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1 Introduction

Inference in the presence of nuisance parameters has received substantial attention. One
fruitful way to proceed is to work with estimating equations that are orthogonal with re-
spect to the nuisance parameters in the sense of Neyman (1959). Such equations underlie
much of the results in semiparametric estimation (Newey, 1994) and are at the heart of
recent advances on doubly-robust estimation and high-dimensional inference as discussed in
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) and Cher-
nozhukov, Escanciano, Ichimura, Newey and Robins (2022), among others. A key finding is
that Neyman-orthogonality permits the construction of asymptotically unbiased estimators
that converge at the usual n−1/2-rate provided the nuisance parameter has a convergence rate
that is faster than n−1/4, where n is the sample size.

The faster-than-n−1/4 requirement applies in a variety of semiparametric estimation prob-
lems; Robinson (1988) and Ichimura (1993) are examples. However, it often fails in problems
where the dimension of the nuisance parameter is large relative to the sample size. Panel
data models with fixed effects are an example. There, we observe N units over T periods of
time and the model includes both common parameters and unit-specific nuisance parameters.
The latter are estimated at the rate T−1/2. For an estimator of the former based on Neyman-
orthogonalization to be successful we would therefore need that T−1/2 = o((NT )−1/4), which
translates into the requirement that N = o(T ). This is usually not a realistic condition
in microeconometric applications. In fact, under this requirement the standard fixed-effect
estimator would permit asymptotically-valid inference. Consequently, (first-order) Neyman-
orthogonalization does not solve the incidental parameter problem in panel data.1

The issue can be even more severe in high-dimensional regressions on network data. In
such settings, the convergence rate of the estimator of the nuisance parameter depends on
the connectivity structure of the network (Jochmans and Weidner, 2019). Examples include
the estimation of teacher value-added (Jackson, Rockoff and Staiger, 2014), of the contri-
butions of worker and firm heterogeneity to the variance of log wages and other covariance

1The problem is reminiscent of the poor performance of double machine-learning techniques in some
settings, as recently documented by Wüthrich and Zhu (2021) and Angrist and Frandsen (2022). A related
problem where the conventional approach was formally shown to fail is a nonlinear version of the judge-
leniency design, see Hahn and Hausman (2021).
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components (Abowd, Kramarz and Margolis, 1999, Kline, Saggio and Sølvsten, 2020), as
well as of complementarity patterns in team production (Ahmadpoor and Jones, 2019, Bon-
homme, 2021). Fixed effects in network-formation models are also poorly estimated. This
is especially true in the prevalent case where the network is sparse (see, e.g., Graham, 2017,
2020). While there exists a large literature providing bias correction methods for panel data
models, the main goal of our paper is to provide a general way of reducing bias in these more
challenging settings.

Motivated by these concerns, we are interested in a higher-order generalization of Neyman-
orthogonality, in the sense of Mackey, Syrgkanis and Zadik (2018). Moreover, we show how
ensuring orthogonality to higher order can successfully reduce bias in several panel and net-
work models. We say that an estimating equation is Neyman-orthogonal to order q when all
q leading derivatives with respect to the nuisance parameter have zero expectation. When
q = 1, this means that the expected Jacobian is zero, and so we recover the conventional
definition of Neyman-orthogonality (to order one). Working with estimating equations that
are Neyman-orthogonal to order q, when combined with sample splitting, allows one to con-
struct asymptotically-linear estimators when nuisance parameters are estimated at a rate
faster than n−1/2(q+1). As an example, in the panel data problem, this reduces the bias from
O(T−1) down to O(T−q), yielding valid inference under the requirement that N = o(T 2q−1).
We remark that combining orthogonalization with sample splitting (or cross-fitting) is im-
portant to achieve such an improvement, because orthogonalized estimating equations, by
themselves, do not, in general, deliver estimators with improved sampling properties.

We show how to construct estimating equations that are orthogonal to any chosen order
in a general conditional-likelihood setting. These estimating equations can be understood to
be generalizations of the projected score of Small and McLeish (1989) and Waterman and
Lindsay (1996). They have an interpretation as higher-order influence functions, as intro-
duced in Robins, Li, Tchetgen Tchetgen and van der Vaart (2008). Our approach applies
to general low-dimensional target parameters that satisfy some moment restrictions. This
includes functions of the nuisance parameters such as average elasticities or other average
effects. The conditional-likelihood framework allows us to orthogonalize a given estimat-
ing equation without introducing additional nuisance parameters. As is well known, this is
not essential to achieve orthogonality to order one. However, avoiding such additional nui-
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sance parameters turns out to be very helpful in enabling the construction of higher-order
orthogonalized estimating equations.

We illustrate the usefulness of our approach in several examples and in an empirical ap-
plication to the estimation of nonlinear regressions on network data; a problem for which,
at present, no alternative solutions exist. In this setting, we estimate a constant elasticity of
substitution (CES) production function from the scientific output of research collaborations.
As in Ahmadpoor and Jones (2019), the production function depends on researcher-specific
fixed effects. Estimates of the parameters can be used to quantify the degree of comple-
mentarity among researchers within teams, and to compute the impact of counterfactual
re-allocations in the spirit of earlier work by Graham, Imbens and Ridder (2014).

This problem is difficult because in the data that we use (taken from Ductor, Fafchamps,
Goyal and Van der Leij, 2014 and concerning publications in economics on EconLit), the
number of collaborations per researcher is quite low. A conventional estimator is thus likely
to suffer from bias. Our procedure uncovers the presence of complementarity among authors
in the production of research articles. In a counterfactual exercise we also find that randomly
pairing researchers would lead to a decrease in the average quality of articles. Our findings
are corroborated in a simulation experiment targeted to our empirical application.

2 Problem statement and motivation

2.1 Setup

Let Zi = (Yi, Xi) be random vectors, for i = 1, .., N . We consider a setting where the
conditional density function of Yi given Xi, `(y |x; θ0, ηi0), is known up to the parameters
θ0 and η0i. Throughout, we will treat η10, . . . , ηN0 as nuisance parameters, and leave the
marginal density of the conditioning variable, `Xi(x), unrestricted. We are interested in
estimating a parameter µ0 that is defined through the moment condition

N∑
i=1

E(ui(Zi; θ0, ηi0, µ0)) = 0, (2.1)
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where the expectations are over Zi under `(y |x; θ0, ηi0) `Xi(x). We assume that, for all i =
1, . . . , N , Zi contains ni individual observations, and denote the total number of observations
as n = ∑N

i=1 ni. For example, in a balanced panel data setting with N units and T time
periods, Zi is the time series of unit i’s observations, ni = T for all i, and n = NT .

Our setup accommodates different types of target parameters. As an example, we can
set µ0 = θ0. In this case, using ui(z; θ, ηi) as a shorthand for ui(z; θ, ηi, θ), one possibility is
to use the score,

ui(z; θ, ηi) = ∂ log `(y |x; θ, ηi)
∂θ

.

More generally, the moment condition (2.1) defines the target parameter

µ0 = µ(θ0, η10, . . . , ηN0, `X1 , . . . , `XN ),

which can be a function of the parameters θ0 and ηi0 describing the conditional distribution
of Yi given Xi, of the marginal distribution of Xi, and (implicitly) of the sample size. For
example, we may be interested in an average effect of the form

µ0 =
N∑
i=1

∫
mi(x; θ0, ηi0)`Xi(x) dx,

where m1, . . . ,mN are known functions.
To illustrate the setup we will refer to two leading examples.

Example: Neyman-Scott model. Our first example is the well-known Neyman and
Scott (1948) model. Here,

Yij = ηi0 + εij, εij ∼ iid N
(
0, σ2

0

)
, i = 1, . . . , N, j = 1, . . . , T, (2.2)

where the goal is to estimate θ0 = σ2
0 in the presence of the nuisance parameters η10, . . . , ηN0.

Define, for all i = 1, . . . , N ,

ui(Yi;σ2, ηi) = − T

2σ2 + 1
2σ4

T∑
j=1

(Yij − ηi)2, (2.3)
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where Yi = (Yi1, . . . , YiT )> has dimension ni = T , and the total number of observations is n =
NT . It is well-known that the maximum-likelihood estimator of σ2

0 is on average too small,
suffering from bias −σ2

0/T . While in this panel data problem first-order orthogonality does
not reduce the order of this bias, we demonstrate below that second-order orthogonalization
fully removes it.

Example: CES production function. Consider an environment where we observe work-
ers producing output in n teams of size 2. Moreover, let k(j, 1) and k(j, 2) denote the workers
in team j, and write K = {(k(j, 1), k(j, 2)) : j = 1, . . . , n} for the set of workers in all teams;
note that a given worker may be part of multiple teams. Consider a model for team produc-
tion where team output is a CES aggregate of worker inputs (as in Ahmadpoor and Jones,
2019),

Yj =
(
ηγ0
k(j,1)0 + ηγ0

k(j,2)0

2

) 1
γ0

εσ0
j , log εj | K ∼ iid N (0, 1) , j = 1, . . . , n. (2.4)

In this model, one may be interested in estimating the substitution parameter γ0 or the log
error variance σ2

0, average elasticities, or effects of counterfactual re-allocations of workers to
teams, for example.

To analyze this example we consider N ≤ n subsets of teams j, of size ni each. Let Yi
denote the vector of team outcomes in subset i, and let ηi be the collection of all fixed effects
of workers belonging to those teams. Finally, let θ = (γ, σ2)>. The scores with respect to
γ and σ2 take the form ui(Yi; θ, ηi), where the dependence of ui on i reflects that the set of
workers who belong to the subset i of teams generally differs from the workers belonging to
another subset. In contrast to our previous example, the theoretical literature on network
models such as (2.4) is scarce, and to our knowledge no approach has as yet been developed
for achieving bias reduction in such a setting.

In this example, a worker’s fixed effect may appear in the nuisance parameter ηi across
multiple observations. While such “overlapping fixed effects” typically complicate the analy-
sis and correction of incidental parameter bias, our orthogonalization and estimation methods
straightforwardly accommodate this structure.
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2.2 The role of first-order orthogonality and its limitations

In the remainder of this section, we motivate our approach in a setting where one wishes to
estimate µ0 = θ0 based on a random sample Z1, . . . , Zn, taking u to be a univariate function
and η0 to be a scalar. Hence N = 1, and n1 = n is the total number of observations.

If E(∑n
j=1 u(Zj; θ0, η0)) = 0, a conventional estimator of θ0, say θ̂, would be the solution

to
n∑
j=1

u(Zj; θ, η̂) = 0,

where η̂ is a consistent estimator of η0 obtained in a preliminary step. However, it is well
known that such a “plug-in” estimator is sensitive to the quality of the preliminary estimator
η̂ used.

Assuming sufficient regularity, a standard argument based on a linearization around θ0

yields (
E
(
∂u(Zj; θ0, η0)

∂θ>

)
+ oP (1)

)
(θ̂ − θ0) = 1

n

n∑
j=1

u(Zj; θ0, η̂),

so that the sampling properties of θ̂ − θ0 are dictated by the sampling properties of the
estimating equation. We have

1
n

n∑
j=1

u(Zj; θ0, η̂) = 1
n

n∑
j=1

u(Zj; θ0, η0)
︸ ︷︷ ︸

(A)

+
 1
n

n∑
j=1

∂u(Zj; θ0, η0)
∂η

− E
(
∂u(Zj; θ0, η0)

∂η

) (η̂ − η0)
︸ ︷︷ ︸

(B)

+ E
(
∂u(Zj; θ0, η0)

∂η

)
(η̂ − η0)︸ ︷︷ ︸

(C)

+OP (|η̂ − η0|2).

(2.5)

The (A) term in (2.5) is a zero-mean sample average to which a standard central-limit
theorem can be applied. Hence, it is generally OP (n−1/2). The next two terms in the
expansion capture the first-order effect of estimation noise in η̂. The (B) term can generally
be ensured to be oP (n−1/2). A generic approach to achieve this is to compute η̂ from data
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that are independent of Z1, . . . , Zn, for example using sample splitting. In the case of (2.5),
(B) is the product of a sample average of zero-mean random variables—which is OP (n−1/2)—
and an oP (1) term— as η̂ is consistent for η0—and, therefore, (B) is oP (n−1/2). The (C)
term, however, features a non-random Jacobian that, in general, is non-zero. Hence, (C)
is OP (|η̂ − η0|), and will only be asymptotically negligible when η̂ is superconsistent for η0,
which is not usually the case.

Suppose now that u is first-order orthogonal, in the sense that

E
(
∂u(Zj; θ0, η0)

∂η

)
= 0. (2.6)

Then the (C) term vanishes from (2.5) and we obtain

1
n

n∑
j=1

u(Zj; θ0, η̂) = 1
n

n∑
j=1

u(Zj; θ0, η0) +OP (|η̂ − η0|2) + oP (n−1/2). (2.7)

The requirement that η̂ − η0 = oP (n−1/4) then guarantees that the impact of the estimation
error in η̂ on θ̂ is asymptotically negligible. While a given function u does not, in general,
satisfy (2.6), Neyman (1959) proposed a general method to transform it into one that does.
The resulting function is said to be Neyman-orthogonal.

Condition (2.6) has a long history in semiparametric estimation problems (Bickel, 1982,
Schick, 1986, Newey, 1994). More recently, it has proved to be a fundamental ingredient
in the literature on high-dimensional inference (see Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey, and Robins, 2018 or Chernozhukov, Escanciano, Ichimura, Newey
and Robins, 2022). There are, however, instances where it is ineffective. To illustrate this it
suffices to consider the simple panel data setting from the Neyman and Scott (1948) problem.

Example: Neyman-Scott model (continued). In this problem it is easy to verify that

E
(
∂ui(Yi;σ2

0, ηi0)
∂ηi

)
= − 1

σ4
0

T∑
j=1

E (Yij − ηi0) = 0,
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and so the score is already first-order Neyman-orthogonal with respect to the fixed effects.
Nevertheless, given preliminary estimators η̂1, . . . , η̂N , and letting νi = η̂i−ηi0, the estimator

σ̂2 = 1
NT

N∑
i=1

T∑
j=1

(Yij − η̂i)2,

has expectation σ2
0 − 2/N

∑N
i=1 E(εi νi) + 1/N

∑N
i=1 E(ν2

i ), for εi = 1/T
∑T
j=1 εij. Thus, when

using sample splitting, the bias is 1/N
∑N
i=1 E(ν2

i ), the mean squared error of the preliminary
estimator. With cross-fitting this is, at best, O(T−1). Hence,

√
NT (σ̂2− σ2

0) will not have a
correctly-centered limit distribution unless N/T → 0. However, under this condition, the joint
maximum-likelihood estimator of σ2

0 and the fixed effects, too, is asymptotically unbiased.
Hence, having a score that is Neyman-orthogonal, even when combined with sample splitting,
does not suffice to resolve the incidental parameter problem in panel data problems.

2.3 Higher-order orthogonality

To see how Neyman-orthogonality to a higher order can be helpful we now consider a further
expansion of (2.5). Again assuming sufficient regularity, we have, for any integer q ≥ 1,

1
n

n∑
j=1

u(Zj; θ0, η̂) = 1
n

n∑
j=1

u(Zj; θ0, η0)
︸ ︷︷ ︸

(A)

+
q∑
p=1

1
p!

 1
n

n∑
j=1

∂pu(Zj; θ0, η0)
∂ηp

− E
(
∂pu(Zj; θ0, η0)

∂ηp

) (η̂ − η0)p

︸ ︷︷ ︸
(B)

+
q∑
p=1

1
p!E

(
∂pu(Zj; θ0, η0)

∂ηp

)
(η̂ − η0)p

︸ ︷︷ ︸
(C)

+OP (|η̂ − η0|q+1).

Here, the (A) term is the same as before. Also, with sample splitting we can again ensure
that the (B) term will be asymptotically negligible. On the other hand, if the function u
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satisfies the higher-order orthogonality condition

E
(
∂pu(Zj; θ0, η0)

∂ηp

)
= 0, 1 ≤ p ≤ q, (2.8)

the (C) term is equal to zero, and so

1
n

n∑
j=1

u(Zj; θ0, η̂) = 1
n

n∑
j=1

u(Zj; θ0, η0) +OP (|η̂ − η0|q+1) + oP (n−1/2). (2.9)

Comparing (2.9) to (2.7) we see that the impact of estimation noise in η̂ on our estimator of
θ0 has been reduced further. Moreover, for the impact of estimation error to be negligible,
we now only require that |η̂− η0|q+1 = oP (n−1/2). It then follows from standard results that,
as n→∞,

√
n(θ̂ − θ0) d→ N (0,Σθ)

for some Σθ, provided that
η̂ − η0 = oP (n−1/2(q+1)).

The notion of qth-order Neyman-orthogonality as in (2.8) was introduced by Mackey,
Syrgkanis and Zadik (2018). In the context of our likelihood setup, we will give a general
procedure to construct higher-order Neyman-orthogonal functions below.

Example: Neyman-Scott model (continued) In the model of Neyman and Scott
(1948),

E
(
∂2ui(Yi;σ2

0, ηi0)
∂η2

i

)
= T

σ4
0
6= 0.

It thus follows that ui is not orthogonal to second order (or to any order higher than two).
Below we will show that a second-order Neyman-orthogonal score equation exists; its solution
turns out to be

σ̂2 = 1
N(T − 1)

N∑
i=1

T∑
j=1

(Yij − Y i)2, (2.10)

where Y i = 1/T
∑T
j=1 Yij. This estimator does not depend on the preliminary estimator of the

fixed effects used. Furthermore, it performs the well-known degrees-of-freedom correction to
the maximum-likelihood estimator, yielding an estimator that is exactly unbiased for any
T ≥ 2.
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3 Estimation based on orthogonalized functions

We now present our estimation approach in the general case where the target parameter
µ0 may be equal to θ0 or may be a different parameter such as an average effect, and
there are multiple, vector-valued nuisance parameters ηi0. We start by formally defining
higher-order Neyman-orthogonality in this general setup and describe estimation based on
higher-order Neyman-orthogonal moment functions. In the next section, we will then show
how to construct such functions.

3.1 Definition of higher-order orthogonality

Let dη be the dimension of η and write η = (η1, . . . , ηdη). For any non-negative integer p and
a vector of integers m = (m1, . . . ,mp) satisfying 1 ≤ ms ≤ dη for all 1 ≤ s ≤ p, define

Dm
η = ∂p

∂ηm1 · · · ∂ηmp
. (3.1)

For a given p, there are dp =
(
dη+p−1

p

)
unique such partial derivatives. Let ∇(p)

η be the
vector operator of dimension dp that collects all these unique partial derivatives of order p.
Finally, let ∇q

η be the vector operator of dimension ∑q
p=1 dp obtained on stacking ∇(p)

η for
p = 1, . . . , q. Explicitly, we have

∇q
η =



∇(1)
η

∇(2)
η

...
∇(q)
η


=



[
Dm
η : m ∈ {1, . . . , dη}

]
[
Dm
η : m ∈ {1, . . . , dη}2, m1 ≤ m2

]
...[

Dm
η : m ∈ {1, . . . , dη}q, m1 ≤ m2 ≤ . . . ≤ mq

]


.

Neyman-orthogonality to order q can now be defined as follows (Mackey, Syrgkanis and
Zadik, 2018).

Definition 1. If the function u satisfies

E
[
∇q
η u(Z; θ0, η0, µ0)

]
= 0, (3.2)
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for some integer q, then we say that u is Neyman-orthogonal to order q.

In this definition, all possible partial derivatives of u(Z; θ, η, µ) with respect to η up to order
q have mean zero. Furthermore, Definition 1 is written for a generic function u. In later
applications, we apply it to functions ui that depend on some subsets of observations.

3.2 Estimation

Let µ0 satisfy (2.1) for (possibly vector-valued) functions u1, . . . , uN . We assume that the
ui, for all i = 1, ..., N , are Neyman-orthogonal to order q with respect to ηi, in the sense of
Definition 1. Suppose that we have access to preliminary estimators η̂1, . . . , η̂N of the nuisance
parameters that are independent of the data Z1, . . . , ZN . If ηi0 is defined as the solution to a
moment condition involving the same data, estimation based on sample-splitting, combined
with cross-fitting (see, e.g., Newey and Robins, 2017), can be applied. When the observations
are independent this is conventional. For situations where the data are dependent, modified
sample-splitting strategies are available (see, e.g., Semenova, Goldman, Chernozhukov and
Taddy, 2023).

We estimate µ0 by the GMM estimator

µ̂ = argmin
µ

∥∥∥∥∥
N∑
i=1

ui(Zi; θ̂, η̂i, µ)
∥∥∥∥∥
W

, (3.3)

where W is a chosen symmetric positive-definite matrix, ‖u‖W =
√
u>W u, and θ̂ is an

estimator of θ0.
The estimator θ̂ will depend on the problem at hand. If θ0 is defined through a moment

condition of the form ∑N
i=1 E(ũi(Zi; θ0, ηi0)) = 0, for functions ũi that are Neyman-orthogonal

to order q, then our framework can be applied and we can use

θ̂ = argmin
θ

∥∥∥∥∥
N∑
i=1

ũi(Zi; θ, η̂i)
∥∥∥∥∥
W̃

, (3.4)

where W̃ is again a chosen weight matrix. In this case, we may equally combine (3.3) and
(3.4) into a single GMM estimation procedure.

In Section 7, we provide conditions under which this approach yields estimators that are
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n−1/2-consistent and asymptotically normal, where n is the total number of observations.
We will impose two key conditions. The first one is that, although their number may
increase with the sample size, the dimension of each ηi remains bounded as n tends to
infinity. This imposes a suitable sense of sparsity in the relationship between the nuisance
parameters and the outcomes. This condition is trivially satisfied in the panel data and
network problems with fixed effects that we consider. The second key condition we impose
is that the convergence rates of the preliminary estimates η̂i be faster than n−1/2(q+1). This
ensures that, after having orthogonalized to order q, any remainder terms are asymptotically
negligible.

4 Achieving higher-order Neyman-orthogonality

4.1 Main result

Let u be a moment function, such as one of the ui in (2.1). We now show how to construct
an orthogonalized counterpart of u, which we call u∗q, that is Neyman-orthogonal to order q,
where q ≥ 1 is any arbitrary order.

Remember the definition of the vector operators ∇(p)
η and ∇q

η in Section 3.1. It is conve-
nient to introduce the Bhattacharyya (1946) basis v1, v2, . . ., where

vp(z; θ, η) =
∇(p)
η `(y |x; θ, η)
`(y |x; θ, η) .

McLeish and Small (1994) discuss several properties of this basis. One important property
for our purposes is that

Eθ,η(vp(Z; θ; η) |X = x) =
∫
vp(z; θ, η) `(y |x; θ, η) dy = 0 (4.1)

for any p, so all elements of the Battacharryya basis have (conditional) mean equal to zero.
In (4.1), and throughout this section, Eθ,η(· |X = x) denotes the conditional expectation
under `(y |x; θ, η).
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The low-order basis functions are familiar from likelihood theory. For example,

v1(z; θ, η) = ∂ log `(y |x; θ, η)
∂η

,

v2(z; θ, η) = ∂ log `(y |x; θ, η)
∂η

∂ log `(y |x; θ, η)
∂η>

+ ∂2 log `(y |x; θ, η)
∂η∂η>

.

The fact that these functions have mean zero follows from the unbiasedness of the score and
from the information equality, respectively.

Stacking the leading q basis functions, we obtain

wq(z; θ, η) =
∇q
η`(y |x; θ, η)
`(y |x; θ, η) =


v1(z; θ, η)

...
vq(z; θ, η)

 .

The vectors wq are mean-zero “generalized score functions”.
Next, let us define the matrices

Σwqwq(x; θ, η) = Eθ,η(wq(Z; θ, η)wq(Z; θ, η)> |X = x),

and
Σwqu(x; θ, η, µ) = Eθ,η(wq(Z; θ, η)u(Z; θ, η, µ)> |X = x),

which are, respectively, the (conditional) covariance matrix of the first q members of the
Bhattacharrya basis, and the covariance matrix of the same q basis functions with the vector
function u. Finally, let

bq(x; θ, η, µ) = ∇q
η

[
Eθ,η(u(Z; θ, η, µ)>|X = x)

]
.

Note that bq is zero when u is the score for θ, i.e., ∂ log `(y |x;θ,η)
∂θ

. In general, however, bq
will be non-zero. Here we assume that u(z; θ, η, µ) and `(y |x; θ, η) are sufficiently often
differentiable in η, and that the expectations in the definitions of Σwqwq , Σwqu, and bq are
well-defined.

The proof of the following result is in Appendix A.
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Theorem 1. Suppose that Σwqwq(x; θ, η) is invertible and let

A(x; θ, η, µ) = Σwqwq(x; θ, η)−1
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]
.

Then the function

u∗q(z; θ, η, µ) = u(z; θ, η, µ)− A(x; θ, η, µ)>wq(z; θ, η)

satisfies Eθ,η
[
∇q
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

= 0. This implies that u∗q is Neyman-orthogonal to

order q, as defined above.

Theorem 1 generalizes the projected-score construction of Small and McLeish (1989) and
Waterman and Lindsay (1996). To see this, consider the case where µ0 = θ0, and u is the
score function for θ. Then bq = 0 and Theorem 1 yields

u∗q(z; θ, η, µ) = u(z; θ, η, µ)−
[
Σwqwq(x; θ, η)−1Σwqu(x; θ, η)

]>
wq(z; θ, η),

which is the projected score of order q.2 However, our result in Theorem 1 covers other esti-
mating equations as well as more general parameters of interest, such as average elasticities
or counterfactual quantities. Incorporating bq(x; θ, η, µ) into u∗q(z; θ, η, µ) is a key innovation
that enables this generality.

We remark that Theorem 1 requires the matrix Σwqwq(x; θ, η) to be invertible. In the
standard case of first-order Neyman-orthogonality this corresponds to non-singularity of the
information matrix of the nuisance parameters. For higher-order Neyman-orthogonality this
requirement imposes further restrictions. The following two examples illustrate this.

Example: CES production function (continued). Consider the team production
model (2.4). Suppose we work with N = n subsets that all contain a single team, and

2The projected score was originally developed as a tool to achieve E-ancillarity (Small and McLeish,
1988) and to approximate the conditional score for θ, when the latter exists (Waterman and Lindsay, 1996).
The fact that it is Neyman-orthogonal is noted in passing (although a link with Neyman’s work is not made)
but is not exploited. Moreover, unlike the conditional score, the projected score still depends on η, and it will
generally not have improved properties over the score itself. As we highlight here, it is the combination of
higher-order versions of Neyman-orthogonality with sample splitting that allows one to improve over working
with the original score.

15



let ηi = (ηk(i,1), ηk(i,2))> denote the 2× 1 vector of worker effects in team i. The 2× 2 matrix

Σw1w1(θ, ηs) = Eθ,ηi

(
∂ log `(Yi; θ, ηi)

∂ηi

∂ log `(Yi; θ, ηi)
∂η>i

)

is not invertible, as only the sum ηγk(i,1)+η
γ
k(i,2) can be identified. In our application in Section

6, we will tackle this issue by combining data on teams of size 2 with single-author articles,
and working with subsets i of three teams each.

Example: Fixed-effect probit. Consider the standard binary-choice panel data model

Pθ,ηi(Yij = 1 |Xi) = Φ(ηi +X>ij θ), i = 1, . . . , N, j = 1, . . . , T,

for (conditionally-independent) binary outcomes Yij and covariates Xi = (Xi1, . . . , XiT )>.
It is not difficult to see that the rank of Σwqwq(x; θ, η) is bounded by 2T . As a result,
Σwqwq(x; θ, η) is singular for all q > 2T .

4.2 Intuition and discussion

To gain intuition into the construction in Theorem 1 it is useful to again consider the case
where u is a univariate function, the nuisance parameter is a scalar, and one wishes to
estimate µ0 = θ0 (as in Subsections 2.2 and 2.3).

First-order orthogonality. To relate our approach to the literature consider first q = 1.
Let

u∗1(z; θ, η) = u(z; θ, η)− a1(x; θ, η) v1(z; θ, η),

for some function a1. Note that, by virtue of (4.1), the term involving v1 does not introduce
any bias. We have

∂u∗1(z; θ, η)
∂η

= ∂u(z; θ, η)
∂η

− ∂a1(x; θ, η)
∂η

v1(z; θ, η)− a1(x; θ, η) ∂v1(z; θ, η)
∂η

.
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Take conditional expectations and exploit (4.1) to see that

Eθ,η
(
∂u∗1(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
= 0

if any only if

Eθ,η
(
∂u(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
− a1(x; θ, η) Eθ,η

(
∂v1(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
= 0.

This is achieved by setting

a1(x; θ, η) =
(
Eθ,η

(
∂v1(Z; θ, η)

∂η

∣∣∣∣∣X = x

))−1

Eθ,η
(
∂u(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
. (4.2)

Iterating expectations shows that the resulting function u∗1 is Neyman-orthogonal to order
q = 1. By the information matrix equality we have

Eθ,η
(
∂v1(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
= −Eθ,η

(
v1(Z; θ, η)2

∣∣∣X = x
)

= −Σw1w1(x; θ, η),

and

Eθ,η
(
∂u(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
= −Eθ,η (v1(Z; θ, η)u(Z; θ, η)|X = x) = −Σw1u(x; θ, η),

leading to the representation of the function u∗1 as in the theorem.
The above derivation of (4.2) is well-known. Furthermore, it does not hinge on the

likelihood structure. Indeed, recent work exploiting orthogonality, such as that surveyed in
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018), does so in
the context of moment conditions. In our setup, as in Neyman’s (1959) original work, the
likelihood structure implies that a1 is known up to the model parameters θ and η (condi-
tional on the regressors). Outside of this framework, in contrast, a1 needs to be treated
as an additional nuisance parameter. This is possible because, as u∗1 is linear in a1, it is
automatically first-order Neyman-orthogonal to it by virtue of (4.1). This logic, however,
does not extend to higher order, as the implied system of equations becomes inconsistent,
so that no solution exists.
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Higher-order orthogonality. Let q = 2, and again consider a linear transformation of
u, now involving the leading two Bhattacharyya basis functions. This gives

u∗2(z; θ, η) = u(z; θ, η)−

 a21(x; θ, η)
a22(x; θ, η)


>  v1(z; θ, η)

v2(z; θ, η)

 . (4.3)

Taking first-derivatives with respect to the nuisance parameter, and proceeding as in the
first-order case, gives

Eθ,η
(
∂u(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
=

 a21(x; θ, η)
a22(x; θ, η)


>  Eθ,η

(
∂v1(Z;θ,η)

∂η

∣∣∣X = x
)

Eθ,η
(
∂v2(Z;θ,η)

∂η

∣∣∣X = x
)
 .

Solving this equation for a21 for given a22 yields

a21(x; θ, η) = a1(x; θ, η)− c1(x; θ, η) a22(x; θ, η), (4.4)

where a1 is given by (4.2) and

c1(x; θ, η) =
(
Eθ,η

(
∂v1(z; θ, η)

∂η

∣∣∣∣∣X = x

))−1

Eθ,η
(
∂v2(z; θ, η)

∂η

∣∣∣∣∣X = x

)
.

The coefficient c1 has the same form as a1, except that it features v2 instead of u. Moreover,
plugging (4.4) back into (4.3) yields

u∗2(z; θ, η) = u∗1(z; θ, η)− a22(x; θ, η) v∗2(z; θ, η),

where v∗2(z; θ, η) = v2(z; θ, η) − c1(x; θ, η) v1(z; θ, η). Note that v∗2 is Neyman-orthogonal to
order 1, that is,

Eθ,η
(
∂v∗2(Z; θ, η)

∂η

∣∣∣∣∣X = x

)
= 0.

It follows that u∗2 is Neyman-orthogonal to order 1 for any a22. We will now choose a22 such
that u∗2 is Neyman-orthogonal to order 2.
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Next, differentiating u∗2 with respect to η twice gives

∂2u∗2(z; θ, η)
∂η2 = ∂2u∗1(z; θ, η)

∂η2 + a22(x; θ, η) ∂
2v∗2(z; θ, η)
∂η2

+ ∂2a22(x; θ, η)
∂η2 v∗2(z; θ, η) + 2∂a22(x; θ, η)

∂η

∂v∗2(z; θ, η)
∂η

.

Since v∗2 has zero mean and is orthogonal to order 1, the terms involving the first and
second derivative of a22 drop out when taking expectations. It follows that u∗2 in (4.3) is
Neyman-orthogonal to order 2 when one sets a21 to its expression in (4.4), and a22 to

a22(x; θ, η) =
(
Eθ,η

(
∂2v∗2(Z; θ, η)

∂η2

∣∣∣∣∣X = x

))−1

Eθ,η
(
∂2u∗1(Z; θ, η)

∂η2

∣∣∣∣∣X = x

)
. (4.5)

Note that this construction amounts to solving a system of linear equations. The fact that
the solution in (4.4)–(4.5) coincides with the expression in Theorem 1 may then again be
verified by using Bartlett identities.

5 Examples

5.1 Panel data models

Consider an N × T panel data model with individual effects. Here, the likelihood factors
across the cross-sectional observations and the likelihood contribution of unit i takes the
form

T∏
j=1

f(Yij |Xij; θ0, ηi0).

The maximum-likelihood estimator is well-known to suffer from a bias that is O(T−1); see
Hahn and Newey (2004) and Hahn and Kuersteiner (2011) for derivations of this bias in
static and dynamic models, respectively. Consider the estimation of θ0. The bias in the
estimator comes from bias in the score stemming from estimation noise in the fixed effects.
Taking ηi to be scalar for notational simplicity, and letting η̂i be an estimator of ηi0, an
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expansion of the (normalized) score3

ui(Zi; θ0, η̂i)=
1
T

T∑
j=1

∂ log f(Yij|Xij; θ0, η̂i)
∂θ

yields

ui(Zi; θ0, η̂i) =ui(Zi; θ0, ηi0) + ∂ui(Zi; θ0, ηi0)
∂ηi

(η̂i − ηi0) + 1
2
∂2ui(Zi; θ0, ηi0)

∂η2
i

(η̂i − ηi0)2

+ oP (|η̂i − ηi0|2).

Taking expectations and re-arranging shows that

E(ui(Zi; θ0, η̂i)) =cov
(
∂ui(Zi; θ0, ηi0)

∂ηi
, η̂i − ηi0

)

+ E
(
∂ui(Zi; θ0, ηi0)

∂ηi

)
E(η̂i − ηi0)

+ 1
2E

(
∂2ui(Zi; θ0, ηi0)

∂η2
i

)
E((η̂i − ηi0)2) + o(E(|η̂i − ηi0|2)).

If we set η̂i = η̂i(θ0) = arg maxη
∏T
j=1 log f(Yij |Xij; θ0, η), the maximum-likelihood estimator

(MLE) given θ0, each one of these terms is O(T−1). If we use an estimator η̂i that is
independent of the data the first term disappears. However, the remaining terms, which
capture the nonlinearity bias and variance in the estimator of ηi0, remain. Hahn and Newey
(2004), Arellano and Hahn (2007), and Dhaene and Jochmans (2015a,b) present estimators
of these terms based on the MLE that can be used to construct a bias-corrected estimator.

Lancaster (2002) and Woutersen (2002) integrate-out the fixed effects using a uniform
prior after orthogonalizing to order 1 to obtain an estimator with bias o(T−1); Arellano (2003)
presents an alternative derivation of the same result. First-order Neyman orthogonality, by
itself, does not suffice as it does not handle the third term in the expansion, that is, it does
not properly correct for the noise in the estimated fixed effects. Li, Lindsay and Waterman
(2003), building on Waterman and Lindsay (1996), show that their (second-order) projected
score for θ, when evaluated at η̂i(θ), is a first-order unbiased estimating equation for θ.

3In this discussion we work with the score divided by T , to facilitate the comparison with the panel data
literature.
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Thus, here, a sample-splitting procedure is not needed to achieve bias reduction. This is a
consequence of the (second- or higher-order) projected score being orthogonal to the influence
function of η̂i(θ), as a small calculation will allow to verify. While interesting, this property
does not seem to extend to higher-order projections or to other parameters of interest, such
as average marginal effects.

More generally, with η̂i − ηi0 = OP (T−1/2), the score admits a higher-order expansion of
the form,

E(ui(Zi; θ0, η̂i)) = B1

T
+ B2

T 2 + · · ·+ Bq

T q
+ o(T−q)

for constants B1, B2, . . . , Bq. The maximum-likelihood estimator has B1 6= 0, in general, and
so requires that N/T → 0 to be asymptotically unbiased. The approaches to bias correction
mentioned above remove B1 but not the remaining terms. Approaches that estimate and
subsequently remove all Bp, 1 ≤ p ≤ 1, are given by Dhaene and Jochmans (2015a,b). Like-
wise, an estimator based on Neyman-orthogonalization, combined with a sample-splitting
estimator that uses preliminary estimators that satisfy η̂i − ηi0 = OP (T−1/2) can be used to
obtain the same result.

Example: Neyman-Scott model (continued). Recall that the (un-normalized) unit-
specific score for σ2 is given by (2.3). The leading two elements of the Bhattacharyya basis
for ηi are

vi,1(Yi;σ2, ηi) =
T∑
j=1

Yij − ηi
σ2 , vi,2(Yi;σ2, ηi) = − T

σ2 +
 T∑
j=1

Yij − ηi
σ2

2

.

We apply Theorem 1. A small calculation yields A(σ2, ηi) = (0, 1/2T)> and, after re-arranging,

u∗i,2(Yi;σ2, ηi) = 1
2σ2

(∑T
j=1(Yij − Y i)

σ2 − (T − 1)
)
,

which does not depend on ηi. Summing over the cross-sectional units gives the second-order
orthogonalized score equation for σ2 as

N∑
i=1

u∗i,2(Yi;σ2, ηi) = 1
2σ2

(∑N
i=1

∑T
j=1(Yij − Y i)
σ2 −N(T − 1)

)
= 0,
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which yields the degrees-of-freedom corrected estimator σ̂2 in (2.10).
Another parameter of interest in this problem would be µ = 1/N

∑N
i=1 η

2
i . This fits our

framework with
ui(Yi;σ2, ηi, µ) = η2

i − µ.

Here, the solution to the second-order orthogonalized moment equation for a given σ2 is
1/N

∑N
i=1 Y

2
i − σ2/T . An unbiased estimator based on this equation then is 1/N

∑N
i=1 Y

2
i − σ̂2/T .

To complement this example we consider two additional models in Appendix C. The first
one is the linear autoregressive panel data model

Yij = ηi0 + ρ0Yi,j−1 + εij, εij ∼ iid N (0, σ2
0),

where we focus on the autoregressive parameter ρ0. The second one is the following normal
regression model with a general design matrix

Yi = X>i ηi0 + εi, εi |X ∼ iid N (0, σ2
0), (5.1)

for which we show that second-order Neyman-orthogonalization delivers exactly unbiased
estimators of σ2

0, and of quadratic forms in η10, . . . , ηN0.

5.2 Nonlinear network regression

Our next example is the nonlinear regression model with d ≥ 1 outcomes,

Yi = m(Xi; θ0, ηi0) + σ(Xi; θ0)εi, εi |X ∼ iid N (0, Id), (5.2)

where m(x; θ, ηi) is a d×1 vector, σ(x; θ) is an d×d diagonal matrix, and m and σ are known
functions. We will show below that our CES production function example, in logarithms,
fits into this framework.

For this model there are no analytical solutions for the orthogonalized estimators. We
thus proceed numerically. To construct Neyman-orthogonal moment functions according
to Theorem 1 we need to compute Σwqwq(x; θ, η), Σwqu(x; θ, η, µ), and bq(x; θ, η, µ), which
involve higher-order derivatives of the conditional likelihood. To compute these derivatives,
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it is convenient to introduce the operator ∇q
m that collects all derivatives with respect to the

d-vector m up to order q. By the chain rule,

∇q
ηi
`(y |x; θ, ηi) = M(x, θ, ηi)∇q

m`(y |x; θ, ηi),

where the matrix M has an analytical expression given by the multivariate Faà di Bruno
formula (Constantine and Savits, 1996). Given the matrix M it is easy to compute Σwqwq ,
Σwqu, and bq. For example,

Σwqwq(x; θ, ηi)

= M(x, θ, ηi)Eθ,ηi

∇q
m`(Yi |Xi; θ, ηi)
`(Yi |Xi; θ, ηi)

∇q
m`(Yi |Xi; θ, ηi)
`(Yi |Xi; θ, ηi)

>
∣∣∣∣∣∣Xi = x

M(x, θ, ηi)>,

where the expectation on the right-hand can be readily computed by relying on formulas
for moments of Hermite polynomials. We relegate further details to Appendix D. In the
next section we present simulations and an empirical application based on a version of (5.2)
designed to study team production.

Example: CES production function (continued). Consider the team production
model

Yj = β0(sj)
(

1
sj

sj∑
r=1

η
γ0(sj)
k(j,r)0

) 1
γ0(sj)

ε
σ0(sj)
j , log εj | K ∼ iid N (0, 1) , (5.3)

where sj is the size of team j = 1, ..., n, (k(j, 1), . . . , k(j, sj)) are the sj workers in team j,
and the set K = {k(j, r) : r = 1, . . . , sj, j = 1, . . . , n} collects the workers in all teams.
Model (5.3) generalizes Model (2.4) by allowing for teams of varying sizes. Here we focus on
teams of size 1 and 2, as in our application, and impose the normalization β0(1) = 1. For
simplicity we will denote β0 = β0(2) and γ0 = γ0(2), which are the team size and substitution
parameters, respectively, in teams of size 2.

We now explain how (5.3) can be written as a special case of (5.2), for a suitable choice
of subsets of observations. To any team j of size 2 involving workers k and k′, we associate a
team j1(j) of size 1 only involving worker k, and a team j2(j) of size 1 only involving worker
k′. This construction results in N subsets of three teams each. We then write the outcomes
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for these three teams, in logarithms, as

log Yj = log β0 + 1
γ0

log
(
ηγ0
k(j,1)0 + ηγ0

k(j,2)0

2

)
+ σ0(2) log εj, (5.4)

log Yj1(j) = log ηk(j,1)0 + σ0(1) log εj1(j), (5.5)

log Yj2(j) = log ηk(j,2)0 + σ0(1) log εj2(j), (5.6)

which takes the same form as (5.2), for d = 3, θ = (β0, γ0, σ
2
0(1), σ2

0(2))>, Yi the vector of the
three outcomes in (5.4)–(5.6) for subset i, and ηi0 the 2× 1 vector of worker-specific effects
in the corresponding teams.

6 Application to team production

6.1 Model, data, and implementation

We wish to estimate the parameters of the team production model in (5.4)–(5.6). We will
be especially interested in estimating the substitution parameter γ, which drives the nature
of complementarities in teams of size 2, and the team size parameter β, which reflects
the premium (or penalty) associated with working together relative to working alone. In
addition to estimating production-function parameters, we will also report estimates of a
counterfactual random re-allocation of workers to teams. Under random assignment, average
output in teams of size 2 can be written as

Erand(Yj) = 2
n2(n2 − 1)

∑
k1<k2

β0

[1
2 (ηk10

γ0 + ηk20
γ0)
] 1
γ0 exp

(1
2σ

2
0(2)

)
, (6.1)

where n2 denotes the number of teams of size 2. As this quantity is an average over the
worker fixed effects, it can be orthogonalized with respect to them using our approach.

Ahmadpoor and Jones (2019) consider model (5.3) without the error term εj. Here
our goal is to address the statistical challenge caused by the presence of a large number of
possibly imprecisely estimated fixed effects. An alternative would be to specify a distribution
for author heterogeneity conditional on the team network (i.e., for all the ηi0’s conditional on
K), as in Bonhomme (2021). An advantage of such a procedure would be that, under correct
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specification, estimates are consistent even in poorly connected networks. This random-
effect approach requires, however, to model how authors sort and collaborate in teams. Our
approach avoids the need to do so. On the other hand, a fixed-effect approach requires
that the author effects can be consistently estimated. In less well-connected networks, the
convergence rate will be slower. Orthogonalization to a higher-order allows us to reduce the
impact of estimation noise.

We look at the production of academic work on economics. We use data from Ductor,
Fafchamps, Goyal and Van der Leij (2014), drawn from the EconLit database. These data
contain a large collection of articles, indicated by their ID, together with author identifiers
and a measure of journal quality proposed by Kodrzycki and Yu (2006). This measure is
a ranking between 0 and 100, which we net of multiplicative time effects and will use as
our outcome variable. We restrict the sample to articles published between 1990 and 1999,
written either alone or with a single co-author. We only include authors who produced at
least two sole-authored articles during the sampling period.

Our sample contains 91,626 articles, 10% of which are co-authored, and 16,408 authors.
Average journal quality differs greatly across authors, with the 10th percentile of the quality
measure being 0.4, the median being 0.9, and the 90th percentile being 8.5. The between-
author variance in journal quality is 42% of the overall variance. The distribution of journal
quality, in turn, is skewed to the right, with a median of 0.6, a 90th percentile of 12, and
a 99th percentile of 52. The number of publications per author varies substantially, with a
10th percentile of 2, a median of 4, and a 90th percentile of 13.

To implement our approach, we construct subsets of three papers, one co-authored (j)
and two sole-authored (j1(j), j2(j)), as described in (5.4)–(5.6). The score for θ based on
subset i then involves the three teams j, j1(j), and j2(j). Proceeding in this way is helpful
as it limits the dimension of the parameter ηi to two. This is not only in line with the
assumptions we make in deriving asymptotics, but also helpful in terms of computation.
Moreover, it reduces the number of derivatives that need to be computed. The number of
derivatives nevertheless remains substantial, as we need to compute 9 derivatives at order 2,
19 at order 3, and 55 at order 5, for example. Yet, using the computational remarks from
Section 5.2, this can be implemented quite fast.

Finally, we exploit the network structure of the data to perform our sample splitting. For
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every worker, we construct a preliminary estimator of her fixed effect (in logs) as the average
quality of her single-authored papers, except for one that we select at random and use later
in estimation. This strategy is feasible due to our sample restriction. For each subset i of
three teams, we then stack the two worker fixed effects together to form our preliminary
estimate η̂i. We next estimate the parameters β0, γ0, σ

2
0(1), σ2

0(2) on the sample from which
all these single-authored articles have been removed. In the present case, ũi in (3.4) has four
components that correspond to the score with respect to all the parameters, and the weight
matrix W̃ is irrelevant since the problem is just-identified. In order to limit the variability
due to the choice of split, we average parameter estimates across 100 random splits, through
cross-fitting. The bias in the parameter estimates takes a complex form due to the team
network environment. In Appendix E we assess the ability of our orthogonalization approach
to alleviate this bias in a Monte Carlo simulation.

6.2 Empirical estimates

Table 1 shows the estimates of β0, γ0, σ2
0(2), and σ2

0(1) for various estimators. These are
the plug-in estimator based on the preliminary estimates η̂i and six estimators based on
Neyman-orthogonalized moments, for 1 ≤ q ≤ 6. In addition to point estimates, we report
estimated standard errors based on the parametric bootstrap.4

Starting with the substitution parameter γ, the uncorrected estimate is 0.12, which is
close to the Cobb-Douglas case. The value of the first-order Neyman-orthogonalized estimate
is quite different. However, since the preliminary estimates of the author fixed effects are
based on very few observations, we do not expect this estimator to adequately correct for
bias. This is confirmed by the fact that all other Neyman-orthogonalized estimates, for
q ∈ {2, . . . , 6}, range between 0.39 and 0.73, which is higher than the plug-in estimate,
and very different from the first-order orthogonalized estimate. Relative to the plug-in, the
orthogonalized estimates with q ≥ 2 all indicate somewhat less complementarity between
authors in team production. Notice the stability of estimates for larger values of q. A
substitution parameter γ = 0.4 corresponds to the case of imperfect complements; see Figure

4Bootstrap replications are based on Neyman-orthogonalized estimates of β0, γ0, σ2
0(2), and σ2

0(1) to
order q = 6, together with the sample-split estimates η̂i of author effects. Within each bootstrap replication,
we cross-fit the estimates 10 times. Results are based on 200 bootstrap replications.
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Table 1: Estimation results

Substitution γ Team size β Variance σ2(2) Variance σ2(1)
Plug-in 0.1233

(0.0466)
1.2890
(0.0217)

1.6230
(0.0249)

1.6404
(0.0204)

q = 1 −1.9979
(0.2123)

1.3344
(0.0279)

1.6797
(0.0264)

1.7379
(0.0265)

q = 2 0.7268
(0.2367)

1.3046
(0.0359)

1.4341
(0.0260)

1.4679
(0.0260)

q = 3 0.4467
(0.2034)

1.2936
(0.0369)

1.4399
(0.0254)

1.4423
(0.0236)

q = 4 0.3976
(0.1763)

1.2931
(0.0362)

1.4346
(0.0254)

1.4238
(0.0232)

q = 5 0.3947
(0.1730)

1.2930
(0.0361)

1.4328
(0.0254)

1.4209
(0.0231)

q = 6 0.3944
(0.1770)

1.2930
(0.0365)

1.4316
(0.0254)

1.4194
(0.0230)

Notes: Point estimates based on q-ordered orthogonalized estimators, cross-fitted estimates (100 splits).
Parametric bootstrap standard errors in parentheses (200 replications).

2 in Appendix G for a graphical illustration.
Turning to the other parameters, the estimates of the team size parameter β are virtually

unaffected by the orthogonalization. This suggests the bias is limited for this parameter. Its
value is close to 1.3, implying that producing a paper with a co-author increases the paper’s
quality to some extent. Next, the log-error variance σ2(2) in teams of two coauthors is larger
when using plug-in estimates (1.6) than when using orthogonalization with q ≥ 2 (1.4),
suggesting that the plug-in and first-order corrected estimates are biased upward. Lastly,
the variance σ2(1) in teams of a single author is also larger under the plug-in estimator.

Model (5.3) implies some restrictions on the parameters γ, β, σ2(1), σ2(2) that do not
depend on the author-specific effects ηi. In Appendix F we exploit two types of restrictions as
robustness checks. Our findings suggest that, while those restrictions seem broadly consistent
with the higher-order orthogonalized estimates reported in Table 1, using them directly for
estimation may lead to very imprecise estimates.

Lastly, we report estimates of average journal quality in a counterfactual scenario where
authors are randomly assigned across teams of two co-authors, see (6.1). The first column
in Table 2 shows estimates of the average output in the empirical allocation. This quantity
can be estimated without bias as the sample mean of the journal quality variable, which
is equal to 7.0. We see that the plug-in estimate is 8.4, larger than the empirical value.
In comparison, Neyman-orthogonalized estimates for q ≥ 3 range between 6.2 and 7.4, and
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Table 2: Empirical estimates: average output

Average output Counterfactual
Plug-in 8.4374

(0.2492)
7.1965
(0.1949)

q = 1 6.8469
(0.4837)

5.3147
(0.3936)

q = 2 9.0756
(0.5096)

8.5805
(0.7626)

q = 3 6.1566
(0.4452)

5.4774
(0.4354)

q = 4 7.4414
(0.4726)

6.6378
(0.6227)

q = 5 6.9854
(0.3889)

6.1694
(0.3896)

q = 6 7.1255
(0.3194)

6.3318
(0.4225)

Notes: Average output (the value in the data is 6.9995, standard error 0.2309), and counterfactual average
output in a random allocation. Point estimates based on orthogonalized estimators to order q, cross-fitted
estimates (100 splits). Parametric bootstrap standard errors in parentheses (200 replications).

estimates for q = 5 and q = 6 are closest to the empirical value. The second column in
Table 2 shows estimates of average article quality under random assignment of authors to
teams, using the plug-in method and Neyman-orthogonalized estimates to order q ≥ 1.5

The estimates vary with the order of orthogonalization. When taking q ≥ 4, estimates
range between 6.2 and 6.6. In addition, comparing the two columns of Table 2 shows that,
irrespective of the order of orthogonalization, the estimates of average output are lower in
the counterfactual scenario where workers are randomly allocated across teams.

The main takeaway from Table 2 is that randomly allocating authors among teams would
tend to lower average paper quality. This is due to two economic forces. The first one is
complementarity in production, as reflected by estimates of γ lower than 1. The second
force is positive sorting. Indeed, the preliminary estimates of worker fixed effects are posi-
tively correlated within teams in the data. In the presence of complementarity, decreasing
assortative matching leads to lower output, which is what we find in Table 2.

5To speed up computation, we approximate (6.1) using a random subset of 1000 authors, for each random
sample split (and each bootstrap replication).
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7 Asymptotic properties

In this section, we show that, under higher-order orthogonality, the estimators θ̂ and µ̂

introduced in Section 3.2 are
√
n-consistent and asymptotically normal under appropriate

assumptions, even if the convergence rate of η̂i is slower than
√
n. We focus on deriving the

asymptotic distribution of µ̂, assuming that we have already worked out the corresponding
asymptotic result of θ̂. However, the corresponding theory for θ̂ is actually a special case
of our results for µ̂, where θ is dropped from the arguments, µ is replaced by θ, and ui are
replaced by ũi. Thus, our focus on µ̂ is without loss of generality.

7.1 Notation

For the presentation of the asymptotic theory, it is useful to be explicit about which param-
eters depend on the sample size and which ones do not. Recall that n is the total number
of observations in (Z1, ..., ZN), where each Zi comprises ni observations. In the asymptotic
sequence, we let N and ni depend on n, although we do not explicitly indicate this depen-
dence. For example, in a panel data model, our assumptions allow both N and T to grow
as the number NT of observations tends to infinity.

To indicate the dependence on the sample size, we will write ηn and µn instead of η and
µ in this section. While the dimension of µ is not changing with n, the true parameter µ0,n is
implicitly defined as the solution of ∑N

i=1 Eθ0,η0,n (ui(Zi; θ0, η0,n,i, µ)) = 0, which may depend
on n. By contrast, the parameter θ and its true value θ0 are independent of n.

Remember also that n = ∑N
i=1 ni, and note that if the observations within each unit i are

independent, then we have `(yi |xi; θ, ηn,i) = ∏ni
j=1 `(yij |xij; θ, ηn,i). Hence, if ui(Zi; θ, ηn,i) =

∂ log `(yi |xi;θ,ηn,i)
∂θ

and uij(Zij; θ, ηn,i) = ∂ log `(yij |xij ;θ,ηn,i)
∂θ

, then

ui(Zi; θ, ηn,i) =
ni∑
j=1

uij(Zij; θ, ηn,i).

More generally, whenever ni → ∞ we expect that ui scales linearly with ni, implying that
1
n

∑N
i=1 ui is the correctly-scaled sample average of ui, and also explaining the scaling of

various other terms in Assumption 1 below.
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7.2 A useful lemma

With this notation in hand, we now state our first assumption.

Assumption 1.

(i) We have
[

1
n

∑N
i=1

∂u>i (Zi;θ̂,η̂n,i,µ̂n)
∂µ

]
W
[

1√
n

∑N
i=1 ui(Zi; θ̂, η̂n,i, µ̂n)

]
= oP (1), for some non-

random symmetric positive definite weight matrix W .

(ii) As n → ∞, (θ̂, η̂n, µ̂n) is contained in some convex neighborhood Bn of (θ0, η0,n, µ0,n).

Let Bn,i be the convex neighborhood of (θ0, η0,n,i, µ0,n) obtained by intersecting Bn with

the parameter parameter subspace for observation i.

(iii) maxi dim(ηn,i) = O(1).

(iv) For every i, the function ui(Zi, θ, ηn,i, µ) is (q + 1) times continuously differentiable in

the parameters (θ, ηn,i, µ), and we assume that for all its components all the partial

derivatives of ui(Zi; θ, ηn,i, µ) up to order (q + 1) are bounded in absolute value by

niCn,i(Zi) ≥ 0, uniformly in the neighborhood Bn,i, such that 1
n

∑N
i=1 niE [Cn,i(Zi)2] =

O(1).

(v) µ̂n − µ0,n = oP (1) and 1
n

∑N
i=1 niE

(
‖η̂n,i − η0,n,i‖2(q+1)

)
= o(n−1).

(vi) θ̂ = θ0 + 1
n

∑N
i=1 ψn,i + oP (n−1/2), where E(ψn,i) = 0 and 1

n

∑N
i=1 E

(
‖ψn,i‖2

)
= O(1).

(vii) The probability limits

Gµ = plim
n→∞

1
n

N∑
i=1

∂ui(Zi; θ0, η0,n,i, µ0,n)
∂µ>

, Gθ = plim
n→∞

1
n

N∑
i=1

∂ui(Zi; θ0, η0,n,i, µ0,n)
∂θ>

exist, and rank(Gµ) = dim(µ).

Part (i) in Assumption 1 is satisfied if µ̂n is computed using GMM, see (3.3). In Part
(ii), the neighborhood Bn depends on the sample size n, partly because the number of
nuisance parameters of ηn,i generally depends on n. Part (iii) assumes that the maximal
dimension of ηn,i is bounded as n → ∞. Part (iv) requires the derivatives of the moment
functions (properly rescaled) to be suitably bounded. The first half of Part (v) is a high-
level consistency assumption for µ̂n, which can be justified by guaranteeing that the objective
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function in (3.3) converges uniformly to a population counterpart that has a unique minimum
at µ0. The second half of Part (v) is the rate requirement on the preliminary estimates η̂n,i,
imposing a rate faster than n−1/2(q+1). Part (vi) requires θ̂ to be asymptotically linear, in
particular requiring θ̂ − θ0 = OP (n−1/2). In the case where µn,0 = θ0 this condition is not
needed. Lastly, Part (vii) assumes existence of Jacobian matrices and a rank condition.

In the statement of the following lemma, Dm
ηn,i

denote the derivative operator with respect
to ηn,i.

Lemma 1. Under Assumption 1 we have

√
n (µ̂n − µ0,n)

= −
(
G>µ W Gµ

)−1
G>µ W

{
1√
n

N∑
i=1

[
ui(Zi; θ0, η0,n,i, µ0,n) +Gθ ψn,i

]
+Rn

}
+ oP (1),

where

Rn = 1√
n

N∑
i=1

∑
m∈Kq,n,i

1
m!

[
Dm
ηn,i
ui(Zi; θ0, η0,n,i, µ0,n)

]
(η̂n,i − η0,n,i)m ,

and Kq,n,i =
{
m ∈ Zdim(ηn,i) : 1 ≤ ∑dim(ηn,i)

r=1 mr ≤ q
}

.

7.3 Main result

We are now in position to establish the main result of this section, which concerns root-n
consistency and asymptotic normality of estimators based on orthogonal equations. For this,
we first state our second assumption.

Assumption 2.

(i) The moment functions ui(Zi; θ, ηn,i, µ) are Neyman-orthogonal to order q for all i, and∑N
i=1 E (ui(Zi; θ0, η0,n,i, µ0,n)) = 0.

(ii) η̂n,i are independent of (Z1, . . . , ZN) for all i.

(iii) The Z1, . . . , ZN are independent across i.
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(iv) ξn,i = ui(Zi; θ0, η0,n,i, µ0,n) + Gθ ψn,i satisfies Lindeberg’s condition,6 and the following

probability limit exists:

Vξ = plim
n→∞

1
n

N∑
i=1

Var (ξn,i) .

Part (i) in Assumption 2 requires ui to be Neyman-orthogonal in the sense of Definition
1. Part (ii) requires the preliminary estimates to be independent from the estimation sample.
With independent observations, this can be achieved by sample splitting. Part (iii) imposes
independence between the Zi’s. We impose this assumption to simplify the presentation.
It is straightforward to modify the variance expression in Theorem 2 below to account for
particular forms of dependence (e.g., clustered) by using an appropriate expression for the
matrix Vξ introduced in Part (iv).

The following theorem provides an asymptotic characterization of µ̂n.

Theorem 2. Let Assumptions 1 and 2 hold with the same value of q ∈ {1, 2, 3, . . .}. Then

we have

√
n (µ̂n − µ0,n) d→ N

(
0,
(
G>µ W Gµ

)−1
G>µ W VξWGµ

(
G>µ W Gµ

)−1 )
.

8 Final remarks

In this paper we show how to construct higher-order Neyman-orthogonal moment functions
in conditional-likelihood models. We use these functions, together with sample splitting, to
reduce bias in estimation. Our application suggests that our higher-order corrections can be
effective in network settings with fixed effects. There are several important avenues for future
work. An area of application is to double/debiased machine learning with fixed effects, where
the nuisance parameters contains some components, such as low-dimensional functions, for
which first-order orthogonality may suffice. An open question is how to choose the degree
q of orthogonality in practice. Finally, extending the approach to non-likelihood models is
important, and we are working on a strategy that relies on independence assumptions and
sample splitting.

6That is, for any ε > 0, 1
s2

n

∑N
i=1 E

[
ξ2
n,i · 1(|ξn,i| > εsn)

]
→ 0 as n→∞, where s2

n =
∑N
i=1 Var(ξn,i) and

1 is the indicator function.

32



References

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High wage workers and high wage
firms. Econometrica 67, 251–333.

Ahmadpoor, M. and B. F. Jones (2019). Decoding team and individual impact in science
and invention. Proceedings of the National Academy of Sciences 116, 13885–13890.

Andrews, M. J., L. Gill, T. Schank, and R. Upward (2008). High wage workers and low
wage firms: negative assortative matching or limited mobility bias? Journal of the Royal

Statistical Society: Series A 171, 673–697.
Angrist, J. D. and B. Frandsen (2022). Machine labor. Journal of Labor Economics 40,

S97–S140.
Arellano, M. (2003). Discrete choices with panel data. Investigaciones Economicas XXVII,

423–458.
Arellano, M. and S. Bonhomme (2012). Identifying distributional characteristics in random

coefficients panel data models. The Review of Economic Studies 79, 987–1020.
Arellano, M. and J. Hahn (2007). Understanding bias in nonlinear panel models: Some

recent developments. In R. Blundell, W. K. Newey, and T. Persson (Eds.), Advances In

Economics and Econometrics, Volume III. Econometric Society: Cambridge University
Press.

Bhattacharyya, A. (1946). On some analogues of the amount of information and their use
in statistical estimation. Sankhyā 8, 1–14.
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APPENDIX

A Proofs

A.1 Proof of Theorem 1

Before proving the theorem, it is useful to establish the following lemma, which we prove in
Appendix B.

Lemma 2. Let q ∈ {1, 2, 3, . . .}, and let x be some realization of the covariates. Remember

that ∇q
η and wq(z; θ, η) are vectors of dimension kq = ∑q

p=1 dp, and that Σwqwq(x; θ, η) is a

kq × kq matrix. We assume that Σwqwq(x; θ, η) is invertible, and we define

w̃q(z; θ, η) = Σwqwq(x; θ, η)−1wq(z; θ, η).

Then,

Eθ,η
[
(∇q

η)> w̃q(z; θ, η)
∣∣∣X = x

]
=



−Id1 0 0 · · · 0
0 +Id2 0 · · · 0
0 0 −Id3 · · · 0
... ... ... . . . ...

0 0 0 · · · (−1)q Idq


, (A.1)

where the diagonal kq×kq matrix on the right hand side is obtained by stacking (−1)p Idp on

the diagonal for p = 1, . . . , q, and Idp is the identity matrix of dimensions dp.

Proof of Theorem 1. Define cq(x; θ, η, µ) =
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]>
. In the proof

of Lemma 2 we introduced the notation w̃m
q (z; θ, η), m ∈ Cq, for the elements of the kq-

vector w̃q(z; θ, η). Analogously, we now use cmq (x; θ, η, µ) to denote the columns of the the
(dim u) × kq-matrix c(x; θ, η, µ), that is, cmq (x; θ, η, µ) is a (dim u)-vector for every m ∈ Cq.
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We have

cmq (x; θ, η, µ) = Eθ,η

Dm
η `(y |x; θ, η)
`(y |x; θ, η) u(Z; θ, η, µ)

∣∣∣∣∣∣X = x

−Dm
η Eθ,η(u(Z; θ, η, µ)|X = x)

=
∫

[Dm
η `(y |x; θ, η)]u(z; θ, η, µ)dy −Dm

η

∫
`(y |x; θ, η)u(z; θ, η, µ)dy

= −
∑

S({1,...,|m|}

∫
[DmS

η `(y |x; θ, η)][Dm−S
η u(z; θ, η, µ)]dy, (A.2)

where z = (y, x) and in the last step we applied the product rule for differentiation as
in (2.3) above, but the term for S = {1, . . . , |m|} cancels with the term that stems from
Σwqu(x; θ, η, µ), which explains why we only sum over subsets S that are different from
{1, . . . , |m|}.

Next, by the definition of u∗q and A(x; θ, η, µ), we have

u∗q(z; θ, η, µ) = u(z; θ, η, µ)− A(x; θ, η, µ)>wq(z; θ, η)

= u(z; θ, η, µ)−
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]>
w̃q(z; θ, η)

= u(z; θ, η, µ)−
∑
v∈Cq

cvq(x; θ, η, µ) w̃ v
q (z; θ, η).

Let m ∈ Cq. Applying the operator Dm
η to the last equation and again using the product

rule for differentiation in the same way as before, we find

Dm
η u
∗
q(z; θ, η, µ) = Dm

η u(z; θ, η, µ)−
∑

S⊆{1,...,|m|}

∑
v∈Cq

[
Dm−S
η cvq(x; θ, η, µ)

] [
DmS
η w̃ v

q (z; θ, η)
]
.

Applying the conditional expectation operator to this and using Lemma 2 we obtain

Eθ,η
[
Dm
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

= Eθ,η
[
Dm
η uq(Z; θ, η, µ)

∣∣∣X = x
]

−
∑

S⊆{1,...,|m|}

∑
v∈Cq

[
Dm−S
η cvq(x; θ, η, µ)

]
Eθ,η

[
DmS
η w̃ v

q (Z; θ, η)
∣∣∣X = x

]
︸ ︷︷ ︸

=(−1)|S| 1{mS=v}

= Eθ,η
[
Dm
η uq(Z; θ, η, µ)

∣∣∣X = x
]
−

∑
∅6=S⊆{1,...,|m|}

(−1)|S|
[
Dm−S
η cmSq (x; θ, η, µ)

]
.

where in the last step we used that for S = ∅ the indicator 1 {mS = v} is always zero
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(because v ∈ Cq never has length zero), but for S 6= ∅ there is always exactly one v ∈ Cq that
satisfies mS = v, that is, in that second case we just remove the sum over v and replace v by
mS throughout. Next, plugging in the expression for cmq (x; θ, η, µ) in equation (A.2) above
we find

Eθ,η
[
Dm
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

= Eθ,η
[
Dm
η u(Z; θ, η, µ)

∣∣∣X = x
]

+
∑

∅6=S⊆{1,...,|m|}
(−1)|S|Dm−S

η

∑
T(S

∫
[DmT

η `(y |x; θ, η)][DmS\T
η u(z; θ, η, µ)]dy

 .
By again using the product rule for differentiation to apply Dm−S

η to the product in the last
term, we obtain

Eθ,η
[
Dm
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

=
∫
`(y |x; θ, η) [Dm

η u(Z; θ, η, µ)]dy

+
∑

∅6=S⊆{1,...,|m|}
(−1)|S|

∑
T(S

∑
R⊆−S

∫
[DmR∪T

η `(y |x; θ, η)][Dm(−S\R)∪(S\T )
η u(z; θ, η, µ)]dy, (A.3)

where we write −S for the set {1, . . . , |m|} \ S. All the terms on the right hand side of
the last display equation are of the form

∫
[DmA

η `(y |x; θ, η)][Dm−A
η u(z; θ, η, µ)]dy, for some

A ⊆ {1, . . . , |m|}, and we can therefore write

Eθ,η
[
Dm
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

=
∑

A⊆{1,...,|m|}
κA

∫
[DmA

η `(y |x; θ, η)][Dm−A
η u(z; θ, η, µ)]dy,

(A.4)

with

κA = 1{A = ∅}+
∑

∅6=S⊆{1,...,|m|}
(−1)|S|

∑
T(S

∑
R⊆−S

1{R ∪ T = A}.

Here, the indicator 1{A = ∅} accounts for the term
∫
`(y |x; θ, η[Dm

η u(Z; θ, η, µ)]dy in (A.3),
while the second term in κA counts the contributions from the triple sum. Our goal is to
show that κA = 0 for all A ⊆ {1, . . . , |m|}. We analyze two cases separately:
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• Case 1: For A = ∅, we note that R ∪ T = ∅ implies R = T = ∅. Thus, the indicator
1{R ∪ T = ∅} is non-zero only when R = ∅ and T = ∅, implying that

κ∅ = 1 +
∑

∅6=S⊆{1,...,|m|}
(−1)|S| =

∑
S⊆{1,...,|m|}

(−1)|S| = 0,

where in the second step we used that 1 = (−1)|∅| to include that term into the sum
over S, and the final step is the alternating sum result we already used in the proof of
Lemma 2 above.

• Case 2: Next, consider A 6= ∅. For given A and S, we have

∑
T(S

∑
R⊆−S

1{R ∪ T = A} =


1 if S 6⊆ A,

0 if S ⊆ A.
(A.5)

If S 6⊆ A (i.e. not S ⊆ A), then (A.5) holds because a solution to the conditions
R∪T = A, T ( S, R ⊆ −S exists and is uniquely given by T = A∩S and R = A∩(−S).
Uniqueness of the pair (T,R) implies that ∑T(S

∑
R⊆−S 1{R ∪ T = A} = 1 in that

case. However, if S ⊆ A then no solution for the pair (T,R) exists (because T = A∩S

implies T = S in that case, which contradicts the condition T ( S), implying that the
expression in (A.5) is indeed zero then. Using (A.5) we now find that

κA =
∑

∅6=S⊆{1,...,|m|}
S 6⊆A

(−1)|S|

=
∑

∅6=S⊆{1,...,|m|}
(−1)|S| −

∑
∅6=S⊆A

(−1)|S|

=
 ∑
S⊆{1,...,|m|}

(−1)|S| − (−1)|∅|
−

∑
S⊆A

(−1)|S| − (−1)|∅|


= [0− 1]− [0− 1] = 0.

We have thus shown that κA = 0 for all A ⊆ {1, . . . , |m|}. By (A.4) we thus have
Eθ,η

[
Dm
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

= 0, which can also be written as

Eθ,η
[
∇q
η u
∗
q(Z; θ, η, µ)

∣∣∣X = x
]

= 0.
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Plugging in the true parameter values θ0 and η0 we thus find

E
[
∇q
η u
∗
q(Z; θ0, η0, µ)

∣∣∣X = x
]

= 0,

and by the law of iterated expectations also

E
[
∇q
η u
∗
q(Z; θ0, η0, µ)

]
= 0.

Remarkably, this result holds for any value of µ.

A.2 Proof of Lemma 1

Let τ := (θ, µ). We write uk,i(τ, ηi) for uk,i(Zi; θ, ηi, µ), the kth component of the dim(ui)-
vector ui(Zi; θ, ηi, µ). Furthermore, compared to the statement of the lemma we drop all
subscripts n in the following derivations. In particular, for Kq,n,i we simply write Kq,i. By a
mean-value expansion of η̂i around ηi0 we obtain

1
n

N∑
i=1

uk,i(Zi; θ̂, η̂i, µ̂) = 1
n

N∑
i=1

uk,i(τ̂ , η̂i)

= 1
n

N∑
i=1

uk,i(τ̂ , ηi0)

+ 1
n

N∑
i=1

∑
m∈Kq,i

1
m!

[
Dm
ηi
uk,i(τ̂ , ηi0)

]
(η̂i − ηi0)m

+ 1
n

N∑
i=1

∑
m∈Kq+1,i

1
m!

[
Dm
ηi
uk,i(τ̂ , η̃i)

]
(η̂i − ηi0)m ,

where m! = ∏
r(mr!), and η̃i is some value between ηi0 and η̂i. Next, we perform a mean-value

expansions in τ̂ around τ0 to obtain

1
n

N∑
i=1

uk,i(Zi; θ̂, η̂i, µ̂) = 1
n

N∑
i=1

uk,i(τ0, ηi0)

+ 1
n

N∑
i=1

[
∂

∂τ
uk,i(τ0, ηi0)

]>
(τ̂ − τ0)︸ ︷︷ ︸

=[Gµ(µ̂−µ0)+Gθ(θ̂−θ0)]
k
+oP (‖τ̂−τ0‖)
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+ 1
2 (τ̂ − τ0)>

{
1
n

N∑
i=1

[
∂2

∂τ∂τ>
uk,i(τ̃ , ηi0)

]}
(τ̂ − τ0)︸ ︷︷ ︸

=:B1,k

+ 1
n

N∑
i=1

∑
m∈Kq,i

1
m!

[
Dm
ηi
uk,i(τ0, ηi0)

]
(η̂i − ηi0)m

︸ ︷︷ ︸
=n−1/2 Rn,k, the k’th component of Rn defined in the lemma.

+ 1
n

N∑
i=1

∑
m∈Kq,i

1
m!

[
Dm
ηi

∂

∂τ
uk,i(τ , ηi0)

]>
(τ̂ − τ0) (η̂i − ηi0)m

︸ ︷︷ ︸
=:B2,k

+ 1
n

N∑
i=1

∑
m∈Kq+1,i

1
m!

[
Dm
ηi
uk,i(τ̂ , η̃i)

]
(η̂i − ηi0)m

︸ ︷︷ ︸
=:B3,k

,

where τ̃ and τ are values between τ̂ and τ0. Denote the dimensions of the parameters θ and
µ by dθ and dµ, respectively. Our assumptions guarantee that

|B1,k| ≤
(dθ + dµ)2

2 ‖τ̂ − τ0‖2 1
n

N∑
i=1

niC(Zi)

≤ (dθ + dµ)2

2 ‖τ̂ − τ0‖2
(

1
n

N∑
i=1

ni [C(Zi)]2
)1/2

︸ ︷︷ ︸
=OP (1)

(
1
n

N∑
i=1

ni

)1/2

︸ ︷︷ ︸
=O(1)

= OP

(
‖τ̂ − τ0‖2

)
,

|B2,k| ≤ (dθ + dµ) ‖τ̂ − τ0‖
1
n

N∑
i=1

niC(Zi)
∑

m∈Kq,i

1
m! (η̂i − ηi0)m

≤ (dθ + dµ) ‖τ̂ − τ0‖
(

1
n

N∑
i=1

ni [C(Zi)]2
)1/2

︸ ︷︷ ︸
=OP (1)

 1
n

N∑
i=1

ni

 ∑
m∈Kq,i

1
m! (η̂i − ηi0)m

2


1/2

︸ ︷︷ ︸
=oP (1)

= oP (‖τ̂ − τ0‖) ,
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|B3,k| ≤
1
n

N∑
i=1

niC(Zi) ‖η̂i − ηi0‖q+1 ∑
m∈Kq+1,i

1
m!︸ ︷︷ ︸

=O(1)

= O(1)
(

1
n

N∑
i=1

ni [C(Zi)]2
)1/2

︸ ︷︷ ︸
=OP (1)

(
1
n

N∑
i=1

ni ‖η̂i − ηi0‖2(q+1)
)1/2

︸ ︷︷ ︸
=oP (n−1/2)

= oP (n−1/2).

Here, in addition to our assumption we also used the Cauchy-Schwarz inequality. We have
thus shown that

1
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂) = Gµ(µ̂− µ0) +Gθ(θ̂ − θ0) + 1
n

N∑
i=1

ui(Zi; θ0, ηi0, µ0) + n−1/2Rn

+OP

(
‖τ̂ − τ0‖2

)
+ oP (‖τ̂ − τ0‖) + oP (n−1/2).

Using our assumptions on the convergence of µ̂ and θ̂ we thus have

1√
n

N∑
i=1

ui(Zi; θ̂, η̂, µ̂) = Gµ

[√
n(µ̂− µ0)

]
+ oP (‖µ̂− µ0‖)

+ 1√
n

N∑
i=1

[ui(Zi; θ0, η0, µ0) +Gθ ψi] +Rn + oP (1). (A.6)

By Assumption 1(i) we have

[
1
n

N∑
i=1

∂u>i (Zi; θ̂, η̂i, µ̂)
∂µ

]
W

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)
]

= oP (1).

By using Assumption 1(iv) and (vii) we thus have

G>µW

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)
]

= oP (1).
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Plugging the approximation in (A.6) into the last display gives

oP (1) = G>µW

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)
]

=
(
G>µWGµ

) [√
n(µ̂− µ0)

]
+ oP (‖µ̂− µ0‖)

+G>µW

{
1√
n

N∑
i=1

[ui(Zi; θ0, ηi0, µ0) +Gθ ψi] +Rn

}
+ oP (1).

Since G>µWGµ is full rank, solving for
√
n(µ̂− µ0) gives the statement of the lemma.

A.3 Proof of Theorem 2

We again drop all subscripts n in the derivations. Let ξi = ui(Zi; θ0, ηi0, µ0) + Gθψi. From
Lemma 1, we have

√
n(µ̂− µ0) = (G>µWGµ)−1G>µW

{
1√
n

N∑
i=1

ξi +Rn

}
+ oP (1).

We will show that Rn = oP (1) under our assumptions. First, by Assumption 2(i), the
moment function is Neyman-orthogonal to order q, which implies

E
[
Dm
ηi
ui(Zi; θ0, ηi0, µ0)

]
= 0

for all m ∈ Kq,i. Therefore, Rn is a sum of mean-zero terms. Next, by Assumption 1(iv), the
derivatives Dm

ηi
ui(Zi; θ0, ηi0, µ0) are all bounded by niC(Zi) with 1

n

∑N
i=1 niE[C(Zi)2] = O(1).

Using this together with Assumption 1(v) and Assumption 2(ii), one obtains E [R2
n] = o(1).

By Chebyshev’s inequality we thus have Rn = oP (1). Thus, we have

√
n(µ̂− µ0) = (G>µWGµ)−1G>µW

{
1√
n

N∑
i=1

ξi

}
+ oP (1).

By Assumption 2(ii), (iii), the terms ξi are independent across i. Furthermore, by As-
sumption 2(iv), they satisfy Lindeberg’s condition and have a well-defined variance limit Vξ.
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Therefore, by the Lindeberg-Feller Central Limit Theorem:

1√
n

N∑
i=1

ξi
d→ N (0, Vξ).

The conclusion follows by the continuous mapping theorem, giving us

√
n(µ̂− µ0) d→ N

(
0, (G>µWGµ)−1G>µWVξWGµ(G>µWGµ)−1

)
.
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SUPPLEMENTAL APPENDIX

B Proof of Lemma 2

By taking derivatives of
∫
`(y|x; θ, η)dy = 1 with respect to η, we obtain

∫
[∇q

η`(y|x; θ, η)]dy = 0,

which can also be written as Eθ,η[wq(Z; θ, η)|X = x] = 0. Since Σwqwq(X; θ, η) does not
depend on Y we also have Eθ,η[w̃q(Z; θ, η)|X = x] = 0. Using this and the definition of w̃q
we obtain

Ikq = Σwqwq(x; θ, η)−1Σwqwq(x; θ, η)

= Σwqwq(x; θ, η)−1Eθ,η[wq(Z; θ, η)wq(Z; θ, η)>|X = x]

= Eθ,η[w̃q(Z; θ, η)wq(Z; θ, η)>|X = x]

=
∫
w̃q(z; θ, η)[∇q

η`(y|x; θ, η)]>dy. (2.1)

According its definition in Section 3.1, the elements of the kq-vector operator ∇q
η are given

by
Dm
η = ∂p

∂ηm1 · · · ∂ηmp
,

and are uniquely labeled by vectors of integers m = (m1, . . . ,mp) of length p ∈ {1, . . . , q} in
the following set

Cq =
⋃

p∈{1,...,q}
{m = (m1, . . . ,mp) : 1 ≤ m1 ≤ · · · ≤ mp ≤ dη}.

Analogously, we now introduce the notation w̃m
q (z; θ, η), m ∈ Cq, to uniquely denote the

elements of the vector w̃q(z; θ, η), which is also a vector of length kq = |Cq|. With that
notation, the result in display (2.1) can equivalently be written as

∀r,m ∈ Cq :
∫
w̃ r
q (z; θ, η) [Dm

η `(y|x; θ, η)] dy = 1{r = m}. (2.2)
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Since Eθ,η[w̃q(Z; θ, η)|X = x] = 0, we also have

∫
w̃ r
q (z; θ, η) `(y|x; θ, η) dy = 0.

For the empty vector () of length zero we have D()
η `(y|x; θ, η) = `(y|x; θ, η). Using this

notation we can combine the result in the last two displays to find that for all r ∈ Cq and all
v ∈ Cq ∪ {()} we have

∫
w̃ r
q (z; θ, η) [Dv

η`(y|x; θ, η)] dy = 1{r = v}.

For k ∈ {1, 2, 3, . . .}, vector t = (t1, . . . , tk) ∈ Cq, and a subset S ⊆ {1, . . . , k}, let tS denote
the vector formed by keeping only the indices in S, and let t−S = t{1,...,k}\S be the vector
of the remaining elements. Then, by applying Dt

η to the last display and using the product
rule for differentiation we obtain

∑
S⊆{1,...,k}

∫
[DtS

η w̃
r
q (z; θ, η)] [Dt−S

η Dv
η`(y|x; θ, η)] dy = 0. (2.3)

Of course, we have Dt
ηD

v
η = D(t,v)

η , and instead of distinguishing between t and v we can
also just write m for (t, v) combined. The last display equation then implies that for any
nonempty subset T ⊆ {1, 2, . . . , |m|} we have (just set t = mT and v = m−T in the last
display result—in doing so, it was important that above we allowed for v to be the empty
vector):

∑
S⊆T

∫
[DmS

η w̃ r
q (z; θ, η)] [Dm−S

η `(y|x; θ, η)] dy = 0.

Now, consider the following linear combination of the result in the last display,

∑
T⊆{1,2,...,|m|}

T 6=∅

(−1)|T |
∑
S⊆T

∫
[DmS

η w̃ r
q (z; θ, η)] [Dm−S

η `(y|x; θ, η)] dy = 0. (2.4)
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For a fixed S ⊂ {1, 2, . . . , |m|}, the total coefficient of the term
∫

[DmS
η w̃ r

q ] [Dm−S
η `] dy in this

linear combination is given by

∑
T :S⊆T⊆{1,...,|m|}

T 6=∅

(−1)|T | =



−1 if S = ∅,

(−1)|m| if S = {1, . . . , |m|},

0 otherwise.

(2.5)

To see that the result in the last display holds, notice first that for S = ∅ the sum is simply

∑
T : ∅⊆T⊆{1,...,|m|}

(−1)|T | = −1 +
∑

T⊆{1,...,|m|}
(−1)|T |

︸ ︷︷ ︸
=0

= −1,

where ∑T⊆{1,...,|m|}(−1)|T | = ∑|m|
r=0

(
|m|
r

)
(−1)r = (1 − 1)|m| = 0 is a classic alternating sum

result, which holds for all |m| ≥ 1. Next, for S = {1, . . . , |m|}, the left hand side of (2.5)
only sums over one element, T = {1, . . . , |m|}, and we thus get (−1)|T | = (−1)|m| for the
sum. Finally, if S 6= ∅ and S 6= {1, . . . , |m|}, then the left hand side of (2.5) can be written
as

∑
T :S⊆T⊆{1,...,|m|}

(−1)|T | =
∑
R⊆−S

(−1)|S|+|R| = (−1)|S|
∑
R⊆−S

(−1)|R|

︸ ︷︷ ︸
=0

= 0

where we replaced the sum over T by a sum over R such that T = S ∪ R, with −S =
{1, . . . , |m|} \ S, and in the final step we used the alternating sum result again.

Using (2.5), our linear combination in (2.4) equals

−
∫

[Dm
η w̃

r
q (z; θ, η)] `(y|x; θ, η) dy + (−1)|m|

∫
w̃ r
q (z; θ, η)[Dm

η `(y|x; θ, η)] dy = 0.

Together with (2.2) we thus find

∫
[Dm

η w̃
r
q (z; θ, η)] `(y|x; θ, η) dy = (−1)|m| 1{r = m}.

which in vector notation can be written as (A.1).
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C Additional examples

C.1 Linear autoregression in panel data

We provide results for the linear autoregressive model

Yij = ηi0 + ρ0Yi,j−1 + εij, εij ∼ iid N (0, σ2
0).

Here θ = (ρ, σ2)>. We focus on ρ, since the analysis for σ2 is similar to the previous example.
The score for ρ for unit i, conditional on the first observation, is

ui(Yi; θ, ηi) =
T∑
j=1

Yi,j−1(Yij − ηi − ρYi,j−1)
σ2

while

vi,1(Yi; θ, ηi) =
T∑
j=1

(Yij − ηi − ρYi,j−1)
σ2 , vi,2(Yi; θ, ηi) = − T

σ2 +
 T∑
j=1

(Yij − ηi − ρYi,j−1)
σ2

2

.

We find
A(θ, ηi) = (ηi, σ2/T)> c(ρ), c(ρ) = 1

1− ρ

(
1− 1

T

1− ρT
1− ρ

)
.

After some re-arrangement we obtain that the second-order Neyman-orthogonalized score
equation takes the form

∑N
i=1

∑T
j=1 Yi,j−1(Yij − ηi − ρYi,j−1)

σ2 +Nc(ρ) +NTc(ρ) η̂i(ρ)(ηi − η̂i(ρ)),

where η̂i(ρ) = Y i − ρY i− with Y i = 1/T
∑T
j=1 Yij and Y i− = 1/T

∑T
j=1 Yi,j−1. This equation

still depends on the ηi. However, at ηi = η̂i(ρ) we obtain the adjusted score equation of
Lancaster (2002) and Dhaene and Jochmans (2016), which is known to be exactly unbiased
for any T ≥ 2.
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C.2 Linear regression with a general design matrix

C.2.1 Model and results

Consider the linear regression model

Y = Xη + σε, ε |X ∼ iidN (0, In), (3.6)

where n is the dimension of Y . We assume that X>X is nonsingular with probability one.
Model (3.6) nests the Neyman-Scott model (2.2), for n = NT and X = IN ⊗ ιT , with IN

the N ×N identity matrix and ιT the T × 1 vector of ones. Model (3.6) also nests settings
where X is a network matrix, as in the log wage regression model of Abowd, Kramarz and
Margolis (1999) based on linked worker-firm panel data, in which case η is a vector stacking
worker and firm fixed-effects. Our goal is to estimate µ = η>Qη for some symmetric r × r
matrix Q, where r denotes the dimension of η. Such quadratic forms are of interest in panel
and network variance decompositions (e.g., Arellano and Bonhomme, 2012, Andrews, Gill,
Schank and Upward, 2008, Kline, Saggio and Sølvsten, 2020).

Suppose to start with that σ2 is known. Theorem 1 implies the following characterization
of the first- and second-order estimating equations for µ, based on u(y, x;σ2, η, µ) = µ−η>Qη.

Proposition 1.

u∗1(y, x;σ2, η, µ) = µ− η>Qη − 2η>Q>(x>x)−1x>(y − xη),

u∗2(y, x;σ2, η, µ) = µ− y>x(x>x)−1Q(x>x)−1x>y + σ2Trace(Q(x>x)−1).

Hence, given a preliminary estimator η̂, the associated first-order orthogonalized estima-
tor of µ0 is

µ̂1 = η̂>Qη̂ + 2η>Q>(x>x)−1x>(y − xη̂).

It is easy to see Eθ,η[µ̂1] 6= µ. In turn, the second-order orthogonalized estimator is

µ̂2 = y>x(x>x)−1Q(x>x)−1x>y − σ2Trace(Q(x>x)−1).

Note that µ̂2 does not depend on the preliminary estimate η̂, and that Eθ,η[µ̂2] = µ. Hence,
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second-order Neyman-orthogonality leads to exact unbiased in this case. The expression
coincides with the trace correction of Andrews, Gill, Schank and Upward (2008).

Turning to the estimation of σ2, we rely on the score

u(y, x;σ2, η) = − n

2σ2 + 1
2σ4 (y − xη)>(y − xη).

Using Theorem 1, we obtain the following characterization of the first- and second-order
orthogonalized scores.

Proposition 2.

u∗1(y, x;σ2, η) = − n

2σ2 + 1
2σ4 (y − xη)>(y − xη),

u∗2(y, x;σ2, η) = −
n− Trace

(
x(x>x)−1x>

)
2σ2 + 1

2σ4y
>(In − x(x>x)−1x>)y.

As in the special case of the Neyman-Scott model, first-order orthogonalization is imma-
terial, and the first-order orthogonalized estimator of σ2 is

σ̂2
1 = (Y −Xη̂)>(Y −Xη̂)

n
,

and Eθ,η[σ̂2
1] 6= σ2. In turn, the second-order orthogonalized estimator is

σ̂2 = Y >(In −X(X>X)−1X>)Y
n− Trace (X(X>X)−1X>) , (3.7)

which is the familiar degree of freedom correction, exactly unbiased in this case, and inde-
pendent of the preliminary estimator η̂.7 In the special case of the Neyman-Scott model,
(3.7) simplifies to

σ̂2 = 1
N(T − 1)

N∑
i=1

T∑
t=1

(Yit − Y i)2,

where Y i = 1
T

∑T
t=1 Yit, which is exactly unbiased for fixed T and N .

7Note it is not necessary for X>X to be non-singular for σ̂2 to be well-defined, provided one replaces
(X>X)−1 by a generalized inverse.
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C.2.2 Main proofs

Proof of Proposition 1. Let

u(Y,X; θ, η, µ) = µ− η>Qη.

We have
log `(Y |X; θ, η) = −n2 log σ2 − 1

2σ2 (Y −Xη)>(Y −Xη).

Hence,
v1(Y,X; θ, η) = 1

σ2X
>(Y −Xη),

and
v2(Y,X; θ, η) = vech

(
− 1
σ2X

>X + 1
σ4X

>(Y −Xη)(Y −Xη)>X
)
,

where vech(C) denotes the half-vectorization of a symmetric matrix C.
By Theorem 1 we have

u∗2(Y,X; θ, η, µ) = u(Y,X; θ, η, µ)− A>
 v1(Y,X; θ, η)
v2(Y,X; θ, η)

 ,
where

A = −

E
 v1(Y,X; θ, η)v1(Y,X; θ, η)> v1(Y,X; θ, η)v2(Y,X; θ, η)>

v2(Y,X; θ, η)v1(Y,X; θ, η)> v2(Y,X; θ, η)v2(Y,X; θ, η)>



−1 −2Qη

−2vech(Q)

 ,
where for conciseness we omit the dependence of A on X, θ, and η from the notation, and
we implicitly condition on X in all expectations.

Note
v1(Y,X; θ, η) = 1

σ2X
>ε,

and
v2(Y,X; θ, η) = vech

(
− 1
σ2X

>X + 1
σ4X

>εε>X
)
.
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Hence

E[v1(Y,X; θ, η)v1(Y,X; θ, η)>] = 1
σ2X

>X,

E[v1(Y,X; θ, η)v2(Y,X; θ, η)>] = 0,

E[v2(Y,X; θ, η)v2(Y,X; θ, η)>]

= E
[
vech

(
− 1
σ2X

>X + 1
σ4X

>εε>X
)

vech
(
− 1
σ2X

>X + 1
σ4X

>εε>X
)>]

.

Let Lm denote the elimination matrix such that vech(Q) = Lvec(Q) (Magnus and
Neudecker, 1980). Let Kn denote the commutation matrix such that Knvec(A) = vec(A>)
(Magnus and Neudecker, 1979). Note that Kn = K>n . We have the following result.

Lemma 3.

E[v2(Y,X; θ, η)v2(Y,X; θ, η)>] = 1
σ4Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m.

It follows from the above that

u∗2(Y,X; θ, η, µ) = µ− η>Qη − 2η>Q>(X>X)−1X>(Y −Xη)

− 2vech(Q)>
[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1

× vech
(
−σ2X>X +X>(Y −Xη)(Y −Xη)>X

)
.

The following lemma is instrumental.

Lemma 4. Let A and B be symmetric matrices. Then

vech(A)>
[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1
vech(B) = 1

2Trace(A(X>X)−1B(X>X)−1).

By Lemma 4 applied to A = Q and B = X>(Y −Xη)(Y −Xη)>X − σ2X>X, we then
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have

u∗2(Y,X; θ, η, µ) =µ− η>Qη − 2η>Q>(X>X)−1X>(Y −Xη)

− Trace
(
Q(X>X)−1[X>(Y −Xη)(Y −Xη)>X − σ2X>X](X>X)−1

)
= µ− Y >X(X>X)−1Q(X>X)−1X>Y + σ2Trace(Q(X>X)−1).

The associated second-order Neyman-orthogonal estimator is then

µ̂ = Y >X(X>X)−1Q(X>X)−1X>Y − σ2Trace(Q(X>X)−1),

which corresponds to the trace correction of Andrews, Gill, Schank and Upward (2008), for
fixed σ2.

Proof of Proposition 2 Let

u(Y,X;σ2, η) = − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη).

By Theorem 1 we have

u∗2(Y,X; θ, η) = u(Y,X; θ, η)− A>
 v1(Y,X; θ, η)
v2(Y,X; θ, η)

 ,
where

A = E

 v1(Y,X; θ, η)v1(Y,X; θ, η)> v1(Y,X; θ, η)v2(Y,X; θ, η)>

v2(Y,X; θ, η)v1(Y,X; θ, η)> v2(Y,X; θ, η)v2(Y,X; θ, η)>


−1

× E

 v1(Y,X; θ, η)u(Y,X; θ, η)
v2(Y,X; θ, η)u(Y,X; θ, η)

 .
We have the following result.

Lemma 5.

E[v1(Y,X; θ, η)u(Y,X; θ, η)] = 0,
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and

E[v2(Y,X; θ, η)u(Y,X; θ, η)] = 1
2σ4Lm(X> ⊗X>)(In2 +Kn)vec(In).

Using Lemma 5, we have

u∗2(Y,X; θ, η) = − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

− 1
2vec(In)>(In2 +Kn)(X ⊗X)L>m

[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1

× Lmvec
(
− 1
σ2X

>X + 1
σ4X

>(Y −Xη)(Y −Xη)>X
)
.

Lemma 6. We equivalently have

u∗2(Y,X; θ, η) = − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

+ 1
2σ2 Trace

(
X(X>X)−1X>

)
− 1

2σ4 (Y −Xη)>X(X>X)−1X>(Y −Xη).

By Lemma 6, the second-order orthogonalized score is independent of η and is given by

u∗2(Y,X; θ, η) = −
n− Trace

(
X(X>X)−1X>

)
2σ2 + 1

2σ4Y
>(In −X(X>X)−1X>)Y.

C.2.3 Proofs of intermediate lemmas

Proof of Lemma 3. We have

E[v2(Y,X; θ, η)v2(Y,X; θ, η)>]

= E
[
vech

(
− 1
σ2X

>X + 1
σ4X

>εε>X
)

vech
(
− 1
σ2X

>X + 1
σ4X

>εε>X
)>]

= Lm(X> ⊗X>)E
[( 1
σ4 ε⊗ ε−

1
σ2 vec(In)

)( 1
σ4 ε⊗ ε−

1
σ2 vec(In)

)>]
(X ⊗X)L>m

= Lm(X> ⊗X>)E
[ 1
σ8 (εε>)⊗ (εε>)− 1

σ4 vec(In)vec(In)>
]

(X ⊗X)L>m.

Now, by (4.3) in Ghazal and Neudecker (2000), we have, since εε> ∼ Wn(σ2In, 1),

E
[
(εε>)⊗ (εε>)

]
= σ4vec(In)vec(In)> + σ4(In2 +Kn)(In ⊗ In).
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It follows that

E[v2(Y,X; θ, η)v2(Y,X; θ, η)>] = 1
σ4Lm(X> ⊗X>)(In2 +Kn)(X ⊗X)L>m.

This shows Lemma 3.

Proof of Lemma 4. Let Dm denote the duplication matrix, such, that for any symmetric
matrix C, Dmvech(C) = vec(C). We will make use of the following properties (Magnus and
Neudecker, 1980):

Dm = (Im2 +Km)L>m
(
Lm(Im2 +Km)L>m

)−1
, (3.8)

(In2 +Kn)(X ⊗X) = (X ⊗X)(Im2 +Km), (3.9)

DmLm(Im2 +Km) = (Im2 +Km), (3.10)

KmDm = Dm. (3.11)

Note that vech(A) = LmDmvech(A) and vech(B) = LmDmvech(B). Hence

vech(A)>
[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1
vech(B)

= vech(A)>D>mL>m
[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1
LmDmvech(B)

= vech(A)>
(
Lm(Im2 +Km)L>m

)−1
Lm(Im2 +Km)L>m

[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1

× Lm(Im2 +Km)L>m
(
Lm(Im2 +Km)L>m

)−1
vech(B) by (3.8)

= vech(A)>
(
Lm(Im2 +Km)L>m

)−1
Lm(Im2 +Km)L>m

[
Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)L>m

]−1

× Lm(Im2 +Km)L>m
(
Lm(Im2 +Km)L>m

)−1
vech(B) by (3.9)

= vech(A)>
[
Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)L>m

]−1
vech(B).
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Now, we have

Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)L>mD>m((X>X)−1 ⊗ (X>X)−1)Dm

= Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)((X>X)−1 ⊗ (X>X)−1)Dm by (3.10)

= Lm(Im2 +Km)(X> ⊗X>)(X ⊗X)((X>X)−1 ⊗ (X>X)−1)Dm by (3.9)

= Lm(Im2 +Km)((X>X)⊗ (X>X))((X>X)−1 ⊗ (X>X)−1)Dm

= Lm(Im2 +Km)Dm

= 2LmDm by (3.11)

= 2Im2 .

As a result,

[
Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)L>m

]−1
= 1

2D
>
m((X>X)−1 ⊗ (X>X)−1)Dm.

Hence

vech(A)>
[
Lm(X> ⊗X>)(X ⊗X)(Im2 +Km)L>m

]−1
vech(B)

= 1
2vech(A)>D>m((X>X)−1 ⊗ (X>X)−1)Dmvech(B)

= 1
2vec(A)>((X>X)−1 ⊗ (X>X)−1)vec(B)

= 1
2vec(A)>vec((X>X)−1B(X>X)−1)

= 1
2Trace

(
A>(X>X)−1B(X>X)−1

)
= 1

2Trace
(
A(X>X)−1B(X>X)−1

)

since A is symmetric. This shows Lemma 4.

Proof of Lemma 5. Since

u(Y,X; θ, η) = − n

2σ2 + 1
2σ4 ε

>ε,

57



we have
E[v1(Y,X; θ, η)u(Y,X; θ, η)] = 0,

and

E[v2(Y,X; θ, η)u(Y,X; θ, η)] = E
[
vech

(
− 1
σ2X

>X + 1
σ4X

>εε>X
)(
− n

2σ2 + 1
2σ4 ε

>ε
)]

= LmE
[
vec

( 1
σ4X

>εε>X
(
− n

2σ2 + 1
2σ4 ε

>ε
))]

= Lm

(
− n

2σ4 (X> ⊗X>)vec(In) + 1
2σ8 (X> ⊗X>)E

[
(εε>)⊗ (εε>)

]
vec(In)

)
= Lm

(
− n

2σ4 (X> ⊗X>)vec(In)

+ 1
2σ8 (X> ⊗X>)

(
σ4vec(In)vec(In)> + σ4(In2 +Kn)(In ⊗ In)

)
vec(In)

)
,

where we have used the expression for E
[
(εε>)⊗ (εε>)

]
from Ghazal and Neudecker (2000)

as in the proof of Lemma 4. It follows that

E[v2(Y,X; θ, η)u(Y,X; θ, η)] = 1
2σ4Lm(X> ⊗X>)(In2 +Kn)vec(In).

This shows Lemma 5.

Proof of Lemma 6. Using results from the proof of Lemma 4 we have

[
Lm(X> ⊗X>)[In2 +Kn](X ⊗X)L>m

]−1

=
[
Lm(X> ⊗X>)(X ⊗X)[Im2 +Km]L>m

]−1

= 1
2D

>
m((X>X)−1 ⊗ (X>X)−1)Dm.

58



Hence

u∗2(Y,X; θ, η) = − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

− 1
4vec(In)>(In2 +Kn)(X ⊗X)L>mD>m((X>X)−1 ⊗ (X>X)−1)Dm

× Lmvec
(
− 1
σ2X

>X + 1
σ4X

>(Y −Xη)(Y −Xη)>X
)

= − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

− 1
2vec(In)>(X ⊗X)L>mD>m((X>X)−1 ⊗ (X>X)−1)Dm

× Lm(X> ⊗X>)vec
(
− 1
σ2 In + 1

σ4 (Y −Xη)(Y −Xη)>
)
,

where we have used that
vec(In)>(In2 +Kn) = 2vec(In)>.

Now, for any symmetric matrix A, DmLmvec(A) = vec(A). Hence we have

u∗2(Y,X; θ, η) = − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

− 1
2vec(In)>(X ⊗X)((X>X)−1 ⊗ (X>X)−1)

× (X> ⊗X>)vec
(
− 1
σ2 In + 1

σ4 (Y −Xη)(Y −Xη)>
)

= − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

+ 1
2σ2 Trace

(
X(X>X)−1X>

)
− 1

2σ4 (Y −Xη)>X(X>X)−1X>(Y −Xη)

= − n

2σ2 + 1
2σ4 (Y −Xη)>(Y −Xη)

+ 1
2σ2 Trace

(
X(X>X)−1X>

)
− 1

2σ4 (Y −Xη)>X(X>X)−1X>(Y −Xη),

where we have used that X(X>X)−1X> is symmetric and idempotent. This shows Lemma
6.
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D Implementation in nonlinear regression

D.1 Expression for M

Following Constantine and Savits (1996), consider a multivariate function

h (x1, . . . , xd) = f
[
g(1) (x1, . . . , xd) , . . . , g(m) (x1, . . . , xd)

]
,

hν = Dν
xh (x0) , fλ = Dλ

yf (y0) , g(i)
µ = Dµ

xg
(i) (x0) ,gµ =

(
g(1)
µ , . . . , g(m)

µ

)
. The Faà di Bruno

formula is (Theorem 2.1 in Constantine and Savits, 1996):

hν =
∑

1≤|λ|≤n
fλ

n∑
s=1

∑
ps(ν,λ)

(ν!)
s∏
j=1

[
g`j
]kj

(kj!) [`j!]|kj |︸ ︷︷ ︸
elements of M

,

where n = |ν|, and

ps(ν,λ) =
{

(k1, . . . ,ks; `1, . . . , `s) : |ki| > 0,

0 ≺ `1 ≺ · · · ≺ `s,
s∑
i=1

ki = λ and
s∑
i=1
|ki| `i = ν

}
.

D.2 Useful properties of the normal distribution

We first consider the univariate normal case.

Lemma 7. For m ∈ R and σ ∈ [0,∞), let Y ∼ N (m,σ2), with corresponding likelihood

function

`(y |m,σ) = 1√
2πσ2

exp
(
−(y −m)2)

2σ2

)
.

Let j, k ∈ {0, 1, 2, . . .}, and define

κjk := Em,σ
[

1
`(Y |m,σ)

∂j`(Y |m,σ)
(∂m)j

1
`(Y |m,σ)

∂k`(Y |m,σ)
(∂m)k

]
,

ρj := Em,σ
[

1
`(Y |m,σ)

∂j`(Y |m,σ)
(∂m)j

∂ log `(Y |m,σ)
∂σ

]
.
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Then,

κjk = 1

{
j = k

} j!
σ2j , ρj = 1

{
j = 2

} 2
σ3 .

Let φ(y) = 1√
2π exp (−y2/2) and φ(j)(y) = djφ(y)

dyj
. Hermite polynomials are defined by

hj(y) = (−1)j[φ(y)]−1 φ(j)(y). The proof of Lemma 7 is given in Subsection D.4. It crucially
relies on the following orthogonality property of Hermite polynomials:

∫ ∞
−∞

hj(y)hk(y)φ(y) dy = 1

{
j = k

}
j! . (4.1)

The result in Lemma 7 is sufficient for our purposes, but more general results can be derived.8

Next, we consider a vector of independent normal variables with heteroscedastic means
and variances.

Lemma 8. Let d ∈ {1, 2, 3, . . .}. For m ∈ Rd and σ ∈ [0,∞)d, let Σ(σ) be the d×d diagonal

matrix with diagonal entries σ2
i , and let Y ∼ N (m,Σ(σ)). The corresponding likelihood

function reads

`(y |m,σ) =
d∏
i=1

`(yi |mi, σi), `(yi |mi, σi) =
 1√

2πσ2
i

exp
(
−(yi −mi)2)

2σ2
i

) .
Let j, k ∈ {0, 1, 2, . . .}d, j∗ = ∑d

i=1 ji, k∗ = ∑d
i=1 ki, and define

κ(j, k) := Em,σ
[

1
`(Y |m,σ)

∂j
∗
`(Y |m,σ)∏d
i=1(∂mi)ji

1
`(Y |m,σ)

∂k
∗
`(Y |m,σ)∏d
i=1(∂mi)ki

]
,

ρ(j, i′) := Em,σ
[

1
`(Y |m,σ)

∂j
∗
`(Y |m,σ)∏d
i=1(∂mi)ji

∂ log `(Y |m,σ)
∂σi′

]
,

8More generally, for k1, k2 ∈ {0, 1, 2, . . .} and j1, j2 ∈ {0, 1}, let

κk1,k2,j1,j2 := Em,σ
[

1
`(Y |m,σ)

∂k1+j1`(Y |m,σ)
(∂m)k1(∂σ)j1

1
`(Y |m,σ)

∂k2+j2`(Y |m,σ)
(∂m)k2(∂σ)j2

]
=
∫ ∞
−∞

1
`(y |m,σ)

∂k1+j1`(y |m,σ)
(∂m)k1(∂σ)j1

∂k2+j2`(y |m,σ)
(∂m)k2(∂σ)j2

dy.

One then finds

κk1,k2,j1,j2 = 1
{
k1 + 2j1 = k2 + 2j2

}
(k1 + 2j1)! σ−[2(k1+2j1)−j1−j2].
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where i′ ∈ {1, . . . , d} in the last line. Then,

κ(j, k) = 1

{
j = k

} d∏
i=1

ji!
σ2ji
i

, ρ(j, i) =


2
σ3
i

if ji = 2, and all other entries of j are zero,

0 otherwise.

Lemma 8 is an immediate corollary of Lemma 7. Using the independence of the compo-
nents of Y we find

∂j
∗
`(y |m,σ)∏d
i=1(∂m)ji

=
d∏
i=1

∂ji`(yi |mi, σi)
(∂m)ji ,

and
κ(j, k) =

d∏
i=1

κji,ki .

Plugging in the result for κjk in Lemma 7 then gives the result for κ(j, k) in Lemma 7.
Analogously for ρ(j, i).

D.3 Nonlinear regression with normal errors

Model:

Yi = m(Xi; θ, η) + σ(Xi; θ)Ui, Ui ∼ iidN (0, 1), i = 1, . . . , d,

where m(·; ·, ·) and σ(·; ·) are known functions, and θ and η are unknown parameters. Ignore
θ for the moment and write

Yi = mi(η) + σi Ui.

Let m = (m1, . . . ,md) and σ = (σ1, . . . , σd). The likelihood for y = (y1, . . . , yd) is then given
by

`(y | η) = `(y |m(η), σ),

where `(y |m,σ) is given in Lemma 8. Let ∇(p)
η be the vector operator that collects all unique

derivatives with respect to η up to order p. Let ∇(p)
m be the vector operator that collects

all unique derivatives with respect to m up to order p. Then, there exists a matrix valued
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function M(η), which only depends η and on the function m(η), such that

∇(η)
p `(y | η) = M(η)∇(m)

p `(y |m(η), σ). (4.2)

We want to calculate

Eη
[
∇(p)
η `(Y | η)
`(Y | η)

∇(p)
η `(Y | η)>

`(Y | η)

]
.

Lemma 8 gives us explicit expressions for all the components of

Em,σ
[
∇(p)
m `(Y |m,σ)
`(Y |m,σ)

∇(p)
m `(Y |m,σ)>
`(Y |m,σ)

]
.

Using (4.2) we have

Eη
[
∇(p)
η `(Y | η)
`(Y | η)

∇(p)
η `(Y | η)>

`(Y | η)

]

= M(η)Em(η),σ

[
∇(p)
m `(Y |m(η), σ)
`(Y |m(η), σ)

∇(p)
m `(Y |m(η), σ)>
`(Y |m(η), σ)

]
M(η)>.

Thus, by combining Lemma 8 with the multidimensional Faà di Bruno’s formula we get
explicit expressions for all the matrices we need.

D.4 Proof of Lemma 7

We already introduced φ(y) = 1√
2π exp (−y2/2) and φ(j)(y) = djφ(y)

dyj
above. Let j, k ∈

{0, 1, 2, 3, . . .}. The well-known orthogonality property of Hermite polynomials in (4.1) can
we rewritten as

∫ ∞
−∞

φ(j)(y)φ(k)(y)
φ(y) dy = 1

{
j = k

}
j! . (4.3)

Another well-known property of Hermite polynomials is the recurrence relation hj+1(y) =
yhj(y)− d

dy
hj(y). Using this, it is easy to show that for j > k we have

∫ ∞
−∞

y φ(j)(y)φ(k)(y)
φ(y) dy = − 1

{
j = k + 1

}
j! . (4.4)
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Next, we have

`(y |m,σ) = 1
σ
φ
(
y −m
σ

)
,

∂j`(y |m,σ)
(∂m)j = (−1)j

σj+1 φ(j)
(
y −m
σ

)
.

Using this we obtain

κjk := Em,σ
[

1
`(Y |m,σ)

∂j`(Y |m,σ)
(∂m)j

1
`(Y |m,σ)

∂k`(Y |m,σ)
(∂m)k

]

=
∫ ∞
−∞

1
`(y |m,σ)

∂j`(y |m,σ)
(∂m)j

∂k`(y |m,σ)
(∂m)k dy

= (−1)j+k
σj+k+1

∫ ∞
−∞

1
φ
(
y−m
σ

) φ(j)
(
y −m
σ

)
φ(k)

(
y −m
σ

)
dy

= (−1)j+k
σj+k

∫ ∞
−∞

φ(j)(y)φ(k)(y)
φ(y) dy

= 1

{
j = k

} j!
σ2j ,

where the second to last step employs a change of variables in the integral (y−m
σ
7→ y), and

the last step uses (4.3). Similarly, for

∂`(y |m,σ)
∂σ

= − 1
σ2 φ

(
y −m
σ

)
−
(
y −m
σ3

)
φ(1)

(
y −m
σ

)
,

one finds

ρj := Em,σ
[

1
`(Y |m,σ)

∂j`(Y |m,σ)
(∂m)j

∂ log `(Y |m,σ)
∂σ

]

=
∫ ∞
−∞

1
`(y |m,σ)

∂j`(y |m,σ)
(∂m)j

∂`(y |m,σ)
∂σ

dy

= (−1)1+j

σ2+j

∫ ∞
−∞

1
φ
(
y−m
σ

) φ(j)
(
y −m
σ

) [
φ
(
y −m
σ

)
+
(
y −m
σ

)
φ(1)

(
y −m
σ

)]
dy

= (−1)1+j

σ1+j

∫ ∞
−∞

1
φ (y) φ

(j) (y)
[
φ (y) + y φ(1) (y)

]
dy

= 1

{
j = 2

}(−1)
σ3

∫ ∞
−∞

y φ(1) (y) φ(2) (y)
φ (y) dy

= 1

{
j = 2

} 2
σ3 .
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where we again employed the same change of variables in the integration and also use (4.3)
and (4.4).

E Monte Carlo simulation

In this section of the appendix we report on the results of a Monte Carlo experiment. We
specify a CES model of team production with log-normal errors, where we take the network
structure (i.e., the set K in (5.3)) as given from the empirical data. We fix the true value
of the substitution parameter to γ0 = 1, the team size parameter to β0 = 1, the log-error
variance in teams of size 2 to σ2

0(2) = 1, and the variance in teams of size 1 to σ2
0(1) = 1.

This data generating process is designed to approximate what we found on the empirical
data.

We report results based on 300 simulations. In each simulated sample, we estimate
the parameters using plug-in method-of-moments and the Neyman-orthogonalized method-
of-moments estimates of degree q = 1 to q = 6. As we did in our empirical study, we
compute sample-split preliminary estimates of the author fixed-effects based on all their
sole-authored publications except for one, selected at random. However, in the simulation
exercise we do not cross-fit the estimators, and simply choose a random selection of sole-
authored publications for each author in each Monte Carlo run.

In Tables 3 and 4 we show the median, mean, 2.5% quantile, and 97.5% quantile of
each estimate across simulations. Starting with the substitution parameter γ, we see that
the plug-in estimator is severely biased, with median and mean biases of -50% (expressed
in proportion of the true value). For this parameter, all Neyman-orthogonalized estimators
are substantially less biased, with a median bias ranging between 1% and 6%, with the
lowest bias achieved by the estimates orthogonalized to order 5 and 6. However, in some
replications the orthogonalized estimates tend to have large values, which is reflected in a
somewhat larger mean bias, close to 3%, and quantile bands that are not symmetric around
the true value.

Turning next to the team size parameter β, we see that both the plug-in and first-order
Neyman-orthogonalized estimators are biased, with a median and mean bias of 5%–6%. All
orthogonalized estimates of order q ≥ 2 are virtually unbiased, both for the mean and the
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Table 3: Monte Carlo simulation

Substitution γ (true value=1)
Median Mean 2.5% 97.5%

Plug-in 0.5084 0.5100 0.4213 0.6013
q = 1 0.9895 0.9956 0.7317 1.3041
q = 2 1.0562 1.0813 0.7487 1.5680
q = 3 1.0353 1.0571 0.7265 1.5369
q = 4 1.0148 1.0364 0.7132 1.4881
q = 5 1.0091 1.0303 0.7109 1.4743
q = 6 1.0091 1.0287 0.7124 1.4841

Team size β (true value=1)
Median Mean 2.5% 97.5%

Plug-in 1.0610 1.0614 1.0217 1.0962
q = 1 1.0457 1.0474 0.9883 1.1008
q = 2 1.0016 1.0012 0.9318 1.0616
q = 3 1.0007 0.9985 0.9247 1.0615
q = 4 1.0010 0.9990 0.9245 1.0605
q = 5 1.0014 0.9993 0.9217 1.0602
q = 6 1.0014 0.9994 0.9245 1.0600

Notes: 300 simulations.

median. Moreover, in this case the quantile bands are symmetric around the true parameter
value.

Shifting attention to the variance in teams of size 2, σ2(2), we see that both the plug-in
and first-order Neyman-orthogonalized estimators are severely biased, with a median and
mean bias of 16%–18%. All orthogonalized estimates of order q ≥ 2 are virtually unbiased,
both for the mean and the median, and the quantile bands are centered around the true
parameter value.

Lastly, turning to the variance in teams of size 1, σ2(1), the plug-in estimator exhibits
a large bias of 33%. First-order orthogonalization only decreases the bias slightly, to 27%.
In contrast, the Neyman-orthogonalized estimators continue to show good performance. In
particular, when q ≥ 4 the estimates are virtually unbiased, and the quantile bands are
symmetric around the true value.
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Table 4: Monte Carlo simulation (continued)

Variance σ2(2) (true value=1)
Median Mean 2.5% 97.5%

Plug-in 1.1624 1.1621 1.1277 1.1960
q = 1 1.1838 1.1833 1.1456 1.2223
q = 2 0.9985 0.9977 0.9594 1.0371
q = 3 1.0017 1.0013 0.9610 1.0369
q = 4 1.0014 1.0009 0.9635 1.0382
q = 5 1.0016 1.0005 0.9622 1.0373
q = 6 1.0016 1.0005 0.9615 1.0371

Variance σ2(1) (true value=1)
Median Mean 2.5% 97.5%

Plug-in 1.3337 1.3332 1.2862 1.3805
q = 1 1.2682 1.2702 1.2129 1.3285
q = 2 1.0212 1.0180 0.9429 1.0899
q = 3 1.0154 1.0128 0.9409 1.0910
q = 4 1.0052 1.0049 0.9272 1.0790
q = 5 1.0018 1.0022 0.9259 1.0759
q = 6 1.0014 1.0016 0.9248 1.0752

Notes: 300 simulations.

F Restrictions independent of individual effects

Model (5.3) implies restrictions on parameters γ0, β0, σ
2
0(1), σ2

0(2) that do not depend on
the author-specific effects ηi0.9 As an example, the model implies the following alternative
expression for the team size parameter β0:

β0 =
(
E[Y γ0

j | sj = 2]
E[Y γ0

j | sj = 1]

) 1
γ0

exp
(1

2γ0[σ2
0(1)− σ2

0(2)]
)
, (6.1)

which does not involve the fixed-effects ηi0. Note that, if γ0 = 0 and output is additive in
worker inputs, then log β0 is simply the difference between average log-outputs in teams of
size 2 and 1, respectively. As a check, in Figure 1 we report estimates of the left-hand side of
(6.1), against the estimates of β0 shown in Table 1, for various orders of orthogonalization.
We see that the estimates of the two sides of (6.1) tend to agree with each other well
irrespective of the orthogonalization order, with slightly closer alignment for estimates of

9The analysis in this section was inspired by discussions with Bo Honoré.
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Figure 1: Comparing two estimates of β0
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Notes: Estimate of β0 on the x-axis, model-based estimate of β0 based on the right-hand side of (6.1) on the
y-axis. Each point corresponds to an order of orthogonalization.

order q ≥ 2.
Model (5.3) also implies restrictions on γ0 alone. To see this, let us write (5.3), within

teams of size 2 only, as

Y γ0
j = 1

2β
γ0
0

(
ηγ0
k(j,1)0 + ηγ0

k(j,2)0

)
ε
γ0σ0(2)
j ,

which we write in vector form as

Y (γ0) = Aη̃0 + ε̃, (6.2)

where Y (γ0) has elements Y γ0
j , A is a matrix of zeros and ones, η̃k0 = 1

2β
γ0
0 η

γ0
k0 exp

(
1
2γ

2
0σ

2
0(2)

)
,

and ε̃j = 1
2β

γ0
0

(
ηγ0
k(j,1)0 + ηγ0

k(j,2)0

) [
ε
γ0σ0(2)
j − exp

(
1
2γ

2
0σ

2
0(2)

)]
. Since E[ε̃j |A] = 0, (6.2) implies

the conditional moment equalities

E
[
(I − AA†)Y (γ0) |A

]
= 0, (6.3)

which only depend on γ0.
To use (6.3) for estimation, we rely on a set of instruments. For this purpose, we use

interacted preliminary estimates Zj = η̂k(j,1)η̂k(j,2) for k(j, 1), k(j, 2) the co-authors of j. Since
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we assume the preliminary estimates are constructed from an independent sample, we have

E
[
Z ′(I − AA†)Y (γ0)

]
= 0. (6.4)

Note these restrictions remain valid when εj are not Gaussian or not mutually independent,
provided they are independent of A. We use GMM estimation based on (6.4), that is,

γ̂GMM = argmin
γ
|Z ′(I − AA†)Y (γ)|. (6.5)

We implement this estimator in the same way we have implemented our Neyman-orthogonalized
equations. Specifically, we construct preliminary estimates of author effects using all but one
sole-authored paper for each author, where we select the held-out sole-authored paper at ran-
dom.

Using the same Monte Carlo simulation design as in Section E tends to give noisy esti-
mates. For example, when the true value is γ0 = 1, and σ0(1) = 1/5 and σ0(2) = 1/5, we
obtain a mean GMM estimate of 1.0381, a median estimate of 0.9950, and a standard devia-
tion of 0.2108 across 300 simulations. Moreover, out of the 300 simulations, in 23 cases we are
unable to find another minimum in (6.5) other than γ2 = 0. Note these findings correspond
to a model with error variances that are 25 times smaller than the variances we used for
our main simulation design in Section E. This suggests this estimation approach, at least for
this particular choice of instruments, is considerably less precise than our likelihood-based
approach.

Lastly, computing the GMM estimator on the empirical data, cross-fitting 100 times, we
obtain γ̂GMM = 0.6110. This is of a comparable magnitude to the estimates of γ reported
in Table 1, when using a sufficiently high order of orthogonalization. However, it is worth
noting that, out of the 100 random splits of the sole-authored productions, in 11 cases we are
unable to find another minimum in (6.5) other than γ = 0, again reflecting the instability of
this method in our setting.
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G Estimated production function

Figure 2: Production function estimate
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Notes: Worker 1’s type η1 on the x-axis, average output Yj on the y-axis. Each curve corresponds to a
different worker 2’s type η2. Figure based on the point estimates for q = 6 reported in Table 1.
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