The distributional effects of a soda tax

Pierre Dubois, Rachel Griffith and Martin O'Connell

August 2016

Motivation

- Governments across the world are concerned about high and rising rates of obesity; sugar sweetened beverages are a prime contributing factor
- Public health community has advocated the use of soda taxes
- In 2012 France became first country to introduce a tax targeted specifically at soda, followed in 2013 by Mexico
- This year:
- Philadelphia passed legislation for a tax of 1.5 cents per ounce on both sodas with added sugar and artificial sweeteners
- UK Government announced plans for a tax on soda with added sugar
- Controversy surrounding whether such measures will successfully lower sugar consumption among those most in need of change and to what extent the measures will be regressive.

Aim of paper

- We provide empirical evidence on the impact on consumer demand for soda of implementing a soda tax
- Estimate demand in UK soda market exploiting longitudinal data on purchases of a panel of individual consumers
- For each consumer we estimate their price, soda and sugar preference parameters, imposing no distributional assumption on the joint distribution
- Allows us to capture distributional impact of introducing tax
- And to relate preferences and predictions to other information about consumers (e.g. total sugar in diet and measure of income)
- We compare a Philadelphia style tax on all soda (soda tax) with a revenue equivalent UK style tax which targets only soda with added sugar (sugary soda tax)

Use novel data set

- Use data on purchases made by a panel of consumers of food and drink bought "on-the-go"
- We observe 5199 consumers in total
- 1103 never purchase drinks; 1773 only purchase non soda drinks; 2363 are soda purchasers
- We observe each consumer making purchases on at least 25 separate days (81 on average)
- Food/drink "on-the-go" is an important segment of junk food markets, yet little is known about on-the-go demand
- Alleviates concerns about stocking-up and intra-household allocation contaminating demand estimates

Soda demand

- Consumers typically purchase one product on a purchase occasion
- They select from set of popular, differentiated products; e.g.
- Coca Cola 330 ml can
- Pepsi Diet 500 ml bottle
and outside option of a non-soda drink
- We model demand using discrete choice framework
- Utility from a given product is a function of consumer's valuation of product attributes
- Plus an additive (logit) shock
- Consumer assumed to select the option that provides the highest utility

Utility specification

Consumer i on purchase occasion t chooses between soda products, $j \in\{1, \ldots, J\}=\Omega$, and outside option, $j=0$

Inside option utility $(j>0)$:

$$
U_{i j t}=\alpha_{i}+\beta_{i} p_{j r t}+\gamma_{i} s_{j}+g_{i}\left(\mathbf{x}_{j t}\right)+\epsilon_{i j t}
$$

$p_{j r t}$ price of product j at time t in store r s_{j} indicator of sugary vs. diet
$\mathbf{x}_{j t}$ additional product attributes (pack size effect; time varying brand effects)
$\epsilon_{i j t}$ type I extreme value deviate
Outside option utility $(j=0)$:

$$
U_{i 0 t}=\zeta_{d r t}+\epsilon_{i 0 t}
$$

$\zeta_{d r t}$ demographic group d-time t-store r effect

Preference heterogeneity

- Soda $\left(\alpha_{i}\right)$, price $\left(\beta_{i}\right)$ and sugar $\left(\gamma_{i}\right)$ preferences are consumer specific
- We treat $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots \alpha_{N}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}, \ldots \beta_{N}\right)^{\prime}$ and $\gamma=\left(\gamma_{1}, \ldots \gamma_{N}\right)^{\prime}$ as parameters
- Using large T dimension of data to recover estimates of $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$
- And large N dimension to construct nonparametric estimate of $f\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)$
- We also allow for the possibility of infinite regions of the parameter space
- For instance, consumers that never purchase sugary (non-diet) products have $\gamma_{i}=-\infty$

Our approach vs. random coefficient logit

- It's well understood that incorporating preference heterogeneity is important for capturing realistic substitution patterns
- Standard approach is to model heterogeneity using a parametric distribution - e.g. consumer specific coefficients are random draws from independent normals
- Strength of our alternative approach is
- We do not need to impose functional form assumptions on preference distribution
- We recover consumer specific parameters and therefore can relate them to other information about consumers

Soda products

Product			Market share	Price (£)	$\begin{aligned} & \text { g sugar } \\ & \text { per } 100 \mathrm{ml} \end{aligned}$
Brand	Regular/diet	Pack size			
Coca Cola	Regular	330 ml can	45.5%	0.63	10.6
	Regular	500 ml bottle	12.6\%	1.08	10.6
	Diet	330 ml can	6.8\%	0.63	0.0
	Diet	500 ml bottle	19.9\%	1.07	0.0
Fanta			7.3\%		
	Regular	330 ml can	1.0\%	0.59	6.9
	Regular	500 ml bottle	5.5\%	1.07	6.9
	Diet	500 ml bottle	0.8\%	1.06	0.6
Cherry Coke			5.7\%		
	Regular	330 ml can	0.8\%	0.65	11.2
	Regular	500 ml bottle	3.3\%	1.07	11.2
	Diet	500 ml bottle	1.6\%	1.06	0.0
Ribena			5.2\%		
	Regular	288 ml carton	0.9\%	0.67	10.5
	Regular	500 ml bottle	3.1\%	1.12	10.5
	Diet	500 ml bottle	1.2\%	1.12	0.5
Pepsi			18.7\%		
	Regular	330 ml can	1.4\%	0.60	11.0
	Regular	500 ml bottle	3.6\%	0.94	11.0
	Diet	330 ml can	1.9\%	0.61	0.0
	Diet	500 ml bottle	11.7\%	0.93	0.0
Lucozade			9.1\%		
	Regular	380 ml bottle	4.3\%	0.94	13.8
	Regular	500 ml bottle	4.9\%	1.13	13.8
Oasis			8.5\%		
	Regular	500 ml bottle	7.8\%	1.07	4.1
	Diet	500 ml bottle	0.7\%	1.05	0.5

Model estimates

Moments of distribution of consumer specific preferences			
		Estimate	Standard error
Variable		-3.0985	0.0925
Price	Mean	5.9174	0.0948
	Standard deviation	0.3353	0.0966
	Skewness	4.2871	0.2833
Kurtosis	-1.5635	0.0894	
	Mean	5.8820	0.1046
	Standard deviation	-0.6427	0.1072
	Skewness	4.5701	0.4237
Sugar	Kurtosis	0.0532	0.0182
	Mean	1.7495	0.0200
	Standard deviation	-0.2008	0.0404
	Skewness	2.4635	0.0692
Kurtosis	-31.7067	1.1204	
Price-Soda	Covariance	0.6170	0.1371
Soda-Sugar	Covariance	Covariance	-2.4481

Marginal preference distributions

Negative Indifferent
(not statistically different from zero)
Positive

How preferences relate to broader measures of behaviour

- Consumers with low annual grocery expenditure more price sensitive
- Consumers with high share of total sugar in diet have stronger sugar preference

Price effects

	own demand	Effect of 1\% pri cross dem sugary products	e increase on: and for: diet products	total demand
Coca Cola 330	-3.954	0.178	0.067	-0.049
Coca Cola 500	-1.231	0.154	0.065	-0.142
Coca Cola Diet 330	-3.668	0.070	0.294	-0.033
Coca Cola Diet 500	-1.858	0.068	0.463	-0.161
Fanta 330	-4.425	0.047	0.015	-0.011
Fanta 500	-1.276	0.018	0.011	-0.025
Fanta Diet 500	-2.157	0.012	0.068	-0.029
Cherry Coke 330	-4.644	0.028	0.008	-0.006
Cherry Coke 500	-1.339	0.018	0.011	-0.023
Cherry Coke Diet 500	-2.159	0.011	0.061	-0.024
Ribena 288	-4.214	0.043	0.016	-0.006
Ribena 500	-0.814	0.003	0.007	-0.013
Ribena Diet 500	-1.710	0.006	0.035	-0.016

Counterfactual soda tax

- We simulate a Philadelphia and UK style soda tax - A 25p tax per litre on all soda (Philadelphia style) - A 48p tax per litre on only sugary soda (UK style)
- Rates chosen to be revenue equivalent
- We explore the demand effects of each tax

Aggregate effects

	\% change in demand for:		
	sugary soda	diet soda	all soda
Soda tax	-9.1	-10.4	-9.6
Sugary soda tax	$[-9.5,-8.3]$	$[-10.8,-9.5]$	$[-10.1,-8.9]$
	-16.2	4.7	-6.9
	$[-16.8,-14.2]$	$[4.1,5.3]$	$[-7.2,-6.1]$

Effects of tax by overall dietary sugar

		Quartile of added sugar distribution			
		$\begin{gathered} 1 \\ \text { Mean } \end{gathered}$	Difference in mean with quartile 1		
Volume (I)	Pre tax	$\begin{gathered} 8.50 \\ {[8.47,8.65]} \end{gathered}$	$\begin{gathered} -0.85 \\ {[-0.95,-0.72]} \end{gathered}$	$\begin{gathered} -0.70 \\ {[-0.76,-0.50]} \end{gathered}$	$\begin{gathered} -0.68 \\ {[-0.78,-0.51]} \end{gathered}$
Δ volume (1)	Soda tax	-0.94	0.08	0.04	0.12
		[-1.00, -0.86]	[0.02, 0.15]	[-0.04, 0.10]	[0.04, 0.18]
	Sugary soda tax	-0.66	0.02	-0.02	0.03
		[-0.71, -0.56]	[-0.04, 0.12]	[-0.11, 0.07]	[-0.10, 0.11]
Sugar (100g)	Pre tax	4.19	0.13	0.56	1.06
		[4.17, 4.31]	[0.04, 0.25]	[0.45, 0.72]	[0.95, 1.18]
Δ sugar (100g)	Soda tax	-0.47	-0.01	-0.01	0.00
		[-0.51, -0.43]	[-0.04, 0.05]	[-0.06, 0.03]	[-0.06, 0.05]
	Sugary soda tax	-0.94	0.06	0.01	0.13
		[-1.01, -0.81]	[-0.04, 0.17]	[-0.13, 0.10]	[-0.01, 0.23]

Effects of tax by total spending

		Quartile of grocery expenditure distribution			
		1 Mean	$\begin{array}{ccc} 2 & 3 & 4 \\ \text { Difference in mean with quartile } 1 \end{array}$		
Volume (I)	Pre tax	$\begin{gathered} 8.13 \\ {[8.08,8.35]} \end{gathered}$	$\begin{gathered} 0.26 \\ {[0.07,0.39]} \end{gathered}$	$\begin{gathered} -0.28 \\ {[-0.41,-0.09]} \end{gathered}$	$\begin{gathered} -0.53 \\ {[-0.65,-0.38]} \end{gathered}$
Δ volume (1)	Soda tax	-1.03	0.15	0.18	0.25
		[-1.11, -0.95]	[0.09, 0.23]	[0.11, 0.27]	[0.17, 0.33]
	Sugary soda tax	-0.85	0.18	0.20	0.34
		[-0.95, -0.72]	[0.09, 0.27]	[0.14, 0.33]	[0.24, 0.48]
Sugar (100g)	Pre tax	5.04	-0.11	-0.39	-0.86
		[5.00, 5.18]	[-0.19, 0.01]	[-0.50, -0.28]	[-0.96, -0.75]
$\Delta \operatorname{sugar}(100 \mathrm{~g})$	Soda tax	-0.62	0.14	0.15	0.23
		[-0.67, -0.54]	[0.11, 0.20]	[0.12, 0.21]	[0.18, 0.30]
	Sugary soda tax	-1.14	0.23	0.24	0.41
		[-1.26, -1.00]	[0.14, 0.36]	[0.16, 0.41]	[0.29, 0.56]

Tax burden by total spending: compensating variation

	Quartile of grocery expenditure distribution			
	$\begin{gathered} 1 \\ \text { Mean } \end{gathered}$	$\begin{array}{ccc}2 & 3 & 4 \\ \text { Difference in mean with quartile } 1\end{array}$		
Soda tax	1.90	0.09	-0.05	-0.10
	[1.88, 1.95]	[0.04, 0.13]	[-0.09, 0.00]	[-0.13, -0.06]
Sugary soda tax	2.07	0.02	-0.11	-0.30
	[2.05, 2.15]	[-0.02, 0.10]	[-0.19, -0.04]	[-0.37, -0.25]

Summary

- Model demand in the soda market, estimating consumer specific preference parameters for soda, price and sugar
- Use estimates to explore demand responses to soda tax
- Tax levied only on sugary soda induces larger reduction in sugar but smaller reduction in total soda than comparable tax levied on all soda
- Little evidence either tax specifically targets consumption of individuals with high share of added sugar in diet
- Consumers with lower total spending respond more strongly than higher expenditure consumers

