s subjective assessment of her imprecise prior

knowledge.
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2.3 Posterior Lower and Upper Probabilities

This section discusses how to summarize the posterior information when the robust Bayesian prior

input is given by (Πθ|φ, πφ).

Applying Bayes’ rule to each prior in the class Πθ generates the class of posteriors for θ. Trans-

forming each member of the class gives the class of posteriors for the parameter of interest η:

Πη|Y ≡
{
πη|Y (·) =

∫
Φ
πθ|φ(h(θ) ∈ ·)dπφ|Y : πθ|φ ∈ Πθ|φ

}
. (2.4)

We propose to summarize this posterior class by the posterior lower probability πη|Y ∗(·) : D →
[0, 1] and the posterior upper probability π∗η|Y (·) : D → [0, 1] , defined as

πη|Y ∗(D) ≡ inf
πη|Y ∈Πη|Y

πη|Y (D),

π∗η|Y (D) ≡ sup
πη|Y ∈Πη|Y

πη|Y (D).

Note the conjugate property, πη|Y ∗(D) = 1 − π∗η|Y (Dc), so it suffices to focus on one of them.

The lower and upper probabilities provide the set of posterior beliefs that are valid irrespective

of the choice of unrevisable prior. When {η ∈ D} specifies a hypothesis of interest, πη|Y ∗ (D) can

be interpreted as saying that ‘the posterior credibility for {η ∈ D} is at least equal to πη|Y ∗ (D),

no matter which unrevisable prior one assumes’. These quantities are useful for conducting global

sensitivity analysis with respect to a prior that cannot be revised by the data. Furthermore, if one

agrees that the ultimate goal of partial identification analysis is to establish a ‘domain of consensus’

(Manski (2007)) among assumptions that the data are silent about, the posterior lower and upper

probabilities constructed upon arbitrary unrevisable prior knowledge are natural quantities to focus

on when considering partial identification from the Bayesian perspective.

In order to derive an analytical expression for πη|Y ∗(·), we assume the following regularity

conditions.

Assumption 1. (i) The prior of φ, πφ, is proper, absolutely continuous with respect to a σ-finite

measure on (Φ,B), and πφ(g(Θ)) = 1, i.e., ISθ(φ) and ISη(φ) are nonempty, πφ-a.s.

(ii) The mapping between θ and φ, g : (Θ,A) → (Φ,B), is measurable and its inverse image

ISθ(φ) is a closed set in Θ, πφ-almost every φ.

(iii) The mapping between θ and η, h : (Θ,A)→ (H,D), is measurable and ISη (φ) = h (ISθ(φ))

is a closed set in H, πφ-almost every φ.

Assumption 1 (i) guarantees that the identified set ISη(φ) can be viewed as a random set defined

on the probability space both a priori (Φ,B, πφ) and a posteriori
(
Φ,B, πφ|Y

)
, which we exploit in

the proof of Theorem 1 below. As we discuss in Section 5, the numerical implementation of our

method only requires the posterior to be proper, so in practical terms it allows an improper prior
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with support larger than g(Θ). The assumption is then imposed in the numerical procedure by

only retaining draws that give a non-empty identified set. Assumptions 1 (ii) and 1 (iii) are mild

conditions ensuring that ISθ(φ) and ISη (φ) are random closed sets satisfying a certain measura-

bility requirement. The closedness of ISθ(φ) and ISη (φ) is implied, for instance, by continuity of

g (·) and h (·).
The next theorem expresses the posterior lower and upper probabilities for the parameter of

interest in terms of the posterior of φ. This proposition provides the basis for the numerical

approximation of the lower and upper probabilities, which only requires the ability to compute the

identified set at values of φ randomly drawn from its posterior.

Theorem 1 Under Assumption 1, for D ∈ D,

πη|Y ∗(D) = πφ|Y ({φ : ISη(φ) ⊂ D}),

π∗η|Y (D) = πφ|Y ({φ : ISη(φ) ∩D 6= ∅}).

The expression for πη|Y ∗(D) shows that the lower probability on D is the probability that the

(random) identified set ISη(φ) is contained in D in terms of the posterior probability of φ. The

intuition for this result can be best understood when η = θ. The decomposition in equation (2.2)

suggests that, to minimize the posterior probability on {θ ∈ D}, we choose, if possible, a conditional

prior πθ|φ that assigns all the probability outside D so as to attain πθ|φ(D) = 0. Such choice of

prior is, however, not possible for φ such that ISθ(φ) ⊂ D, since the requirement πθ|φ(ISθ(φ)) = 1

binds and any choice of prior satisfies πθ|φ(D) = 1. Symmetrically, the posterior probability on

{θ ∈ D} is maximized by choosing, if possible (i.e., if ISθ(φ)∩D 6= ∅), a conditional prior that puts

all the probability inside D. These constructions of the extreme conditional priors immediately

lead to the expressions of the lower and upper probabilities in Theorem 1.6

Setting η = θ gives the posterior lower and upper probabilities for θ in terms of the containment

and hitting probabilities of ISθ(φ). In standard Bayesian inference, the posterior of θ is transformed

into a posterior for η = h(θ) by integrating the posterior probability measure of θ for η, while

here it corresponds to projecting random sets ISθ (φ) onto H via η = h (·). This highlights the

6Viewing the identified-set correspondence ISθ(φ) as a random closed set defined on the probability space

(Φ,B, πφ|X), let ξ : Φ → Θ be a measurable selection of ISθ(φ), i.e., ξ(φ) is B-measurable and satisfies

πφ|X({ξ(φ) ∈ ISθ(φ)}) = 1. Artstein’s inequality (Theorem 2.1 in Artstein (1983)) shows that the set of proba-

bility distributions for θ formed by measurable selections of ISθ(φ) is given by

ΠS
θ|X ≡

{
πθ|X : πθ|X(A) ≤ πφ|X(ISθ(φ) ∩A 6= ∅), ∀A ∈ A, closed

}
.

Since a measurable selection of ISθ(φ) corresponds to degenerate conditional priors {πθ|φ = 1ξ(φ) : φ ∈ Φ} and it is

included in the set of conditional priors used in our analysis, the set of posteriors for θ, Πθ|X , defined in (2.4) with

η = θ satisfies Πθ|X ⊇ ΠS
θ|X . As implied by Artstein’s inequality, however, the upper probability of Πθ|X obtained in

Theorem 1 with η = θ agrees with the upper probability of ΠS
θ|X on any closed measurable A ∈ A.
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difference between standard Bayesian analysis and robust Bayesian analysis based on the lower

probability. As remarked in the proof of Theorem 1, for eachD ∈ D, the set of posterior probabilities

{πη|Y (D) : πη|Y ∈ Πη|Y } coincides with the connected intervals [πη|Y ∗(D), π∗η|Y (D)], implying that

any posterior probability in this set can be attained by some posterior in Πη|Y .

It is well known in the robust statistics literature (e.g., Huber (1973)) that the lower probabil-

ity of a set of probability measures is in general a monotone nonadditive measure (capacity). The

posterior lower and upper probabilities in this paper coincide with the construction of the posterior

lower and upper probabilities of Wasserman (1990) when it is applied to our prior class. An impor-

tant distinction from Wasserman’s analysis is that our posterior lower probability is guaranteed to

be an ∞-order monotone capacity (a containment functional of random sets), which simplifies the

investigation of its analytical properties and the practical implementation of the method.7

2.4 Set of Posterior Means and Quantiles.

The posterior lower and upper probabilities shown in Theorem 1 summarize the set of posterior

probabilities for an arbitrary event of interest D. To summarize the information in the posterior

class without specifying D, we propose to report the set of posterior means of η.

The next proposition shows that the set of posterior means of η is equivalent to the Aumann

expectation of the convex hull of the identified set.

Theorem 2 Suppose Assumption 1 holds and the random set ISη(φ) ⊂ H, φ ∼ πφ|Y , is L1-

integrable with respect to πφ|Y in the sense that Eφ|Y

(
supη∈ISη(φ) ‖η‖

)
< ∞. Let co(ISη(φ)) be

the convex hull of ISη(φ)8 and let EAφ|Y (·) denote the Aumann expectation of a random set with

underlying probability measure πφ|Y .9 Then, the set of posterior means is convex and equals the

Aumann expectation of the convex hull of the identified set:{
Eη|Y (η) : πη|Y ∈ Πη|Y

}
= EAφ|Y [co(ISη (φ))]. (2.5)

Let s(ISη(φ), q) ≡ supη∈ISη(φ) η
′q, q ∈ Sk−1, be the support function of identified set ISη(φ) ⊂

Rk, where Sk−1 is the unit sphere in Rk. It is known that the Aumann expectation of co(ISη(φ))

satisfies s(EAφ|Y [co(ISη(φ))], ·) = Eφ|Y [s(ISη(φ), ·)] (see, e.g., Theorem 1.26 in Chap. 2 of Molchanov

7Wasserman (1990, p.463) posed an open question asking which class of priors can ensure that the posterior

lower probability is a containment functional of random sets. Theorem 1 provides an answer when the model is

set-identified.
8co(ISη) : Φ⇒ H is viewed as a closed random set defined on the probability space

(
Φ,B, πφ|Y

)
9Let X : Φ ⇒ H be a closed random set defined on the probability space

(
Φ,B, πφ|Y

)
, and ξ (φ) : Φ → H be

its measurable selection, i.e., ξ (φ) ∈ X (φ), πφ|Y -a.s. Let S1(X) be the class of integrable measurable selections,

S1 (X) =
{
ξ : ξ (φ) ∈ X (φ) , πφ|Y -a.s., Eφ|Y (‖ξ‖) <∞

}
. The Aumann expectation of X is defined as (Aumann

(1965)) EAφ|Y (X) ≡
{
Eφ|Y (ξ) : ξ ∈ S1 (X)

}
.
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(2005)) and a support function one-to-one corresponds to the closed convex set. Hence, the analyt-

ical characterization shown in Theorem 2 suggests that the set of posterior means can be computed

by approximating Eφ|Y [s(ISη(φ), ·)] using the draws of ISη(φ), φ ∼ πφ|Y and mapping back the

approximated average support function to obtain the set of posterior means EAφ|Y [co(ISη(φ))].

In case of scalar η, the set of posterior means has the particularly simple form EAφ|Y [co(ISη (φ))] =[
Eφ|Y (` (φ)) , Eφ|Y (u(φ))

]
, where `(φ) = inf {η : η ∈ ISη (φ)} and u(φ) = sup {η : η ∈ ISη (φ)} are

the lower and upper bounds of ISη (φ). This lower (upper) bound is attained by the conditional

priors {πθ|φ : φ ∈ Φ} that allocate probability one to θ attaining the lower (upper) bound of ISη(φ).

In applications where it is feasible to compute `(φ) and u(φ), we can approximate Eφ|Y (` (φ)) and

Eφ|Y (u (φ)) by using a random sample of φ drawn from πφ|Y .

In case of scalar η, the set of posterior τ -th quantiles of η is also simple to compute. We

apply Theorem 1 with D = (−∞, t], −∞ < t < ∞, to obtain the set of the posterior cumulative

distribution functions (CDF) of η for each t. Inverting the upper and lower bounds of this set at

τ ∈ (0, 1) gives the set of posterior τ -th quantiles of η.

2.5 Robust Credible Region

This section introduces the robust Bayesian counterpart of the highest posterior density region that

is typically reported in standard Bayesian inference.

For α ∈ (0, 1), consider a subset Cα ⊂ H such that the posterior lower probability πη|Y ∗(Cα) is

greater than or equal to α:

πη|Y ∗(Cα) = πφ|Y (ISη(φ) ⊂ Cα)) ≥ α. (2.6)

Cα is interpreted as “a set on which the posterior credibility of η is at least α, no matter which

posterior is chosen within the class”. Dropping the italicized part from this statement yields the

usual interpretation of a posterior credible region, so this definition seems like a natural extension

to our robust Bayesian setting. We refer to Cα satisfying (2.6) as a robust credible region with

credibility α.

As in the standard Bayesian case, there are multiple ways to construct Cα satisfying (2.6). We

propose resolving this multiplicity by choosing Cα such that it has the smallest volume in terms of

the Lebesgue measure:

C∗α ∈ arg min
C∈C

Leb(C) (2.7)

s.t. πφ|Y (ISη(φ) ⊂ C)) ≥ α,

where Leb(C) is the volume of C in terms of the Lebesgue measure and C is a family of subsets in
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H.10 We refer to C∗α defined in this way as a smallest robust credible region with credibility α. 11

The credible regions for the identified set proposed in Moon and Schorfheide (2011), Norets and

Tang (2014), and Kline and Tamer (2016) satisfy (2.6), so they are robust credible regions in our

definition. However, these works do not consider the volume-optimized credible region (2.7).12

Obtaining C∗α is challenging if η is a vector and no restriction is placed on the class C in (2.7).

Proposition 1 below shows that for scalar η this can be overcome by constraining C to be the class

of closed connected intervals. C∗α can then be computed by solving a simple optimization problem.

Proposition 1 (Smallest Robust Credible Region for Scalar η). Let η be scalar and let

d : H×D → R+ measure the distance from ηc ∈ H to the set ISη (φ) by

d (ηc, ISη(φ)) ≡ sup
η∈ISη(φ)

{‖ηc − η‖} .

For each ηc ∈ H, let rα(ηc) be the α-th quantile of the distribution of d (ηc, ISη(φ)) induced by the

posterior distribution of φ, i.e.,

rα(ηc) ≡ inf
{
r : πφ|Y ({φ : d(ηc, ISη(φ)) ≤ r}) ≥ α

}
.

Then, C∗α in (2.7), with C restricted to the class of closed connected intervals, is a closed interval

centered at η∗c = arg minηc∈H rα(ηc) with radius r∗α = rα(η∗c).

2.6 Diagnostic Tools

2.6.1 Plausibility of Identifying Restrictions

For observationally restrictive models (i.e., g(Θ) is a proper subset of Φ), quantifying posterior

information for assessing the set-identifying restrictions can be of interest. To do so, we start with

a prior of φ that supports the entire Φ, which we denote by π̃φ. Trimming the support of π̃φ on

g(Θ) = {φ : ISθ(φ) 6= ∅} gives πφ satisfying Assumption 1 (i). We update π̃φ to obtain the posterior

of φ with extended domain π̃φ|Y .

10In case that ISη(φ) lies in a k′-dimensional manifold of Rk, k′ < k, πφ|Y -a.s., we modify the Lebesgue measure on

Rk in this optimization to that of Rk
′

so that this “volume’ minimization problem can have a well-defined solution.
11C∗α can be supported as a solution to the following posterior minimax problem:

C∗α ∈ arg min
C∈C

[
sup

πη|Y ∈Πη|Y

∫
L (η, C) dπη|Y

]

with a loss function that penalizes volume and non-coverage, L (η, C) = Leb (C) + b (α, Y ) [1− 1C (η)], where b (α, Y )

is a positive constant that depends on the credibility level α and on the sample Y , and 1C (·) is the indicator function

for {η ∈ C}.
12Moon and Schorfheide (2011) and Norets and Tang (2014) propose credible regions for the identified set by taking

the union of ISη(φ) over φ in its Bayesian credible region.
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Since emptiness of the identified set can refute the imposed identifying restrictions, their

plausibility can be measured by the posterior probability that the identified set is non-empty,

π̃φ|Y ({φ : ISη (φ) 6= ∅}).13 Note that this measure depends only on the posterior of the reduced-

form parameter, so it is free from the issue of posterior sensitivity due to set identification. By

reporting the posterior plausibility of the identifying restrictions and the set of posterior means

conditional on {ISη(φ) 6= ∅}, we can separate inferential statements about the validity of the iden-

tifying restrictions from inferential statements about the parameter of interest, which is difficult to

do from a frequentist perspective (see the discussion in Sims and Zha (1999)).

2.6.2 Informativeness of Identifying Restrictions and of Priors

The strength of identifying restrictions can be measured by comparing the set of posterior means

relative to that of a model that does not impose these restrictions but is otherwise identical. For

instance, suppose the object of interest η is a scalar. Let Ms be the set-identified model imposing

the identifying restrictions whose strength is to be measured and Ml be the model that relaxes the

restrictions. For identification of η, the identifying power of the restrictions imposed in Ms but not

in Ml can be measured by:

Informativeness of restrictions imposed in model Ms but not in Ml

=1− width of set of posterior means of η in model Ms

width of set of posterior means of η in model Ml
. (2.8)

This measure captures by how much (in terms of the fraction) the restrictions in model Ms reduce

the width of the set of posterior means of η compared to the model Ml.
14

The amount of information in the posterior provided by the choice of a single unrevisable prior

(i.e., the choice of a conditional prior πθ|φ, as used in standard Bayesian inference) can be measured

in a similar way. In this case, we compare the width of a robust credible region Cα satisfying (2.6)

relative to the width of the standard Bayesian credible region obtained from the single prior:

Informativeness of the choice of prior (2.9)

= 1− width of a Bayesian credible region of η with credibility α

width of a robust credible region of η with credibility α
.

This measure captures by what fraction the credible region of η is tightened by choosing a particular

unrevisable prior πθ|φ.

13An alternative measure is the prior-posterior odds of the nonemptiness of the identified set,
π̃φ|Y ({φ:ISη(φ)6=∅})
π̃φ({φ:ISη(φ)6=∅}) .

A value greater than one indicates that the data support the plausibility of the imposed restrictions.
14The measure is meaningful only when the identified sets in both models are bounded. In this case the measure

lies in the unit interval because ISη(φ,Ms) ⊆ ISη(φ,Ml) for all φ.

13



3 Asymptotic Properties

The set of posterior means or quantiles and the robust credible region introduced in Section 2 have

well-defined (robust) Bayesian interpretations in finite samples and they are useful for conducting

Bayesian sensitivity analysis to the choice of an unrevisable prior.

To examine whether these robust Bayesian quantities are useful from the frequentist perspective,

this section analyzes their asymptotic frequentist properties. We show two main results. First, the

set of posterior means can be viewed as an estimator of the identified set that converges to the true

identified set asymptotically when the true identified set is convex. Otherwise, the set of posterior

means converges to the convex hull of the true identified set. Second, the robust credible region

has the correct asymptotic coverage for the true identified set. These results show that introducing

ambiguity for nonidentified parameters induces asymptotic equivalence between (robust) Bayesian

and frequentist inference in set-identified models. An implication of this finding is that the proposed

robust Bayesian analysis can also appeal to frequentists.

In this section we let φ0 ∈ Φ denote the true value of the reduced-form parameter and Y T =

(y1, . . . , yT ) denote a sample of size T generated from p(Y T |φ0).

3.1 Consistency of the Set of Posterior Means

Assume the following conditions:

Assumption 2. (i) ISη(φ0) is bounded, and the identified set correspondence ISη : Φ ⇒ H

is continuous at φ = φ0(see, e.g., Sundaram (1996) for the definition of continuity for correspon-

dences).

(ii) The posterior of φ is consistent for φ0, p (Y∞|φ0)-a.s.15

(iii) There exists δ > 0 such that ISη(φ) is L1+δ-integrable with respect to πφ|Y T ;

Eφ|Y T

(
sup

η∈ISη(φ)
‖η‖1+δ

)
<∞, p

(
Y T |φ0

)
-a.s., (3.1)

for all large enough T.

Assumption 2 (i) requires that the identified set of η is a continuous correspondence at φ0. In

the case of scalar η with convex identified set ISη(φ) = [` (φ) , u(φ)], this means that `(φ) and

u(φ) are continuous at φ0. Since `(φ) and u(φ) can be viewed as the values of the optimizations

`(φ) = minθ∈ISθ(φ) h(θ) and u(φ) = maxθ∈ISθ(φ) h(θ), the theorem of maximum (e.g., Theorem 9.14

15Posterior consistency of φ means that limT→∞ πφ|Y T (G) = 1 for every G open neighborhood of φ0 and for

almost every sampling sequence following p (Y∞|φ0). For a finite-dimensional φ, posterior consistency is implied by

higher-level conditions for the likelihood of φ. We do not list these here for the sake of brevity, and refer to Section

7.4 of Schervish (1995) for details.

14



in Sundaram (1996)) shows that sufficient conditions for continuity of `(φ) and u(φ) are continuity

of h(·) and continuity of the correspondence for ISθ(φ). In a common special case where ISθ(φ)

is a polyhedron and [`(φ), u(φ)] are the values of linear programming (e.g., the average treatment

effect bounds of Balke and Pearl (1997)), continuity of the polyhedral correspondence is implied

by the condition of dimension-stability of the polyhedron (e.g., Proposition 6 in Wets (1985)). For

SVAR models, Appendix B.2 show that the continuity property is mild and easily verifiable.

Assumption 2 (ii) requires that Bayesian estimation of the reduced-form parameter is a standard

estimation problem in the sense that almost-sure posterior consistency holds. Assumption 2 (iii)

strengthens 2 (i) by assuming that ISη(φ) is πφ|Y T -almost surely compact-valued and its radius

has finite (1 + δ)-th moment. In the scalar case, Assumption 2 (iii) holds with δ = 1 if `(φ) and

u(φ) have finite posterior variances.

Theorem 3 (Consistency). Suppose Assumption 1 holds.

(i) Under Assumption 2 (i) and (ii), limT→∞ πφ|Y T ({φ : dH (ISη (φ) , ISη (φ0)) > ε}) = 0 for

all ε > 0, p(Y∞|φ0)-a.s., where dH (·, ·) is the Hausdorff distance.

(ii) Suppose Assumption 2 holds and the prior for φ, πφ, is non-atomic,16 then the set of

posterior means almost surely converges to the convex hull of the true identified set, i.e.,

lim
T→∞

dH

(
EAφ|Y T [co (ISη(φ))] , co (ISη(φ0))

)
→ 0, p (Y∞|φ0) -a.s.

The first claim of Theorem 3 states that the identified set ISη (φ), viewed as a random set

induced by the posterior of φ, converges in posterior probability to the true identified set ISη (φ0)

in the Hausdorff metric. This claim only relies on continuity of the identified set correspondence

and does not rely on Assumption 2 (iii) or on convexity of the identified set. The second claim of

the theorem provides a justification for using (a numerical approximation of) the set of posterior

means as a consistent estimator of the convex hull of the identified set. The theorem implies that

the set of posterior means converges to the true identified set if this set is convex.

3.2 Asymptotic Coverage Properties of the Robust Credible Region

We first state a set of conditions under which the robust credible region asymptotically attains

correct frequentist coverage for the true identified set ISη(φ0).

Assumption 3. (i) The identified set ISη(φ) is πφ-almost surely closed and bounded, and ISη(φ0)

is closed and bounded.

(ii) The robust credible region Cα belongs to the class of closed and convex sets C in Rk.
16For instance, if Φ ⊂ Rk, k < ∞, πφ is non-atomic if it is absolutely continuous with respect to the Lebesgue

measure.
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Assumption 3 (i) is a weak requirement in practical applications. We allow the identified set

ISη(φ) to be nonconvex, while Assumption 3 (ii) constrains the robust credible region to be closed

and convex. Under convexity of Cα, ISη(φ) ⊂ Cα holds if and only if co (ISη(φ)) ⊂ Cα holds,

so that the inclusion of the identified set by Cα is equivalent to the dominance of their support

functions, s(ISη(φ), q) = s(co(ISη(φ)), q) ≤ s(Cα, q) for all q ∈ Sk−1 (see, e.g., Corollary 13.1.1 in

Rockafellar (1970)). This fact enables us to characterize a set of conditions for correct asymptotic

coverage of Cα in terms of the limiting probability law of the support functions, which has been

studied in the literature on frequentist inference for the identified set (e.g., Beresteanu and Molinari

(2008); Bontemps et al. (2012); Kaido (2016)).

Assumption 4. Let C
(
Sk−1,R

)
be the set of continuous functions from the k-dimensional

unit sphere Sk−1 to R, and let φ̂ denote the maximum likelihood estimator of φ. For a sequence

aT →∞ as T →∞, define stochastic processes in C
(
Sk−1,R

)
indexed by q ∈ Sk−1,

Xφ|Y T (q) ≡ aT

[
s(ISη(φ), q)− s(ISη(φ̂), q)

]
,

XY T |φ0
(q) ≡ aT

[
s(ISη(φ0), q)− s(ISη(φ̂), q)

]
,

where the probability law of Xφ|Y T is induced by πφ|Y T , T = 1, 2, . . . , and the probability law of

XY T |φ0
is induced by the sampling process pY T |φ0

, T = 1, 2, . . . . The following conditions hold:

(i) Xφ|Y T  X as T → ∞ for pY∞|φ0
-almost every sampling sequence, where  denotes weak

convergence.

(ii) XY T |φ0
 Z as T →∞, and Z ∼ X.

(iii) Pr (X(·) ≤ c(·)) is continuous in c ∈ C
(
Sk−1,R

)
with respect to the supremum metric, and

Pr (X = c) = 0 for any nonrandom function c ∈ C
(
Sk−1,R

)
.

(iv) Let Cα be a robust credible region satisfying α ≤ πφ|Y T (ISη(φ) ⊂ Cα) ≤ 1−ε for some ε > 0

for all T = 1, 2, . . . . The stochastic process in C
(
Sk−1,R

)
, ĉT (·) ≡ aT

[
s(Cα, ·)− s

(
ISη(φ̂), ·

)]
,

converges in pY T |φ0
-probability to c ∈ C

(
Sk−1,R

)
as T →∞.

Assumption 4 (i) states that the posterior distribution of the support function of the identified

set ISη(φ), centered at the support function of ISη(φ̂) and scaled by aT , converges weakly to the

stochastic process X. The weak convergence of the scaled support function to the tight Gaussian

process on Sk−1 holds with aT =
√
T , for instance, if the central limit theorem for random sets

applies; see, e.g, Molchanov (2005) and Beresteanu and Molinari (2008). Assumption 4 (i) is a

Bayesian analogue to the frequentist central limit theorem for the support functions.

Assumption 4 (ii) states that, from the viewpoint of the support function, the difference between

ISη(φ̂) and the true identified set scaled by aT converges in distribution to the stochastic process

Z, and the probability law of Z coincides with the probability law of X.17 Since the distribution

17The stochastic process X is induced by the large sample posterior distribution, while Z is induced by the large

sample sampling distribution. We therefore use different notations for them.
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of X is defined conditional on a sampling sequence while Z is unconditional, the agreement of the

distributions of X and Z implies that the dependence of the posterior distribution of Xφ|Y T on the

sample Y T vanishes as T → ∞.18 Beresteanu and Molinari (2008) and Kaido and Santos (2014)

provide practical examples where the limiting process Z is a zero-mean tight Gaussian process in

C(Sk−1,R). For a class of linear models with interval-measured outcomes, Bontemps et al. (2012)

show that Z is the sum of a Gaussian process and a point process which has a discontinuous path.

Assumptions 4 (i) and (ii) are delicate assumptions and whether they hold depends on the

geometry of the identified set. In Appendix C, we analyze an example of a moment-conditions

model where the identified set is a polyhedron, and discuss what features of the identified set can

validate or violate these assumptions. In particular, example C.2 shows that, if the support function

s (ISη(φ), q) is not differentiable in φ at some q, the large sample posterior distribution of Xφ|Y T (q)

generally depends on
√
T (φ̂ − φ0) even asymptotically, and it leads to violation of Assumptions 4

(i) and (ii). See also Kitagawa et al. (2019) for properties of the asymptotic posterior for a non-

differentiable function of parameters satisfying the Bernstein-von Mises property such as φ.

Assumption 4 (iii) means that the limiting process X is continuously distributed and non-

degenerate in the stated sense, which holds true if X follows a nondegenerate Gaussian process. In

addition to the convexity requirement of Assumption 3 (ii), Assumption 4 (iv) requires Cα to be

bounded and to lie in a neighborhood of ISη(φ̂) shrinking at rate 1/aT .

Theorem 4 (Asymptotic Coverage). Under Assumptions 3 and 4, Cα, α ∈ (0, 1) , is an

asymptotically valid frequentist confidence set for the true identified set ISη(φ0) with asymptotic

coverage probability at least α.

lim inf
T→∞

PY T |φ0
(ISη(φ0) ⊂ Cα) ≥ α.

If in Assumption 4 (iv), Cα satisfies πφ|Y T (ISη(φ) ⊂ Cα) = α, pY T |φ0
-a.s., for all T ≥ 1, Cα

asymptotically attains the exact coverage probability,

lim
T→∞

PY T |φ0
(ISη(φ0) ⊂ Cα) = α.

Remarks: First, unlike in Imbens and Manski (2004) and Stoye (2009), the frequentist coverage

statement of Cα is for the true identified set rather than for the true value of the parameter of

interest. Therefore, when η is a scalar with nonsingleton ISη(φ0), Cα will be asymptotically wider

than the frequentist (connected) confidence interval for η.

Second, Theorem 4 shows pointwise asymptotic coverage rather than asymptotic uniform cover-

age over a class of the sampling processes φ0. As stressed in the frequentist literature (e.g., Andrews

18If the support function s (ISη(φ), u) is not differentiable, but only directionally differentaible at some u, the

asymptotic distribution of Xφ|Y T (u) generally depends on φ̂ even asymptotically, leading to a violation of Assumption

4 (i). See Kitagawa et al. (2019) for details on the asymptotic posterior of directionally differentiable function.
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and Guggenberger (2009); Stoye (2009); Romano and Shaikh (2010); Andrews and Soares (2010);

Canay and Shaikh (2017), it is desirable for frequentist methods to attain asymptotically valid

coverage in the uniform sense. Examining the asymptotic uniform coverage property for our robust

Bayesian procedure is, however, challenging because it would require the Bernstein-von Mises con-

dition for the support function processes (Assumption 4 (i) and (ii)) to hold uniformly over a class

of the sampling processes φ0. To our knowledge, little is known to what extent the Bernstein-von

Mises property holds in the uniform sense even for the standard case of identifiable parameters.

We thus leave this investigation for future research.

Third, the confidence region considered by Moon and Schorfheide (2011) and Norets and Tang

(2014) can attain asymptotically correct coverage under a different set of assumptions (Assumptions

1 and 5 (i) in this paper). Although these assumptions may be easier to check than Assumption

4, the credible region proposed by these authors is generally conservative. In contrast, Theorem

4 shows that if Cα is constructed to satisfy (2.6) with equality (e.g., it is the smallest robust

credible region C∗α), the asymptotic coverage probability is exact. Theorem 5 in Kline and Tamer

(2016) shows a similar conclusion to Theorem 4 under the conditions that the Bernstein-von Mises

property holds for estimation of φ and that aT (φ̂− φ0) and ĉT (·) are asymptotically independent.

Our Assumption 4 (iv) implies the asymptotic independence condition of Kline and Tamer (2016)

by assuming ĉT converges to a constant. Theorem 4, on the other hand, assumes the Bernstein-von

Mises property in terms of the support functions of the identified set rather than the underlying

reduced-form parameters.

Assumption 4 consists of rather high-level assumptions, some of which could be difficult to

check when η is a multi-dimensional object. In cases of scalar η, we can obtain a set of sufficient

conditions for Assumption 4 (i) - (iii) that are simple to verify in empirical applications, e.g., the

set-identified SVARs considered in Section 4.

Assumption 5. Let the parameter of interest η be a scalar. Denote the convex hull of the identified

set by co (ISη(φ)) = [`(φ), u(φ)] .

(i) The maximum likelihood estimator φ̂ is strongly consistent for φ0, and the posterior of φ and

the sampling distribution of φ̂ are
√
T -asymptotically normal with an identical covariance matrix;

√
T
(
φ− φ̂

)
|Y T  N (0,Σφ) , as T →∞, pY∞|φ0

-a.s., and

√
T
(
φ̂− φ0

)
|φ0  N (0,Σφ) , as T →∞.

(ii) `(φ) and u(φ) are continuously differentiable in an open neighborhood of φ0, and their

derivatives are nonzero at φ0.

Assumption 5 (i) implies that likelihood-based estimation of φ satisfies the Bernstein–von Mises

property in the sense of Theorem 7.101 in Schervish (1995). It holds when the likelihood function

and the prior for φ satisfy the following properties: (a) regularity of the likelihood of φ as shown in
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Schervish (1995, Section 7.4) and (b) πφ puts a positive probability on every open neighborhood

of φ0 and the density of πφ is smooth at φ0. Additionally imposing Assumption 5 (ii) implies

applicability of the delta method to ` (·) and u (·), which implies Assumption 4 (i) - (iii) for scalar

η. In addition, it can be shown that the shortest robust credible region in (2.7) satisfies Assumption

4 (iv). Hence, C∗α is an asymptotically valid frequentist confidence set for the true identified set

with asymptotic coverage probability exactly equal to α.

It is important to note that Assumption 5 (ii) is restrictive in some aspects. First, it does

not allow `(φ) or u(φ) to be flat at φ0. This is because the Bernstein-von Mises property for φ

(Assumption 5 (i)) does not carry over to `(φ) or u(φ) through the second-order delta method

if their first-order derivatives are zero at φ0, and it leads to violation of Assumptions 4 (i) and

(ii). Second, non-differentiability of `(φ) and u(φ) arises if the projection bounds for η involve

the max or min operations and the minimizers or maximizers are not unique at φ = φ0. Bounds

involving the max or min appear in the intersection bound analysis of Manski (1990) and the

partial identification analysis via linear programming of Balke and Pearl (1997). As illustrated

in Appendix C and formally shown in Kitagawa et al. (2019), the Bernstein-von Mises property

breaks down for non-differentiable functions of φ, and it leads to violation of Assumption 4 (i) and

(ii). Appendix B.3 discusses the differentiability assumptions and their plausibility in the context

of SVAR models.

Proposition 2. Suppose Assumptions 3 and 5 hold. Then Assumptions 4 (i) - (iii) hold true

and the smallest robust credible region C∗α defined in (2.7) satisfies Assumption 4 (iv). Hence, by

Theorem 2, C∗α is an asymptotically valid frequentist confidence set for ISη (φ0) with exact coverage,

lim
T→∞

PY T |φ0
(ISη (φ0) ⊂ C∗α) = α.

Lemma 1 of Kline and Tamer (2016) obtains a similar result for a robust credible region different

from our smallest credible region C∗α; theirs takes the form Cα = [`(φ̂) − cα/
√
T , u(φ̂) + cα/

√
T ],

where cα is chosen to satisfy (2.6) with equality.

4 Robust Bayesian Inference in SVARs

In this section we illustrate in detail the application of the proposed method to impulse-response

analysis in set-identified SVARs. This section is self-contained. Consider an SVAR(p):

A0yt = a+

p∑
j=1

Ajyt−j + εt for t = 1, . . . , T , (4.1)

where yt is an n× 1 vector and εt is an n× 1 vector white noise process, normally distributed with

mean zero and variance the identity matrix In. The initial conditions y1, . . . , yp are given. We
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follow Christiano et al. (1999) and assume that one always imposes sign normalization restrictions

by letting the diagonal elements of A0 be nonnegative. The reduced-form VAR(p) representation

of the model is

yt = b+

p∑
j=1

Bjyt−j + ut, (4.2)

where b = A−1
0 a, Bj = A−1

0 Aj , ut = A−1
0 εt, and E (utu

′
t) ≡ Σ = A−1

0

(
A−1

0

)′
. Since the value of the

Gaussian likelihood for the SVAR (4.1) depends on structural parameters (A0, a, A1, . . . , Ap) only

through (b, B1, . . . , Bp,Σ), we can set the reduced-form parameter to φ = (vec(B)′, vech(Σ)′)′ ∈
Φ ⊂ Rn+n2p×Rn(n+1)/2, where B = [b, B1, . . . , Bp]. We restrict the domain Φ to the set of φ’s such

that the variance-covariance matrix of the reduced-form errors is nonsingular and the reduced-form

VAR(p) model can be inverted into a VMA(∞) model.

Let Q ∈ O(n) be an n×n orthonormal ‘rotation’ matrix andO(n) be the set of n×n orthonormal

matrices. Following Uhlig (2005) and Rubio-Ramı́rez et al. (2010), we transform the structural

parameters (A0, a, A1, . . . , Ap) into the parameter vector consisting of the reduced-form parameters

augmented by Q,
(
φ′, vec(Q)′

)′ ∈ Φ× vec(O(n)):

B = A−1
0 [a,A1, . . . , Ap] ,

Σ = A−1
0

(
A−1

0

)′
,

Q = Σ−1
tr A

−1
0 ,

where Σtr denotes the lower-triangular Cholesky factor of Σ with nonnegative diagonal elements.

This transformation is one-to-one, as it is invertible with nonsingular Σ, so that A0 = Q′Σ−1
tr and

[a,A1, . . . , Ap] = Q′Σ−1
tr B. Since the general framework introduced in Section 2 allows θ to be any

one-to-one transformation of the structural parameters, in this section we follow the convention in

the literature on sign-restricted SVARs and set θ =
(
φ′, vec(Q)′

)′
.

Translating the sign normalization restrictions diag (A0) ≥ 0 into constraints on θ gives the

space of structural parameters as Θ =
{(
φ′, vec(Q)′

)′ ∈ Φ× vec(O(n)) : diag
(
Q′Σ−1

tr

)
≥ 0
}
. Indi-

vidually, the sign normalization restrictions can be written as linear inequalities(
σi
)′
qi ≥ 0 for all i = 1, . . . , n, (4.3)

where
[
σ1, σ2, . . . , σn

]
are the column vectors of Σ−1

tr and [q1, q2, . . . , qn] are the column vectors of

Q.

Assuming the lag polynomial
(
In −

∑p
j=1BjL

p
)

is invertible (which is implied by the domain

restriction on Φ) the VMA(∞) representation of the model is:

yt = c+
∞∑
j=0

Cjut−j (4.4)

= c+

∞∑
j=0

CjΣtrQεt−j ,
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where Cj is the j-th coefficient matrix of
(
In −

∑p
j=1BjL

j
)−1

.

We denote the h-th horizon impulse response by the n× n matrix IRh, h = 0, 1, 2, . . .

IRh = ChΣtrQ, (4.5)

and the long-run cumulative impulse-response matrix by

CIR∞ =

∞∑
h=0

IRh =

( ∞∑
h=0

Ch

)
ΣtrQ. (4.6)

The scalar parameter of interest η is a single impulse-response, i.e., the (i, j)-element of IRh,

which can be expressed as

η = IRhij ≡ e′iChΣtrQej ≡ c′ih (φ) qj = η(φ,Q), (4.7)

where ei is the i-th column vector of the identity matrix In and c′ih (φ) is the i-th row vector of

ChΣtr. Note that the analysis developed below for the impulse responses can be easily extended to

the structural parameters A0 and [A1, . . . , Ap], since the (i, j)-th element of Al can be obtained as

e′j
(
Σ−1
tr Bl

)′
qi, with B0 = In.

4.1 Set Identification in SVARs

Set identification in an SVAR arises when knowledge of the reduced-form parameter φ does not pin

down a unique A0. Since any A0 = Q′Σ−1
tr satisfies Σ = (A′0A0)−1, in the absence of identifying

restrictions
{
A0 = Q′Σ−1

tr : Q ∈ O(n)
}

is the identified set of A0’s, i.e., the set of A0’s that are

consistent with φ (Uhlig (2005), Proposition A.1). Imposing identifying restrictions can be viewed

as restricting the set of feasible Q′s to lie in a subspace Q of O(n), so that the identified set of A0

is
{
A0 = Q′Σ−1

tr : Q ∈ Q
}

and the corresponding identified set of η is:

ISη(φ) = {η (φ,Q) : Q ∈ Q} . (4.8)

In the following we characterize the subspace Q under common types of identifying restrictions.

4.2 Identifying Restrictions

4.2.1 Under-identifying Zero Restrictions

Examples of under-identifying zero restrictions typically used in the literature are restrictions on

some off-diagonal elements of A0, on the lagged coefficients {Al : l = 1, . . . p}, on contemporaneous

impulse responses IR0 = A−1
0 , and on the cumulative long-run responses CIR∞ in (4.6).
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All these restrictions can be viewed as linear constraints on the columns of Q. For example:

((i, j) -th element of A0) = 0 ⇐⇒
(
Σ−1
tr ej

)′
qi = 0, (4.9)

((i, j) -th element of Al) = 0 ⇐⇒
(
Σ−1
tr Blej

)′
qi = 0,(

(i, j) -th element of A−1
0

)
= 0 ⇐⇒

(
e′iΣtr

)
qj = 0,

((i, j) -th element of CIR∞) = 0 ⇐⇒

[
e′i

∞∑
h=0

Ch (B) Σtr

]
qj = 0.

We can thus represent a collection of zero restrictions in the general form:

F (φ,Q) ≡


F1 (φ) q1

F2 (φ) q2

...

Fn (φ) qn

 = 0, (4.10)

where Fi (φ) is an fi × n matrix. Each row in Fi (φ) corresponds to the coefficient vector of a zero

restriction that constrains qi as in (4.9), and Fi (φ) stacks all the coefficient vectors that multiply

qi into a matrix. Hence, fi is the number of zero restrictions constraining qi. If the zero restrictions

do not constrain qi, Fi(φ) does not exist and fi = 0.

In order to implement our method, one must first order the variables in the model.

Definition 3 (Ordering of Variables). Order the variables in the SVAR so that the number

of zero restrictions fi imposed on the i-th column of Q (i.e., the rows of Fi (φ) in (4.10)) satisfy

f1 ≥ f2 ≥ · · · ≥ fn ≥ 0. In case of ties, if the impulse response of interest is that to the j-th

structural shock, order the j-th variable first. That is, set j = 1 when no other column vector has a

larger number of restrictions than qj. If j ≥ 2, then order the variables so that fj−1 > fj.
19

Rubio-Ramirez et. al. (2010) show that, under regularity assumptions, a necessary and sufficient

condition for point identification is that fi = n− i for all i = 1, . . . , n. Here we consider restrictions

that make the SVAR set-identified because

fi ≤ n− i for all i = 1, . . . , n, (4.11)

with strict inequality for at least one i ∈ {1, . . . , n}.20

19Our assumption for the ordering of the variables pins down a unique j, while it does not necessarily yield a unique

ordering for the other variables if some of them admit the same number of constraints. However, the condition for

the convexity of the identified set for the impulse responses to the j-th structural shock that we provide in Appendix

B is not affected by the ordering of the other variables as long as the fi’s are in decreasing order.
20The class of under-identified models considered here does not exhaust the universe of all possible non-identified

SVARs, since there exist models that do not satisfy (4.11), but for which the structural parameter is not globally

identified for some values of the reduced-form parameter. For instance, in the example in Section 4.4 of Rubio-Ramı́rez

et al. (2010), with n = 3 and f1 = f2 = f3 = 1, the structural parameter is locally, but not globally, identified. For

another example, the zero restrictions in page 77 of Christiano et al. (1999) correspond to a case with n = 3 and

f1 = f2 = f3 = 1 where even local identification fails. These cases are ruled out by condition (4.11).
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The following example illustrates how to order the variables in order to satisfy Definition 3.

Example 1. Consider a SVAR for (πt, yt,mt, it)
′, where πt is inflation, yt is (detrended) real GDP,

mt is the (detrended) real money stock and it is the nominal interest rate. Consider the following

under-identifying restrictions imposed on A−1
0 ,

uπ,t

uy,t

um,t

ui,t

 =


a11 a12 0 0

a21 a22 0 0

a31 a32 a33 a34

a41 a42 a43 a44



επ,t

εy,t

εm,t

εi,t

 . (4.12)

Let the objects of interest be the impulse responses to εi,t (a monetary policy shock). Let
[
qπ, qy, qm, qi

]
be a 4× 4 orthonormal matrix. By (4.9), the imposed restrictions imply two restrictions on qm and

two restrictions on qi. An ordering consistent with Definition 3 is (it,mt, πt, yt)
′, and the corre-

sponding numbers of restrictions are (f1, f2, f3, f4) = (2, 2, 0, 0) with j = 1. The restrictions in this

example satisfy (4.11). If instead the objects of interest are the impulse responses to εy,t (interpreted

as a demand shock), order the variables as (it,mt, yt, πt) and let j = 3.

4.2.2 Sign Restrictions

Sign restrictions could be considered alone or in addition to zero restrictions. If there are zero

restrictions, we maintain the order of the variables as in Definition 3. If there are only sign

restrictions, we order first the variable whose structural shock is of interest, i.e., j = 1. Suppose

there are sign restrictions on the responses to the j-th structural shock. Sign restrictions are linear

constraints on the columns of Q: Shj (φ) qj ≥ 0,21 where Shj (φ) ≡ DhjCh (B) Σtr is an shj × n
matrix, and Dhj is an shj × n matrix that selects the sign-restricted responses from the n × 1

impulse-response vector Ch (B) Σtrqj . The nonzero elements of Dhj equal 1 or −1 depending on

whether the corresponding impulse responses are positive or negative.

Stacking Shj (φ) over multiple horizons gives the set of sign restrictions on the responses to the

j-th shock as

Sj (φ) qj ≥ 0, (4.13)

where Sj (φ) is a
(∑h̄

h=0 shj

)
× n matrix Sj (φ) =

[
S0j (φ)′ , . . . , Sh̄j (φ)

]′
, where 0 ≤ h̄ ≤ ∞ is

the maximal horizon in the impulse-response analysis. If there are no sign restrictions on the h̃-th

horizon responses, h̃ ∈ {0, . . . , h̄}, sh̃j = 0 and Sh̃j (φ) is not present in Sj (φ).

Denote by IS ⊂ {1, 2, . . . , n} the set of indices such that j ∈ IS if some of the impulse responses

to the j-th structural shock are sign-constrained. The set of all the sign restrictions can be expressed

21In this section, for a vector y = (y1, . . . , ym)′, y ≥ 0 means yi ≥ 0 for all i = 1, . . . ,m, and y > 0 means yi ≥ 0

for all i = 1, . . . ,m and yi > 0 for some i ∈ {1, . . . ,m}.
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as Sj (φ) qj ≥ 0, for j ∈ IS , or, as a shorthand notation, as

S(φ,Q) ≥ 0. (4.14)

Note that the sign restrictions do not have to be limited to the impulse responses. Since

A′0 =
(
Σ−1
tr

)′
Q and A′l = B′l

(
Σ−1
tr

)′
Q, l = 1, . . . , p, any sign restrictions on the j-th row of A0 or

Al take the form of linear inequalities for qj , so they could be appended to Sj (φ) in (4.13).

4.3 The Impulse-Response Identified Set

The identified set for the impulse response in the presence of under-identifying zero restrictions and

sign restrictions is given by:

ISη (φ|F, S) = {η (φ,Q) : Q ∈ Q (φ|F, S)} , (4.15)

where Q (φ|F, S) is the set of Q’s that jointly satisfy the sign restrictions (4.14), the zero restrictions

(4.10) and the sign normalizations (4.3),

Q (φ|F, S) =
{
Q ∈ O(n) : S(φ,Q) ≥ 0, F (φ,Q) = 0, diag

(
Q′Σ−1

tr

)
≥ 0

}
. (4.16)

Proposition B.1 below shows that, unlike when there are only zero restrictions, when there are sign

restrictions Q (φ|F, S) can be empty, in which case the identified set of η is defined as an empty

set.

4.4 Multiple Priors in SVARs

Let π̃φ be a prior for the reduced-form parameter. Since the identifying restrictions can be observa-

tionally restrictive, we ensure that the prior for φ is consistent with Assumption 1 (i) by trimming

the support of π̃φ as

πφ ≡
π̃φ1 {Q (φ|F, S) 6= ∅}
π̃φ ({Q (φ|F, S) 6= ∅})

, (4.17)

where {φ ∈ Φ : Q (φ|F, S) 6= ∅} is the set of reduced-form parameters that yields nonempty identi-

fied sets for any structural parameters or the impulse responses.

A joint prior for θ = (φ,Q) ∈ Φ×O(n) that has φ-marginal πφ can be expressed as πθ = πQ|φπφ,

where πQ|φ is supported only onQ (φ|F, S). Since (A0, A1, . . . , Ap) and η are functions of θ = (φ,Q),

πθ induces a unique prior for the structural parameters and the impulse responses. Conversely, a

prior for (A0, A1, . . . , Ap) that incorporates the sign normalizations induces a unique prior for πθ.

While the prior for φ is updated by the data, the conditional prior πQ|φ is not updated.

Under point identification the restrictions pin down a unique Q (i.e., Q (φ|F, S) is a singleton),

in which case πQ|φ is degenerate and gives a point mass at such Q. Specifying πφ thus suffices to
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induce a single posterior for the structural parameters and for the impulse responses. In contrast, in

the set-identified case where Q (φ|F, S) is non-singleton for φ’s with a positive measure, specifying

only πφ cannot yield a single posterior. To obtain a single posterior one would need to specify

πQ|φ, which is supported only on Q (φ|F, S) at each φ ∈ Φ. This is the standard Bayesian approach

adopted by the vast majority of the empirical literature using set-identified SVARs (e.g., Uhlig

(2005)), and its potential pitfalls have been discussed by Baumeister and Hamilton (2015).22

The robust Bayesian procedure in this paper does not require specifying a prior for πQ|φ, but

considers the class of all priors πQ|φ. In the current SVAR application, the set of priors introduced

in Definition 2 can be expressed as

ΠQ|φ =
{
πQ|φ : πQ|φ (Q (φ|F, S)) = 1, πφ-almost surely

}
. (4.18)

Combining ΠQ|φ with the posterior for φ generates the class of posteriors for θ = (φ,Q),

Πθ|Y =
{
πθ|Y = πQ|φπφ|Y : πQ|φ ∈ ΠQ|φ

}
. (4.19)

Marginalizing these posteriors to the impulse response η yields the class of posteriors (2.4). In the

current notation for SVARs,

Πη|Y ≡
{
πη|Y (·) =

∫
πQ|Y (η (φ,Q) ∈ ·) dπφ|Y : πQ|Y ∈ ΠQ|Y

}
. (4.20)

4.5 Set of Posterior Means and Robust Credible Region

Applying Theorem 2 to the impulse response (scalar), we obtain the set of posterior means:[∫
Φ
`(φ)dπφ|Y ,

∫
Φ
u (φ) dπφ|Y

]
,

where `(φ) = inf {η (φ,Q) : Q ∈ Q (φ|F, S)} and u (φ) = sup {η (φ,Q) : Q ∈ Q (φ|F, S)}. Section 5

discusses computation of `(φ) and u(φ).

The smallest robust credible region with credibility α for the impulse response can be computed

using draws of [`(φ), u(φ)], φ ∼ πφ|Y and applying Proposition 1. It is interpreted as the shortest

interval estimate for the impulse response η, such that the posterior probability put on the interval

is greater than or equal to α uniformly over the posteriors in the class (4.20).

4.6 Verifying the Assumptions for Frequentist Validity

To validate the frequentist interpretation of the set of posterior means, Appendix B provides con-

ditions for convexity, continuity, and differentiability of the identified set map ISη(φ|F, S) for the

22Since (φ,Q) and (A0, A1, . . . , Ap) are one-to-one (under the sign normalizations), the difficulty of specifying a

prior for πQ|φ can be equivalently stated as the difficulty of specifying a joint prior for all structural parameters that

is compatible with πφ.
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impulse response. By Theorems 2 and 3 (ii), convexity and continuity of ISη(φ|F, S) as a function

of φ allow us to interpret the set of posterior means as a consistent estimator of the true identified

set. In addition, by Proposition 2, differentiability of the upper and lower bounds of the impulse

response identified set in φ with non-zero derivatives guarantees that the robust credible region is

an asymptotically valid confidence set for the true impulse response identified set.

5 Numerical Implementation

We present an algorithm to numerically approximate the set of posterior means, the robust credible

region and the diagnostic tool discussed in Section 2.6.1 for the case of impulse-response analysis

in SVARs. The algorithm assumes that the variables are ordered according to Definition 3 and any

imposed zero restriction satisfies (4.12).

Matlab code implementing the procedure can be obtained from the authors’ personal websites

or upon request.

Algorithm 1 Let F (φ,Q) = 0 and S(φ,Q) ≥ 0 be the set of identifying restrictions (one or both

of which may be empty), and let η = c′ih (φ) qj∗ be the impulse response of interest.

(Step 1). Specify π̃φ, the prior for the reduced-form parameter φ.23 Estimate a Bayesian reduced-

form VAR to obtain the posterior π̃φ|Y .

(Step 2). Draw φ from π̃φ|Y .24 Given the draw of φ, check whether Q (φ|F, S) is empty by

following the subroutine (Step 2.1) – (Step 2.3) below.

(Step 2.1). Let z1 ∼ N (0, In) be a draw of an n-variate standard normal random variable.

Let q̃1 =M1z1 be the n × 1 residual vector in the linear projection of z1 onto an n × f1 regressor

matrix F1 (φ)′ . For i = 2, 3, . . . , n, run the following procedure sequentially: draw zi ∼ N (0, In)

and compute q̃i = Mizi, where Mizi is the residual vector in the linear projection of zi onto the

n × (fi + i− 1) matrix
[
Fi (φ)′ , q̃1, . . . , q̃i−1

]
. The vectors q̃1, ..., q̃n are orthogonal and satisfy the

equality restrictions.

(Step 2.2). Given q̃1, . . . , q̃n obtained in the previous step, define

Q =

[
sign

((
σ1
)′
q̃1

) q̃1

‖q̃1‖
, . . . , sign

(
(σn)′ q̃n

) q̃n
‖q̃n‖

]
,

where ‖·‖ is the Euclidian metric in Rn. If
(
σi
)′
q̃i is zero for some i, set sign

((
σi
)′
q̃i

)
equal to 1

23π̃φ need not be proper, nor satisfy the condition π̃φ ({φ : Q (φ|F, S) 6= ∅}) = 1 (that is, the prior may assign

positive probability to regions of the reduced-form parameter space that yield an empty set of Q’s satisfying the zero

and sign restrictions).
24Available methods for drawing φ depend on the form of the posterior. For example, given a normal-inverse-

Wishart conjugate prior, φ can be drawn from the normal-inverse-Wishart posterior (see, for example, Arias et al.

(2018)). If the posterior is non-standard, Markov Chain Monte Carlo methods could be used. For the purpose of our

algorithm, all that matters is that φ can be drawn from its posterior.
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or −1 with equal probability. This step imposes the sign normalization that the diagonal elements

of A0 are nonnegative.

(Step 2.3). Check whether Q obtained in (Step 2.2) satisfies the sign restrictions S(φ,Q) ≥ 0.

If so, retain this Q and proceed to (Step 3). Otherwise, repeat (Step 2.1) and (Step 2.2) a maximum

of L times (e.g. L = 3000) or until Q is obtained satisfying S(φ,Q) ≥ 0. If none of the L draws

of Q satisfies S(φ,Q) ≥ 0, approximate Q (φ|F, S) as being empty and return to Step 2 to obtain a

new draw of φ.

(Step 3). Given φ obtained in (Step 2), compute the lower and upper bounds of ISη (φ|S, F ) by

solving the following constrained nonlinear optimization problem:

`(φ) = arg min
Q

c′ih (φ) qj∗ ,

s.t. Q′Q = In, F (φ,Q) = 0,

diag(Q′Σ−1
tr ) ≥ 0, and S(φ,Q) ≥ 0,

and u(φ) = arg maxQ c
′
ih (φ) qj∗ under the same set of constraints.

(Step 4). Repeat (Step 2) – (Step 3) M times to obtain [`(φm), u(φm)], m = 1, . . . ,M .

Approximate the set of posterior means by the sample averages of (`(φm) : m = 1, . . . ,M) and

(u(φm) : m = 1, . . . ,M).

(Step 5). To obtain an approximation of the smallest robust credible region with credibility

α ∈ (0, 1), define d (η, φ) = max {|η − `(φ)| , |η − u(φ)|}, and let ẑα(η) be the sample α-th quantile

of (d(η, φm) : m = 1, . . . ,M). An approximated smallest robust credible region for η is an interval

centered at arg minη ẑα(η) with radius minη ẑα(η).25

(Step 6). The proportion of drawn φ′s that pass Step 2.3 is an approximation of the posterior

probability of having a nonempty identified set, π̃φ|Y ({φ : Q (φ|F, S) 6= ∅}), corresponding to the

diagnostic tool discussed in Section 2.6.1.

Remarks: First, the step of the algorithm drawing orthonormal Q’s subject to zero- and sign

restrictions (Step 2) is common to our approach and the existing standard Bayesian approach of,

for example, Arias et al. (2018). In particular, Step 2.1 is similar to Steps 2 and 3 in Algorithm 2

of Arias et al. (2018), but uses a linear projection instead of their QR decomposition and imposes

different sign normalizations. The Matlab code we provide also offers the option of using a QR

decomposition.26

Second, the optimization step (Step 3) is a non-convex optimization problem and the con-

vergence of gradient-based optimization methods like the one we use in the Matlab code is not

guaranteed. To mitigate this problem, at each draw of φ one can draw multiple values of Q from

25In practice we obtain this interval by grid search using a fine grid over η. The objective function in this problem

is non-differentiable, so gradient-based optimization methods are inappropriate.
26In our experience, the two ways of drawing Q are comparable both in terms of the resulting distribution of Q

and computational cost.
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Q(φ|F, S) to use as starting values in the optimization step, and then take the optimum over the

solutions obtained from the different starting values.

Third, if the zero and sign restrictions restrict only a single column of Q, Steps 2.1–2.3 and 3

can be substituted by an analytical computation of the bounds of the identified set at each draw of

φ, using the result of Gafarov et al. (2018).27 Their paper applies the result at φ̂ in a frequentist

setting, whereas here we apply it at each draw from the posterior of φ. Step 6 can also be replaced

by analytically checking whether the identified set is empty at each draw of φ. This is done by

considering all possible combinations of (n − 1) active restrictions and checking whether any one

of the vectors solving the active restrictions satisfies all the non-active sign restrictions.28 The

advantage of the analytical approach is that we can precisely assess the emptiness of the identified

set even when the set is very narrow, and it is computationally much faster. The advantage of

the numerical optimization approach is that it is applicable even when restrictions are placed on

multiple columns of Q, which is the case whenever the restrictions involve more than one structural

shock.29

Fourth, if there are concerns about the convergence properties of the numerical optimization

step due to, say, a large number of variables and/or constraints, but there are restrictions on

multiple columns of Q (so the analytical approach cannot be applied), one could alternatively use

the following algorithm.

Algorithm 2. In Algorithm 1 replace (Step 3) with the following:

(Step 3’). Iterate (Step 2.1) – (Step 2.3) K times and let
(
Ql : l = 1, . . . , K̃

)
be the draws that

satisfy the sign restrictions. (If none of the draws satisfy the sign restrictions, draw a new φ and

iterate (Step 2.1) – (Step 2.3) again). Let qj∗,k, k = 1, . . . , K̃, be the j∗-th column vector of Qk.

Approximate [`(φ), u(φ)] by [mink c
′
ih (φ) qj∗,k,maxk c

′
ih (φ) qj∗,k].

A downside of this alternative is that the approximated identified set is smaller than ISη (φ|F, S)

at every draw of φ. Nonetheless, the alternative bounds still provide a consistent estimator of the

identified set as the number of draws of Q goes to infinity. Comparing the bounds obtained using

27Given a set of active restrictions, Gafarov et al. (2018) provide an analytical expression for the value functions

of the optimization problems associated with finding the bounds of the identified set. Their algorithm involves con-

sidering each possible combination of active restrictions, computing the associated value function and the (potential)

solution of the optimization problem and checking whether the solution is feasible (i.e. whether it satisfies the non-

active sign restrictions). The bounds of the identified set are then obtained by computing the smallest and largest

values corresponding to feasible solutions across the different combinations of active restrictions.
28In practice, we compute the unit-length vectors in the null space of the matrix containing the (n − 1) active

restrictions using the ‘null’ function in Matlab. Since the null space has dimension one, there are only two unit-length

vectors, which differ only in their signs. We check whether either one of the vectors satisfy the non-active restrictions.

If we can pass this check for at least one combination of (n − 1) active restrictions, we conclude that the identified

set is nonempty. Our Matlab code has an option to implement this procedure. See also Giacomini et al. (2018).
29See footnote 1 in Gafarov, et al. (2018) for references imposing restrictions on multiple structural shocks.
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Algorithms 1 and 2 may also provide a useful check on the convergence properties of the numerical

optimization in Step 3.

Fifth, the measure of the plausibility of the identifying restrictions computed in Step 6 is not

meaningful if there are only zero restrictions, since in this case the identified set is never empty (see

Proposition B.1 in Appendix B) and the data cannot detect violation of the restrictions irrespective

of the choice of π̃φ. With sign restrictions the identified set can be empty for some φ, so if the chosen

π̃φ supports the entire Φ, the data can update the belief about the plausibility of the restrictions.

6 Empirical Application

We illustrate how our method can be used to: (1) perform robust Bayesian inference in SVARs

without specifying a prior for the rotation matrix Q; (2) obtain a consistent estimator of the

impulse-response identified set; and (3) if a prior for Q is available, disentangle the information

introduced by this choice of prior from that solely contained in the identifying restrictions.

The model is the four-variable SVAR used in Granziera et al. (2018), which in turn is based on

Aruoba and Schorfheide (2011). The vector of observables is the federal funds rate (it), real GDP

per capita as a deviation from a linear trend (yt), inflation as measured by the GDP deflator (πt),

and real money balances (mt).
30 The data are quarterly from 1965:1 to 2006:1. The model is:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



it

yt

πt

mt

 = a+
2∑
j=1

Aj


it−j

yt−j

πt−j

mt−j

+


εi,t

εy,t

επ,t

εm,t

 ,

and the impulse response of interest is the output response to a monetary policy shock,
∂yt+h
∂εi,t

,

so j∗ = 1. The sign normalization restrictions (non-negative diagonal elements of the matrix on

the left-hand side) and the assumption that the covariance matrix of the structural shocks is the

identity matrix imply that the output response is with respect to a unit standard deviation positive

(contractionary) monetary policy shock.

We consider different combinations of the following zero and sign restrictions:

(i) a12 = 0: the monetary authority does not respond contemporaneously to output.

(ii) IR0(y, i) = 0: the instantaneous impulse response of output to a monetary policy shock is

zero.

(iii) IR∞(y, i) = 0: the long-run impulse response of output to a monetary policy shock is zero.

30The data are from Frank Schorfheide’s website: https://web.sas.upenn.edu/schorf/. For details on the construc-

tion of the series, see Appendix D from Granziera et al. (2018) and Footnote 5 of Aruoba and Schorfheide (2011).
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(iv) Sign restrictions: following a contractionary monetary policy shock, the responses of inflation

and real money balances are nonpositive on impact and after one quarter (
∂πt+h
∂εi,t

≤ 0 and
∂mt+h
∂εi,t

≤ 0 for h = 0, 1), and the response of the interest rate is nonnegative on impact and

after one quarter (
∂it+h
∂εi,t

≥ 0 for h = 0, 1).

We start from a model that does not impose any identifying restrictions (Model 0). We then

impose different combinations of the restrictions, summarized in Table 1, which all give rise to

set identification. Restrictions (i)–(iii) are zero restrictions that constrain the first column of Q,

so f1 = 1 if only one restriction out of (i)–(iii) is imposed (Models II to IV), and f1 = 2 if two

restrictions are imposed (Models V to VII). No zero restrictions are placed on the remaining columns

of Q, so for all models f2 = f3 = f4 = 0, and the order of the variables satisfies Definition 3.

All models impose the sign restrictions in (iv), which are those considered in Granziera, Moon

and Schorfheide (2017). This implies that Model 1 coincides with their model.

The bottom row of Table 1 reports the posterior plausibility of the imposed restrictions (i.e.

the posterior probability that the identified set is nonempty), computed both numerically and

analytically.31 This measure is close to one for all models.

The prior for the reduced-form parameters, π̃φ, is the improper Jeffreys’ prior, with density

function proportional to |Σ|−
4+1

2 . This implies that the posterior for φ is normal-inverse-Wishart,

from which it is easy to draw. The posterior for φ is nearly identical to the likelihood. In imple-

menting Algorithm 1, we draw φ’s until we obtain 1,000 realizations of the nonempty identified set.

We check for convexity of the identified set at every draw of φ using Proposition B.1 in Appendix

B. The reported results are based on Algorithm 1, considering five starting values as discussed

in the remarks in Section 5.32 Since the prior for φ is the same in all models and the posterior

probabilities of a nonempty identified set are all close to one, the posterior bounds differ across

models mainly due to the different identifying restrictions.

We compare our approach to standard Bayesian inference based on choosing a uniform prior

for Q to assess how this choice of unrevisable prior affects posterior inference. We obtain draws

from the single posterior for the impulse responses by iterating Step (2.1)–(2.3) of Algorithm 1,

and retaining the draws of Q that satisfy the sign restrictions.33

31The numerical computation considers a maximum of 3,000 draws of Q at each draw of φ. The fact that the

posterior plausibility is the same using both numerical and analytical approaches suggests that this number of draws

is sufficient to accurately verify whether the identified set is nonempty.
32The results are visually indistinguishable when obtaining the bounds using the analytical approach discussed

in the remarks in Section 5. Moreover, five initial values appear sufficient to achieve convergence of the numerical

algorithm to the true optimum computed analytically in more than 99% of the draws of φ. As a robustness check,

we implemented Algorithm 2 with K̄ = 50, 000 for Model IV, and found that the widths of the set of posterior means

differ from the widths of those reported in Figure 2 by 0.4% on average.
33In Models 0 and I, this is equivalent to Uhlig (2005), as it obtains draws from the uniform distribution (or Haar

measure) over the space of orthonormal matrices satisfying the sign normalizations and sign restrictions (if any). In
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Table 2 provides the posterior inference results for the output responses at h = 1 (3 months),

h = 10 (2 years and 6 months), and h = 20 (5 years) in each model, for both the robust Bayesian

and the standard Bayesian approach. The table also shows the posterior lower probability that the

impulse response is negative, πη|Y ∗(η < 0), as well as the diagnostic tools from Section 2.4.

Figures 1 and 2 report the set of posterior means for the impulse responses (vertical bars) and

the smallest robust credible region with credibility 90% (continuous line), for the robust Bayesian

approach; for the standard Bayesian approach, they report the posterior mean (dotted line) and

the 90% highest posterior density region (dashed line).34

We can draw several conclusions. First, choosing a uniform (unrevisable) prior for the rotation

matrix can have large effects on posterior inference: in Model I this prior choice is more informative

than the identifying restrictions (cf. the measures of informativeness); in Model III this choice would

lead to the conclusion that the output response is negative for some horizons, whereas the robust

Bayesian lower probability of this event is very low (cf. Figure 1 and the lower probability in Table

2), implying that the conclusion that the output response is negative for some horizons is largely

driven by the unrevisable prior.

Second, all reported 90% robust credible regions contain zero, casting doubts about the in-

formativeness of these under-identifying restrictions. In particular, sign restrictions alone (Model

I) have little identifying power and result in identified set estimates that are too wide to draw

any informative inference about the sign of the impulse response. Adding a single zero restriction

(Models II to IV) makes the identified set estimates substantially tighter, although the identifying

power varies across horizons (cf. the measure of informativeness in Table 2 and Figure 1). Unsur-

prisingly, the restriction on the contemporaneous response (restriction (ii)) is more informative at

short horizons and the long-run restriction (restriction (iii)) is more informative at long horizons.

The zero restriction on A0 (restriction (i)) is informative at both short- and long horizons.

Third, imposing additional zero restrictions (Models V to VII) makes the identifying restrictions

much more informative than the choice of the prior (cf. the measures of informativeness in Table

2) and reduces the gap between the conclusions of standard- and robust Bayesian analysis. The

robust Bayesian analysis further becomes informative for the sign of the output response (cf. the

lower probabilities in Table 2 and Figure 2). Since in these models the identifying restrictions carry

a lot of information and result in narrow identified sets, we can understand how a given inferential

conclusion depends on individual (or small sets of) identifying restrictions. We find that the sign

of the output response crucially depends on which pair of the three zero restrictions (i)-(iii) one

models with both zero and sign restrictions, this is comparable to Arias et al. (2018), aside from the small differences

in the algorithms discussed in Section 5 and the fact that they use a normal-inverse-Wishart prior for the reduced-

form parameter. Using the same normal-inverse-Wishart prior as Arias et al. (2018) gives visually indistinguishable

results in our application.
34These figures summarize the marginal distribution of the impulse response at each horizon, and do not capture

the dependence of the responses across different horizons.
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imposes: in Models V and VII, the response is negative at short-to-medium horizons; in Model V,

the response is positive at short horizons.

Fourth, by comparing the results for Model 1 in Figure 1 to Figure 5 in Granziera et al. (2018),

one can see that the robust Bayesian output is very similar to the estimates of the identified sets

and the frequentist confidence intervals for the same model that are reported in that paper. This

is compatible with the consistency property shown in Theorem 3.

Finally, note that in Models V to VII the estimator of the identified set lies inside the stan-

dard Bayesian credible region. This may seem to contradict the result of Moon and Schorfheide

(2012) that standard Bayesian credible regions (asymptotically) lie inside the true identified set.

A possible reason is that whether the asymptotic result approximates finite-sample behavior de-

pends on the width of the identified set and how accurately it is estimated. When the width of

ISη(φ|F, S) = [`(φ), u(φ)] is small relative to the posterior variances of (` (φ) , u(φ)) , the standard

Bayesian credible region can be as wide as the credible region for ` (φ) or u(φ), because the posterior

of the impulse response is similar to the posterior of `(φ) or u(φ). On the other hand, the set of

posterior means can be tight even for large variances of (` (φ) , u(φ)) as they are affected only by

the means of the posteriors of `(φ) and u(φ). This implies that the standard Bayesian credible

region can be wider than the estimator of the identified set. The relationship between the standard

Bayesian credible region and the smallest robust credible region, on the other hand, stays stable

across the models (see the prior informativeness in Table 2), with the former 20% to 40% shorter

than the latter in all models.

7 Conclusion

We develop a robust Bayesian inference procedure for set-identified models, providing Bayesian

inference that is asymptotically equivalent to frequentist inference about the identified set. The

main idea is to remove the need to specify a prior that is not revised by the data, but allow for

ambiguous beliefs (multiple priors) for the unrevisable component of the prior. We show how to

compute an estimator of the identified set (the set of posterior means) and the smallest robust cred-

ible region that respectively satisfy the properties of consistency and correct frequentist coverage

asymptotically.

Even though the paper focuses on a likelihood-based setting, the framework could in principle be

extended to a semiparametric/moment-conditions setting by letting φ be features of the distribution

of observables (e.g., moments) and g−1(φ) be the collection of structural parameters θ that lead

to the same φ. While most of the analytical results would still hold, it is unclear whether the

identified set would still be sharp, and obtaining the posterior for φ would present challenges, with

no apparent consensus on how to proceed (e.g., adopting a nonparametric Bayesian approach vs. a

quasi-Bayesian approach). In Appendix C we discuss an example of an application of our method
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to a moment-inequality model, but leave a formal extension for future work.

We conclude by summarizing the recommended uses and advantages of our method. First, by

reporting the robust Bayesian output, one can learn what inferential conclusions can be supported

solely by the imposed identifying restrictions and the posterior for the reduced-form parameter.

Even if a user has a credible prior for parameters for which the data are not informative, the robust

Bayesian output will help communicate with other users who may have different priors. Second, by

comparing the output across different sets of identifying restrictions, one can learn and report which

identifying restrictions are crucial in drawing a given inferential conclusion. Third, the procedure

can be a useful tool for separating the information contained in the data from any prior input that

is not revised by the data.

The fact that in practical applications to macroeconomic policy analysis using SVARs the

set of posterior means and the robust credible region may be too wide to draw informative policy

recommendations should not be considered a disadvantage of the method. Wide sets may encourage

the researcher to look for additional credible identifying restrictions and/or to refine the set of priors,

by inspecting how the data are collected, by considering empirical evidence from other studies, and

by turning to economic theory. If additional restrictions are not available, our analysis informs the

researcher about the amount of ambiguity that the policy decision will be subject to. As Manski

(2013) argues, knowing what we do not know is an important premise for a policy decision without

incredible certitude.
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8 Tables and Figures

Table 1: Model Definition and Plausibility of Identifying Restrictions

Restrictions \Model 0 I II III IV V VI VII

(i) a12 = 0 - - x - - x x -

(ii) IR0(y, i) = 0 - - - x - x - x

(iii) IR∞(y, i) = 0 - - - - x - x x

(iv) Sign restrictions - x x x x x x x

π̃φ|Y ({φ : ISη (φ) 6= ∅}) (numerical) 1.0000 1.0000 1.0000 1.0000 0.9950 0.9042 0.9421 0.9728

π̃φ|Y ({φ : ISη (φ) 6= ∅}) (analytical) 1.0000 1.0000 1.0000 1.0000 0.9950 0.9042 0.9421 0.9728

Notes: ‘x’ indicates the restriction is imposed; π̃φ|Y ({φ : ISη (φ) 6= ∅}) is the measure of the plausibility of the

identifying restrictions described in Section 2.6.1, where ‘numerical’ results are obtained using Step 6 in Algorithm 1

(with a maximum of 3,000 draws of Q at each draw of φ) and ‘analytical’ results are obtained using the analytical

approach described in the remarks after Algorithm 1.
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Table 2: Output responses at h = 1, 10, and 20: Standard Bayes (SB) vs. Robust Bayes (RB)

Model 0 Model I

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

SB: posterior mean 0.05 -0.17 -0.15 0.07 -0.14 0.05

SB: 90% credible region [-0.62,0.76] [-0.65,0.27] [-0.58,0.30] [-0.49,0.63] [-0.43,0.14] [-0.26,0.34]

RB: set of posterior means [-0.84,0.85] [-0.68,0.51] [-0.62,0.49] [-0.66,0.80] [-0.42,0.25] [-0.27,0.38]

RB: 90% robust credible region [-0.95,0.95] [-0.88,0.76] [-0.97,0.80] [-0.78,0.92] [-0.62,0.47] [-0.56,0.68]

Lower probability: πη|Y ∗(η < 0)† 0.000 0.000 0.000 0.000 0.013 0.001

Informativeness of restrictions* – – – 0.14 0.44 0.43

Informativeness of prior** 0.27 0.44 0.51 0.34 0.48 0.52

Model II Model III

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

SB: posterior mean 0.08 -0.13 0.07 -0.03 -0.15 0.08

SB: 90% credible region [-0.16,0.33] [-0.41,0.16] [-0.28,0.39] [-0.15,0.08] [-0.43,0.14] [-0.24,0.40]

RB: set of posterior means [-0.18,0.37] [-0.37,0.19] [-0.23,0.36] [-0.11,0.07] [-0.38,0.17] [-0.20,0.35]

RB: 90% robust credible region [-0.33,0.51] [-0.58,0.40] [-0.58,0.59] [-0.20,0.17] [-0.57,0.39] [-0.47,0.60]

Lower probability: πη|Y ∗(η < 0)† 0.000 0.055 0.003 0.130 0.065 0.002

Informativeness of restrictions* 0.67 0.53 0.47 0.89 0.54 0.51

Informativeness of prior** 0.41 0.42 0.43 0.37 0.4 0.39

Model IV Model V

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

SB: posterior mean 0.03 -0.18 0.02 -0.08 -0.15 0.1

SB: 90% credible region [-0.51,0.63] [-0.43,0.01] [-0.22,0.22] [-0.18,0.01] [-0.46,0.10] [-0.19,0.42]

RB: set of posterior means [-0.57,0.67] [-0.32,0.03] [-0.17,0.19] [-0.09,-0.06] [-0.30,0.01] [-0.03,0.24]

RB: 90% robust credible region [-0.73,0.87] [-0.53,0.24] [-0.35,0.40] [-0.19,0.02] [-0.54,0.27] [-0.27,0.60]

Lower probability: πη|Y ∗(η < 0)† 0.016 0.448 0.041 0.866 0.442 0.076

Informativeness of restrictions* 0.27 0.71 0.69 0.98 0.74 0.76

Informativeness of prior** 0.29 0.43 0.41 0.11 0.32 0.3

Model VI Model VII

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

SB: posterior mean 0.14 -0.18 0 -0.02 -0.2 0.03

SB: 90% credible region [-0.10,0.40] [-0.41,0.03] [-0.20,0.17] [-0.13,0.10] [-0.40,-0.01] [-0.15,0.19]

RB: set of posterior means [0.02,0.25] [-0.28,-0.07] [-0.07,0.07] [-0.06,0.02] [-0.29,-0.08] [-0.04,0.10]

RB: 90% robust credible region [-0.24,0.42] [-0.47,0.18] [-0.27,0.29] [-0.15,0.14] [-0.50,0.13] [-0.25,0.28]

Lower probability: πη|Y ∗(η < 0)† 0.024 0.734 0.287 0.405 0.749 0.145

Informativeness of restrictions* 0.86 0.83 0.88 0.96 0.82 0.88

Informativeness of prior** 0.25 0.33 0.32 0.21 0.38 0.36

Notes: Robust credible regions reported are smallest ones defined in (2.7). ∗ see eq. (2.8) for definition. The model

informativeness is measured relative to Model 0. ∗∗ see eq. (2.9) for definition. † the posterior lower probability (see

Theorem 1) is computed as the proportion of draws where the upper bound of the identified set estimator is less than

zero (conditional on the set being nonempty).
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Figure 1: Plots of Output Impulse Responses to a Monetary Policy Shock (Models 0–III)
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Notes: See Table 1 for the definition of models. In each figure, the points are the standard Bayesian

posterior means, the vertical bars are the set of posterior means, the dashed curves are the upper and

lower bounds of the standard Bayesian highest posterior density regions with credibility 90%, and the

solid curves are the upper and lower bounds of the robust credible regions with credibility 90%
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Figure 2: Plots of Output Impulse Responses to a Monetary Policy Shock (Models IV–VII)
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Notes: See Figure 1.

Appendix

A Lemmas and Proofs

Lemmas A.1 - A.3 are used to prove Theorem 1, and Lemma A.4 is used to prove Proposition 2.

Lemma A.1 Assume (Θ,A) and (Φ,B) are measurable spaces in which Θ and Φ are complete

separable metric spaces. Under Assumption 1, ISθ (φ) and ISη (φ) are random closed sets induced

by a probability measure on (Φ,B), i.e., ISθ (φ) and ISη (φ) are closed and, for A ∈ A and D ∈ H,

{φ : ISθ (φ) ∩A 6= ∅} ∈ B for A ∈ A,

{φ : ISη (φ) ∩D 6= ∅} ∈ B for D ∈ H.

Proof of Lemma A.1. Closedness of ISθ (φ) and ISη (φ) is implied directly by Assumption 1

(ii) and 1 (iii). To prove the measurability of {φ : ISθ (φ) ∩A 6= ∅}, Theorem 2.6 in Chapter 1 of
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Molchanov (2005) is invoked, which states that, given Θ as a Polish space, {φ : ISθ (φ) ∩A 6= ∅} ∈ B
holds if and only if {φ : θ ∈ ISθ (φ)} ∈ B is true for every θ ∈ Θ. Since ISθ(φ) is an inverse image

of the many-to-one mapping, g : Θ → Φ, {φ : θ ∈ ISθ (φ)} is a singleton for each θ ∈ Θ. Any

singleton set of φ belongs to B, since Φ is a metric space. Hence, {φ : θ ∈ ISθ (φ)} ∈ B holds.

To verify the measurability of {φ : ISη (φ) ∩D 6= ∅}, note that

{φ : ISη (φ) ∩D 6= ∅} =
{
φ : ISθ (φ) ∩ h−1 (D) 6= ∅

}
.

Since h−1 (D) ∈ A, by the measurability of h (Assumption 1 (iii)), the first statement of this

lemma implies {φ : ISη (φ) ∩D 6= ∅} ∈ B.

Lemma A.2 Under Assumption 1, let A ∈ A be an arbitrary fixed subset of Θ. For every πθ|φ ∈
Πθ|φ, 1{ISθ(φ)⊂A}(φ) ≤ πθ|φ(A|φ) holds πφ-almost surely.

Proof of Lemma A.2. For the given subset A, define ΦA
1 = {φ : ISθ(φ) ⊂ A, ISθ(φ) 6= ∅} =

{φ : ISθ(φ) ∩Ac 6= ∅}c. Note that, by Lemma A.1, ΦA
1 belongs to B. To prove the claim, it suffices

to show that∫
B

1ΦA1
(φ)dπφ ≤

∫
B
πθ|φ(A)dπφ

for every πθ|φ ∈ Πθ|φ and B ∈ B. Consider∫
B
πθ|φ(A)dπφ ≥

∫
B∩ΦA1

πθ|φ(A)dπφ = πθ(A ∩ ISθ(B ∩ ΦA
1 )),

where the equality follows by the definition of the conditional probability. By the construction of

ΦA
1 , ISθ(B ∩ ΦA

1 ) ⊂ A holds, so

πθ(A ∩ ISθ(B ∩ ΦA
1 )) = πθ(ISθ(B ∩ ΦA

1 ))

= πφ(B ∩ ΦA
1 )

=

∫
B

1ΦA1
(φ)dπφ.

Thus, the inequality is proven.

Lemma A.3 Under Assumption 1, for each A ∈ A, there exists πAθ|φ∗ ∈ Πθ|φ that achieves the

lower bound of πθ|φ(A) obtained in Lemma A.2, πφ-almost surely.

Proof of Lemma A.3. The claim holds trivially when A = ∅ or A = Θ. We hence consider

proving the claim for A different from ∅ or Θ. Fix A ∈ A and consider subsets of Φ based on the

relationship between ISθ (φ) and A,

ΦA
0 = {φ : ISθ(φ) ∩A = ∅, ISθ(φ) 6= ∅} ,

ΦA
1 = {φ : ISθ(φ) ⊂ A, ISθ(φ) 6= ∅} ,

ΦA
2 = {φ : ISθ(φ) ∩A 6= ∅ and ISθ(φ) ∩Ac 6= ∅} ,
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where each of ΦA
0 , ΦA

1 , and ΦA
2 belongs to B by Lemma A.1. Note that ΦA

0 , ΦA
1 , and ΦA

2 are

mutually disjoint and constitute a partition of g(Θ) ⊂ Φ.

Now, consider a Θ-valued measurable selection ξA (·) defined on ΦA
2 , if nonempty, such that

ξA (φ) ∈ [ISθ (φ) ∩Ac] holds for πφ-almost every φ ∈ ΦA
2 . Such measurable selection ξA (φ) can be

constructed, for instance, by ξA (φ) = arg maxθ∈ISθ(φ)∩Aε d (θ,A), where d (θ,A) = infθ′∈A
∥∥θ − θ′∥∥

and Aε = {θ : d (θ,A) ≤ ε} is the closed ε-enlargement of A (see Theorem 2.27 in Chapter 1 of

Molchanov (2005) for B-measurability of such ξA (φ)). If ΦA
2 is empty, we do not need to construct

ξA(·) and the construction of conditional probability distribution πAθ|φ∗ shown below remains valid.

Let us pick an arbitrary conditional probability distribution from the class πθ|φ ∈ Πθ|φ and

construct another conditional probability distribution πAθ|φ∗ as, for Ã ∈ A,

πAθ|φ∗

(
Ã
)

=

 πθ|φ

(
Ã
)

for φ ∈ ΦA
0 ∪ ΦA

1 ,

1{ξA(φ)∈Ã}(φ) for φ ∈ ΦA
2 .

It can be checked that πAθ|φ∗ (·) is a probability measure on (Θ,A): πθ∗ satisfies πθ|φ∗ (∅) = 0,

πθ|φ∗ (Θ) = 1, and is countably additive. Furthermore, πAθ|φ∗ belongs to Πθ|φ because πAθ|φ∗ (ISθ (φ)) =

1 holds, πφ a.s., by the construction of ξA (φ). With the thus-constructed πAθ|φ∗ and an arbitrary

subset B ∈ B, consider∫
B
πAθ|φ∗(A)dπφ =

∫
B
πAθ|φ∗(A ∩ ISθ (φ))dπφ

=

∫
B∩ΦA0

πAθ|φ∗(A ∩ ISθ (φ))dπφ

+

∫
B∩ΦA1

πAθ|φ∗(A ∩ ISθ (φ))dπφ +

∫
B∩ΦA2

πAθ|φ∗(A ∩ ISθ (φ))dπφ

= 0 +

∫
B∩ΦA1

πAθ|φ∗(A ∩ ISθ (φ))dπφ + 0

=

∫
B

1ΦA1
(φ)dπφ,

where the first equality follows by πAθ|φ∗ ∈ Πθ|φ, the third equality follows since A ∩ ISθ (φ) = ∅ for

φ ∈ ΦA
0 and πAθ|φ∗(A∩ISθ (φ)) = 1{ξA(φ)∈A} (φ) = 0 for φ ∈ ΦA

2 , and the fourth equality follows since

πAθ|φ∗(A ∩ ISθ (φ)) = 1 for φ ∈ ΦA
1 . Since B ∈ B is arbitrary, this implies that πAθ|φ∗ (A) = 1ΦA1

(φ),

πφ-almost surely, implying that πAθ|φ∗ achieves the lower bound shown in Lemma A.2.

Proof of Theorem 1. We first show the special case of η = θ. The posterior of θ is given by

(see equation (2.2))

πθ|Y (A) =

∫
Φ
πθ|φ(A)dπφ|Y (φ).
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By the monotonicity of the integral, πθ|Y (A) is minimized over the prior class by plugging in the

attainable pointwise lower bound of πθ|φ(A) into the integrand. By Lemmas A.2 and A.3, the

attainable pointwise lower bound of πθ|φ(A) is given by 1{ISθ(φ)⊂A}(φ). Hence,

πθ|Y ∗(A) =

∫
Φ

1{ISθ(φ)⊂A}(φ)dπφ|Y (φ) = πφ|Y ({φ : ISθ(φ) ⊂ A}).

The posterior upper probability follows by its conjugacy property with the lower probability,

π∗θ|Y (A) = 1− πθ|Y ∗(Ac).
By repeating the argument in the proof of Lemma A.3, it can be shown that this upper proba-

bility can be attained by setting the conditional prior as, for Ã ∈ A,

πA∗θ|φ

(
Ã
)

=

 πθ|φ

(
Ã
)

for φ ∈ ΦA
0 ∪ ΦA

1 ,

1{ξAc (φ)∈Ã}(φ) for φ ∈ ΦA
2 ,

where ξA
c

(·) is a Θ-valued measurable selection defined for φ ∈ ΦA
2 such that ξA

c
(φ) ∈ [ISθ (φ) ∩A]

holds for πφ-almost every φ ∈ ΦA
2 . Consider mixing these extreme conditional priors, πλθ|φ ≡ λπ

A
θ|φ∗+

(1−λ)πA∗θ|φ, λ ∈ [0, 1]. Note that πλθ|φ belongs to Πθ|φ for any λ ∈ [0, 1] since πλθ|φ (ISθ(φ)) = 1. The

posterior probability for {θ ∈ A} with conditional prior πλθ|φ is the λ-convex combination of the

posterior lower and upper probabilities, λπθ|Y ∗(A) + (1 − λ)π∗θ|Y (A). Since λ ∈ [0, 1] is arbitrary,

the set of the posterior probabilities for {θ ∈ A} is the connected interval
[
πθ|Y ∗(A), π∗θ|Y (A)

]
.

For the general case η = h(θ), the expression of the posterior lower probability follows from

πη|Y ∗(D) = πθ|Y ∗(h
−1(D))

= πφ|Y (
{
φ : ISθ(φ) ⊂ h−1(D)

}
)

= πφ|Y ({φ : ISη(φ) ⊂ D}). (A.1)

The expression of the posterior upper probability follows again by its conjugacy with the lower

probability. The convexity of the set of πη|Y (D) follows by setting A = h−1 (D) in the connected

set for πθ|Y (A) ∈
[
πθ|Y ∗(A), π∗θ|Y (A)

]
established above.

Proof of Theorem 2. At each φ in the support of πφ|Y , note that the set
{
Eη|φ (η) : πη|φ (ISη(φ)) = 1

}
agrees with co (ISη(φ)). Hence,

(
Eη|φ (η) : φ ∈ g (Θ)

)
pinned down by selecting πθ|φ from Πθ|φ can

be viewed as a selection from co (ISη). Since the prior class Πθ|φ does not constrain choices of

πθ|φ over different φ’s, priors in Πθ|φ can exhaust any selection of co (ISη). Having assumed that

co (ISη(φ)) is a πφ|Y -integrable random closed set, the set
{
Eη|Y (η) = Eφ|Y

[
Eη|φ(η)

]
: πθ|φ ∈ Πθ|φ

}
agrees with EAφ|Y [co (ISη)] by the definition of the Aumann integral. Its convexity follows by the

assumption that ISη(φ) is closed and integrable and Theorem 1.26 of Molchanov (2005).

Proof of Proposition 1. Let Cr(ηc) denote the closed interval centered at ηc with radius r. The

event {ISη(φ) ⊂ Cr(ηc)} happens if and only if {d(ηc, ISη(φ)) ≤ r}.
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So, rα(ηc) ≡ inf
{
r : πφ|Y ({φ : d(ηc, ISη(φ)) ≤ r}) ≥ α

}
is the radius of the smallest interval cen-

tered at ηc that contains random sets ISη(φ) with a posterior probability of at least α. Therefore,

finding a minimizer of rα(ηc) in ηc is equivalent to searching for the center of the smallest interval

that contains ISη(φ) with posterior probability α. The attained minimum of rα(ηc) is its radius.

Proof of Theorem 3. (i) Let ε > 0 be arbitrary. Since Assumption 2 (i) implies that ISη (·) is

compact-valued in an open neighborhood of φ0, continuity of the identified set correspondence at

φ0 is equivalent to continuity of ISη(·) at φ0 in terms of the Hausdorff metric (see, e.g., Proposition

5 in Chapter E of Ok (2007)). This implies that there exists an open neighborhood G of φ0 such

that dH (IS (φ) , IS (φ0)) < ε holds for all φ ∈ G. Consider

πφ|Y T {φ : dH (IS(φ), IS(φ0)) > ε} = πφ|Y T ({φ : dH (IS(φ), IS(φ0)) > ε} ∩G)

+πφ|Y T ({φ : dH (IS(φ), IS(φ0)) > ε} ∩Gc)

≤ πφ|Y T (Gc) ,

where the last line follows because {φ : dH (ISη(φ), ISη(φ0)) > ε} ∩ G = ∅ by the construction of

G. The posterior consistency of φ yields limT→∞ πφ|Y T (Gc) = 0, p(Y∞|φ0)-a.s.

(ii) Let s(co(ISη), u) = supη∈co(ISη(φ)) η
′u, u ∈ Sk−1, be the support function of closed and

convex set co (ISη), where Sk−1 is the unit sphere in Rk. Let ε > 0 be arbitrary and let G be

an open neighborhood of φ0 such that dH (ISη (φ) , ISη (φ0)) < ε holds for all φ ∈ G. Under

Assumption 2 (iii), EA
φ|Y T [co (ISη(φ))] is bounded, so, using the support function, the Hausdorff

distance between EA
φ|Y T [co (ISη(φ))] and co (ISη(φ0)) can be bounded above by

dH

(
EAφ|Y T [co (ISη(φ))] , co (ISη(φ0))

)
= sup

u∈Sk−1

∣∣∣s(EAφ|Y T [co (ISη(φ))] , u
)
− s (co (ISη(φ0)) , u)

∣∣∣
= sup

u∈Sk−1

∣∣∣Eφ|Y T [s (co (ISη(φ)) , u)− s (co (ISη(φ0)) , u)]
∣∣∣

≤ sup
u∈Sk−1

∣∣∣Eφ|Y T [{s (co (ISη(φ)) , u)− s (co (ISη(φ0)) , u)} · 1G (φ)]
∣∣∣

+ sup
u∈Sk−1

∣∣∣Eφ|Y T [{s (co (ISη(φ)) , u)− s (co (ISη(φ0)) , u)} · 1Gc (φ)]
∣∣∣

≤ Eφ|Y T [dH (co (ISη(φ)) , co (ISη(φ0))) · 1G (φ)]

+ sup
u∈Sk−1

{
Eφ|Y T

[
|s (co (ISη(φ)) , u)− s (co (ISη(φ0)) , u)|1+δ

]} 1
1+δ
[
πφ|Y T (Gc)

] δ
1+δ

≤ ε+ sup
u∈Sk−1

{
2δEφ|Y T

[
s (co (ISη(φ)) , u)1+δ + s (co (ISη(φ0)) , u)1+δ

]} 1
1+δ
[
πφ|Y T (Gc)

] δ
1+δ

≤ ε+ 2
δ

1+δ

[
Eφ|Y T

[
sup

η∈ISη(φ)
‖η‖1+δ

]
+ 2 sup

η∈ISη(φ0)
‖η‖1+δ

] 1
1+δ

·
[
πφ|Y T (Gc)

] δ
1+δ

,
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where the first line uses the identity dH(D,D′) = supu∈Sk−1 |s(D,u)− s(D′, u)|, that holds for any

convex and compact sets D, D′ ⊂ Rk, the second line uses the identity s
(
EA
φ|Y T [co (ISη(φ))] , u

)
=

Eφ|Y T [s (co (ISη(φ)) , u)], that is valid for a non-atomic posterior for φ (see, e.g., Theorem 1.26 in

Chap. 2 of Molchanov (2005)), the fourth line applies Hölder’s inequality to the term involving

1Gc(φ), the fifth line follows by noting that dH (co (ISη(φ)) , co (ISη(φ0))) < ε on G and

|a− b|1+δ ≤ (|a|+ |b|)1+δ ≤ 2δ(|a|1+δ + |b|1+δ),

and the final line follows since supu∈Sk−1 s (co (ISη(φ)) , u)1+δ = supη∈ISη(φ) ‖η‖
1+δ . By Assump-

tions 2 (i), (iii), and posterior consistency of πφ|Y T , we have supη∈ISη(φ0) ‖η‖
1+δ <∞,

lim supT→∞Eφ|Y T
[
supη∈ISη(φ) ‖η‖

1+δ
]
< ∞, and limT→∞ πφ|Y T (Gc) = 0, p (Y∞|φ0)-a.s. Hence,

the second term in (A.2) converges to zero p (Y∞|φ0)-a.s. Since ε is arbitrary, the claim in (ii)

follows.

Proof of Theorem 4. Since Cα is convex by Assumption 3 (ii), ISη(φ) ⊂ Cα holds if and only

if s (ISη(φ), q) ≤ s (Cα, q) for all q ∈ Sk−1. Therefore, we have

πφ|Y T (ISη(φ) ⊂ Cα) = πφ|Y T (s (ISη(φ), ·) ≤ s (Cα, ·))

= πφ|Y T
(
Xφ|Y T (·) ≤ ĉT (·)

)
,

and robust credible region Cα with α posterior probability of covering ISη(φ) satisfies

πφ|Y T
(
Xφ|Y T (·) ≤ ĉT (·)

)
≥ α,

for all Y T and T = 1, 2, . . . . Similarly, the frequentist coverage probability of Cα for ISη(φ0) can

be expressed as

PY T |φ0
(ISη(φ0) ⊂ Cα) = PY T |φ0

(
XY T |φ0

(·) ≤ ĉT (·)
)
.

Let PX be the probability law of limiting stochastic process X (·) introduced in Assumption 4 (i)

and (ii). In what follows, our aim is to prove the following convergence claims: under Assumption

4,

(A)
∣∣∣πφ|Y T (Xφ|Y T (·) ≤ ĉT (·)

)
− PX (X (·) ≤ ĉT (·))

∣∣∣ → 0, as T →∞, pY∞|φ0
-a.s., and

(B)
∣∣∣PY T |φ0

(
XY T |φ0

(·) ≤ ĉT (·)
)
− PX (X (·) ≤ ĉT (·))

∣∣∣ → 0 in pY∞|φ0
-probability as T →∞.

Since πφ|Y T
(
Xφ|Y T (·) ≤ ĉ (·)

)
≥ α, convergence (A) implies lim infT→∞ PX (X (·) ≤ ĉT (·)) ≥ α,

pY∞|φ0
-a.s. Then, convergence (B) in turn implies our desired conclusion,

lim inf
T→∞

PY T |φ0

(
XY T |φ0

(·) ≤ ĉT (·)
)
≥ α,
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as otherwise it contradicts lim infT→∞ PX (X (·) ≤ ĉT (·)) ≥ α, pY∞|φ0
-a.s. In the case that ĉT is

chosen to satisfy πφ|Y T
(
Xφ|Y T (·) ≤ ĉ (·)

)
= α, the convergences (A) and (B) imply

lim
T→∞

PY T |φ0

(
XY T |φ0

(·) ≤ ĉT (·)
)

= α.

To show (A), we note that any weakly converging sequence of stochastic processes in C
(
Sk−1,R

)
is tight (see, e.g., Lemma 16.2 and Theorem 16.3 in Kallenberg (2001)). Hence, Assumption 4 (i)

implies that for almost every sampling sequence of Y T , there exists a class of bounded functions

F ⊂ C
(
Sk−1,R

)
such that F contains {ĉT (·)} for all large T . Furthermore, we can set F to be

constrained to equicontinuous functions because the support functions for bounded sets are Lipshitz

continuous.

To prove convergence (A), it suffices to show

sup
c∈F
|PXT (XT (·) ≤ c(·))− PX (X (·) ≤ c (·))| → 0, as T →∞ (A.2)

for any weakly converging stochastic processes, XT  X. Suppose this claim does not hold. Then,

there exists a subsequence T ′ of T , a sequence of functions {cT ′ (·) ∈ F} , and ε > 0 such that∣∣PXT ′ (XT ′ (·) ≤ cT ′(·))− PX (X (·) ≤ cT ′ (·))
∣∣ > ε (A.3)

holds for all T ′. By Assumption 4 (iv) and the Arzelà-Ascoli theorem,35, F is relatively compact.

Hence, there exists a subsequence T ′′ of T ′ such that cT ′′ converges to c∗ ∈ C
(
Sk−1,R

)
(in the

supremum metric) as T ′′ → ∞. By Assumption 4 (iii), PX (X (·) ≤ cT ′′ (·)) → PX (X (·) ≤ c∗ (·))
as T ′′ → ∞. On the other hand, by the assumption of XT  X and the continuous mapping

theorem, XT ′′ − cT ′′  X − c∗. Hence, Assumption 4 (iii) and the Portmanteau theorem36 imply

that PXT ′′ (XT ′′ (·)− cT ′(·) ≤ 0) → PX (X (·)− c∗ (·) ≤ 0) as T ′′ → ∞. Combining these, we have

shown
∣∣PXT ′′ (XT ′′ (·) ≤ cT ′′(·))− PX (X (·) ≤ cT ′′ (·))

∣∣ → 0 along T ′′. This contradicts (A.3), so

the convergence (A.2) holds.

Next, we show convergence (B). By Assumption 4 (iv), XY T |φ0
− ĉT  Z − c. Since Z

is distributed identically to X by Assumption 4 (ii) and X is continuously distributed in the

sense of Assumption 4 (iii), an application of the Portmanteau theorem gives convergence of

PY T |φ0

(
XY T |φ0

(·) ≤ ĉT ′(·)
)

to PZ (Z (·) ≤ c (·)) = PX (X (·) ≤ c (·)). On the other hand, with

Assumption 4 (iii) and (iv), the continuous mapping theorem implies PX (X (·) ≤ ĉ (·)) →p
Y T |φ0

PX (X (·) ≤ c (·)). Combining these two convergence claims, convergence (B) is obtained.

35See, e.g., pp. 264 of Ok (2007).
36See, e.g., Theorem 4.25 of Kallenberg (2001).
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Lemma A.4 Let LevT and Lev be the α-level sets of JT (·) and J (·), respectively,

LevT =
{
c ∈ R2 : JT (c) ≥ α

}
,

Levα =
{
c ∈ R2 : J (c) ≥ α

}
.

Define a distance from point c ∈ R2 to set F ⊂ R2 by d (c, F ) ≡ infc′∈F ‖c− c′‖, where ‖·‖ is

the Eucledean distance. Under Assumption 2, (a) d (c, LevT ) → 0 in pY T |φ-probability for every

c ∈ Lev, and (b) d (cT , Lev) → 0 in pY T |φ-probability for every {cT : T = 1, 2, . . . } sequence of

measurable selections of LevT .

Proof of Lemma A.4. To prove (a), suppose that the conclusion is false. That is, there exist

subsequence T ′, ε, δ > 0, and c = (c`, cu) ∈ Lev such that PY T ′ |φ0
(d (c, LevT ′) > ε) > δ for all

T ′. The exvent d (c, LevT ′) > ε implies JT ′
(
c` + ε

2 , cu + ε
2

)
< α since

(
c` + ε

2 , cu + ε
2

)
/∈ LevT ′ .

Therefore, it holds that

PY T ′ |φ0

(
JT ′
(
c` +

ε

2
, cu +

ε

2

)
< α

)
> δ (A.4)

along T ′. Under Assumption 4 (i), however,

JT ′
(
c` +

ε

2
, cu +

ε

2

)
− J

(
c` +

ε

2
, cu +

ε

2

)
→ 0, pY∞|φ0

-a.s.,

This convergence combined with strict monotonicity of J (·) implies

J
(
c` +

ε

2
, cu +

ε

2

)
> J (c) ≥ α

Hence, PY T ′ |φ0

(
JT ′
(
c` + ε

2 , cu + ε
2

)
> α

)
→ 1 as T ′ →∞, but this contradicts (A.4).

To prove (b), suppose again that the conclusion is false. This implies there exist subsequence T ′,

ε, δ > 0, and a sequence of (random) measurable selections cT = (c`,T , cu,T )′ from LevT such that

PY T ′ |φ0
(d (cT ′ , Lev) > ε) > δ for all T ′. Since d (cT ′ , Lev) > ε implies J

(
c`,T ′ +

ε
2 , cu,T ′ +

ε
2

)
< α,

it holds

PY T ′ |φ0

(
J
(
c`,T ′ +

ε

2
, cu,T ′ +

ε

2

)
< α

)
> δ (A.5)

along T ′. To find contradiction, note that

J
(
c`,T ′ +

ε

2
, cu,T ′ +

ε

2

)
=

[
J
(
c`,T ′ +

ε

2
, cu,T ′ +

ε

2

)
− J (cT ′)

]
+ [J (cT ′)− JT (cT ′)] + JT (cT ′)

> [J (cT ′)− JT ′ (cT ′)] + α→ α

in pY T ′ |φ0
-probability, where the strict inequality follows from that J (·) is strictly monotonic and

JT (cT ′) ≥ α, and the convergence in probability in the last line follows from the continuity of

J (·) and supc∈R2 |J (c)− JT ′ (c)| → 0 for any sequence of distributions JT ′ converging weakly to
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a distribution with continuous CDF (see, e.g., Lemma 2.11 in van der Vaart (1998)). This in turn

implies PY T ′ |φ0

(
J
(
c`,T ′ +

ε
2 , cu,T ′ +

ε
2

)
≥ α

)
→ 1 as T ′ →∞, which contradicts (A.5).

Proof of Proposition 2. We first show that Assumption 5 implies Assumption 4 (i) - (iii).

Set aT =
√
T . When k = 1, the domain of the support function of ISη (φ) consists of two points

S0 = {−1, 1} , and the stochastic processes considered in Assumption 4 (i) and (ii) are reduced to

bivariate random variables corresponding to the lower and upper bounds of ISη (φ),

Xφ|Y T =
√
T

 ` (φ)− `
(
φ̂
)

u (φ)− u
(
φ̂
) ,

XY T |φ0
=
√
T

 ` (φ0)− `
(
φ̂
)

u (φ0)− u
(
φ̂
) .

By the delta method, the asymptotic distribution of XY T |φ0
is

XY T |φ0
 N

(
G′φ0

ΣφGφ0

)
,

where Gφ ≡
(
∂`
∂φ(φ), ∂u∂φ(φ)

)
.

For Xφ|Y T , first order mean value expansion at φ̂ leads to

Xφ|Y T = G′
φ̃
·
√
T
(
φ− φ̂

)
,

where φ̃ = λφφ + (1− λφ) φ̂, for some λφ ∈ [0, 1]. Since φ̂ is assumed to be strongly consistent

to φ0 and Assumption 5 (i) implies that φ̃ converges in πφ|Y T -probability to φ̂, pY∞|φ0
-a.s., Gφ̃

converges in πφ|Y T -probability to Gφ0
, pY∞|φ0

-a.s. Combining with
(
φ− φ̂

)
|Y T  N (0,Σφ),

pY∞|φ0
-a.s., we conclude Xφ|Y T  N

(
G′φ0

ΣφGφ0

)
, pY∞|φ0

-a.s. Hence, Assumption 4 (i) and (ii)

follow. Assumption 4 (iii) clearly holds by the properties of the bivariate normal distribution.

Next, we show that C∗α meets Assumption 4 (iv). We represent connected intervals by C =[
`
(
φ̂
)
− c`/

√
T , u

(
φ̂
)

+ cu/
√
T
]
, (c`, cu) ∈ R2. Denote the posterior lower probability of C as a

function of c ≡ (c`, cu)′ ,

JT (c) ≡ πη|Y T (C)

= πφ|Y T

((
−1 0

0 1

)
Xφ|Y T ≤ c

)
.

Denoting the shortest robust credible region as C∗α =
[
`
(
φ̂
)
− ĉ`,T /

√
T , u

(
φ̂
)

+ ĉu,T /
√
T
]
, ĉT ≡

(ĉ`,T , ĉu,T )′ is obtained by

ĉT ∈ arg min
c
{c` + cu}

s.t. JT (c) ≥ α.
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Having shown Assumption 4 (i), Xφ|Y T  X as T →∞, pY∞|φ0
-a.s., holds, let

J (c) ≡ PX

((
−1 0

0 1

)
X ≤ c

)
.

Note that the weak convergence Xφ|Y T  X and continuity of J (·) implies JT (c) → J (c) as

T → ∞, pY∞|φ0
-a.s., for any c ∈R2. Let c∗ = (c∗` , c

∗
u)′ be a solution of the following minimization

problem

c∗ ∈ arg min
c
{c` + cu}

s.t. J (c) ≥ α.

Since {c : J (c) ≥ α} is the upper level set of the bivariate normal CDF, which is strictly convex

and bounded from below, and the objective function is linear in c, c∗ is unique.

In what follows, we prove ĉT→ c∗ in pY T |φ0
-probability as T →∞.

Let KT = arg min {cl + cu : JT (c) ≥ α}, and suppose that ĉT → c∗ in pY T |φ0
-probability is

false. That is, suppose that there exist ε, δ > 0, and subsequence T ′ such that

PY T ′ |φ0
(‖ĉT ′ − c∗‖ > ε) > δ (A.6)

holds for all T ′. Since ĉT ′ is a selection from LevT , Lemma A.4 (b) ensures that there exists a

sequence of selections in Lev, c̃T = (c̃`,T , c̃u,T )′, such that ‖ĉT ′′ − c̃T ′‖ → 0 in pY T ′ |φ0
-probability

along T ′. Consequently, (A.6) implies that an analogous statement holds also for c̃T ′ for all large

T ′. Let f̂T = ĉ`,T + ĉu,T , f̃T = c̃`,T + c̃u,T , and f∗ = c∗` + c∗u. By continuity of the value function,

the claim PY T ′ |φ0
(‖c̃T ′ − c∗‖ > ε) > δ for all large T ′ and c̃T ∈ Lev imply existence of ξ > 0 such

that PY T ′ |φ0

(
f̃T ′ − f∗ > ξ

)
> δ for all large T ′. Also, since ‖ĉT ′′ − c̃T ′‖ → 0 in pY T ′ |φ0

-probability

implies
∣∣∣f̂T ′ − f̃T ′∣∣∣→ 0 in pY T ′ |φ0

-probability, it also holds

PY T ′ |φ0

(
f̂T ′ − f∗ > ξ

)
> δ, (A.7)

for all large T ′.

In order to derive a contradiction, apply Lemma A.4 (a) to construct a sequence čT ′ =(
č`,T ′ , ču,T ′

)
∈ LevT such that ‖čT ′ − c∗‖ → 0 in pY T ′ |φ0

-probability. Then, we have f∗−
(
č`,T ′ + ču,T ′

)
→

0 in pY T ′ |φ0
-probability and, combined with (A.7),

PY T ′ |φ0

(
f̂T ′ −

(
č`,T ′ + ču,T ′

)
> ξ
)
> δ,

for all large T ′. This means that the value of the objective function evaluated at feasible point

čT ′ ∈ LevT ′ is strictly smaller than the value evaluated at ĉT ′ with a positive probability for all

large T ′. This contradicts that ĉT is a minimizer in LevT for all T . This completes the proof for

Assumption 4 (iv).
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B Convexity, Continuity and Differentiability

Notation: The proofs below use the following notation. For given φ ∈ Φ and i = 1, . . . , n, let

f̃i (φ) ≡ rank (Fi (φ)). Since the rank of Fi (φ) is determined by its row rank, f̃i(φ) ≤ fi (φ)

holds. Let F⊥i (φ) be the linear subspace of Rn that is orthogonal to the row vectors of Fi (φ).

If no zero restrictions are placed on qi, we interpret F⊥i (φ) to be Rn. Note that the dimension

of F⊥i (φ) is equal to n − f̃i(φ). We let Hi (φ) be the half-space in Rn defined by the sign

normalization restriction
{
z ∈ Rn :

(
σi
)′
z ≥ 0

}
, where σi is the i-th column vector of Σ−1

tr . Given

linearly independent vectors, A = [a1, . . . , aj ] ∈ Rn×j , denote the linear subspace in Rn that is

orthogonal to the column vectors of A by P(A). Note that the dimension of P(A) is n− j.

B.1 Convexity

The next proposition shows conditions for the convexity of the impulse-response identified set.

Proposition B.1 (Convexity). Let the object of interest be η = c′ih (φ) qj∗, the impulse response

to the j∗-th structural shock, i ∈ {1, 2, . . . , n}, h ∈ {0, 1, 2, . . . }, where the variables are ordered

according to Definition 3.

(I) Suppose there are only zero restrictions of the form (4.10). Assume fi ≤ n − i for all

i = 1, . . . , n. Then, for every i and h, and almost every φ ∈ Φ, the identified set of η is non-empty

and bounded, and it is convex if any of the following mutually exclusive conditions holds:

(i) j∗ = 1 and f1 < n− 1.

(ii) j∗ ≥ 2, and fi < n− i for all i = 1, . . . , j∗ − 1.

(iii) j∗ ≥ 2 and there exists 1 ≤ i∗ ≤ j∗ − 1 such that fi < n − i for all i = i∗ + 1, . . . , j∗ and

[q1, . . . , qi∗ ] is exactly identified, meaning that, for almost every φ ∈ Φ, the constraints
F1 (φ) q1

F2 (φ) q2

...

Fi∗ (φ) qi∗

 = 0

and the sign-normalizations
(
σi
)′
qi ≥ 0, i = 1, . . . , i∗, pin down a unique [q1, . . . , qi∗ ].

37

(II) Consider the case with both zero and sign restrictions, and suppose that sign restrictions

are placed only on the responses to the j∗-th structural shock, i.e., IS = {j∗}.
37If rank(Fi (φ)) = fi for all i = 1, . . . , i∗, and for almost every φ ∈ Φ, a necessary condition for exact identification

of [q1, . . . , qi∗ ] is that fi = n − i for all i = 1, 2, . . . , i∗. One can check if the condition is also sufficient by checking

that Algorithm 1 of Rubio-Ramı́rez et al. (2010) yields a unique set of orthonormal vectors [q1, . . . , qi∗ ] for every φ

randomly drawn from a prior supporting the entire Φ.
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(iv) Suppose the zero restrictions satisfy one of conditions (i) and (ii) in the current proposition.

If there exists a unit-length vector q ∈ Rn such that

Fj∗ (φ) q = 0 and

(
Sj∗ (φ)(
σj
∗)′
)
q > 0, (B.1)

then the identified set of η, ISη(φ|F, S), is nonempty and convex for every i and h.

(v) Suppose that the zero restrictions satisfy condition (iii) in the current proposition. Let

[q1(φ), . . . , qi∗(φ)] be the first i∗-th orthonormal vectors that are exactly identified (see condition

(iii)). If there exists a unit length vector q ∈ Rn such that
Fj∗ (φ)

q′1(φ)
...

q′i∗(φ)

 q = 0 and

(
Sj∗ (φ)(
σj
∗)′
)
q > 0, (B.2)

then the identified set of η, ISη(φ|F, S), is nonempty and convex for every i and h.

Proof of Proposition B.1. The proof refers to Algorithm 1 of Rubio-Ramı́rez et al. (2010),

which we report here for convenience.

Algorithm B.1 (Algorithm 1 in Rubio-Ramı́rez et al. (2010)). Consider a collection of zero

restrictions of the form given by (4.10), where the order of the variables is consistent with f1 ≥
f2 ≥ · · · ≥ fn ≥ 0. Assume fi = n − i for all i = 1, . . . , i∗, and rank(Fi (φ)) = fi for all

i = 1, . . . , i∗, φ-a.s. Let q1 be a unit-length vector satisfying F1(φ)q1 = 0, which is unique up to

sign since rank(F1(φ)) = n − 1 by assumption. Given q1, find orthonormal vectors q2, . . . , qi∗ , by

solving
Fi (φ)

q′1
...

q′i−1

 qi = 0,

successively for i = 2, 3, . . . , i∗. If

rank


Fi (φ)

q′1
...

q′i−1

 = n− 1 for i = 2, . . . , i∗, (B.3)
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and qi, i = 1, . . . , i∗, obtained by this algorithm satisfies
(
σi
)′
qi 6= 0 for almost all φ ∈ Φ, i.e.,

the sign normalization restrictions determine a unique sign for the q′is, then [q1, . . . , qi∗ ] is exactly

identified.38

Consider first the case with only zero restrictions (Case (I)). Fix φ ∈ Φ. Let Q1:i = [q1, . . . , qi],

i = 2, . . . , (n−1), be an n×i matrix of orthonormal vectors in Rn. The set of feasible Q’s satisfying

the zero restrictions and the sign normalizations, Q(φ|F ), can be written in the following recursive

manner,

Q = [q1, . . . , qn] ∈ Q(φ|F )

if and only if Q = [q1, . . . , qn] satisfies

q1 ∈ D1 (φ) ≡ F⊥1 (φ) ∩H1 (φ) ∩ Sn−1,

q2 ∈ D2 (φ, q1) ≡ F⊥2 (φ) ∩H2 (φ) ∩ P(q1) ∩ Sn−1,

q3 ∈ D3 (φ,Q1:2) ≡ F⊥3 (φ) ∩H3 (φ) ∩ P(Q1:2) ∩ Sn−1,

...

qj ∈ Dj

(
φ,Q1:(j−1)

)
≡ F⊥j (φ) ∩Hj (φ) ∩ P(Q1:(j−1)) ∩ Sn−1, (B.4)

...

qn ∈ Dn

(
φ,Q1:(n−1)

)
≡ F⊥n (φ) ∩Hn (φ) ∩ P(Q1:(n−1)) ∩ Sn−1.

where Di

(
φ,Q1:(i−1)

)
⊂ Rn denotes the set of feasible qi’s given Q1:(i−1) = [q1, . . . , qi−1], the

set of (i − 1) orthonormal vectors in Rn preceding i. Nonemptiness of the identified set for

η = cih (φ) qj follows if the feasible domain of the orthogonal vector Di

(
φ,Q1:(i−1)

)
is nonempty at

every i = 1, . . . , n.

Note that by the assumption f1 ≤ n−1, F⊥1 (φ)∩H1 (φ) is the half-space of the linear subspace

of Rn with dimension n − f̃1 (φ) ≥ n − f1 ≥ 1. Hence, D1 (φ) is nonempty for every φ ∈ Φ.

For i = 2, . . . , n, F⊥i (φ) ∩ Hi (φ) ∩ P(Q1:(i−1)) is the half-space of the linear subspace of Rn with

dimension at least

n− f̃i(φ)− dim(P(Q1:(n−1))) ≥ n− fi − (i− 1)

≥ 1,

where the last inequality follows from the assumption fi ≤ n − i. Hence, Di

(
φ,Q1:(i−1)

)
is non-

empty for every φ ∈ Φ. We thus conclude thatQ(φ|F ) is nonempty, and this implies nonemptiness of

the impulse response identified sets for every i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, and h = 0, 1, 2, . . . . The

38A special situation where the rank conditions (B.3) are guaranteed at almost every φ is when σi is linearly

independent of the row vectors in Fi (φ) for all i = 1, . . . , n, and the row vectors of Fi (φ) are spanned by the row

vectors of Fi−1(φ) for all i = 2, . . . , i∗. This condition holds in the recursive identification scheme, which imposes a

triangularity restriction on A−1
0 . See Example 2 in Appendix B.
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boundedness of the identified sets follows since |cih (φ) qj | ≤ ‖cih (φ)‖ < ∞ for any i ∈ {1, . . . , n},
j ∈ {1, . . . , n}, and h = 0, 1, 2, . . . , where the boundedness of ‖cih (φ)‖ is ensured by the restriction

on φ that the reduced-form VAR is invertible to VMA(∞).

Next we show convexity of the identified set of the impulse response to the j∗-th shock under

each one of conditions (i) - (iii). Suppose j∗ = 1 and f1 < n−1 (Condition (i)). Since f̃1(φ) < n−1

for all φ ∈ Φ, D1(φ) is a path-connected set because it is an intersection of the half-space with

dimension at least 2 and the unit sphere. Since the impulse response is a continuous function of

q1, the identified set of η = cih (φ) q1 is an interval, as the set of a continuous function with a

path-connected domain is always an interval (see, e.g., Propositions 12.11 and 12.23 in Sutherland

(2009)).

Suppose j∗ ≥ 2 and assume condition (ii) holds. Denote the set of feasible qj∗ ’s by Ej∗ (φ) ≡{
qj∗ ∈ Sn−1 : Q ∈ Q(φ|F )

}
. The next lemma provides a specific expression for Ej∗ (φ).

Lemma B.1 Suppose j∗ ≥ 2 and assume condition (ii) of Proposition B.1 holds. Then Ej∗ (φ) =

F⊥j∗ (φ) ∩Hj∗ (φ) ∩ Sn−1.

Proof of Lemma B.1. Given zero restrictions F (φ,Q) = 0 and the set of feasible orthogonal

matrices Q(φ|F ), define the projection of Q(φ|F ) with respect to the first i column vectors,

Q1:i(φ|F ) ≡ {[q1, . . . , qi] : Q ∈ Q(φ|F )} .

Following the recursive representation of (B.4), Ej∗ (φ) ≡
{
qj∗ ∈ Sn−1 : Q ∈ Q(φ|F )

}
can be written

as

Ej∗ (φ) =
⋃

Q1:(j∗−1)∈Q1:(j∗−1)(φ|F )

[
F⊥j∗ (φ) ∩Hj∗ (φ) ∩ P(Q1:(j∗−1)) ∩ Sn−1

]

= F⊥j∗ (φ) ∩Hj∗ (φ) ∩

 ⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F )

P(Q1:(j∗−1))

 ∩ Sn−1.

Hence, the conclusion follows if we can show
⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F ) P(Q1:(j∗−1)) = Sn−1. To

show this claim, let q ∈ Sn−1 be arbitrary, and we construct Q1:(j∗−1) ∈ Q1:(j∗−1)(φ|F ) such that

q ∈ P(Q1:(j∗−1)) holds. Specifically, construct qi, i = 1, . . . , (j∗ − 1), successively, by solving

Fi (φ)

q′1
...

q′i−1

q′


qi = 0,

and choose the sign of qi to satisfy its sign normalization. Under condition (ii) of Proposi-

tion B.1, qi ∈ Sn−1 solving these equalities exists since the rank of the coefficient matrix is at
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most fi + i < n. The obtained Q1:(j∗−1) = [q1, . . . , qj∗−1] belongs to Q1:(j∗−1)(φ|F ) by con-

struction, and it is orthogonal to q. Hence, q ∈ P(Q1:(j∗−1)). Since q is arbitrary, we obtain⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F ) P(Q1:(j∗−1)) = Sn−1.

Lemma B.1 shows that Ej∗ (φ) is an intersection of a half-space of a linear subspace with

dimension n − fj∗ ≥ j∗ ≥ 2 with the unit sphere. Hence, Ej∗ (φ) is a path-connected set on Sn−1

and convexity of ISη(φ|F ) follows.

Next, suppose condition (iii) holds. Let Q1:i∗(φ) ≡ [q1(φ), . . . , qi∗ (φ)] be the first i∗ columns of

feasible Q ∈ Q(φ|F ) that are common for all Q ∈ Q(φ|F ) by the assumption of exact identification

of the first i∗ columns. In this case, the set of feasible qj∗ ’s can be expressed as in the next lemma.

Lemma B.2 Suppose j∗ ≥ 2 and assume condition (iii) of Proposition B.1 holds. Then, whenever

Q1:i∗(φ) = (q1(φ), . . . , qi∗(φ)) is uniquely determined as a function of φ (this is the case for almost

every φ ∈ Φ by the assumption of exact identification), Ej∗ (φ) = F⊥j∗ (φ) ∩Hj∗ (φ) ∩ P(Q1:i∗(φ)) ∩
Sn−1.

Proof of Lemma B.2. Let Q1:i∗(φ) ≡ [q1(φ), . . . , qi∗ (φ)] be the first i∗ columns of feasible

Q ∈ Q(φ|F ), that are common for all Q ∈ Q(φ|F ), φ-a.s., by exact identification of the first

i∗columns. As in the proof of Lemma A.1, Ej∗ (φ) can be written as

Ej∗ (φ) = F⊥j∗ (φ) ∩Hj∗ (φ) ∩

 ⋃
Q1:(j∗−1)∈Q1:(j∗−1)(φ|F )

P(Q1:(j∗−1))

 ∩ Sn−1

= F⊥j∗ (φ) ∩Hj∗ (φ) ∩ P(Q1:i∗(φ)) ∩
⋃

Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F )

P(Q(i∗+1):(j∗−1)) ∩ Sn−1,

where Q(i∗+1):(j∗−1)(φ|F ) =
{
Q(i∗+1):(j∗−1) = [qi∗+1, . . . , qj∗−1] : Q ∈ Q(φ|F )

}
is the projection of

Q(φ|F ) with respect to the (i∗ + 1)-th to (j∗ − 1)-th columns of Q. We now show that, under

condition (iii) of Proposition B.1,
⋃
Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F ) P(Q(i∗+1):(j∗−1)) = Sn−1 holds.

Let q ∈ Sn−1 be arbitrary, and we consider constructing Q(i∗+1):(j∗−1) ∈ Q(i∗+1):(j∗−1)(φ|F ) such

that q ∈ P(Q(i∗+1):(j∗−1)) holds. For i = (i∗ + 1) , . . . , (j∗ − 1), we recursively obtain qi by solving

Fi (φ)

q′1 (φ)
...

q′i∗ (φ)

q′i∗+1
...

q′i−1

q′


qi = 0,
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and choose the sign of qi to be consistent with the sign normalization. Under condition (iii) of

Proposition B.1, qi ∈ Sn−1 solving these equalities exists since the rank of the coefficient matrix is at

most fi+ i < n for all i = (i∗ + 1) , . . . , (j∗ − 1). The obtained Q(i∗+1):(j∗−1) = [qi∗+1, . . . , qj∗−1] be-

longs to Q(i∗+1):(j∗−1)(φ|F ) by construction, and it is orthogonal to q. Hence, q ∈ P(Q(i∗+1):(j∗−1)).

Since q is arbitrary we have that⋃
Q(i∗+1):(j∗−1)∈Q(i∗+1):(j∗−1)(φ|F )

P(Q(i∗+1):(j∗−1)) = Sn−1.

Lemma B.2 shows that Ej∗ (φ) is an intersection of a half-space of a linear subspace with

dimension n− fj∗ − i∗ ≥ j∗ + 1− i∗ ≥ 2 with the unit sphere. Hence, Ej∗ (φ) is a path-connected

set on Sn−1 and convexity of ISη(φ|F ) follows.

For the cases under condition (i) or (ii), since φ ∈ Φ is arbitrary, the convexity of the impulse-

response identified set holds for every φ ∈ Φ. As for the case of condition (iii), the exact identifica-

tion of [q1(φ), . . . , qi∗ (φ)] assumes its unique determination up to almost every φ ∈ Φ, so convexity

of the identified set holds for almost every φ ∈ Φ.

Next, consider the case with both zero and sign restrictions (Case (II)). Suppose j∗ = 1 and

f1 < n − 1 (condition (i)). Following (B.4), the set of feasible q1’s can be denoted by D1 (φ) ∩

{x ∈ Rn : S1(φ)x ≥ 0}. Let q̃1 ∈ D1 (φ) be a unit-length vector that satisfies

(
S1(φ)(
σ1
)′
)
q̃1 > 0.

Such q̃1 is guaranteed to exist by the assumption stated in the current proposition. Let q1 ∈
D1 (φ) ∩ {x ∈ Rn : S1(φ)x ≥ 0} be arbitrary. Note that q1 6= −q̃1 must hold, since otherwise some

of the sign restrictions are violated. Consider

q1 (λ) =
λq1 + (1− λ) q̃1

‖λq1 + (1− λ) q̃1‖
, λ ∈ [0, 1] ,

which is a connected path in D1 (φ) ∩ {x ∈ Rn : S1(φ)x ≥ 0} since the denominator is nonzero

for all λ ∈ [0, 1] by the fact that q1 6= −q̃1. Since q1 is arbitrary, we can connect any points in

D1 (φ)∩ {x ∈ Rn : S1(φ)x ≥ 0} by connected paths via q̃1. Hence, D1 (φ)∩ {x ∈ Rn : S1(φ)x ≥ 0}
is path-connected, and convexity of the impulse-response identified set follows.

Suppose j∗ ≥ 2 and assume that the imposed zero restrictions satisfy condition (ii). Let

Ej∗ (φ) ≡
{
qj∗ ∈ Sn−1 : Q ∈ Q(φ|F, S)

}
, and let q̃j∗ ∈ Ej∗ (φ) be chosen so as to satisfy

(
Sj∗(φ)[
σj
∗
(φ)
]′
)
q̃j∗ >

0. Such q̃j∗ exists by the assumption stated in the current proposition. For any qj∗ ∈ Ej∗ (φ),

qj∗ 6= −q̃j∗ must be true, since otherwise qj∗ would violate some of the imposed sign restrictions.

Consider constructing a path between qj∗ and q̃j∗ as follows. For λ ∈ [0, 1], let

qj∗ (λ) =
λq̃j∗ + (1− λ) qj∗

‖λq̃j∗ + (1− λ) qj∗‖
, (B.5)
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which is a continuous path on the unit sphere since the denominator is nonzero for all λ ∈ [0, 1] by

the construction of q̃j∗ . Along this path, Fj∗ (φ) qj∗ (λ) = 0 and the sign restrictions hold. Hence,

for every λ ∈ [0, 1], if there exists Q (λ) ≡ [q1 (λ) , . . . , qj∗ (λ) , . . . , qn (λ)] ∈ Q(φ|F, S), then the

path-connectedness of Ej∗ (φ) follows. A recursive construction similar to Algorithm B.1 can be

used to construct such Q (λ) ∈ Q(φ|F, S). For i = 1, . . . , (j∗ − 1), we recursively obtain qi (λ) that

solves

Fi (φ)

q′1 (λ)
...

q′i−1 (λ)

q′j∗ (λ)


qi (λ) = 0, (B.6)

and satisfies
[
σi (φ)

]′
qi (λ) ≥ 0. Such a qi (λ) always exists since the rank of the matrix multiplied

to qi (λ) is at most fi + i, which is less than n under condition (ii). For i = (j∗ + 1) , . . . , n, a

direct application of Algorithm B.1 yields a feasible qi (λ). Thus, existence of Q (λ) ∈ Q(φ|F, S),

λ ∈ [0, 1], is established. We therefore conclude that Ej∗ (φ) is path-connected under condition (ii),

and the convexity of impulse-response identified sets holds for every variable and every horizon.

This completes the proof for case (iv) of the current proposition.

Last, we consider case (v). Suppose that the imposed zero restrictions satisfy condition (iii)

of the current proposition. Let [q1(φ), . . . , qi∗ (φ)] be the first i∗-th columns of feasible Q′s, that

are common for all Q ∈ Q(φ|F, S), φ-a.s., by exact identification of the first i∗-columns. Let

q̃j∗ ∈ Ej∗ (φ) be chosen so as to satisfy

(
Sj∗(φ)(
σj
∗)′
)
q̃j∗ > 0, and qj∗ ∈ Ej∗ (φ) be arbitrary. Consider

qj∗ (λ) in (B.5) and construct Q (λ) ∈ Q(φ|F, S) as follows. The first i∗-th column of Q (λ) must be

[q1(φ), . . . , qi∗ (φ)], φ-a.s., by the assumption of exact identification. For i = (i∗ + 1) , . . . , (j∗ − 1),

we can recursively obtain qi (λ) that solves

Fi (φ)

q′1 (φ)
...

q′i∗ (φ)

q′i∗+1 (λ)
...

q′i−1 (λ)

q′j∗ (λ)


qi (λ) = 0 (B.7)

and satisfies
[
σi (φ)

]′
qi (λ) ≥ 0. There always exists such qi (λ) because fi < n − i for all i =

(i∗ + 1) , . . . , (j∗ − 1). The rest of the column vectors qi(λ), i = j∗+ 1, . . . , n, of Q(λ) are obtained
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successively by applying Algorithm B.1. Having shown a feasible construction of Q (λ) ∈ Q(φ|F, S)

for λ ∈ [0, 1], we conclude that Ej∗ (φ) is path-connected, and convexity of the impulse-response

identified sets follows for every variable and every horizon.

Proposition B.1 shows that, when a set of zero restrictions satisfies fi ≤ n − i for all i =

1, 2, . . . , n, the identified set for the impulse response is never empty, so the zero restrictions cannot

be refuted by data. In this case, the plausibility of the identifying restrictions defined in Section

2.6.1 is always equal to one. When there are also sign restrictions, we can have an empty identified

set and a non-trivial value for the plausibility of the identifying restrictions.

Lemma 1 of Granziera et al. (2018) shows convexity of the impulse-response identified set for

the special case where zero and sign restrictions are imposed only on responses to the j∗-th shock,

i.e., j∗ = 1, fi = 0 for all i = 2, . . . , n, and IS = {1} in our notation. Proposition B.1 extends

their result to the case where zero restrictions are placed on the columns of Q other than qj∗ . The

inequality conditions (iv) and (v) of Proposition B.1 imply that the set of feasible q’s does not

collapse to a one-dimensional subspace in Rn. If the set of feasible q’s becomes degenerate, non-

convexity arises since the intersection of a one-dimensional subspace in Rn with the unit sphere

consists of two disconnected points.39

To gain some intuition for Proposition B.1, consider the case of equality restrictions that restrict

a single column qj by linear constraints of the form (4.10). Convexity of the identified set for η

then follows if the subspace of constrained qj ’s has dimension greater than one. This is because

the set of feasible qj ’s is a subset on the unit sphere in Rn where any two elements qj and qj′ are

path-connected, which implies a convex identified set for the impulse response because the impulse

response is a continuous function of qj . When the subspace has dimension one, non-convexity can

occur if, for example, the identified set consists of two disconnected points, which means that the

impulse response is locally, but not globally, identified. This argument implies that for almost every

φ ∈ Φ, we can guarantee convexity of the identified set by finding a condition on the number of

zero restrictions that yields a subspace of qj ’s with dimension greater than one.

The following examples show how to verify the conditions of Proposition B.1.

Example B.1. Consider Example 1 in Section 4. If the object of interest is an impulse response

to the monetary policy shock εi,t, we order the variables as (it,mt, πt, yt)
′ and have (f1, f2, f3, f4) =

(2, 2, 0, 0) with j∗ = 1. Since f1 = 2, condition (i) of Proposition B.1 guarantees that the impulse-

response identified set is φ-a.s. convex. If the object of interest is an impulse response to a demand

shock εy,t, we order the variables as (it,mt, yt, πt), and j∗ = 3. None of the conditions of Proposition

B.1 apply in this case, so convexity of the impulse-response identified set is not guaranteed.

39If the set of φ’s that leads to such degeneracy has measure zero in Φ, then, as a corollary of Proposition B.1, we

can claim that the impulse response identified set is convex for almost all φ conditional on it being nonempty.
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Example B.2. Consider adding to Example 1 in Section 4 a long-run money neutrality restriction,

which sets the long-run impulse response of output to a monetary policy shock (εi,t) to zero. This

adds a zero restriction on the (2, 4)-th element of the long-run cumulative impulse response matrix

CIR∞ and implies one more restriction on qi. We can order the variables as (it,mt, πt, yt)
′ and we

have (f1, f2, f3, f4) = (3, 2, 0, 0). It can be shown that in this case the first two columns [q1, q2] are

exactly identified,40 which implies that the impulse responses to εi,t and εm,t are point-identified. The

impulse responses to εy,t are instead set-identified and their identified sets are convex, as condition

(iii) of Proposition B.1 applies to (it,mt, yt, πt)
′ with j∗ = 3.

The next corollary presents a formal result to establish whether the addition of identifying

restrictions tightens the identified set.

Corollary B.1. Let a set of zero restrictions, an ordering of variables (1, . . . , j∗, . . . , n), and

the corresponding number of zero restrictions (f1, . . . , fn) satisfy fi ≤ n − i for all i, f1 ≥ · · · ≥
fn ≥ 0, and fj∗−1 > fj∗, as in Definition 3. Consider imposing additional zero restrictions.

Let π (·) : {1, . . . , n} → {1, . . . , n} be a permutation that reorders the variables to be consistent

with Definition 3 after adding the new restrictions, and let
(
f̃π(1), . . . , f̃π(n)

)
be the new number

of restrictions. If f̃π(i) ≤ n − π (i) for all i = 1, . . . , n, (π (1) , . . . , π (j∗)) = (1, . . . , j∗) , and

(f1, . . . , fj∗) =
(
f̃1, . . . , f̃j∗

)
, i.e., adding the zero restrictions does not change the order of the

variables and the number of restrictions for the first j∗ variables, then the additional restrictions

do not tighten the identified sets for the impulse response to the j∗-th shock for every φ ∈ Φ.

Proof of Corollary B.1. The successive construction of the feasible column vectors qi, i =

1, . . . , n, shows that the additional zero restrictions that do not change the order of variables and

the zero restrictions for those preceding j∗ do not constrain the set of feasible qj∗ ’s.

Example B.3. Consider adding to Example 1 in Section 4 the restriction a12 = 0. Then, an

ordering of the variables when the objects of interest are the impulse responses to εi,t is (it,mt, yt, πt)
′

with j∗ = 1 and (f1, f2, f3, f4) = (2, 2, 1, 0). Compared to Example 1 in Section 4, imposing a12 = 0

does not change j∗. Corollary 1 then implies that the restriction does not bring any additional

identifying information for the impulse responses.

The next corollary shows invariance of the identified sets when relaxing the zero restrictions,

which partially overlaps with the implications of Corollary B.1.

Corollary B.2. Let a set of zero restrictions, an ordering of variables (1, . . . , j∗, . . . , n), and the

corresponding number of zero restrictions (f1, . . . , fn) satisfy fi ≤ n− i for all i, f1 ≥ · · · ≥ fn ≥ 0,

40In this case F2(φ) is a submatrix of F1(φ), which implies that the vector space spanned by the rows of F1(φ)

contains the vector space spanned by the rows of F2(φ) for every φ ∈ Φ. Hence, the rank condition for exact

identification (B.3) holds,
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and fj∗−1 > fj∗, as in Definition 3. Under any of the conditions (i) - (iii) of Proposition B.1, the

identified set for the impulse responses to the j∗-th structural shock does not change when relaxing

any or all of the zero restrictions on qj∗+1, . . . , qn−1. Furthermore, if condition (ii) of Proposition

B.1 is satisfied, the identified set for the impulse responses to the j∗-th structural shock does not

change when relaxing any or all of the zero restrictions on q1, . . . , qj∗−1. When condition (iii) of

Proposition B.1 is satisfied, the identified set for the impulse responses to the j∗-th shock does not

change when relaxing any or all of the zero restrictions on qi∗+1, . . . , qj∗−1.

Proof of Corollary B.2. Dropping the zero restrictions imposed for those following the j∗-th

variable does not change the order of variables nor the construction of the set of feasible qj∗ ’s.

Under condition (ii) of Proposition B.1, Lemma A.1 in Appendix A shows that the set of feasible

qj∗ ’s does not depend on any of Fi(φ), i = 1, . . . , (j∗ − 1). Hence, removing or altering them (as long

as condition (ii) of Proposition B.1 holds) does not affect the set of feasible qj∗ ’s. Under condition

(iii) of Proposition B.1, Lemma B.2 shows that the set of feasible qj∗ ’s does not depend on any

Fi(φ), i = (i∗ + 1) , . . . , (j∗ − 1). Hence, relaxing the zero restrictions constraining [qi∗+1, . . . , qj∗−1]

does not affect the set of feasible qj∗ ’s.

Example B.4. Consider relaxing one of the zero restrictions in (4.12),
uπ,t

uy,t

um,t

ui,t

 =


a11 a12 0 0

a21 a22 0 a24

a31 a32 a33 a34

a41 a42 a43 a44



επ,t

εy,t

εm,t

εi,t

 ,

where the (2, 4)-th element of A−1
0 is now unconstrained, i.e., the aggregate demand equation is

allowed to respond contemporaneously to the monetary policy shock. If the interest is on the impulse

responses to the monetary policy shock εi,t, the variables can be ordered as (mt, it, πt, yt)
′ with j∗ = 2.

Condition (ii) of Proposition B.1 is satisfied and the impulse-response identified sets are convex. In

fact, Lemma A.1 in Appendix A implies that in situations where condition (ii) of Proposition B.1

applies, the zero restrictions imposed on the preceding shocks to the j∗-th structural shocks do not

tighten the identified sets for the j∗-th shock impulse responses compared to the case with no zero

restrictions. In the current context, this means that dropping the two zero restrictions on qm does

not change the identified sets for the impulse responses to εi,t.

If sign restrictions are imposed on impulse responses to a shock other than the j∗-th shock, the

identified set can become non-convex, as we show in the next example.41

41See also the example in Section 4.4 of Rubio-Ramı́rez et al. (2010), where n = 3 and the zero restrictions satisfy

f1 = f2 = f3 = 1. Their paper shows that the identified set for an impulse response consists of two distinct points.
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Example B.5. Consider an SVAR(0) model,(
y1,t

y2,t

)
= A−1

0

(
ε1,t

ε2,t

)
.

Let Σtr =

(
σ11 0

σ21 σ22

)
, where σ11 ≥ 0 and σ22 ≥ 0. Note that positive semidefiniteness of Σ =

ΣtrΣ
′
tr does not impose other constraints on the elements of Σtr. Denoting an orthonormal matrix

by Q =

(
q11 q12

q21 q22

)
, we can express the contemporaneous impulse-response matrix as

IR0 =

(
σ11q11 σ11q12

σ21q11 + σ22q21 σ21q12 + σ22q22

)
.

Consider restricting the sign of the (1, 2)-th element of IR0 to being positive, σ11q12 ≥ 0. Since

Σ−1
tr = (σ11σ22)−1

(
σ22 0

−σ21 σ11

)
, the sign normalization restrictions give σ22q11 − σ21q21 ≥ 0 and

σ11q22 ≥ 0. We now show that the identified set for the (1, 1)-th element of IR0 is non-convex for

a set of Σ with a positive measure. Note first that the second column vector of Q is constrained to

{q12 ≥ 0, q22 ≥ 0}, so that the set of (q11, q21)′ orthogonal to (q12, q22)′ is constrained to

{q11 ≥ 0, q21 ≤ 0} ∪ {q11 ≤ 0, q21 ≥ 0} .

When σ21 < 0, intersecting this union set with the half-space defined by the first sign normalization

restriction {σ22q11 − σ21q21 ≥ 0} yields two disconnected arcs,{(
q11

q21

)
=

(
cos θ

sin θ

)
: θ ∈

([
1

2
π,

1

2
π + ψ

]
∪
[

3

2
π + ψ, 2π

])}
,

where ψ = arccos

(
σ22√
σ2

22+σ2
21

)
∈
[
0, 1

2π
]
. Accordingly, the identified set for r = σ11q11 is given by

the union of two disconnected intervals[
σ11 cos

(
1

2
π + ψ

)
, 0

]
∪
[
σ11 cos

(
3

2
π + ψ

)
, σ11

]
.

Since {σ21 < 0} has a positive measure in the space of Σ, the identified set is non-convex with a

positive measure.

If we interpret the zero restrictions on the second and third variables as pairs of linear inequality restrictions for q2

and q3 with opposite signs, convexity of the impulse-response identified set fails. In this example, the assumption

that sign restrictions are only placed on qj fails.
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B.2 Continuity

One of the key assumptions for Theorem 3 is the continuity of ISη (φ) at φ = φ0 (Assumption

2(i)).42 The next proposition shows that in SVARs this continuity property is ensured by mild

regularity conditions on the coefficient matrices of the zero and sign restrictions.

Proposition B.2 (Continuity). Let η = c′ih (φ) qj∗, i ∈ {1, . . . , n}, h ∈ {0, 1, 2, . . . }, be the

impulse response of interest. Suppose that the variables are ordered according to Definition 3 and

sign restrictions are placed only on the responses to the j∗-th structural shock, i.e., IS = {j∗}.
(i) Suppose that the zero restrictions satisfy one of Conditions (i) and (ii) of Proposition B.1.

If there exists an open neighborhood of φ0, G ⊂ Φ, such that rank(Fj∗(φ)) = fj∗ for all φ ∈ G, and

if there exists a unit-length vector q ∈ Rn such that

Fj∗ (φ0) q = 0 and

(
Sj∗ (φ0)(
σj
∗
(φ0)

)′
)
q >> 0,

then the identified set correspondence ISη(φ|F, S) is continuous at φ = φ0 for every i and h.43 (ii)

Suppose that the zero restrictions satisfy condition (iii) of Proposition B.1, and let [q1(φ), . . . , qi∗(φ)]

be the first i∗-th column vectors of Q that are exactly identified. If there exists an open neighborhood

of φ0, G ⊂ Φ, such that


Fj∗(φ)

q′1(φ)
...

q′i∗(φ)

 is a full row-rank matrix for all φ ∈ G, and if there exists a

unit-length vector q ∈ Rn such that
Fj∗(φ0)

q′1(φ0)
...

q′i∗(φ0)

 q = 0 and

(
Sj∗ (φ0)(
σj
∗
(φ0)

)′
)
q >> 0,

then the identified-set correspondence ISη(φ|F, S) is continuous at φ = φ0 for every i and h.

Proof of Proposition B.2. (i) Following the notation introduced in the proof of Proposition

B.1, the upper and lower bounds of the impulse-response identified set are written as

u(φ)/`(φ) = max /min
qj∗

c′ih(φ)qj∗ , (B.8)

s.t., qj∗ ∈ Ej∗(φ) and Sj∗(φ)qj∗ ≥ 0.

When j∗ = 1 (Case (i) of Proposition B.1), E1(φ) is given by D1(φ) defined in (B.4). On the

other hand, when j∗ ≥ 2 and Case (ii) of Proposition B.1 applies, Lemma B.1 provides a concrete

42Proposition B.1 shows boundedness of ISη(φ|F, S) for all φ so that Assumption 2 (iii) also holds.
43For a vector y = (y1, . . . , ym)′, y >> 0 means yi > 0 for all i = 1, . . . ,m.
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expression for Ej∗(φ). Accordingly, in either case, the constrained set of qj∗ in (B.8) can be

expressed as

Ẽj∗(φ) ≡

{
q ∈ Sn−1 : Fj∗(φ)q = 0,

(
Sj∗(φ)(
σj
∗
(φ)
)′
)
q ≥ 0

}
.

The objective function of (B.8) is continuous in qj∗ , so, by the Theorem of Maximum (see, e.g.,

Theorem 9.14 of Sundaram (1996)), the continuity of u(φ) and `(φ) is obtained if Ẽj∗(φ) is shown

to be a continuous correspondence at φ = φ0.

To show continuity of Ẽj∗(φ), note first that Ẽj∗(φ) is a closed and bounded correspondence, so

upper-semicontinuity and lower-semicontinuity of Ẽj∗(φ) can be defined in terms of sequences (see,

e.g., Propositions 21 of Border (2013)):

• Ẽj∗(φ) is upper-semicontinuous (usc) at φ = φ0 if and only if, for any sequence φv → φ0,

v = 1, 2, . . . , and any qvj∗ ∈ Ẽj∗(φ
v), there is a subsequence of qvj∗ with limit in Ẽj∗(φ0).

• Ẽj∗(φ) is lower-semicontinuous (lsc) at φ = φ0 if and only if, φv → φ0, v = 1, 2, . . . , and

q0
j∗ ∈ Ẽj∗(φ0) imply that there is a sequence qvj∗ ∈ Ẽj∗(φ

v) with qvj∗ → q0
j∗ .

In the proofs below, we use the same index v to denote a subsequence for brevity of notation.

Usc: Since qvj∗ is a sequence on the unit-sphere, it has a convergent subsequence qvj∗ → qj∗ .

Since qvj∗ ∈ Ẽj∗(φ
v), Fj∗(φ

v)qvj∗ = 0 and

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)
qvj∗ ≥ 0 hold for all v. Since Fj∗(·) and(

Sj∗(·)(
σj
∗
(·)
)′
)

are continuous in φ, these equality and sign restrictions hold at the limit as well.

Hence, qj∗ ∈ Ẽj∗(φ0).

Lsc: Our proof of lsc proceeds similarly to the proof of Lemma 3 in the 2013 working paper

version of Granziera et al. (2018). Let φv → φ0 be arbitrary. Let q0
j∗ ∈ Ẽj∗(φ0), and define

P0 = Fj∗(φ0)′ [Fj∗(φ0)Fj∗(φ0)′]−1 Fj∗(φ0) be the projection matrix onto the space spanned by the

row vectors of Fj∗(φ0). By the assumption of the current proposition, Fj∗(φ) has full row-rank in

the open neighborhood of φ0, so P0 and Pv = Fj∗(φ
v)′ [Fj∗(φ

v)Fj∗(φ
v)′]−1 Fj∗(φ

v) are well-defined

for all large v. Let ξ∗ ∈ Rn be a vector satisfying

(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)[

In −P0
]
ξ∗ >> 0, which exists

by the assumption. Let

ζ = min

{(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)[

In −P0
]
ξ∗

}
> 0,
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and define

ξ =
2

η
ξ∗,

εv =

∥∥∥∥∥
(

Sj∗(φ
v)(

σj
∗
(φv)

)′
)

[In −Pv]−

(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)[

In −P0
]∥∥∥∥∥ ,

qvj∗ =
[In −Pv]

[
q0
j∗ + εvξ

]
∥∥∥[In −Pv]

[
q0
j∗ + εvξ

]∥∥∥ .
Since Pv converges to P0, εv → 0. Furthermore,

[
In −P0

]
q0
j∗ = q0

j∗ implies that qvj∗ converges to

q0
j∗ as v →∞. Note that qvj∗ is orthogonal to Fj∗ (φv) by construction. Furthermore, note that(

Sj∗(φ
v)(

σj
∗
(φv)

)′
)
qvj∗

=
1∥∥∥[In −Pv]
[
q0
j∗ + εvξ

]∥∥∥
(

Sj∗(φ
v)(

σj
∗
(φv)

)′
)[

[In −Pv]
[
q0
j∗ + εvξ

]]

≥ 1∥∥∥[In −Pv]
[
q0
j∗ + εvξ

]∥∥∥

((

Sj∗(φ
v)(

σj
∗
(φv)

)′
)

[In −Pv]−

(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)[

In −P0
])

q0
j∗

+εv

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)

[In −Pv] ξ


≥ 1∥∥∥[In −Pv]

[
q0
j∗ + εvξ

]∥∥∥
(
−εv

∥∥q0
j∗
∥∥1 + εv

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)

[In −Pv] ξ

)

=
εv∥∥∥[In −Pv]
[
q0
j∗ + εvξ

]∥∥∥
(

2

η

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)

[In −Pv] ξ∗ − 1

)
,

where the third line follows by

(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)[

In −P0
]
q0
j∗ =

(
Sj∗(φ0)(
σj
∗
(φ0)

)′
)
q0
j∗ ≥ 0. By the

construction of ξ∗ and ζ, 2
ζ

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)

[In −Pv] ξ∗ > 1 holds for all large v. This implies that(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)
qvj∗ ≥ 0 holds for all large v, implying that qvj∗ ∈ Ẽj∗(φ

v) for all large v. Hence,

Ẽj∗(φ) is lsc at φ = φ0.

(ii) Usc: Under Case (iii) of Proposition B.1, Lemma B.2 implies that the constraint set of qj∗
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in (B.8) can be expressed as

Ẽj∗(φ) ≡

q ∈ S
n−1 :


Fj∗(φ)

q′1(φ)
...

q′i∗(φ)

 q = 0,

(
Sj∗(φ)(
σj
∗
(φ)
)′
)
q ≥ 0

 .

Let qvj∗ , v = 1, 2, . . . , be a sequence on the unit sphere, such that qvj∗ ∈ Ẽj∗(φ
v) holds for all v.

This has a convergent subsequence qvj∗ → qj∗ . Since Fi(φ) are continuous in φ for all i = 1, . . . , i∗,

qi (φ), i = 1, . . . , i∗, are continuous in φ as well, implying that the equality restrictions and the sign

restrictions,


Fj∗(φ

v)

q′1(φv)
...

q′i∗(φ
v)

 qvj∗ = 0 and

(
Sj∗(φ

v)(
σj
∗
(φv)

)′
)
qvj∗ ≥ 0 must hold at the limit v →∞. Hence,

qj∗ ∈ Ẽj∗(φ0).

Lsc: Define P0 and Pv as the projection matrices onto the row vectors of


Fj∗(φ0)

q′1(φ0)
...

q′i∗(φ0)

 and


Fj∗(φ

v)

q′1(φv)
...

q′i∗(φ
v)

, respectively. The imposed assumptions imply that Pv and P0 are well-defined for all

large v, and Pv → P0. With the current definition of Pv and P0, lower-semicontinuity of Ẽj∗(φ)

can be shown by repeating the same argument as in the proof of part (i) of the current proposition.

We omit details for brevity.

B.3 Differentiability

In the development of a delta method for the endpoints of the impulse-response identified set,

Theorem 2 in Gafarov et al. (2018) shows their directional differentiability. We restrict our analysis

to the settings of Proposition B.1 where the identified set is convex. The following proposition

extends Theorem 2 of Gafarov et al. (2018) and obtains a sufficient condition for differentiability

of `(φ) and u(φ).

Proposition B.3 (Differentiability). Let η = c′ih (φ) qj∗, i ∈ {1, . . . , n}, h ∈ {0, 1, 2, . . . }, be the

impulse response of interest. Suppose that the variables are ordered according to Definition 3 and

sign restrictions are placed only on the responses to the j∗-th structural shock, i.e., IS = {j∗}.
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(i) Suppose that the zero restrictions satisfy one of Conditions (i) or (ii) of Proposition B.1 and

the column vectors of [Fj∗(φ0)′, Sj∗(φ0)′, σj
∗
(φ0)] are linearly independent. If the set of solutions of

the following optimization problem,

min
q∈Sn−1

{
c′ih (φ0) q

}
(resp. max

q∈Sn−1

{
c′ih (φ0) q

}
) s.t. Fj∗ (φ0) q = 0 and

(
Sj∗ (φ0)(
σj
∗
(φ0)

)′
)
q ≥ 0,

(B.9)

is singleton, the optimized value `(φ0) (resp. u(φ0)) is nonzero, and the number of binding sign

restrictions at the optimum is less than or equal to n−fj∗−1, then `(φ) (resp. u(φ)) is differentiable

at φ = φ0.

(ii) Suppose that the zero restrictions satisfy Conditions (iii) of Proposition B.1. Let [q1(φ0), . . . , qi∗(φ0)]

be the first i∗-th column vectors of Q that are exactly identified at φ = φ0. Assume that the col-

umn vectors of [Fj∗(φ0)′, Sj∗(φ0)′, σj
∗
(φ0), q1(φ0), . . . , qi∗(φ0)] are linearly independent. If the set

of solutions of the following optimization problem,

min
q∈Sn−1

{
c′ih (φ0) q

}
(resp. max

q∈Sn−1

{
c′ih (φ0) q

}
) s.t.


Fj∗ (φ0)

q1(φ0)′

...

qi∗(φ0)′

 q = 0 and

(
Sj∗ (φ0)(
σj
∗
(φ0)

)′
)
q ≥ 0,

(B.10)

is singleton, the optimized value `(φ0) (resp. u(φ0)) is nonzero, and the number of binding sign

restrictions at the optimum is less than or equal to n − fj∗ − i∗ − 1, then `(φ) (resp. u(φ)) is

differentiable at φ = φ0.

Proof of Proposition B.3. We show that in each of cases (i) - (iii) of Proposition B.1 with

the sign restrictions imposed on the j∗-th shock only, the optimization problem to be solved for

the endpoints of the identified set (`(φ), u(φ)) is reduced to the optimization problem that Gafarov

et al. (2018) analyze. The differentiability of the endpoints in φ then follows by directly applying

Theorem 2 of Gafarov et al. (2018). Our proof focuses on the lower bound `(φ0) only, as the

conclusion for the upper bound can be proved similarly.

To show claim (i) of this proposition, assume j∗ = 1 and f1 < n− 1 (i.e., case (i) of Proposition

B.1 with IS = {1}). The choice set of q1 is given by D1(φ0) ∩
{
q ∈ Sn−1 : S1(φ0)q ≥ 0

}
, where

D1(φ) is as defined in (B.4), and the optimization problem to obtain `(φ) can be written as (B.9)

with j∗ = 1. One-to-one differentiable reparametrization of q ∈ Sn−1 by x = Σtrq leads to the

optimization problem in equation (2.5) of Gafarov et al. (2018). Hence, under the assumptions

stated in claim (i) of the current proposition, their Theorem 2 proves differentiability of `(φ0).

Assume that the imposed zero restrictions satisfy case (ii) of Proposition B.1 with IS = {j∗}. By

applying Lemma B.1, the choice set of qj∗ is given by F⊥j∗ (φ0)∩Hj∗ (φ)∩
{
q ∈ Sn−1 : Sj∗(φ0)q ≥ 0

}
,
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and the optimization problem to obtain `(φ0) can be written as (B.10). One-to-one differentiable

reparametrization of q ∈ Sn−1 by x = Σtrq leads to the optimization problem in equation (2.5) of

Gafarov et al. (2018), so the conclusion follows by their Theorem 2.

Last, assume that the imposed zero restrictions satisfy case (iii) of Proposition B.1 with IS =

{j∗}. By applying Lemma B.2, the choice set of qj∗ is given by F⊥j∗ (φ0)∩Hj∗ (φ0)∩P(Q1:i∗(φ0))∩{
q ∈ Sn−1 : Sj∗(φ0)q ≥ 0

}
with Q1:i∗(φ0) = [q1(φ0), . . . , qi∗(φ0)] pinned down uniquely by the as-

sumption of exact identification. Accordingly, the optimization problem to obtain `(φ0) can be

written as (B.10). One-to-one differentiable reparametrization of q ∈ Sn−1 by x = Σtrq leads to the

optimization problem in equation (2.5) of Gafarov et al. (2018) with the expanded set of equality

restrictions consisting of Fj∗(φ0)(Σtr)
−1x = 0 and Q1:i∗(φ0)′(Σtr)

−1x = 0. Hence, under the as-

sumptions stated in claim (ii) of the current proposition, their Theorem 2 implies differentiability

of `(φ0).

Theorem 2 in Gafarov et al. (2018) concerns Case (i) of Proposition B.1 with sign restrictions

placed on IS = {1} and no zero restrictions on the other shocks, f2 = · · · = fn = 0. Proposition

B.3 extends Theorem 2 in Gafarov et al. (2018) to the setting where we impose the zero restrictions

on the column vectors of Q other than j∗ subject to the conditions for convexity of the identified

set characterized in Proposition B.1.44

Among the sufficient conditions for differentiability of the bounds shown in Proposition B.3, the

two key conditions are uniqueness of the optimizer and the maximal number of binding constraints.

The uniqueness condition seems mild in SVARs. Since the feasible set for q is the intersection of

the unit sphere and the polyhedron formed by the sign restrictions, it has vertices and the manifolds

connecting the vertices are arcs or a subset on the sphere rather than lines or planes. Hence, if

cih(φ0) is linearly independent of any of the linear inequality constraints - which holds if the sign of

the impulse response of interest is not restricted - we can rule out that the continuum of optimizers

lies on one of the arcs connecting neighboring vertices. Another possible failure of the condition

is when the linear objective functions are optimized at multiple vertices of the (curved) feasible

set. In theory we cannot exclude such possibility, but we believe this to be a pathological case in

practice. In the other cases, the solution is unique, attained either at one of the vertices, an interior

point on one of the edge arcs, or a strict interior of the surface subset of the sphere.

The condition on the maximal number of binding constraints implies that if the optimum is

attained at one of the vertices on the constrained surface of Sn−1, it has to be a basic solution, i.e.,

exactly n−1 equality and inequality restrictions (excluding the unit sphere constraint) are binding

at the vertex. Otherwise a local perturbation of φ around φ0 can create additional vertices and

generate non-smooth changes of the value function depending on which of the new vertices becomes

a new solution. We want to rule out this case to ensure differentiability of `(φ) and u(φ). If the

44The statement of Theorem 2 of Gafarov et al. (2018) does not explicitly constrain the maximal number of binding

inequality restrictions at the optimum (cf. Proposition B.3 in this paper), while their proof implicitly does so.
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vertex attaining the optimum is not a basic solution, `(φ) or u(φ) that involves the max or min

operator has multiple entries attaining the maximum or minimum at φ = φ0. This type of non-

differentiable `(φ) and u(φ) is similar to Example C.2 in Appendix C, and generally leads to failure

of Assumptions 4 (i) and (ii). In frequentist subvector inference in moment inequality models, this

issue translates to non-pivotal asymptotic distributions of the test statistics depending on which

moment inequalities are binding. The frequentist approaches to uniformly valid inference studied

in Bugni et al. (2017) and Kaido et al. (2019), among others, involve generalized moment selection

(Andrews and Soares (2010)). A Bayesian or robust Bayesian interpretation or justification for

such moment selection procedures is not yet known and thus left for future research.

C Moment-Conditions Model Application

We show an application of our method to a moment-conditions model that illustrates how as-

sumptions 4(i) and (ii) relate to the geometry of the identified set. This allows us to discuss the

relationship with the frequentist literature showing sensitivity of asymptotic results to such ge-

ometry (e.g., Beresteanu and Molinari (2008); Bontemps et al. (2012); Kaido and Santos (2014)).

Example C.1. Consider the example of an interval-censored regression (Example 2.1 in Kaido

and Santos (2014)) with discrete regressors, Z ∈ {z1, . . . , zK}:

Y ∗ = Z ′β + ε, E(ε|Z) = 0,

YL ≤ Y ∗ ≤ YU , (C.1)

where Y ≡ (YL, YU , Z) are observables and Y ∗ is unobservable. The identified set for β is the

collection of β ∈ Rdz satisfying the following moment inequalities: for k = 1, . . . ,K,

E(z′kβ − YL|Z = zk) ≥ 0,

E(YU − z′kβ|Z = zk) ≥ 0.

We assume knowledge of the marginal distribution of Z (or condition on the empirical frequencies

of Z when forming the moment conditions). Adding the slackness parameter vector λ ∈ R2K
+ to the
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moment inequalities, we can express the above moment inequalities as linear moment equalities:

E(m(Y )−Aβ − λ) = 0, (C.2)

where m(Y ) =



−YL · 1{Z = z1}
...

−YL · 1{Z = zK}
YU · 1{Z = z1}

...

YU · 1{Z = zK}


, A =



Pr(Z = z1) · z′1
...

Pr(Z = zK) · z′K
−Pr(Z = z1) · z′1

...

−Pr(Z = zK) · z′K


.

The structural parameter is θ = (β′, λ′)′ ∈ B×R2K
+ . Since A is assumed to be known, the structural

parameter enters the moment conditions only through g(θ) = Aβ + λ, so we can set φ = g(θ), the

moments of m(Y ), as the reduced-form parameters in our setting. The sample moments for m(Y )

are then informative for updating the belief for φ and one can do so using the Bayesian exponentially

tilted empirical likelihood of Schennach (2005). If the convex hull of ∪i {m(xi)− g(θ)} contains

the origin, the exponentially tilted empirical likelihood for yN (a size-N random sample of Y ) is

p(yN |θ) =
∏
wi(θ), where

wi(θ) =
exp {γ(g(θ))′ (m(yi)− g(θ))}∑N
i=1 exp {γ(g(θ))′ (m(yi)− g(θ))}

,

γ(g(θ)) = arg min
γ∈RJ+

{
N∑
i=1

exp
{
γ′ (m(yi)− g(θ))

}}
.

This likelihood can be used to update the belief for φ = g(θ). The identified set for β is therefore

ISβ(φ) =
{
β ∈ Rdz : Aβ + λ = φ, λ ∈ R2K

+

}
,

which is a polyhedron with a finite number of vertices.

To assess Assumption 4, we simplify the example by specifying z ∈ {z1, z2}, z1 = (1, 0)′,

z2 = (1, 1)′, β = (β0, β1)′, and Pr(Z = z1) = Pr(Z = z2) = 1/2. Letting φ = (φ1, φ2, φ3, φ4)′, the

identified set for β is obtained as

− 2φ3 ≤ β0 ≤ 2φ1,

− 2φ4 ≤ (β0 + β1) ≤ 2φ2.

Hence, ISβ(φ) is a parallelogram in R2 with the slopes of the parallel lines being constants inde-

pendent of φ. Denote the four vertices of the parallelogram, bottom-right, top-right, top-left, and

bottom-left, as v1(φ), v2(φ), v3(φ), v4(φ), respectively, and express q ∈ S1 by the polar coordinate,
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q(ψ) = (cosψ, sinψ)′. We can obtain the support function of this parallelogram as

s(ISβ(φ), q(ψ)) =



v1(φ)′q(ψ) for 0 ≤ ψ < π/4

v2(φ)′q(ψ) for π/4 ≤ ψ < π/2

v3(φ)′q(ψ) for π/2 ≤ ψ < 5π/4

v4(φ)′q(ψ) for 5π/4 ≤ ψ < 3π/2

v1(φ)′q(ψ) for 3π/2 ≤ ψ ≤ 2π

This support function is continuous but not differentiable in ψ at the angles where the tangent

point of the hyperplanes switches from one vertex to another. In the current example, however,

the values of ψ where the support function is non-differentiable in ψ are constants independent of

φ due to the constant slopes of the edges of the parallelogram.

As shown by Schennach (2005), the posterior of φ is asymptotically normal and coincides with

the sampling distribution of φ̂, the method of moment estimator for φ. That is, Assumption 5 (i) in

our paper holds for φ. Note also that vj(φ), j = 1, . . . , 4, are differentiable in φ, so the Bernstein-von-

Mises property holds for
√
N(v(φ)−v(φ̂)) and

√
N(v(φ0)−v(φ̂)), where v(φ) = (v1(φ), . . . , v4(φ))′.

The scaled support functions

Xφ|Y N ≡
√
N [s(ISβ(φ), q(ψ))− s(ISβ(φ̂), q(ψ))] and

XY N |φ0
≡
√
N [s(ISβ(φ0), q(ψ))− s(ISβ(φ̂), q(ψ))]

are continuous maps of
√
N(v(φ)−v(φ̂)) and

√
N(v(φ0)−v(φ̂)), respectively, so the Bernstein-von

Mises property for
√
N(v(φ)−v(φ̂)) and

√
N(v(φ0)−v(φ̂)) can be extended to that of the support

function processes. Hence, Assumptions 4 (i) and (ii) hold in the current example.

The example illustrates that ‘flat’ faces of the polyhedron (non-differentiability of the support

function in ψ) do not necessarily invalidate Assumption 4. What is crucial for this result is that the

number and location of the points of non-differentiability do not depend on φ. The next example

illustrates that this is a delicate result and a slight change can imply violation of Assumption 4.

Example C.2. Modify Example C.1 by adding one more point z3 = (0, 1)′ to the support of Z,

and assuming Z takes one of values {z1, z2, z3} with equal chance. The identified set for β becomes

− 3φ4 ≤ β0 ≤ 3φ1,

− 3φ5 ≤ (β0 + β1) ≤ 3φ2,

− 3φ6 ≤ β1 ≤ 3φ3, (C.3)

and is either a parallelogram with four vertices or a polyhedron with five or six vertices, based on

φ. Thus, the number and location of the non-differentiable points of s(ISβ(φ), q(ψ)) in ψ depend

on φ.
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Projection of ISβ(φ) on the β1-axis gives

`(φ) ≡ max{−3(φ1 + φ5),−3φ6} ≤ β1 ≤ min{3(φ2 + φ4), 3φ3} ≡ u(φ). (C.4)

Since `(φ) and u(φ) involve max and min operators, differentiability of `(φ) and u(φ) at φ0 as

required in Assumption 5 (ii) fails if, at φ0, the entries of the max operator or those of the min

operator are equal. According to Proposition 2, non-differentiability of `(φ) or u(φ) is a failure of

sufficiency for Assumption 4, but here it can actually lead to violation of Assumptions 4 (i) and

(ii).

For ease of exposition, reduce φ to φ = (φ1, φ2)′ and consider f(φ) ≡ max{φ1, φ2}. The asymp-

totic posterior of
√
N(f(φ)− f(φ̂)) does not coincide with the asymptotic sampling distribution of√

N(f(φ0)− f(φ̂)) when at the true value φ = φ0, φ1,0 = φ2,0 holds. To see this, assume

√
N(φ− φ̂)|Y N  N (0, I2), p(Y∞|φ0)-a.s.,
√
N(φ̂− φ0) N (0, I2),

as N →∞, and φ1,0 = φ2,0. Then, we obtain

√
N(f(φ)− f(φ̂))|Y N  max

 G1 −
∣∣∣∆Ĝ∣∣∣

−
G2 −

∣∣∣∆Ĝ∣∣∣
+

 ,

√
N(f(φ0)− f(φ̂)) max

{
G1

G2

}
,

as N → ∞, where (G1, G2) ∼ N (0, I2), |a|− = −min{0, a} ≥ 0, |a|+ = max{0, a} ≥ 0. Here,

∆Ĝ is a random variable following the limiting distribution of
√
N(φ̂1 − φ̂2) (defined on the same

probability space as the iid sampling process {Y1, Y2, . . . , } by invoking the Skhorohod representa-

tion) and it is a constant conditional on the sample. Thus, for almost all sampling sequences, the

asymptotic posterior distribution of
√
N(f(φ) − f(φ̂)) is different from the asymptotic sampling

distribution of
√
N(f(φ0)− f(φ̂)).

Applying this argument to the functions defined in (C.4) and noting that the bound obtained by

projecting ISβ(φ) to one coordinate corresponds to the value of the support function at a particular

angle, we conclude that Assumptions 4 (i) and (ii) fail in this example.

Example C.2 shows that Assumptions 4 (i) and (ii) can fail if, at φ = φ0, the support function

s(ISβ(φ), q) is non-differentiable in φ for some q. The example suggests that, in general, if the

identified set is a polyhedron with a non-empty interior, non-differentiability of the support function

in φ can occur if at some vertex of ISβ(φ0) more than n inequality restrictions bind. In linear

programming, such vertex is referred to as a non-basic solution, and it is known to generate a non-

differentiable value function with respect to the parameters governing the coefficient matrices of the

program. For SVAR applications, where the identified set is the intersection of a polyhedron and
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the unit sphere, Proposition B.3 spells out sufficient conditions for differentiability of the impulse

response identified set in φ. The condition on the maximal number of binding constraints at the

optimum can be interpreted as excluding the non-basic solution at φ = φ0.
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Congress, ed. by B. Honoré, A. Pakes, M. Piazzesi, and L. Samuelson, Cambridge University

Press, Econometric Society Monographs, 271–306.

Canova, F. and G. D. Nicolo (2002): “Monetary Disturbances Matter for Business Fluctuations

in the G-7,” Journal of Monetary Economics, 49, 1121–1159.

Chamberlain, G. and E. Leamer (1976): “Matrix Weighted Averages and Posterior Bounds,,”

Journal of the Royal Statistical Society. Series B (Methodological), 38, 73–84.

Chen, X., T. Christensen, and E. Tamer (forthcoming): “Monte Carlo Confidence Sets for

Identified Sets,” Econometrica.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confidence Regions for

Parameter Sets in Econometric Models,” Econometrica, 75, 1243–1284.

Christiano, L., M. Eichenbaum, and C. Evans (1999): “Monetary Policy Shocks: What

Have We Learned and to What End?” in Handbook of Macroeconomics, ed. by J. Taylor and

M. Woodford, Elsevier, vol. 1, Part A, 65–148.

Dawid, A. (1979): “Conditional Independence in Statistical Theory,” Journal of the Royal Statis-

tical Society. Series B (Methodological), 41, 1–31.

DeRobertis, L. and J. Hartigan (1981): “Bayesian Inference Using Intervals of Measures,”

The Annals of Statistics, 9, 235–244.
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