The distributional effects of a soda tax

Pierre Dubois, Rachel Griffith and Martin O'Connell

August 2016

- Governments across the world are concerned about high and rising rates of obesity; sugar sweetened beverages are a prime contributing factor
- Public health community has advocated the use of soda taxes
 - In 2012 France became first country to introduce a tax targeted specifically at soda, followed in 2013 by Mexico
 - This year:
 - Philadelphia passed legislation for a tax of 1.5 cents per ounce on both sodas with added sugar and artificial sweeteners
 - UK Government announced plans for a tax on soda with added sugar
- Controversy surrounding whether such measures will successfully lower sugar consumption among those most in need of change and to what extent the measures will be regressive.

- We provide empirical evidence on the impact on consumer demand for soda of implementing a soda tax
 - Estimate demand in UK soda market exploiting longitudinal data on purchases of a panel of individual consumers
 - For each consumer we estimate their price, soda and sugar preference parameters, imposing no distributional assumption on the joint distribution
 - Allows us to capture distributional impact of introducing tax
 - And to relate preferences and predictions to other information about consumers (e.g. total sugar in diet and measure of income)
- We compare a Philadelphia style tax on all soda (soda tax) with a revenue equivalent UK style tax which targets only soda with added sugar (sugary soda tax)

- Use data on purchases made by a panel of consumers of food and drink bought "on-the-go"
- We observe 5199 consumers in total
 - 1103 never purchase drinks; 1773 only purchase non soda drinks; 2363 are soda purchasers
- We observe each consumer making purchases on at least 25 separate days (81 on average)
- Food/drink "on-the-go" is an important segment of junk food markets, yet little is known about on-the-go demand
- Alleviates concerns about stocking-up and intra-household allocation contaminating demand estimates

- Consumers typically purchase one product on a purchase occasion
- They select from set of popular, differentiated products; e.g.
 - Coca Cola 330ml can
 - Pepsi Diet 500ml bottle

and outside option of a non-soda drink

- We model demand using discrete choice framework
 - Utility from a given product is a function of consumer's valuation of product attributes
 - Plus an additive (logit) shock
 - Consumer assumed to select the option that provides the highest utility

Utility specification

Consumer i on purchase occasion t chooses between soda products, $j\in\{1,...,J\}=\Omega,$ and outside option, j=0

Inside option utility (j > 0):

$$U_{ijt} = \alpha_i + \beta_i p_{jrt} + \gamma_i s_j + g_i(\mathbf{x}_{jt}) + \epsilon_{ijt}$$

 p_{jrt} price of product j at time t in store r

 s_i indicator of sugary vs. diet

 \mathbf{x}_{jt} additional product attributes (pack size effect; time varying brand effects)

 ϵ_{ijt} type I extreme value deviate

Outside option utility (j = 0):

$$U_{i0t} = \zeta_{drt} + \epsilon_{i0t}$$

 ζ_{drt} demographic group *d*-time *t*-store *r* effect

Dubois, Griffith and O'Connell (IFS)	Soda tax 6 / 1	August 2016 6 / 1

- Soda (α_i) , price (β_i) and sugar (γ_i) preferences are consumer specific
- We treat $\pmb{\alpha}=(\alpha_1,...\alpha_N)'$, $\pmb{\beta}=(\beta_1,...\beta_N)'$ and $\pmb{\gamma}=(\gamma_1,...\gamma_N)'$ as parameters
 - Using large T dimension of data to recover estimates of (α, β, γ)
 - And large N dimension to construct nonparametric estimate of $f(\alpha_i, \beta_i, \gamma_i)$
- We also allow for the possibility of infinite regions of the parameter space
 - For instance, consumers that never purchase sugary (non-diet) products have $\gamma_i = -\infty$

- It's well understood that incorporating preference heterogeneity is important for capturing realistic substitution patterns
- Standard approach is to model heterogeneity using a parametric distribution e.g. consumer specific coefficients are random draws from independent normals
- Strength of our alternative approach is
 - We do not need to impose functional form assumptions on preference distribution
 - We recover consumer specific parameters and therefore can relate them to other information about consumers

Soda products

Product			1		
Brand	Regular/diet	Pack size	Market share	Price (£)	g sugar per 100ml
oca Cola	Regular Regular Diet Diet	330ml can 500ml bottle 330ml can 500ml bottle	45.5% 6.2% 12.6% 6.8% 19.9%	0.63 1.08 0.63 1.07	10.6 10.6 0.0 0.0
anta	Regular Regular Diet	330ml can 500ml bottle 500ml bottle	7.3% 1.0% 5.5% 0.8%	0.59 1.07 1.06	6.9 6.9 0.6
Cherry Coke	Regular Regular Diet	330ml can 500ml bottle 500ml bottle	5.7% 0.8% 3.3% 1.6%	0.65 1.07 1.06	11.2 11.2 0.0
libena	Regular Regular Diet	288ml carton 500ml bottle 500ml bottle	5.2% 0.9% 3.1% 1.2%	0.67 1.12 1.12	10.5 10.5 0.5
epsi	Regular Regular Diet Diet	330ml can 500ml bottle 330ml can 500ml bottle	18.7% 1.4% 3.6% 1.9% 11.7%	0.60 0.94 0.61 0.93	11.0 11.0 0.0 0.0
ucozade	Regular Regular	380ml bottle 500ml bottle	9.1% 4.3% 4.9%	0.94 1.13	13.8 13.8
asis	Regular Diet	500ml bottle 500ml bottle	8.5% 7.8% 0.7%	1.07 1.05	4.1 0.5

Dubois, Griffith and O'Connell (IFS)

Soda tax

2 August 2016

Model estimates

Moments of distribution of consumer specific preferences				
Variable		Estimate	Standard error	
Price	Mean	-3.0985	0.0925	
	Standard deviation	5.9174	0.0948	
	Skewness	0.3353	0.0966	
	Kurtosis	4.2871	0.2833	
Soda	Mean	-1.5635	0.0894	
	Standard deviation	5.8820	0.1046	
	Skewness	-0.6427	0.1072	
	Kurtosis	4.5701	0.4237	
Sugar	Mean	0.0532	0.0182	
	Standard deviation	1.7495	0.0200	
	Skewness	-0.2008	0.0404	
	Kurtosis	2.4635	0.0692	
Price-Soda	Covariance	-31.7067	1.1204	
Price-Sugar	Covariance	0.6170	0.1371	
Soda-Sugar	Covariance	-2.4481	0.1458	
		< □		

Dubois, Griffith and O'Connell (IFS)

Soda tax

10 / 1

August 2016 _____ 10 /

э

Marginal preference distributions

Dubois, Griffith and O'Connell (IFS)

Soda tax

11/1

August 2016 11 / 1

How preferences relate to broader measures of behaviour

- Consumers with low annual grocery expenditure more price sensitive
- Consumers with high share of total sugar in diet have stronger sugar preference

Price effects

	Effect of 1% price increase on:			
	own cross demand for:			total
	demand	sugary products	diet products	demand
Coca Cola 330	-3.954	0.178	0.067	-0.049
Coca Cola 500	-1.231	0.154	0.065	-0.142
Coca Cola Diet 330	-3.668	0.070	0.294	-0.033
Coca Cola Diet 500	-1.858	0.068	0.463	-0.161
Fanta 330	-4.425	0.047	0.015	-0.011
Fanta 500	-1.276	0.018	0.011	-0.025
Fanta Diet 500	-2.157	0.012	0.068	-0.029
Cherry Coke 330	-4.644	0.028	0.008	-0.006
Cherry Coke 500	-1.339	0.018	0.011	-0.023
Cherry Coke Diet 500	-2.159	0.011	0.061	-0.024
Ribena 288	-4.214	0.043	0.016	-0.006
Ribena 500	-0.814	0.003	0.007	-0.013
Ribena Diet 500	-1.710	0.006	0.035	-0.016

Dubois, Griffith and O'Connell (IFS)

Soda tax

13 /

August 2016

・ロト ・聞ト ・ヨト ・ヨト

13 / 1

3

- We simulate a Philadelphia and UK style soda tax
 - A 25p tax per litre on all soda (Philadelphia style)
 - A 48p tax per litre on only sugary soda (UK style)
- Rates chosen to be revenue equivalent
- We explore the demand effects of each tax

	% change in demand for:				
	sugary soda diet soda all soda				
Soda tax	-9.1	-10.4	-9.6		
	[-9.5, -8.3]	[-10.8, -9.5]	[-10.1, -8.9]		
Sugary soda tax	-16.2	4.7	-6.9		
	[-16.8, -14.2]	[4.1, 5.3]	[-7.2, -6.1]		

・ロト ・ 日 ト ・ 田 ト ・

		Quartile of added sugar distribution			
		1 2 3 4			4
		Mean	Difference	e in mean with	quartile 1
Volume (I)	Pre tax	8.50	-0.85	-0.70	-0.68
		[8.47, 8.65]	[-0.95, -0.72]	[-0.76, -0.50]	[-0.78, -0.51]
Δ volume (I)	Soda tax	-0.94	0.08	0.04	0.12
		[-1.00, -0.86]	[0.02, 0.15]	[-0.04, 0.10]	[0.04, 0.18]
	Sugary soda tax	-0.66	0.02	-0.02	0.03
	0,	[-0.71, -0.56]	[-0.04, 0.12]	[-0.11, 0.07]	[-0.10, 0.11]
Sugar (100g)	Pre tax	4.19	0.13	0.56	1.06
		[4.17, 4.31]	[0.04, 0.25]	[0.45, 0.72]	[0.95, 1.18]
Δ sugar (100g)	Soda tax	-0.47	-0.01	-0.01	0.00
- , -,		[-0.51, -0.43]	[-0.04, 0.05]	[-0.06, 0.03]	[-0.06, 0.05]
	Sugary soda tax	-0.94	0.06	0.01	0.13
	0,	[-1.01, -0.81]	[-0.04, 0.17]	[-0.13, 0.10]	[-0.01, 0.23]

		Quartile of grocery expenditure distribution			
		1	2	3	4
		Mean	Differenc	e in mean with	quartile 1
Volume (I)	Pre tax	8.13	0.26	-0.28	-0.53
		[8.08, 8.35]	[0.07, 0.39]	[-0.41, -0.09]	[-0.65, -0.38]
Δ volume (I)	Soda tax	-1.03	0.15	0.18	0.25
		[-1.11, -0.95]	[0.09, 0.23]	[0.11, 0.27]	[0.17, 0.33]
	Sugary soda tax	-0.85	0.18	0.20	0.34
	0.	[-0.95, -0.72]	[0.09, 0.27]	[0.14, 0.33]	[0.24, 0.48]
Sugar (100g)	Pre tax	5.04	-0.11	-0.39	-0.86
		[5.00, 5.18]	[-0.19, 0.01]	[-0.50, -0.28]	[-0.96, -0.75]
Δ sugar (100g)	Soda tax	-0.62	0.14	0.15	0.23
		[-0.67, -0.54]	[0.11, 0.20]	[0.12, 0.21]	[0.18, 0.30]
	Sugary soda tax	-1.14	0.23	0.24	0.41
	· ·	[-1.26, -1.00]	[0.14, 0.36]	[0.16, 0.41]	[0.29, 0.56]

	Quartile of grocery expenditure distribution				
	1	2 3 4			
	Mean	Difference in mean with quartile 1			
Soda tax	1.90	0.09	-0.05	-0.10	
Sugary soda tax	[1.88, 1.95] 2.07 [2.05, 2.15]	[0.04, 0.13] 0.02 [-0.02, 0.10]	[-0.09, 0.00] -0.11 [-0.19, -0.04]	[-0.13, -0.06] -0.30 [-0.37, -0.25]	

- Model demand in the soda market, estimating consumer specific preference parameters for soda, price and sugar
- Use estimates to explore demand responses to soda tax
- Tax levied only on sugary soda induces larger reduction in sugar but smaller reduction in total soda than comparable tax levied on all soda
- Little evidence either tax specifically targets consumption of individuals with high share of added sugar in diet
- Consumers with lower total spending respond more strongly than higher expenditure consumers