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Introduction

• Often want to estimate effects of policy/programme (“treatment”)

– effect of unemployment benefits on unemployment duration

– effect of gun laws on crime

• Typically do this using data on a sample from population
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• This talk is not about estimating treatment effects in an unbiased 
and consistent way

• It is about quantifying the uncertainty around those estimates



Motivation: the importance of inference

• Unbiased estimation implies that if we applied method repeatedly 
on different samples, we would get the right answer on average

• But no estimate based on one population sample is exactly right

• So it is crucial to quantify uncertainty around central estimate, 
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• So it is crucial to quantify uncertainty around central estimate, 
otherwise, cannot test any hypotheses (conduct “inference”)

– “How surprising would the patterns in this sample be if in fact the 
treatment had no effect?”



We focus on settings where inference is tricky

1. Data contains (small number of) “clusters”, where unobserved 
determinants of the outcome are correlated within clusters

– e.g. People in same region affected by same economic shocks

2. Treatment status the same for everyone within clusters

– e.g. Gun laws the same for everyone in the same US state
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3. Longitudinal settings: unobserved determinants of the outcome are 
persistent over time for a given cluster (“serial correlation”)

– e.g. Regional economic shocks are persistent, as they reflect the state 
of the business cycle

• These issues arise frequently in data used for policy evaluation but 
are “non-standard” in statistical/econometric theory



Outline of rest of talk

• The standard approach to inference in OLS

• Intuition behind the clustering problem

• Standard models of, and solutions to, the clustering problem
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• Adding a serial correlation problem: difference-in-differences

• Methods for inference with both clustering and serial correlation



STANDARD INFERENCE IN 
OLS
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Reminder: standard settings

• Simple model :                                      ;       
– Yi is outcome for individual i (e.g. their earnings)

– Ti equals 1 if individual i is treated (e.g. in training programme); 0 if not

– Xi is other control variables for individual i (e.g. education)

– β is the key unknown parameter: the treatment effect

– ui is the “error term” or “shock”: unobserved determinants of Y for individual i

ii i iY T X uα β δ += + + ( )| , 0i i iE u T X =

© Institute for Fiscal Studies  

• Can easily estimate β in unbiased way (because                      )

– Reminder: what does “unbiased” mean? If repeatedly estimated β
using different samples from population, would, on average, get right 
answer

( )| , 0i i iE u T X =



Inference in standard settings
1. Specify ‘null hypothesis’ we want to test

– e.g.                      ( “treatment has no effect, on average”)

2. Form some ‘test statistic’ based on the sample data

– e.g. t-stat 

3. Use statistical theory to tell us what distribution of test statistics we 
would expect (if replicated estimation many times on fresh 
samples) if null hypothesis were true

^

0
ˆ ˆ( ) ( )t s eβ β β= −

0 0β =
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samples) if null hypothesis were true

– e.g. t-stat has t-distribution if errors are normally-distributed 

– e.g. t-stat has normal distribution if sample size is very large 
(technically: distribution of t-stat gets closer to normal distribution as 
sample size grows; called an “asymptotic result”)

4. Can then judge how ‘surprising’ our test statistic would be if null 
hypothesis were true

– E.g.                             should occur with 5% probability under null| | 1 . 9 6t >



Inference in standard settings: graphically

Probability 
density

If the t-stat formed from our sample 
data lies in extremes of the 
distribution (shaded areas), then we 
conclude that this is an unlikely 
event under the null hypothesis, so 
we reject the null hypothesis
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t̂

Distribution of t-stat 
under null hypothesis



Recap, and the relevance of what’s to come

Standard inference proceeds based on two things:

1. Forming a test statistic

2. Knowing distribution of this statistic under null hypothesis

Problems considered in this talk can make both more difficult

1. Clustering and serial correlation make the usual estimators of                )ˆ( βse
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1. Clustering and serial correlation make the usual estimators of                
inappropriate: an obstacle to forming the proper test statistic

2. When data are clustered, it can be harder to know what distribution 
we would expect a t-stat to have under the null

– Why?  If data are clustered, then t-stat gets closer to being normally 
distributed as number of clusters (not observations) grows.  With few 
clusters, hard to know what distribution we would expect a t-stat to 
have under the null

– More observations does not necessarily mean more clusters

)ˆ( βse



AN EXAMPLE OF THE 
CLUSTERING PROBLEM
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CLUSTERING PROBLEM



Example of clustering: training and earnings

• Want to know effect of training scheme (“treatment”) on earnings 
(“outcome”)

• Some US states implement the training scheme, so individuals in 
these states are “treated”; other US states do not

• Use data on large sample of US citizens from a few US states 
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• An OLS regression (or similar) effectively compares earnings of 
individuals in different states. 

– If                      this is an unbiased estimate of the impact of training on 
earnings

– But what about inference?

ii i iY T X uα β δ += + +
( )| 0i iE u T =



Why might clustering make inference tricky? (1)

• For inference about effect of training scheme, need to ask: 

– “How likely is it that differences in earnings across states in our sample 
is due to different earnings shocks (rather than the training scheme)?”

• If individual earnings shocks are independent of each other, they 
will average to (close to) zero within each state

ii i iY T X uα β δ += + + ( )| , 0i i iE u T X =
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will average to (close to) zero within each state

– Large differences in earnings between states with/without training 
scheme could then be confidently attributed to training scheme

• But clustering breaks independence: imagine that individual shocks 
within a given state share a common component (a state-level 
shock)

– Now, individual earnings shocks within a state will not average to zero, 
unless the state-level shock happens to be zero

– So harder to distinguish an impact of training from the impacts of 
earnings shocks



How confident are we that training had an effect?
Frequency People in state with training programme

People not in state with programmeConsider two cases:
1. Everyone’s earnings shocks are independent
2. Everyone in same state is subject to same state-level earnings shock
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Earnings 



Why might clustering make inference tricky? (2)

• Groups with training will have different earnings shocks from groups 
without training, because:

– There are state-level earnings shocks

– Groups with training live in different states from groups without training

• If lots of states, on average there should be little difference between 
state-level earnings shocks in treated/untreated states…
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state-level earnings shocks in treated/untreated states…

– …but not if few states (regardless of how many people in each state)

• If we know how state-level shocks are distributed, can judge 
whether differences in earnings between those in states 
with/without training are likely to be due to differences in state-level 
earnings shocks…

– …but have little information about distribution of state-level shocks if 
only a few states (no matter how many people in each state)



Clustering is like a (big) reduction in sample size
• Say Ohio is one of the sampled states. How useful would it be to 

sample another 1 million people from Ohio?
– Not very! They all have the same treatment status (trained/not trained) and 

the same Ohio-level earnings shock as the existing sample in Ohio

– So doesn’t help us distinguish the impact of training from the impact of 
Ohio’s earnings shock

• Note the problem is particularly severe because we have a cluster-
level treatment (everyone in Ohio is either trained or not trained)
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• Note the problem is particularly severe because we have a cluster-
level treatment (everyone in Ohio is either trained or not trained)
– If some in Ohio had access to training and some did not, more data on 

people from Ohio would be more useful: researcher can see what happens 
when treatment status changes but the state-level earnings shock stays 
same

• No matter how many individuals we have data on, we are really trying 
to separate state-level earnings shocks from effects of state-level 
treatments
– So need lots of states, not lots of individuals



What does clustering mean in practice?

• Having clustered data always affects inference, unless regressors
are completely uncorrelated with cluster membership 

– In evaluation settings, treatment often perfectly correlated within cluster

• If we ignore clustering, estimated standard errors will tend to be too 
small, so we will tend to over-reject null hypotheses (i.e. more likely 
to incorrectly-reject true nulls; confidence intervals too small)
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to incorrectly-reject true nulls; confidence intervals too small)

• Even if we have correct standard errors, usual t-stat distributed 
normally only as number of clusters (NOT observations) gets large

– So, even if have very large sample of individuals, we may not know 
distribution of t-stat under the null hypothesis, so will not be able to 
decide whether or not actual t-stat is especially unlikely (under the null)



CLUSTERING: SIMPLE MODEL, 
AND SOLUTIONS
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AND SOLUTIONS



What might a model with clustering look like?

• Model:                                                              

– Yic is outcome for individual i in cluster c

– Tc is treatment status: same for everyone within a cluster

– Unobserved “error” or “shock” now has TWO components: cluster-level shock         
and individual-level shock       

– We’ll assume that the cluster-level shock is independent across clusters, and 

cµ
icε

i c c i c c i cY T Xα β δ µ ε= + + + +
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– We’ll assume that the cluster-level shock is independent across clusters, and 
individual-level shock independent across individuals

– But cluster-level component implies shocks are corr elated within clusters

• If                             , straightforward to use OLS to get unbiased 
estimate of 

( )| 0c ic cE Tµ ε+ =
β



The “Moulton correction” (1)
• Say that the correlation between all shocks within all clusters is

• Moulton (1986) showed that the clustering increases the variance 
of estimates of the treatment effect (    ) by factor of

(N is sample size; C is number of clusters)

• So can scale up normal OLS standard error using (square root of) 

C

N
ρ+1β̂

ρ
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• So can scale up normal OLS standard error using (square root of) 
the Moulton factor…

– …using an estimate of     : just compute intra-cluster correlation of 
residuals (“estimated shocks”), 

• Then form t-stat in usual way, but using corrected standard error

ρ
ˆ ˆˆˆ i c i c c i cu Y T Xα β δ− −≡ −



The “Moulton correction” (2)
• Correction relies crucially on the assumption that the correlation 

between all shocks within all clusters is the same (   )

• This assumption is true under a combination of:

– Variance of shock components the same across clusters (which in 
particular requires homoscedasticity)

– Independence between two shock components

ρ
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• Under those conditions: 

• If those conditions are not satisfied, then the Moulton correction 
can not be expected to yield correct standard errors

2

2 2

µ

µ ε

σ
ρ

σ σ
=

+

2 2( | , )c i c c i cV a r T X µ εµ ε σ σ+ = +



Moulton correction: discussion

• Note that square root of                   can be big! 

– Angrist and Lavy (2007) study school-level intervention with 4000 
students in 40 schools

– N/C = 100, and      estimated to be 0.1: implies true standard errors 
three times larger than what you would estimate if you (incorrectly) 
ignore clustering

C

N
ρ+1

ρ

• Correction requires strong assumption that      same for all 
clusters

• And correction (might) get you correct test statistic, but also need 
to know distribution of test statistic under null hypothesis

• With a large number of clusters, the t-stat will be close to normally 
distributed, but what if few clusters?

• Can make one more assumption: the cluster-level shocks have a 
normal distribution (Donald and Lang (2007))
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ρ



Two-step procedure (Donald and Lang, 2007)

Model:

1. Estimate ‘cluster effects’,                           , using OLS on full 
sample:

2. Estimate the treatment effect,     , using the estimated cluster effects: 

i c c i c i cY Xα λ δ ε= + + +
c cc Tλ β µ≡ +

β
ˆ

c c cTλ β ω= +

i c c i c c i cY T Xα β δ µ ε= + + + +
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• Note that 

– 2nd component of error term is the ‘estimation error’ for the cluster 
effect from 1st stage.  If sample sizes within clusters are large, this will 
be roughly normally distributed.

– So if the cluster-level shocks (    ) also have normal distribution, then      
has a normal distribution

• This helps because, with normal errors, t-stats are known to have a t 
distribution even in small samples (i.e. with few clusters, in 2nd

stage)

( )ˆc c c cω µ λ λ= + −

cωcµ



Donald-Lang 2-step procedure: discussion

• Can deal with relaxation of some of the strong Moulton assumptions

• With large cluster sizes, don’t need homoscedasticity

• The cluster-level shock could instead just be a shock correlated within 
clusters (i.e. it doesn’t have to have intra-cluster correlation of one): 

– Technically, we require that the variance of its average within a 
cluster depends only on cluster size
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• But, to do inference properly in situations with few clusters, also 
need to add assumption that cluster-level shock is normally 
distributed

• Under the required assumptions, it is efficient even with few clusters 
(it is equivalent to feasible GLS) 



MAXIMUM FLEXIBILITY: 
CLUSTER-ROBUST STANDARD 

ERRORS
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ERRORS



Relaxing the assumptions

• Methods discussed so far have required making assumptions about 
the unobserved shock

– Moulton: constant correlation of shocks within clusters, for all clusters

– Donald and Lang: cluster-level shock is normally distributed
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• More flexible, and more commonly used, are “cluster-robust” 
standard errors (Liang and Zeger, 1986)

• Generalisation of White’s heteroscedasticity-robust standard errors

• Implemented in Stata regressions using “vce(cluster clustvar)” option



Cluster-robust standard errors

• These can solve inference problems without making any 
assumptions about the way that shocks are correlated within 
clusters

• Still require that the cluster-level shocks are uncorrelated across 
clusters (i.e. that you have defined the clusters correctly)
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• Cluster-robust standard errors obtained by plugging residuals into 
formula which is a generalisation of White’s heteroscedasticity-
robust formula to allow also for clustering



Again, we have problems with few clusters

• Cluster-robust estimates of standard errors only consistent as 
number of clusters (not observations) gets large 

– Some bias corrections for cluster-robust SEs have been proposed 
(see Angrist and Lavy, 2002) for setting with few clusters, but…
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• …even if cluster-robust standard errors can be estimated with no 
bias, usual t-stat may have unknown distribution under the null 
hypothesis with small number of clusters



Recap

• Having clustered data always affects inference, unless explanatory 
variables completely uncorrelated with cluster membership 

– “Treatments” are often perfectly correlated within clusters

• Have considered 

– solutions which impose and exploit certain assumptions about the 
nature of the clustering

– cluster-robust SEs , the most common solution, which assumes 
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– cluster-robust SEs , the most common solution, which assumes 
nothing about structure of shocks within cluster

• But these solutions:

1. Do not work well with few clusters

And/or:

2. Make strong assumptions about the form of the clustering (i.e. about 
the nature of the errors within clusters)



What’s to come

• We now extend the problem to cover most common evaluation 
setting: where we have observations at multiple points in time

– This should help (more data-points!), but often introduces another 
complication

• We then discuss solutions that can handle this extension
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• We then discuss solutions that can handle this extension

• Some of the solutions will be relevant for the simpler case without 
the time dimension as well, particularly for small number of clusters



INFERENCE WITH A TIME 
DIMENSION: DIFFERENCE-IN-

DIFFERENCES
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DIFFERENCES



Effects of training with (slightly) different data

• In most common data setting for policy evaluations, would observe 
earnings from before and after introduction of training programme

• Estimation (in effect) compares 

– change in earnings in treated states (before/after training programme) 

– with change in earnings in untreated states 
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– with change in earnings in untreated states 

• The “difference-in-differences” estimator (DiD)

• DiD uses information on pre-programme differences in earnings

– Hope is that pre-programme differences in earnings between states 
are a good guide to what post-programme differences in earnings 
would have been in the absence of training



The “difference-in-differences” estimator (1)

Earnings Training 
programme 
introduced

People in state with training programme
People not in state with programme

Before programme, treated states had lower earnings.
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Time

AfterBefore After programme, treated states had higher earnings.

Conclude: training programme increased earnings.



The “difference-in-differences” estimator (2)

• DiD assumes pre-programme differences in earnings between 
states are a good guide to what post-programme differences in 
earnings would have been in the absence of training

• Now suppose that earnings of workers in a given state at a given 
time subject to some common shock (state-specific business cycle)
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time subject to some common shock (state-specific business cycle)

– These shocks will NOT average to zero within a state-time period 

• Differences in average earnings between states will then reflect: 

– Before: between-state difference in state-time shocks at time t-1

– After: between-state difference in state-time shocks at time t 
+ impact of training programme



The inference problem in DiD with state-time 
shocks: graphically

Earnings
Training 

programme 
introduced

Central DiD estimate is 

People in state with training programme
People not in state with programme
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Time

that training increased 
earnings…. 

Are we confident about 
this conclusion?



The inference problem in DiD with state-time 
shocks: graphically

Earnings
How confident are we now?

Would data look like this without state-time shocks?

People in state with training programme
People not in state with programme

Training 
programme 
introduced
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Time



The inference problem in DiD with state-time 
shocks: in words

• After programme, between-state differences in earnings due to:

1. Training programme (the treatment)

2. Different state-time earnings shocks in different states

• To distinguish between 1 and 2, need to know distribution of state-
time earnings shocks
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• To learn about this, need as many state-time cells as possible

– Adding observations with same state-time combination as existing data 
does not help, but more states or more time periods should help

– Directly analogous to cross-section case with clustered data, except 
now want data on additional states or additional time periods

• NB Donald and Lang argue that a 2-group, 2-period DiD with group-
level treatment is effectively useless in presence of state-time 
shocks

– Why? No way of knowing importance of state-time shocks



But ....  

• In practice, highly likely that (e.g.) Ohio’s earnings shock in one 
period is correlated with its earnings shock in next period

– This would occur if shocks were persistent
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The inference problem in DiD with serial 
correlation in state-time shocks: graphically

Average 
earnings

Training 
programme 
introduced

People in state with training programme
People not in state with programme
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Time

Is this an impact of training, or just a 
persistent state-time earnings shock?



The inference problem in DiD with serial 
correlation in state-time shocks: in words

• If earnings in Ohio rise after training programme starts,  and stay 
high for many periods, is this because of earnings shock?

– If no serial correlation, then unlikely: shock would have effect for 
only one period. Would conclude that training programme had an 
effect

– But with serial correlation, earnings shock at same time as training 
programme could affect earnings in Ohio for some time afterwards. programme could affect earnings in Ohio for some time afterwards. 
So less clear-cut

• Persistent shocks mean that shocks at different times in the 
same state are not independent

– Adding extra time periods is not like adding new clusters

– Adding extra time periods may provide less new information about 
distribution of state-time shocks than adding extra states

• Informally can see that serially-correlated shocks increase 
uncertainty over treatment impact
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Serial correlation in state-time shocks: practical 
implications and solutions

• Harder to be certain about impact of policy if state-time shocks are 
serially correlated

• Flipside is that, if shocks are positively serially correlated, then 
estimates of standard errors which ignore this will be too small 
(estimates will appear overly-precise)

– Bertrand, Duflo and Mullainathan (BDM, 2004) look at data that exhibits 
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– Bertrand, Duflo and Mullainathan (BDM, 2004) look at data that exhibits 
serial-correlation but that contains no treatment effects. They found that 
researchers testing the (true) null of “no treatment effect” would 
incorrectly reject the null 44% of the time when using a (nominal) 5% 
level test

• Why? If we assume no serial correlation, then persistent differences between states 
get attributed to (non-existent) policy

• To solve problem of serially-correlated shocks, will need either to:

– specify (and estimate) time-series process for the state-time shocks

– use method that is flexible about within-state correlations



CLUSTERING AND SERIAL 
CORRELATION IN DiD: 

SOLUTIONS
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SOLUTIONS



Another 2-step procedure (Hansen, 2007)

• Hansen (2007) proposes 2-step procedure similar to Donald and 
Lang

1. Estimate ‘state-time’ effects using OLS on full sample

2. Estimate treatment effect using the estimated state-time effects: 

i c t c t i c t i c tY Xα λ δ ε= + + +

ˆct ct ctc t Tλ µ ξ β ω= + + +

ic t c t ic t c t c t ic tY T Xα β δ µ ξ η ε= + + + + + +

( )ˆ
ct ct ct ctω η λ λ= + −
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;

• Error in 2nd stage is serially correlated; OLS would give unbiased 
estimate of coefficient , but naive standard errors would be wrong

• Hansen proposes:

– assume 2nd-stage shock follows particular autoregressive (AR) process

– estimate parameters of this process using 2nd-stage OLS residuals, 
plus a ‘bias correction’ (to account for inconsistency of these estimates 
with fixed state effects and fixed number of time periods)

– Can then correct standard errors (equivalent to feasible GLS)

ct ct ctc t Tλ µ ξ β ω= + + + ( )ct ct ct ctω η λ λ= + −



Specifying time-series process: assessment

• Method rejects null hypothesis correct proportion of the time when 
data contains no treatment effect

• But relies on 

– correctly specifying AR(p) process for 2nd stage shock

– homoscedasticity in state-time shock
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– same AR process for shock in all states

• And method for estimating AR(p) process is consistent only as 
number of states goes to infinity, or as it becomes vanishingly small 
relative to number of time periods

– Hansen tests with data from 51 states; but could be problems with few 
states (unless huge number of time periods)



Full flexibility again: cluster-robust SEs

• Earlier: cluster-robust SEs make no assumptions about within-
cluster correlation structure

• Very important: in DiD, usually NOT be appropriate to estimate 
standard errors with clustering at the state-time level

– Why not? Errors have to be independent between clusters, but serially-
correlated errors break this

• But can define a cluster to be a state, each with its own time-series 
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• But can define a cluster to be a state, each with its own time-series 
of observations

– This estimates standard errors without making any assumption about 
nature of time-series process within each state

• Easy to implement, but not appropriate with few clusters

– BDM find that, with serially-correlated data that contains no treatment 
effect, and when using cluster-robust SEs where clusters=states, they 
incorrectly reject a true null hypothesis of “no treatment effect” 8% 
(12%) of the time with 10 (6) states using a (nominal) 5% level test 



USING THE BOOTSTRAP TO 
DEAL WITH CLUSTERED DATA, 

SERIALLY-CORRELATED 
SHOCKS AND FEW CLUSTERS
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SHOCKS AND FEW CLUSTERS



Using the bootstrap for inference: overview

• Classical hypothesis test: compare calculated test statistic (from 
data) to known distribution of test statistic under the null

• What if do not know distribution of test statistic under the null? 

– e.g. t-statistic with non-normal errors and few observations/clusters

• Bootstrap is a method of estimating the distribution of a test statistic 
by resampling from one’s data. It treats the data as if they were the 
population (Horowitz, 2001). 
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population (Horowitz, 2001). 

• If used properly, bootstraps can be extremely useful

– Can estimate the distribution of a test statistic under few assumptions 
(about, e.g., nature of unobserved shocks)

– May be more accurate in small samples (formally: some test statistics 
based on the bootstrap converge more quickly than those based on 
standard statistics; “asymptotic refinement”)



Using the bootstrap for hypothesis testing: 
example of “pairs bootstrap”

• Assume testing hypothesis β = 0 (at 5% level) using t-stat

– Using original sample, estimate coefficient β0 and calculate t-stat t0
– For b = 1 to B

• Construct new dataset by sampling with replacement rows (i.e. “pairs” of Y and X) 
of existing dataset 

• Estimate coefficient βb and calculate t-stat, tb, centred on original estimate β0• Estimate coefficient βb and calculate t-stat, tb, centred on original estimate β0

– {t1 ... tB} is your estimated distribution of t-statistics. Calculate the 
2.5th and 97.5th quantiles

– Reject hypothesis if original test statistic <= 2.5th quantile or >= 
97.5th quantile

• NB this method is preferred to one which uses the bootstrap 
only to estimate the standard-error of estimated β0
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Using the bootstrap with clustered data

• Can account for clustered errors if we create our new samples in a 
way that preserves key features of original sampling scheme

• E.g. pairs bootstrap with clustered data

– Key feature: shocks within a cluster might be correlated

– Amend previous algorithm to re-sample (with replacement) entire 
clusters of data, not individual observations

– Means that new samples also have errors correlated within clusters
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– Means that new samples also have errors correlated within clusters

– Called the “pairs block bootstrap” (or “pairs clustered bootstrap”)

• Problem:

– with few clusters, some generated samples will, by chance, contain 
limited or no variation in treatment

– Cameron et al (2008) find pairs block bootstrap OK for >=30 groups



Using the bootstrap by drawing from residuals 
(1) 

• Alternative to pairs bootstrap is to create new samples by holding 
constant X, drawing residuals (from some estimated or known 
distribution), and generating new Y.

• In simplest case

– Residuals, e, estimated using full sample 

– Data for person i in sample b b eXy += β– Data for person i in sample b
• j is chosen randomly (with replacement) from entire sample of individuals. 

– (Called “residual bootstrap”. Uses estimated distribution of residuals 
as guide to distribution of underlying unobserved error term)

• However, method unlikely to work in our case

– Assumes errors are homoscedastic

– Can allow for clustering, but only if all clusters the same size
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ji
b
i eXy += β



Using the bootstrap by drawing from residuals 
(2) 

• More complicated case: wild bootstrap

– Residuals, e, estimated using full sample 

– To create data for person i in sample b, hold X constant and 
generate new Y:

• With probability ½: 

• With probability ½: 

ii
b
i eXy += β
b eXy −= β• With probability ½: 

– (Called “wild bootstrap”. Uses each individual’s residual as guide to 
each individual’s distribution of underlying unobserved error term)

• Easy to modify for clustered data

– When choosing whether to add or subtract residual to create new 
values of y, make same choice for all individuals in given cluster

– Does not assume homoscedasticity, and group size irrelevant
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ii
b
i eXy −= β



Using the bootstrap with clustered data (3)

• Cameron et al (2008) find best performance given by “wild cluster 
bootstrap”

– gets the rejection rate for true null with as few as six clusters

– NB they also suggest that should estimate residuals having imposed 
the null. If null is that “coefficient is zero”, this means that residuals 
should be estimated from model which omits that variable
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• For full details of implementation, see their Appendix B. See also

– example Stata code from one of the authors at 
http://www.econ.ucdavis.edu/faculty/dlmiller/stataf iles/

– Bansi Malde’s ado file at http://tinyurl.com/c8vz3br



Recap
• Clustering always affects inference, and is especially problematic 

when the treatment is applied at the cluster level

• Having clustered data means 

– standard errors are (a lot) larger 

– need many clusters for t-statistics to have expected normal distribution

• Longitudinal data can help, but helps less if data are serially 
correlatedcorrelated

• Main solutions to clustering and serial correlation either 

– impose more structure, or make further assumptions

– implement the cluster-robust variance estimator

– use a bootstrap that accounts for clustering

• With few clusters, only the wild cluster bootstrap seems to perform 
reliably well
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Using the bootstrap for hypothesis testing: 
example

• Suppose want to test that β = 0 using a t-statistic.  Three broad 
methods to create new samples

1. “Pairs bootstrap” 
– Re-sample data (i.e. rows of dataset) with replacement 

2. “Residual bootstrap”
– Keep Xs the same but create sample with new Y variable by drawing 

from set of empirical residualsfrom set of empirical residuals
– Detail: residuals can be estimated using the full model, or (better) a 

restricted model which imposes the null
– Requires errors to be homoscedastic

3. “Wild bootstrap”
– Keep Xs the same but create sample with new Y variable by either 

adding or subtracting (with equal probability) actual empirical residual 
for that observation

– Detail: residuals can be estimated using the full model, or (better) a 
restricted model which imposes the null

– Does not requires errors to be homoscedastic
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