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It allows us to establish conditions under which counterfactual averages and treatment

effects are point- or partially-identified for composite complier groups. We illustrate the
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Introduction

Much of the literature on the evaluation of treatment effects has concentrated on the paradig-

matic “binary/binary” example, in which both treatment and instrument only take two val-

ues. Multivalued treatments are common in actual policy implementations, however, as are

multivalued instruments. Many different programs aim to help train job seekers for instance,

and each of them has its own eligibility rules. Tax and benefit regimes distinguish many

categories of taxpayers and eligible recipients. The choice of a college and major has many

dimensions too, and responds to a variety of financial help programs and other incentives.

Finally, more and more randomized experiments in economics resort to factorial designs1.

Existing work on multivalued treatments under selection on observables includes Imbens

(2000), Cattaneo (2010), and Ao, Calonico, and Lee (2021) among others. As the training,

education choice, and tax-benefit examples illustrate, in non-experimental settings multival-

ued treatments are also subject to selection on unobservables. The use of instruments to

evaluate the effects of multivalued treatments under selection on unobservables has received

increasing attention in recent literature. In previous work (Lee and Salanié, 2018), we ana-

lyzed the case when enough continuous instruments are available. Identification is of course

more difficult when instruments only take discrete values. We explore in this paper the use

of such discrete-valued instruments in order to control for selection bias when evaluating

discrete-valued treatments. Our goal is to find plausible conditions on treatment assignment

and on the distribution of outcomes under which counterfactual averages and treatment

effects are point- or partially identified for various (sometimes composite) complier groups.

This distinguishes our paper from the recent contributions of Bai, Huang, Moon, Shaikh, and

Vytlacil (2024), which focuses on population-wide average outcomes, and of Goff (2024b),

which studies identification without any assumption on outcomes.

In the binary/binary model, the analyst can often take for granted that switching on the

binary instrument makes treatment (weakly) more likely for all or no observations. This

is satisfied under the local average treatment effect (LATE)-monotonicity assumption (e.g.,

Imbens and Angrist, 1994; Vytlacil, 2002; Heckman and Vytlacil, 2007a). With multiple

instrument values and multiple treatments, there may be no natural ordering of instrument

or treatment values that would give meaning to the word“monotonicity”. Since Heckman and

Pinto (2018) defined an “unordered monotonicity” property, various papers have proposed

other definitions of (qualified) monotonicity2.

Even when some sort of monotonicity holds, there exist several groups of compliers—

1Muralidharan, Romero, and Wüthrich (2023) review recent applications of factorial designs.
2See Navjeevan and Pinto (2022) for a detailed analysis of some of these proposals.
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individuals whose treatment assignment changes with the value of the instrument. The

multiplicity of treatments and instruments may give rise to a bewildering number of cases, as

existing literature demonstrates. Angrist and Imbens (1995) analyzed two-stage least squares

(TSLS) estimation when the treatment takes a finite number of ordered values. Closer to us,

Heckman, Urzua, and Vytlacil (2006); Heckman and Vytlacil (2007b); Heckman, Urzua, and

Vytlacil (2008) discussed the identification of treatment effects in the presence of discrete-

valued instruments when assignment to treatment can be modeled as a discrete choice model.

Several recent papers have studied the case of binary treatments with multiple instruments.

Mogstad, Torgovitsky, and Walters (2021) and Goff (2024a) analyzed the identifying power of

different monotonicity assumptions in this context3. Others have studied models with binary

instruments and multivalued or continuous treatments. Torgovitsky (2015), D’Haultfoeuille

and Février (2015), Huang, Khalil, and Yildiz (2019), Caetano and Escanciano (2021), and

Feng (2024) developed identification results for different models.

In a wide-ranging contribution, Heckman and Pinto (2018) derived results on partial

identification in discrete-instrument, discrete-treatment models; they also showed how addi-

tional identifying assumptions, such as unordered monotonicity, can be applied to shrink the

identified set of treatment effects for various complier groups. While their results are very

general, they are not as transparent as one would like. Our approach to this issue is different:

we seek a parsimonious framework within which we can make constructive progress, and that

can still be useful in many applications. In order to reduce the complexity of the problem, we

start by imposing an additive random-utility model (ARUM) structure. Under ARUM, the

selection into treatment depends on mean values and additive, observation-specific shocks.

Some, but not all, ARUM models satisfy the unordered monotonicity property of Heckman

and Pinto (2018), which was applied by Pinto (2021) to the Moving to Opportunity program.

In many applications, some observations are not treated; in others, another treatment value

is particularly salient. We call it the “control”. Under ARUM, each treatment t generates

a change in the mean value, relative to the control, that depends on the value z of the

instrument. It is natural to speak of an instrument value z targeting a treatment value t

when it maximizes this change in mean value. Most of our paper relies on the assumption

of strict targeting , which obtains when each instrument only changes the mean values of the

treatments it targets. Strict targeting holds for instance in models of imperfect compliance

when the cost of non-compliance does not depend on its nature. Some of our results also

require one-to-one targeting, where each non-zero instrument targets one treatment only,

3Mogstad, Torgovitsky, and Walters (2020) further apply their framework of monotonicity with multiple
instruments to marginal treatment effects (e.g., Heckman and Vytlacil, 2001, 2005; Carneiro, Heckman, and
Vytlacil, 2011).
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and each treatment (apart from the control) is targeted by one instrument only.

Our use of “targeting” instruments is similar in spirit to Section 7.3 of Heckman and

Vytlacil (2007b)4. We define it differently and we seek to identify a more general class of

treatment effects. The term “targeting” is inspired by the time-honored Targeting Principle5.

Some policies act directly on final outcomes, and others aim to modify choices. Our use of

the term “targeting” refers to the latter. Take a Roy model in which workers choose among

occupations on the basis of their net utilities; we observe the choice of occupation and the

wage in that occupation. A safety regulation that reduces the disutility of labor for (say)

construction workers is, in our terminology, an instrument that targets the choice to be a

construction worker. Policymakers might also seek to increase average incomes by offering a

college credit. While their final aim is to increase wages (an outcome), we would say that the

college credit is an instrument that targets the choice to go to college—a treatment variable.

To illustrate, consider a typical randomized experiment with imperfect compliance: (i)

individuals are randomly assigned to a treatment branch t (including a non-treatment op-

tion 0) based on the instrument value z that they draw; (ii) some individuals self-select into

a treatment branch t1 that they prefer, even though they did not draw the corresponding

instrument value z1. In our terminology, z targets t and z1 targets t1. Often this mapping

is one-to-one; this is what our one-to-one targeting assumption states. Strict targeting of

a treatment branch t is more restrictive, as its name indicates. One way to interpret it

in a non-compliance context is that it is equally difficult for an average individual in the

population to select into treatment t when she was not assigned to that branch, no matter

what the experimenter’s intended treatment branch was. To cite two examples, consider

the interventions reported in Angrist, Lang, and Oreopoulos (2009) and in Attanasio, Fer-

nández, Fitzsimons, Grantham-McGregor, Meghir, and Rubio-Codina (2014; 2020). These

are 4-way factorial randomized experiments: each subject is randomly assigned to a control

group, to receive treatment 1, to receive treatment 2, or to receive both treatments. By

definition, this is one-to-one targeting. Compliance was very imperfect in Angrist, Lang,

and Oreopoulos (2009), and it is described as “high” in the other two papers. If subjects

self-selected into treatments on the basis of their expected benefits, then strict targeting is

a natural assumption.

Combining ARUM and assumptions on targeting allows us to point-identify the size of

some complier groups and the corresponding counterfactual averages and treatment effects

on any function of the outcomes, and to partially identify others. We use two examples to

4See also the recent contribution by Buchinsky, Gertler, and Pinto (2023), which uses revealed preference
arguments.

5Early references include Tinbergen (1952) and Bhagwati (1971).
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demonstrate the identification power and implications of ARUM and targeting. Our first

example is a 2 ˆ T model where a binary instrument targets only one of T ě 3 treatment

values, as in Kline and Walters (2016). In our second example, three unordered treatment

values target three instrument values. This 3 ˆ 3 model was also studied by Kirkeboen,

Leuven, and Mogstad (2016)6. Unlike them, we do not assume that the data contains infor-

mation on next-best alternatives. Whereas the 2ˆT model satisfies unordered monotonicity

under our strongest targeting assumptions, the 3ˆ 3 model does not7.

We obtain novel identification results for both examples; they lead to new estimands or

bounds for average treatment effects on various groups. Additional identifying assumptions

can refine these bounds. One example is what we call positive selection. This assumes that

the average outcome for a given treatment t is larger for some response group than for an-

other. Consider for instance the binary instrument case. It seems natural to assume that

the always-takers of a treatment get more from it than compliers who only take it if they

are incentivized to do so. Positive selection also obtains under weak assumptions in the gen-

eralized Roy model. More generally, let us return to our earlier illustration of a randomized

experiment under imperfect compliance. Consider the response group of individuals who

would end up in treatment t1 both when drawing z and when drawing z1. We would expect

this response group to have better outcomes under t1, on average, than the response group

that exhibits perfect compliance to z and z1 draws—assuming that these two response groups

end up in the same treatment branches for all other instrument values. This falls exactly

under our positive selection assumption. It adds identifying power in both of our leading

examples.

To illustrate the usefulness of our framework, we apply it to the Head Start Impact Study

(HSIS), a randomized experiment that sought to evaluate the value added of Head Start

preschools. Kline and Walters (2016) revisited the HSIS; they took into account the presence

of a substitute treatment (alternative preschools in this case). They found that Head Start

was only beneficial for children who would not have attended an other preschool program

instead. We confirm the importance of taking into consideration alternative preschools when

evaluating Head Start. Unlike Kline and Walters (2016), we do not rely on parametric

selection models. Under a plausible positive selection assumption, our estimates suggest

that the large difference between complier groups that they find can only be rationalized

under negative selection into Head Start. As a by-product, we provide an upper bound

on the welfare effect of expanding access to Head Start. Interestingly, the estimated upper

6See also more recent work by Bhuller and Sigstad (2024), Heinesen, Hvid, Kirkeboen, Leuven, and
Mogstad (2022), and Nibbering, Oosterveen, and Silva (2022).

7It does satisfy the weaker generalized monotonicity assumption of Bai, Huang, Moon, Shaikh, and
Vytlacil (2024), however.
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bound turns out to be lower than the point estimate of Kline and Walters (2016); and it

yields a lower marginal value for public funds used in expanding access to Head Start.

The paper is organized as follows. Section 1 defines our framework. In Section 2, we define

and discuss the concepts of targeting, one-to-one targeting, and strict targeting. Section 3

derives their implications for the identification of population shares, counterfactual averages,

and the effects of the treatments on various complier groups; it also defines and illustrates

positive selection. Finally, we present estimation results for Head Start in Section 4. The

Appendices contain the proofs of all propositions and lemmata, along with some additional

material.

1 The Framework

In all of the paper, we denote observations as i “ 1, . . . , n. Each observation consists of

covariates Xi, instruments Zi, outcome variables Yi, and treatments Ti. We assume that

the covariates Xi are exogenous to treatment assignment and outcomes. Since they will not

play any role in our identification strategy, we condition on the covariates throughout and

we omit them from the notation. Our results should therefore be interpreted as conditional

on X.

We assume that observations are independent and identically distributed. Random sam-

pling rules out that the treatment status of one observation influences other observations.

This further implies that the outcome for a specific observation does not impact the out-

comes of other members within the population. In other words, we rely on the Stable Unit

Treatment Value Assumption (SUTVA).

We focus in this paper on treatment variables that take discrete values, which we label

t P T . For simplicity, we will call T “ t “treatment t”. These values do not have to be

ordered; e.g., when t “ 2 is available, it does not necessarily indicate “more treatment” than

t “ 1. We assume that the only available instruments are discrete-valued, and we label their

values as z P Z.

We will use the standard counterfactual notation: Tipzq and Yipt, zq denote respectively

potential treatments and outcomes. 11pAq denotes the indicator of set A.

The validity of the instruments requires the usual exclusion and independence restrictions:

Assumption 1 (Valid Instruments). (i) Yipt, zq “ Yiptq for all pt, zq in T ˆ Z.

(ii) Yiptq and Tipzq are independent of Zi for all pt, zq in T ˆ Z.

Under Assumption 1, we define Ti :“ TipZiq and Yi :“ YipTiq.

Throughout the paper, we assume that we observe pYi, Ti, Ziq for each i.
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1.1 Restricting Heterogeneity

As in most of this literature, we will need an assumption that restricts the heterogeneity in

the counterfactual mappings Tipzq. In the binary/binary model, this is most often done by

imposing LATE-monotonicity. As is well-known, LATE-monotonicity imposes that (denoting

instrument values as z “ 0, 1) (i) or (ii) must hold:

(i) for each observation i, Tip1q ě Tip0q;

(ii) for each observation i, Tip0q ě Tip1q.

With more than two treatment values and/or more than two instrument values, there are

many ways to restrict the heterogeneity in treatment assignment. Since treatments may not

be ordered in any meaningful way, we cannot apply the results in Angrist and Imbens (1995)

for instance. Mogstad, Torgovitsky, and Walters (2021) state several versions of monotonicity

for a binary treatment model with |Z| ą 2. They propose a “partial monotonicity” assump-

tion which applies binary LATE-monotonicity component by component. This requires that

the instruments be interpretable as combinations of component instruments, which is not

necessarily the case here.

To cut through this complexity, we assume from now on that assignment to treatment

can be represented by an Additive Random-Utility Model (ARUM), that is by a discrete

choice problem with additively separable errors:

Tipzq “ arg max
tPT
pUzptq ` uitq

for some real numbers Uzptq which are common across observations, and random vectors

puitqtPT that are distributed independently of Zi. We do not restrict the codependence of the

random variables uit. The usual models of multinomial choice belong to this family. ARUM

also includes ordered treatments, for which uit ” σptqui for some increasing positive function

σ.

In a randomized experiment with perfect compliance, we would have Uzpt
1
q “ ´8 and

Uz1ptq “ ´8. With imperfect compliance, these mean values are finite; if for instance

uit1 ´ uit ą Uzptq ´ Uzpt
1
q, individual i will get into treatment t1 when drawing z would

normally assign her to t.

Imposing an ARUM structure will greatly simplify our discussion of treatment assign-

ment. It incorporates a substantial restriction, however. Suppose that observation i has
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treatment values t under z and t1 under z1. By the ARUM structure, this implies

Uzptq ` uit ě Uzpt
1
q ` uit1

Uz1pt
1
q ` uit1 ě Uz1ptq ` uit.

Combining these two restrictions implies an “increasing differences” property:

Uz1pt
1
q ´ Uz1ptq ě Uzpt

1
q ´ Uzptq.

This inequality in turn is incompatible with the existence of an observation j that has treat-

ment values t1 under z and t under z1. Thus we rule out “direct two-way flows”: if a change in

the value of an instrument causes an observation to shift from a treatment value t to a treat-

ment value t1, it can cause no other observation to switch from t1 to t. The argument above

is a special case of the general discussion in Heckman and Pinto (2018); their Theorem T-3

shows that the treatment assignment models that satisfy unordered monotonicity for each

pair of instrument values can be represented as an ARUM. Not all ARUM models satisfy

unordered monotonicity, however; unordered monotonicity excludes a more general class of

two-way flows. We will illustrate this point on one of our leading examples in Section 3.3.

1.2 Assignment to Treatment

Assumption 2 defines the class of models of assignment to treatment that we analyze in this

paper.

Assumption 2 (ARUM). The treatment assignment model consists of:

1. a finite set T “ t0, 1, . . . , |T |´ 1u;

2. a finite set of instrument values Z “ t0, 1, . . . , |Z|´ 1u;

3. an ARUM model of treatment:

Tipzq “ arg max
tPT
pUzptq ` uitq,

where the vector puitqtPT is distributed independently of Zi and has an absolutely con-

tinuous distribution with full support on R|T |.

We will often refer to the Uzptq as “mean values”. This is only meant to simplify the

exposition; it is consistent with, but need not refer to, preferences on the part of the agent.
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Note that when T “ t0, 1u, Assumption 2 is just the standard monotonicity assumption,

with a threshold-crossing rule

Tipzq “ 11pui0 ´ ui1 ď Uzp1q ´ Uzp0qq.

If we add a third treatment value so that T “ t0, 1, 2u, the ARUM assumption starts to bite

as it excludes direct two-way flows in the treatment model. However, the combination of

Assumptions 1 and 2 is far from sufficient to identify interesting treatment effects in general.

In order to better understand what is needed, we now resort to the notion of response-groups

of observations, whose members share the same mapping from instruments z to treatments

t. We first state a general definition8.

Definition 1 (Response-vectors and Response-groups). Let R be an element of the Cartesian

product T Z and Rpzq P T denote its component for instrument value z P Z.

• Observation i has (elemental) response-vector R if and only if for all z P Z, Tipzq “

Rpzq. The set CR denotes the set of observations with response-vector R and we call

it a response-group.

• We extend the definition in the natural way to incompletely specified mappings, where

each Rpzq is a subset of T . We call the corresponding response-vectors and response-

groups composite. In particular, if Rpzq “ T we denote it by an asterisk in the

corresponding position.

To illustrate, consider the binary instrument/binary treatment case. It has a priori 22
“ 4

response vectors, R P t00, 01, 10, 11u with corresponding response-groups C00, C01, C10, C11.

In this notation, the first number refers to a treatment value with z “ 0 and the second

number with z “ 1. For instance, C01 refers to those with Tip0q “ 0 and Tip1q “ 1, while the

composite response-group C˚1, for which Rp0q “ t0, 1u, represents the union of C01 and C11

The LATE-monotonicity assumption implies that either C01 or C10 is empty.

2 Targeting

We start by introducing additional assumptions on the underlying treatment model. We will

illustrate these assumptions on three examples: the “binary instrument model” or the “2ˆT”

model; the “3ˆ 3 model”; and a generalized Roy model. We first define them briefly.

8This is analogous to the definitions in Heckman and Pinto (2018).
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Example 1 (The binary instrument (2 ˆ T ) model). T “ t0, 1, . . . , T ´ 1u and Z “ t0, 1u.

This could for instance represent an intent-to-treat model, where agents in the control group

Z “ 0 are not treated (T “ 0) and agents with Z “ 1 self-select the type of the treatment

T ě 1 or opt out altogether (T “ 0).

When |T | “ 3, treatment assignment can be represented in the pui1´ui0, ui2´ui0q plane.

The points of coordinates Pz “ pUzp0q ´ Uzp1q, Uzp0q ´ Uzp2qq play an important role as for

a given z,

• Tipzq “ 0 to the south-west of Pz;

• Tipzq “ 1 to the right of Pz and below the diagonal that goes through it;

• Tipzq “ 2 above Pz and above the diagonal that goes through it.

Treatment assignment is illustrated in Figure 1 for a given z, where the origin is in Pz. We

will make recurrent use of this type of figure.

Example 2 (3ˆ3 model). Assume that Z “ t0, 1, 2u and T “ t0, 1, 2u. As a leading example,

Kirkeboen, Leuven, and Mogstad (2016) investigate the 3ˆ 3 model in order to analyze the

effect of students’ choice of field of study on their earnings; each instrument value shifts the

eligibility of a student for a given field. We will return to this application in Section 3.4.

Finally, our framework also includes multivalued generalized Roy models (see Eisenhauer,

Heckman, and Vytlacil (2015)).

Example 3 (A Generalized Roy Model). Suppose that agents choose occupations t “ 0, . . . , |T |´
1 on the basis of their expected wages wiptq “ w̄ptq`ηit, net of labor disutilities that depend

on the values of the instruments:

Tipzq “ arg max
t“0,...,|T |´1

pwiptq ´ dipz, tqq

where dipz, tq “ d̄zptq ` vit. Potential wages are Yiptq “ wiptq ` εit. We observe Zi, the

chosen occupation Ti “ TipZiq, and realized wages Yi “ YipTiq. If the vector of variables

tpηit, vitqu
|T |´1
t“0 is independent of Zi, this is an ARUM model with Uzptq “ w̄ptq ´ d̄zptq and

uit “ ηit ´ vit.

“Targeting” will be the common thread in our analysis. Just as in general economic

discussions a policy measure may target a particular outcome, we will speak of instruments

(in the econometric sense) targeting the assignment to a particular treatment.
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Figure 1: Treatment assignment for |T | “ 3 for given z

ui1 ´ ui0

ui2 ´ ui0

Pz

Tipzq “ 0 Tipzq “ 1

Tipzq “ 2

Under Assumption 2, assignment to treatment is governed by the differences in mean

values pUzptq ´ Uzpτqq and by the differences in unobservables uit ´ uiτ . Only the former

depend on the instrument. From now on, we assume that there is a reference treatment value

t0 whose mean utility does not depend does not depend on the value of the instrument:

Assumption 3 (Reference Treatment). There exists t0 P T such that z P Z Ñ Uzpt0q is

constant. Without loss of generality, we renumber treatment values so that t0 “ 0; and we

normalize utilities with Uzp0q “ 0 for all z P Z.

In many applications, t “ 0 is a “no-treatment” value, and instruments only change the

mean utilities of the other treatments. For instance, tuition subsidies, investment credits,

and invitations to training programs have no effect for those who do not attend college,

do not invest, or choose not to train. Assumption 3 seems natural in such cases9. For a

counter-example, consider a program of unconditional cash transfers with different values z,

for which we observe the purchases t of several categories of goods the following month. If a

household decides to save the transfer (t “ 0), its mean (discounted) utility will still depend

on the value of the transfer z that it received10.

Given Assumption 3, we will say that an instrument value z targets a treatment value t

if it maximizes the mean utility Uzptq ´ Uzp0q “ Uzptq.

Definition 2 (Targeted Treatments and Targeting Instruments). For any z P Z and t P T ,

let

Ūptq ” max
zPZ

Uzptq and Z˚ptq ” arg max
zPZ

Uzptq

9In the generalized Roy model (Example 3), it holds if the disutility of occupation 0 does not depend on
the values of the instruments.

10In that case one could define targeting with the function Ũzptq “ Uzptq ´ Uzp0q. We have not explored
the consequences of this alternative definition.
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denote the maximum value of Uzptq over z P Z and the set of maximizers, respectively. If

Z˚ptq is not all of Z, then we will say that the instrument values z P Z˚ptq target treatment

value t; and we write t P T ˚pzq. We denote by T ˚ the set of targeted treatments and

Z˚ “
Ť

tPT ˚
Z˚ptq the set of targeting instruments.

Definition 2 calls for several remarks. First, Assumption 3 implies that Z˚p0q “ Z.

Therefore t “ 0 is not in T ˚; the set T ˚ may exclude other treatment values, however. If a

treatment value t is not targeted (t R T ˚), by definition the function z Ñ Uzptq is constant

over z P Z, with value Ūptq. If an instrument value z does not target any treatment (z R Z˚),
then Uzptq ă Ūptq for every t P T ˚. While non-targeted treatment values (t P T z T ˚) have

mean values that do not respond to changes in the instruments, these mean values may and

in general will differ across treatments. The probability that an individual observation takes

a treatment t P T z T ˚ also generally depends on the value of the instrument.

It is important to note here that the values Uzptq and therefore the targeting maps Z˚

and T ˚ are not observable; any assumption on targeting instruments and targeted treatments

must be a priori and context-dependent. As we will see, these prior assumptions sometimes

have consequences that can be tested.

Now suppose that each z consists of a set of (possibly zero or negative) subsidies Szptq

for treatments t P T . If there is a no-subsidy regime z “ 0 with S0ptq “ 0 for all t, it

seems natural to write the mean value as Uzptq “ U0ptq ` Szptq. Then for any treatment

t, the set Z˚ptq consists of the instrument values z that subsidize t most heavily. As this

illustration suggests, the sets Z˚ptq may not be singletons, and they may well intersect. We

now introduce a more restrictive definition that rules out these two possibilities.

Definition 3 (One-to-one targeting). Targeting is one-to-one when both Z˚ : T ˚ Ñ Z˚ and

T ˚ : Z˚ Ñ T ˚ are functions.

Under one-to-one targeting, we will often write “z “ t” if z targets t; this is without loss

of generality. Let us illustrate these varieties of targeting on Example 2.

Table 1: Values of Uzptq in the 3ˆ 3 model

t “ 0 t “ 1 t “ 2

z “ 0 0 a d
z “ 1 0 b e
z “ 2 0 c f

Example 2 continued. Table 1 shows the values of Uzptq in the 3 ˆ 3 model of Example 2.

Suppose that t “ 1 is targeted; choose some z that targets it and relabel it as z “ 1. This

11



means that

b ě maxpa, cq and b ą minpa, cq.

If t “ 2 is also targeted by some z ‰ 1, we relabel this instrument value as z “ 2. This gives

f ě maxpd, eq and f ą minpd, eq.

Finally, if targeting is one-to-one we have b ą maxpa, cq and f ą maxpd, eq.

2.1 Consequences of One-to-One Targeting

In this subsection, we impose

Assumption 4 (One-to-one Targeting). Targeting is one-to-one.

Remember that under Assumption 4, we can relabel instrument values so that if t is

targeted, then it is targeted by z “ t. Moreover, t˚pzq must equal z.

This implies some useful restrictions on response-groups.

Proposition 1 (Response-groups under one-to-one targeting). Under Assumptions 1, 2, and 4,

take a targeted treatment t P T ˚.

(i) If an observation i has Tiptq “ 0, then it never receives treatment t: Tipzq ‰ t for all

z P Z.

(ii) As a consequence, all response-groups CR with Rptq “ 0 and Rpzq “ t for some z ‰ t

are empty.

Example 2 (continued) Return to the 3ˆ 3 model and to Table 1. Suppose that both t “ 1

and t “ 2 are targeted. Under the conditions of Proposition 1, we have b ą maxpa, cq and

f ą maxpd, eq.

Since the points Pz have coordinates p´Uzp1q,´Uzp2qq,

• P1 “ p´b,´eq must lie to the left of P0 “ p´a,´dq and of P2 “ p´c,´fq,

• P2 must lie below P0 and P1.

This is easily rephrased in terms of the response-vectors of definition 1. First note that

in the 3 ˆ 3 case, there are a priori 33
“ 27 response-vectors, R “ 000 to R “ 222, with

corresponding response-groups C000 to C222. Groups Cddd are “always-takers”11 of treatment

11Observations in group C000 are usually called the “never-takers”. We prefer not to break the symmetry
in our notation. We hope this will not cause confusion.
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value d. All other groups are “compliers” of some kind, in that their treatment changes under

some changes in the instrument. We will also pay special attention to some non-elemental

groups. For instance, C0˚2 will denote the group who is assigned treatment 0 under z “ 0

and treatment 2 under z “ 2, and any treatment under z “ 1. That is,

C0˚2 “ C002

Ť

C012

Ť

C022.

Assumptions 2 and 4 together imply the emptiness of four composite groups out of the 27

possible. For any treatment value τ , Proposition 1(ii) rules out group C10τ since this group

has Rp1q “ 0 and Rp0q “ 1. It rules out Cτ01 as Rp1q “ 0 and Rp2q “ 1. This eliminates

the composite groups C10˚ and C˚01. The same argument applies to composite groups C˚20

and C2˚0, which have Rp2q “ 0 and Rp1q “ 2 or Rp2q “ 2.

These four composite groups correspond to 10 elemental groups12. This still leaves us with

17 elemental groups, and potentially complex assignment patterns. Consider for instance

Figure 2. It shows one possible configuration for the 3 ˆ 3 model; the positions for P0, P1

and P2 are consistent with Assumptions 2 and 4.

Figure 2: A 3ˆ 3 example

C222

C111C110C010C000

C202

C002 C012

C112

C212

ui1 ´ ui0

ui2 ´ ui0

P0

P1

P2

The number of distinct response-groups (ten in this case) and the contorted shape of the

C212 and C112 groups in Figure 2 point to the difficulties we face in identifying response-

groups without further assumptions. Moreover, this is only one possible configuration: other

cases exist, which would bring up other response-groups.

Heckman and Pinto (2018, pp. 16–20), Pinto (2021), and Kirkeboen, Leuven, and Mogstad

(2016) also studied the 3 ˆ 3 model; they proposed sets of assumptions that identify some

treatment effects. The example in Heckman and Pinto (2018, pp. 16–20) is rather specific.

12Specifically, they are: C100, C101, C102, C001, C201, C020, C120, C220, C200, and C210.
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We show in Appendix E how to apply our framework to the Moving to Opportunity ex-

periment studied in Pinto (2021). The setup in Kirkeboen, Leuven, and Mogstad (2016) is

most similar to ours; we will return to the differences between our approach and theirs in

Section 3.3.

2.2 Strict Targeting

Figure 2 suggests that if we could make sure that P1 is directly to the left of P0, the shape

of C212 would become nicer—and group C202 would be empty. Bringing P2 directly under

P0 would have a similar effect. This translates directly into assumptions on the dependence

of the Uzptq on the instruments: the first one imposes d “ e and the second one imposes

a “ c. This can be interpreted as policy regime z “ 1 (resp. z “ 2) subsidizing treatment

t “ 1 (resp. z “ 2) only. To return to the general model, there are applications in which

the instruments z P Z˚ptq, which maximize Uzptq, do not shift assignment between the other

values of the treatment. The following definition is a direct extension of this discussion.

Definition 4 (Strict Targeting of Treatment t). Take any targeted treatment value t P T ˚.
It is strictly targeted if the function z P Z Ñ Uzptq takes the same value for all instruments

that do not target t (the values z R Z˚ptq). We denote this common value by Uptq, and we

will say of the instrument values z P Z˚ptq that they strictly target t.

Suppose for instance the data comes from a randomized experiment, where the instrument

value z “ t targets treatment t. If compliance is imperfect, an individual will trade off the

benefits from switching to a treatment t1 ‰ t with the costs of the effort required. Strict

targeting obtains when the cost of switching to t1 do not depend on the value of t.

Under strict targeting, turning on instrument z P Z˚ptq promotes treatment t without

affecting the mean values Uzpt
1
q of other treatment values t1. This explains our use of the

term “strict targeting”. In this ARUM specification, an instrument in Z˚ptq plays the same

role as a price discount on good t in a model of demand for goods whose mean values only

depend on their own prices. In the language of program subsidies, all z P Z˚ptq subsidize t

at the same high rate, and all other instrument values offer the same, lower subsidy.

Note that strict targeting only bites if Z contains at least three instrument values. If

|Z| “ 2 (one binary instrument, as in our Example 1) and say z “ 1 targets t, then ZzZ˚ptq
can only consist of z “ 0 and Assumption 5 trivially holds.

Finally, we should emphasize that one-to-one targeting and strict targeting are logically

independent assumptions: neither one implies the other. Consider the 3ˆ 3 model of Exam-

ple 2 under one-to-one targeting; strict targeting only holds for t “ 1 if a “ c, and for t “ 2
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if d “ e. On the other hand, the 3 ˆ 3 model with b ą a “ c and e ą d “ f satisfies strict

targeting but not one-to-one targeting, as z “ 1 targets both t “ 1 and t “ 2.

2.3 Consequences of Strict Targeting

Now consider the general model. If a treatment t is strictly targeted, then Uzptq can only take

one of two values: Ūptq if z targets t, and Uptq otherwise. By definition, if t is not targeted

then the value of Uzptq does not depend on z; we also denote it Uptq. We will assume in this

subsection that all targeted treatments are strictly targeted:

Assumption 5 (Strict targeting). If t is in T ˚, then t is strictly targeted.

Under strict targeting, the values of Uzptq are given in Table 2.

Table 2: Values of Uzptq under strict targeting

t P T ˚pzq t R T ˚pzq

z P Z˚ Ūptq Uptq
z R Z˚ Uptq

Consider an observation i under strict targeting. If it is assigned an instrument value

z, it can end up with one of the treatment values t that z targets (if any), with a value

Ūptq ` uit in the ARUM. Alternatively, if its treatment is some t1 that z does not target,

then the ARUM value will be Upt1q ` uit1 . This motivates the following definition.

Definition 5 (Top targeted and top alternative treatments). Take any observation i in the

population.

(i) For any targeting instrument z P Z˚, let

V ˚i pzq “ max
tPT˚pzq

pŪptq ` uitq

and T ˚i pzq Ă T ˚pzq denote the set of maximizers. We call the elements of T ˚i pzq the

top targeted treatments for observation i under instrument value z.

(ii) Also define

V i “ max
tPT

pUptq ` uitq

and let T i Ă T denote the set of maximizers. We call the elements of T i the top

alternative treatments for observation i.
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(iii) The sets T ˚i pzq and T i are singletons13 with probability 1; we let t˚i pzq and ti denote

the top targeted treatment and the top alternative treatment.

The term “top alternative treatment” may read like a misnomer since the maximiza-

tion runs over all treatment values. The following result justifies it; more importantly, it

shows that strict targeting imposes a lot of structure on the mapping from instruments to

treatments.

Proposition 2 (Response groups under strict targeting). Let Assumptions 1, 2, 3, and 5 hold.

Let i be any observation in the population. For any instrument value z, Tipzq is either the

top targeted treatment or the top alternative treatment. If z is not a targeting instrument,

Tipzq can only be the top alternative treatment. That is:

(i) if z P Z˚, then Tipzq is t˚i pzq if V ˚i pzq ą V i; if V ˚i pzq ă V i, then Tipzq “ ti and ti is

not targeted by z.

(ii) if z R Z˚, then Tipzq is ti.

Note that in a sense, all instrument values in Z zZ˚ are equivalent under strict targeting.

If z and z1 are both in Z˚, then the functions Uz and Uz1 coincide on all of T and the

counterfactual treatments Tipzq and Tipz
1
q must be in T i for any observation i.

In the 2 ˆ 2 model, we have Ūp1q “ U1p1q and Up0q “ Up1q “ 0. A complier is an

observation i P C01; it is in treatment arm t “ 0 when z “ 0 and in t˚p1q “ 1 when z “ 1. In

our more general model, it seems natural to define a t-complier as an observation i that is

in treatment arm t when assigned an instrument value z such that t˚i pzq “ t, and only then.

This is, clearly, a composite group. Take the 3 ˆ 3 model as an example, and assume that

t˚p1q “ 1. Then the set of 1-compliers consists of the five response-groups C010, C012, C111,

C112, and C212.

2.4 Strict one-to-one targeting

We now impose one-to-one targeting (Assumption 4) as well as strict targeting. Under one-

to-one targeting, the sets Z˚ptq and T ˚pzq are singletons; and each targeting instrument z

can be relabeled as the treatment value t “ t˚i pzq that it targets.

Corollary 1 (Treatment assignment under strict, one-to-one targeting). Take any observa-

tion i. Let Ai be the (possibly empty) subset of t P T ˚ such that Tiptq “ t. Then under

Assumptions 1 to 5,

13Note that this follows from our assumption that the distribution of the random vector puitqtPT is ab-
solutely continuous; however, it does not extend to the sets Z˚ptq and T˚pzq, which can still have several
elements.
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1. Tiptq “ ti for all t P T zAi;

2. if ti is a targeted treatment, it must belong to Ai.

The pair pAi, tiq defines an elemental response group which we denote CpAi, tiq. The family

of sets tCpA, tq | A Ă T ˚, t R T ˚ zAu form a partition of the set of observations.

Note that the CpA, tq notation is just a shortcut: every CpA, tq is an elemental group,

and every elemental group is a CpA, tq. If for instance |T | “ 6, it is just more convenient to

write Cpt1, 3u, 2q than to write C212322.

If ti R T ˚ and the set Ai is non-empty, then the observation i is what one could call a

strict Ai-complier: when the value of the instrument moves from Z zAi to t P Ai, observation

i switches from its top alternative treatment ti to the treatment t. In the 3-by-3 model with

T ˚ “ t1, 2u, there are three groups of strict compliers: C010 “ Cpt1u, 0q, C002 “ Cpt2u, 0q,

and C012 “ Cpt1, 2u, 0q.

Strict one-to-one targeting brings us very close to the main identifying assumption in

Heckman and Vytlacil (2007b, Assumption B-2a, p. 5006): the indicator variable 11pZ “ tq

can be used as the Zrts in their assumption. Heckman and Vytlacil use their Assumption B-2a

to identify the effect of the preferred treatment t relative to the next-best treatment. Their

complier group consists of those individuals who choose treatment t under Z “ z and another

treatment under Z “ z1. This can be a very heterogeneous group, as our examples will show.

To paraphrase Heckman and Vytlacil (2007b, p. 5013): the mean effect of treatment t versus

the next best option is a weighted average over t1 P T zttu of the effect of treatment t versus

treatment t1, conditional on t1 being the next best option, weighted by the probability that

t1 is the next best option. In contrast, we seek a complete characterization of all treatment

effects that can be identified under this set of assumptions.

3 Identification

Now that we have characterized response-groups, we seek to identify the probabilities of the

corresponding response-groups in the treatment model. Let P pt|zq ” PrpTi “ t|Zi “ zq

denote the generalized propensity score. Under strict, one-to-one targeting, the response-

groups are easily enumerated.

Proposition 3 (Counting response-groups under strict, one-to-one targeting). Suppose that

p treatment values are targeted and q are not. Under Assumptions 1 to 5, the number of

response-groups is N ” pp` 2qq ˆ 2p´1.
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As the probabilities of the response-groups must sum to one, we have pN ´ 1q unknowns.

The data gives us the generalized propensity scores P pt|zq for pt, zq P T ˆZ. The adding-up

constraints
ÿ

tPT
P pt|zq “ 1 for each z P Z reduce the count of independent data points to

p|T |´ 1q ˆ |Z| “ pp` q ´ 1qpp` 1q.

Table 3: Identifying the sizes of the response groups under strict, one-to-one targeting

T p q Unknowns Equations Required

LATE ( {0,1} 1 1 2 2 0
Example 1 {0,1,. . . ,|T |´ 1} 1 |T |´ 1 2p|T |´ 1q 2p|T |´ 1q 0
Example 2 {0,1,2} 2 1 7 6 1

Table 3 shows some values of the number of equations and the number of unknowns

pN ´ 1q for three examples. The first row has |T | “ |Z| “ 2; it generates the standard

LATE case, where the response group consists of never-takers (C00), compliers (C01), and

always-takers (C11). The second row is another case of exact identification. The third row

shows that one restriction is required to identify the sizes of the response-groups for the

3 ˆ 3 model. More generally, the degree of underidentification increases exponentially with

the number of targeted treatments p. The probabilities of the different groups are linked to

the generalized propensity scores by a system of linear equations. Under strict, one-to-one

targeting, this system takes a simple form, as mentioned in Section 3.

Proposition 4 (Identifying equations for group sizes under strict, one-to-one targeting). Un-

der Assumptions 1 to 5, the generalized propensity scores satisfy the following system of

equations, for all pz, tq P Z ˆ T :

P pt|zq “
ÿ

AĂT ˚ z tzu

11pt P ĀqPrpi P CpA, tqq(3.1)

`
ÿ

AĂT ˚
11pt “ z P Aq

ÿ

τPĀ

Prpi P CpA, τqq

where we denote Ā ” pT z T ˚q
Ť

A.

While this may look cryptic, it is directly related to Corollary 1: the first line corresponds

to z P T zAi and t “ ti, and the second line corresponds to t “ z P Ai. The set Āi ”

pT z T ˚q
Ť

Ai contains the non-targeted treatments and those for which Tiptq “ t.

To simplify the exposition, we introduce one more element of notation. For any z P Z
and t P T , we define the conditional average outcome by Ēzptq ” EpYi11pTi “ tq|Zi “ zq.

For any response-group C and treatment value t P T , we define the group average outcome
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as EpYiptq|i P Cq. While the conditional average outcomes Ēzptq are directly identified from

the data, the group average outcomes of course are not. We do know that some of them are

zero; and that they combine with the group probabilities to form the conditional average

outcomes. We will repeatedly use the following identity from Heckman and Pinto (2018,

Theorem T-1):

Lemma 1 (Group- and conditional average outcomes—Theorem T-1 of Heckman and Pinto

(2018)). Let z P Z and t P T . Then

Ēzptq “
ÿ

C“CR | Rpzq“t

EpYiptq |i P CqPrpi P Cq.

In addition,

EpYi |Zi “ zq “
ÿ

tPT
Ēzptq.

Under strict, one-to-one targeting, the set of response-groups C “ CR such that Rpzq “ t

is as enumerated in Proposition 4: it consists of

• all CpA, tq such that A Ă T ˚ z tzu and t P Ā;

• and, if t “ z, all CpA, τq for z P A Ă T ˚ and τ P Ā.

The combination of Lemma 1 and of either Proposition 2 (under strict targeting) or

Proposition 4 (under strict, one-to-one targeting) does not exhaust the empirical content of

the model. A succession of papers14 has given necessary and sometimes sufficient conditions

for data to be rationalized under an instrument exclusion restriction. Most recently, Bai and

Tabord-Meehan (2024) characterized the sharp testable implications of ARUM under joint

independence15.

To simplify the exposition, we will state our results in terms of effects of the treatment

on the expectation of the outcomes; they hold, however, for any measurable function of the

outcome fpY q. Note that if we chose fpY q “ 11pY ď tq for some value t, we would identify

the effects of the treatment on the cumulative distribution function of the outcome. By

inversion, we would recover the quantile treatment effects.

3.1 Positive Selection

We will sometimes make use of an identifying assumption that we call positive selection.

It obtains when for some treatment value t and response groups C ‰ C 1 that sometimes

14See Balke and Pearl (1997), Kitagawa (2015), Mourifié and Wan (2017), Kédagni and Mourifié (2020)
and Sun (2023).

15That is, when Zi is independent of tpYiptq, Tipzqq : pt, zq P T ˆ Zu.
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choose t,16 we have EpYiptq|i P Cq ď EpYiptq|i P C 1q. The identifying power of positive

selection depends on the context; we will illustrate it in Corollaries 2 and 3 as well as in

our application to Head Start in Section 4. A slightly different definition would replace Yiptq

with a treatment effect Yiptq ´ Yipt
1
q; we explore this variant in Corollary 4.

3.2 The Binary Instrument Model

Recall that with a binary instrument, strict targeting is trivially satisfied. Under one-to-one

targeting, Proposition 4 can be applied directly to some of the rows of Table 3.

3.2.1 Identification Under One-to-one Targeting

The second row of Table 3 shows that the group probabilities are just identified in our

Example 1 under strict, one-to-one targeting. Proposition 4 gives 2pT ´ 1q independent

equations: for t ‰ 1,

P pt|0q “ Prpi P CpH, tqq ` Prpi P Cpt1u, tqq and P pt|1q “ Prpi P CpH, tqq.

Moreover, CpH, tq “ Ctt for t ‰ 1 and Cpt1u, tq “ Ct1 for all t.

Note that when z changes from 0 to 1, the only observations that change treatment are

in Ct1 for t ‰ 1. Since the corresponding C1t group is empty, there are no “two-way flows”

and this model satisfies the unordered monotonicity property of Heckman and Pinto (2018).

Proposition 5 gives explicit formulæ for the probabilities of all p2|T |´ 1q response groups.

Proposition 5 (Response-group probabilities in Example 1 under one-to-one targeting). Un-

der Assumptions 1 to 5, the following probabilities are identified:

PrpC11q “ P p1|0q,

PrpCttq “ P pt|1q for t ‰ 1,

PrpCt1q “ P pt|0q ´ P pt|1q for t ‰ 1.

(3.2)

Since PrpCt1q ě 0, the model has p|T | ´ 1q simple testable predictions: P pt|0q ě

P pt|1q for t ‰ 1. While all the response group probabilities are point-identified, only some

group average outcomes are point identified without further restrictions, as shown by Propo-

sition 6.

16That is, for which PrpTi “ t|i P Cq and PrpTi “ t|i P C 1q are nonzero.
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Proposition 6 (Group average outcomes in Example 1 under one-to-one targeting). Under

Assumptions 1 to 5, the following group average outcomes are point-identified:

E rYip1q|i P C11s “
Ē0p1q

P p1|0q
,

E rYiptq|i P Ctts “
Ē1ptq

P pt|1q
for t ‰ 1,

E rYiptq|i P Ct1s “
Ē0ptq ´ Ē1ptq

P pt|0q ´ P pt|1q
for t ‰ 1.

However, if T ą 2 the standard Wald estimator only identifies a convex combination of the

LATEs on the complier groups Ct1:

EpYi|Zi “ 1q ´ EpYi|Zi “ 0q

PrpTi “ 1|Zi “ 1q ´ PrpTi “ 1|Zi “ 0q
“
pĒ1p1q ´ Ē0p1qq ´

ř

t‰1pĒ0ptq ´ Ē1ptqq

P p1|1q ´ P p1|0q

“
ÿ

t‰1

αtE rYip1q ´ Yiptq|i P Ct1s ,(3.3)

where the weights αt “ Prpi P Ct1|i P
Ť

τ‰1

Cτ1q “ pP pt|0q ´ P pt|1qq{pP p1|1q ´ P p1|0qq are

identified, positive, and sum to 1. If T “ 2, we have α0 “ 1 and the familiar LATE formula

EpYip1q ´ Yip0q|i P C01q “
EpYi|Zi “ 1q ´ EpYi|Zi “ 0q

PrpTi “ 1|Zi “ 1q ´ PrpTi “ 1|Zi “ 0q
.

Proposition 6 shows that we only identify a known convex combination of the p|T | ´ 1q

LATEs17. This formula is reminiscent of Angrist and Imbens (1995, Theorem 1), which

deals with a different model in which treatments are ordered. It is possible to re-derive our

identification results in Propositions 5 and 6 using the general framework of Heckman and

Pinto (2018). We provide details in Appendix D.

So far, we only imposed restrictions on the process by which treatment values are assigned

to observations; this is what Goff (2024b) calls an “outcome-agnostic” approach in that it

only assumes that the instruments are excluded from the outcome equations. It is possible

to bound the average treatment effects in a straightforward manner if we assume that the

support of the outcomes is known and bounded. One could instead add restrictions to achieve

point identification of average treatment effects for the compliers. Assuming that the ATEs

are all equal is one obvious solution. Another one is to assume some degree of homogeneity

of group average outcomes. Alternatively, we may consider weaker conditions under which

17We use the term “LATEs” for the average treatment effects on the various complier groups. Through-
out the remainder of the paper, we assume, as is standard, that probability differences appearing in the
denominator of estimands are always nonzero.
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the average treatment effects for the compliers are only partially identified. We explore these

ideas below.

3.2.2 Adding Identification Constraints

Consider the binary instrument model with T ě 3.

Beyond One-to-one Targeting First note that the probabilities of the response-groups can

be identified under weaker restrictions than one-to-one targeting. Suppose for instance that

z “ 1 targets all treatment values t ě 1: we have U1ptq ą U0ptq for all t ě 1. Then the

complier groups Ct0 for t ě 1 must be empty. To see this, suppose that Tip0q “ t ě 1. This

implies U0ptq ` uit ą U0p0q ` ui0 “ ui0. Adding up these inequalities gives U1ptq ` uit ą ui0,

and Tip1q cannot be 0.

All other groups Ctt1 may exist. This leaves |T |p|T | ´ 1q unknown group probabilities,

which is |T |{2 times more than the 2p|T | ´ 1q propensity scores we observe. We need

p|T | ´ 1qp|T | ´ 2q additional constraints to point-identify all group probabilities.

Single-peaked Mean Utilities Now suppose that mean utilities are “single-peaked” in the

sense that the function tÑ U1ptq ´ U0ptq is decreasing over t “ 1, . . . , T ´ 1. This would be

a reasonable assumption if z “ 1 makes treatment t “ 1 more attractive and the treatments

t ą 1 are ordered by their proximity to t “ 1.

If this holds, then the same argument as above shows that the response groups Ctt1 must

be empty when t1 ą t ě 1. This eliminates p|T | ´ 1qp|T | ´ 2q{2 response groups; we divided

by two the number of additional identification constraints that we need.

Positive Selection The binary instrument model gives a first example of the power of the

positive selection defined in Section 3.1. Take τ ‰ 1 and consider the complier groups Cτ1:

they all have t “ 1 when z “ 1, but they shift to it from different treatment values τ under

z “ 0. Depending on the context, there may be a plausible reason to order the corresponding

group average outcomes when t “ 1. Suppose for instance that T “ 3, and that

(3.4) E rYip1q|i P C01s ď E rYip1q|i P C21s .

In this 2ˆ 3 model under one-to-one targeting, there are five response-groups, as illustrated

in Figure 3. Proposition 6 shows that the Wald estimator only identifies

α0E rYip1q ´ Yip0q|i P C01s ` p1´ α0qE rYip1q ´ Yip2q|i P C21s ,
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where α0 “ pP p0|0q ´ P p0|1qq{pP p1|1q ´ P p1|0qq is point-identified. Corollary 2 shows that

adding inequality (3.4) yields bounds on the corresponding LATEs.

Figure 3: A 2ˆ 3 model with one targeted treatment

ui1 ´ ui0

ui2 ´ ui0

C01C00

C22

C11

C21

P0

P1

Corollary 2 (Positive selection and treatment effects in the 2 ˆ 3 model under one-to-one

targeting). If

E rYip1q|i P C01s ď E rYip1q|i P C21s ,(3.5)

then the local average treatment effects for C01 and C21 are partially identified:

E rYip1q ´ Yip0q|i P C01s ď
Ē1p1q ´ Ē0p1q

P p1|1q ´ P p1|0q
´

Ē0p0q ´ Ē1p0q

P p0|0q ´ P p0|1q
,

E rYip1q ´ Yip2q|i P C21s ě
Ē1p1q ´ Ē0p1q

P p1|1q ´ P p1|0q
´

Ē0p2q ´ Ē1p2q

P p2|0q ´ P p2|1q
,

(3.6)

Moreover, (3.5) implies the following testable prediction:

(3.7)
Ē0p2q ´ Ē1p2q

P p2|0q ´ P p2|1q
ě

Ē0p0q ´ Ē1p0q

P p0|0q ´ P p0|1q
.

If (3.5) holds at equality, then the two statements in (3.6) and the testable prediction in (3.7)

also become equalities, and the two LATEs are point-identified.

The lower bounds on the local average treatment effects for C01 and C21 may not be sharp;

on the other hand, they are easy to estimate from sample averages. It is a topic for future

research to obtain the sharp bounds and develop a corresponding method for estimation and

inference.
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3.3 The 3ˆ 3 Model

Let us now turn to the 3 ˆ 3 model of Example 2, where Z˚ “ T ˚ “ t1, 2u and Z “ T “

t0, 1, 2u. We assume strict one-to-one targeting: for all of our results in this section, we

impose Assumptions 1 - 5; z “ 1 targets t “ 1 and z “ 2 targets t “ 2.

The set A in Corollary 1 can be H, t1u, t2u, or t1, 2u, with corresponding values of t

in t0u, t0, 1u, t0, 2u or t0, 1, 2u respectively. The set cpH, 0q corresponds to the never-takers

C000. For A “ t1u we get C010 and C111, and for A “ t2u we get C002 and C222. Finally, with

A “ t1, 2u we have C012, C112, and C212.

Figure 4: Strictly one-to-one targeted treatment in the 3ˆ 3 model

ui1 ´ ui0

ui2 ´ ui0

C012
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C112
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These eight elemental response groups are illustrated in Figure 4, again with the origin in

P0. Comparing Figure 4 with Figure 2 shows the identifying power of Assumption 5. Table 4

shows which groups take Ti “ t when Zi “ z.

Table 4: Response Groups of Example 2

Tipzq “ 0 Tipzq “ 1 Tipzq “ 2

z “ 0 C000

Ť

C010

Ť

C002

Ť

C012 C111

Ť

C112 C222

Ť

C212

z “ 1 C000

Ť

C002 C111

Ť

C010

Ť

C012

Ť

C112

Ť

C212 C222

z “ 2 C000

Ť

C010 C111 C222

Ť

C002

Ť

C012

Ť

C112

Ť

C212

Unlike the 2ˆ 3 model, even under strict one-to-one targeting the 3ˆ 3 model does not

satisfy unordered monotonicity. One could show it with the matrix algebra in Heckman and

Pinto (2018).18 It is more straightforward to note that when thee instrument value changes

18See Appendix D for details.
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from z “ 1 to z “ 2, observations in C010 move to treatment value 0, while observations in

C002 leave treatment 0. This is the definition of a two-way flow, which violates unordered

monotonicity. Since the 3 ˆ 3 model has three instrument values and only two targeted

treatments, Bai, Huang, Moon, Shaikh, and Vytlacil (2024, Example 4.7) shows that it sat-

isfies their weaker general monotonicity assumption. As a consequence, the average potential

outcomes ErYipdqs can only be restricted by identification at infinity arguments.

3.3.1 Identification in the 3ˆ 3 Model

We know from the third row of Table 3 that one restriction is missing to point-identify

the probabilities of all eight response-groups. The following proposition shows that the

probabilities of four of the eight elemental groups are point-identified: two groups of always-

takers, and two groups of compliers. The other four probabilities are constrained by three

adding-up constraints.

Proposition 7 (Response-group probabilities in the 3 ˆ 3 model under strict, one-to-one

targeting). The following four probabilities are identified: PrpC111q “ P p1|2q, PrpC222q “

P p2|1q, PrpC112q “ P p1|0q ´ P p1|2q, and PrpC212q “ P p2|0q ´ P p2|1q. The remaining four

response group probabilities are partially-identified and can be parameterized as: PrpC000q “

p, PrpC002q “ P p0|1q´p, PrpC010q “ P p0|2q´p, and PrpC012q “ P p0|0q´P p0|1q´P p0|2q`p,

where the unknown p satisfies maxt0, P p0|1q`P p0|2q´P p0|0qu ď p ď mint1, P p0|1q, P p0|2qu.

As before, the model has the following testable implications: P p1|1q ě P p1|0q ě P p1|2q,

P p2|2q ě P p2|0q ě P p2|1q, and P p0|0q ě maxpP p0|1q, P p0|2qq. The following proposition

identifies a number of group average outcomes19.

Proposition 8 (Group average outcomes in the 3ˆ3 model under strict, one-to-one targeting).

19Again, these could also be derived using the general framework of Heckman and Pinto (2018), even
though the unordered monotonicity assumption is not satisfied—see Appendix D.
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The following group average outcomes are point-identified:

E rYip0q|i P C000

Ť

C002s “
Ē1p0q

P p0|1q
, E rYip0q|i P C000

Ť

C010s “
Ē2p0q

P p0|2q
,

E rYip1q|i P C111s “
Ē2p1q

P p1|2q
, E rYip2q|i P C222s “

Ē1p2q

P p2|1q
,

E rYip0q|i P C010

Ť

C012s “
Ē0p0q ´ Ē1p0q

P p0|0q ´ P p0|1q
, E rYip0q|i P C002

Ť

C012s “
Ē0p0q ´ Ē2p0q

P p0|0q ´ P p0|2q
,

E rYip1q|i P C010

Ť

C012

Ť

C212s “
Ē1p1q ´ Ē0p1q

P p1|1q ´ P p1|0q
, E rYip1q|i P C112s “

Ē0p1q ´ Ē2p1q

P p1|0q ´ P p1|2q
,

E rYip2q|i P C002

Ť

C012

Ť

C112s “
Ē2p2q ´ Ē0p2q

P p2|2q ´ P p2|0q
, E rYip2q|i P C212s “

Ē0p2q ´ Ē1p2q

P p2|0q ´ P p2|1q
.

By itself, Proposition 8 does not allow us to identify an average treatment effect for any

(even composite) response-group. Suppose for instance that we want to identify EpYip1q ´
Yip0q|i P Cq for some group C. Then C needs to exclude C111, C112, and C212, since EpYip0q|i P
C 1q is not identified for any group C 1 that contains C111, C112, or C212. Since we only know

the mean outcome of treatment 1 for groups that contain one of these three elemental groups,

the conclusion follows.

3.3.2 Using Positive Selection

Note that if we assumed EpYip1q|i P C112q “ EpYip1q|i P C212q, then we could combine the

two equations in the fourth displayed line of Proposition 8 and the probabilities of C112

and C212 (which are point-identified by Proposition 7) to obtain EpYip1q|i P C010

Ť

C012q.

This would point-identify the average effect of treatment 1 vs treatment 0 on this composite

complier group C01˚. While this assumption may be overly strong, it seems natural to

impose that Yipτq is on average larger in a response group that has t “ τ for more values of

z. Assumption 6 formalizes this intuition in our setting.

Assumption 6 (Positive selection in the 3ˆ3 model). Either or both of the following assump-

tions hold:

E rYip1q|i P C112s ě E rYip1q|i P C212s ,(3.8)

E rYip2q|i P C212s ě E rYip2q|i P C112s .(3.9)

Assumption 6 states a form of positive selection into treatment, as defined in Section 3.1.

Consider Equation (3.8) for instance. It says that within the group of “12-compliers”C˚12 “

C012

Ť

C112

Ť

C212, those observations with T p0q “ 1 have a larger average counterfactual
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Y p1q than those with T p0q “ 2. Corollary 3 shows that this gives bounds on the local

average treatment effects for C01˚-compliers, with a similar result for Equation (3.9) and

C0˚2-compliers.

Corollary 3 (Identifying treatment effects in the 3ˆ 3 model). 1. Under (3.8), the local

average treatment effect

E rYip1q ´ Yip0q|i P C01˚s

is at least as large as

pĒ1p1q ´ Ē0p1qq ´ pĒ0p0q ´ Ē1p0qq

P p0|0q ´ P p0|1q
´

Ē0p1q ´ Ē2p1q

P p1|0q ´ P p1|2q

P p2|0q ´ P p2|1q

P p0|0q ´ P p0|1q
.

2. Under (3.9), the local average treatment effect

E rYip2q ´ Yip0q|i P C0˚2s

is at least as large as

pĒ2p2q ´ Ē0p2qq ´ pĒ0p0q ´ Ē2p0qq

P p0|0q ´ P p0|2q
´

Ē0p2q ´ Ē1p2q

P p2|0q ´ P p2|1q

P p1|0q ´ P p1|2q

P p0|0q ´ P p0|2q
.

3. In both 1 and 2, “at least as large” can be replaced with “equals” if the corresponding

inequality in Assumption 6 is an equality.

3.3.3 When is Positive Selection Plausible?

Let us focus on (3.9). Given strict one-to-one targeting, C112 is defined by

Up1q ´ Ūp2q ď ui2 ´ ui1 ď Up1q ´ Up2q, ui1 ´ ui0 ě ´Up1q.

C212 is defined by

Up1q ´ Up2q ď ui2 ´ ui1 ď Ūp1q ´ Up2q, ui2 ´ ui0 ě ´Up2q.

To simplify notation, define ζi “ ui2 ´ ui1 and ξi “ ui2 ´ ui0, so that ui1 ´ ui0 “ ξi ´ ζi. The

inequalities above can be rewritten as

• for C112: Up1q ´ Ūp2q ď ζi ď Up1q ´ Up2q, ξi ´ ζi ě ´Up1q;

• for C212: Up1q ´ Up2q ď ζi ď Ūp1q ´ Up2q, ξi ě ´Up2q.
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Figure 5 plots these two groups on the ζi ˆ ξi plane. Group C212 corresponds to the

top-right (infinite) rectangle and group C112 is partitioned into the two subgroups: C
piq
112 is a

bottom-left triangle and C
piiq
112 is a top-left (infinite) rectangle.

Figure 5: Positive Selection in the Generalized 3ˆ 3 Roy model

ζi

ξi

C212

C
piq
112

C
piiq
112

Pa
Pb Pc

Notes: Pa “ pUp1q ´ Ūp2q,´Up2qq, Pb “ pUp1q ´ Up2q,´Up2qq,
and Pc “ pŪp1q ´ Up2q,´Up2qq.

Now suppose that

Assumption 7 (Positive Codependence). (1) If A and B are two measurable sets in the

pζ, ξq plane such that

pζ, ξq P A and pζ 1, ξ1q P B ùñ pζ ď ζ 1 and ξ1 ď ξ1q ,

then EpYip2q|pζi, ξiq P Aq ď EpYip2q|pζi, ξiq P Bq.

(2) If A and B are two measurable sets on the real line such that

ζ P A and ζ 1 P B ùñ ζ ď ζ 1

then EpYip2q|ζi P A, ξi ě bq ď EpYip2q|ζi P B, ξi ě bq for all b.

As shown in Figure 5, every point in C
piq
112 has lower values of both ζi and ξi than any

point in C212. Therefore, by Assumption 7(1), the expected value of Yip2q in this triangle

is smaller than EpYip2q|i P C212q. Every point in C
piiq
112 has is a smaller value of ζi than at

any point in C212 (fixing the value of ξi ě ´Up2q on both sides). Assumption 7(2) implies

that the expected value of Yip2q in this rectangle again is smaller than EpYip2q|i P C212q.

Combining these two inequalities gives EpYip2q|i P C212q ě EpYip2q|i P C112q, that is (3.9).

Assumption 7 seems weak. Because both ζi “ ui2´ui1 and ξi “ ui2´ui0 are increasing in

ui2, this assumption aligns well with the concept of positive selection. Suppose for instance

28



that

EpYip2q|ui0, ui1, ui2q ´ EYip2q “ a0ui0 ` a1ui1 ` a2ui2,

where a0, a1, and a2 are some constants, and that pui0, ui1, ui2q are jointly normal and

mutually uncorrelated with the common mean 0 and the common variance 1. We interpret

pui0, ui1, ui2q as the underlying primitive random variables that are normalized to have mean

0 and variance 1. It is easy to derive20 that

EpYip2q|ζi, ξiq ´ EYip2q “
a2 ` a0 ´ 2a1

3
ζi `

a2 ` a1 ´ 2a0

3
ξi.

Hence, in this example, Assumption 7 holds if and only if a2 ` a0 ě 2a1 and a2 ` a1 ě 2a0.

In summary, a sufficiently large value of a2 induces positive selection, generating patterns

similar to those of comparative advantage in generalized Roy models.

3.4 What do the IV estimators identify in the 3ˆ 3 model?

Kirkeboen, Leuven, and Mogstad (2016, hereafter KLM) used a 3 ˆ 3 model to study the

impact of the field of study on later earnings. Their Proposition 2 characterizes what two-

stage least squares (TSLS) estimators identify under different sets of assumptions. The

least stringent version combines a monotonicity assumption (Assumption 4 in KLM) and

condition (iii) in their Proposition 2, which they call “irrelevance and information on next-

best alternatives”. “Irrelevance” is a set of exclusion restrictions, while “information on

next-best alternatives” assumes the availability of additional data.

3.4.1 Monotonicity and Irrelevance

While we take quite a different path, our strict one-to-one targeting assumption turns out

to yield exactly the same identifying restrictions as the combination of monotonicity and

irrelevance in KLM. We show it in Appendix C.

This set of assumptions in itself is too weak to give two-stage least squares estimates a

simple interpretation. To see this, let β1 and β2 be the probability limits of the coefficients

in a regression of Yi on the indicator variables 11pTi “ 1q and 11pTi “ 2q, with instruments Zi.

Remember from Table 4 that under strict one-to-one targeting, five response-groups have

T p1q “ 1:

1. the always-takers C111;

2. the “intermediate” group C112, which has T pzq “ 1 unless z “ 2;

20See Appendix G for details.
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3. the three groups C010, C012, and C212, which have T pzq “ 1 if and only of z “ 1.

A similar distinction applies to the groups that have T p2q “ 2; it motivates Definition 6.

Definition 6 (1-compliers and 2-compliers). We call

C1 “ C010

Ť

C012

Ť

C212,

the 1-compliers group and

C2 “ C002

Ť

C012

Ť

C112

the 2-compliers group.

The β1 and β2 coefficients turn out to be weighted averages of the LATEs on these two

groups and on the intermediate groups C112 and C212.

Proposition 9 (TSLS in the 3 ˆ 3 model under strict, one-to-one targeting). The parameters

β1 and β2 satisfy

˜

Prpi P C1q ´Prpi P C212q

´Prpi P C112q Prpi P C2q

¸˜

β1

β2

¸

“

˜

ErtYip1q ´ Yip0qu11pi P C1qs ´ ErtYip2q ´ Yip0qu11pi P C212qs

ErtYip2q ´ Yip0qu11pi P C2qs ´ ErtYip1q ´ Yip0qu11pi P C112qs

¸

.

Proposition 9 implies that β1 and β2 are weighted averages of the four local average

treatment effects on the right-hand side of this system of two equations. The weights are

functions of the four probabilities on the left-hand side, which are point identified by Propo-

sition 7. However, these weights may be positive or negative. This complicates interpretation

further21.

3.4.2 Additional Assumptions

Next-best alternatives Using the additional information on next-best alternatives in KLM

amounts, in our notation, to dropping the“intermediate” response-groups C212 and C112 from

the data. Then the system of equations in Proposition 9 becomes diagonal and it yields

β1 “ ErYip1q ´ Yip0q|i P C1s,

β2 “ ErYip2q ´ Yip0q|i P C2s,

21Mogstad, Torgovitsky, and Walters (2021) give a set of assumptions under which the weights are positive
in a model with multiple binary instruments.
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where now C1 reduces to C010

Ť

C012 and C2 reduces to C002

Ť

C012. This is exactly Propo-

sition 2 (iii) of KLM. Alternatively, one may simply assume that the response-groups C212

and C112 are empty. This is the path taken by Bhuller and Sigstad (2024)22.

Positive Selection Additional information of the type used by KLM often is not available.

Moreover, assuming away C112 and C212 seems rather strong. On the other hand, reasonable

assumptions can be used to generate bounds on the local average treatment effects for 1-

compliers and 2-compliers. Corollary 4 illustrates this.

Corollary 4 (TSLS in the 3ˆ 3 model under strict, one-to-one targeting). Assume that

D ” Prpi P C1qPrpi P C2q ´ Prpi P C212qPrpi P C112q ‰ 0.(3.10)

Let

D1 ” E pYip1q ´ Yip0q|i P C1q ´ E pYip1q ´ Yip0q|i P C112q

and

D2 ” E pYip2q ´ Yip0q|i P C2q ´ E pYip2q ´ Yip0q|i P C212q .

If D1D2 ą 0, then β1´E pYip1q ´ Yip0q|i P C1q and β2´E pYip2q ´ Yip0q|i P C2q have the sign

of D.

Note that the KLM result of the previous paragraph is the limit case where D1 “ D2 “ 0.

The regularity condition (3.10) ensures that the 2ˆ 2 matrix that premultiplies pβ1, β2q
1

in Proposition 9 be invertible23. To interpret the assumptions on signs, suppose that D1 is

positive. Since C1 “ C010

Ť

C012

Ť

C212, the positivity of D1 states that the average effect

of treatment 1 on C010

Ť

C012

Ť

C212 is at least as large as on C112. This is a form of

positive selection that is in the same spirit as (but different from) Assumption 6. If this form

of positive selection holds for both treatments, then the TSLS estimates overestimate the

LATEs on the corresponding compliers if D ą 0, and they underestimate them if D ă 0.

To summarize, the TSLS estimators in the 3 ˆ 3 model are difficult to interpret unless

additional information is available and/or some additional assumptions are imposed. If

the groups C112 and C212 are indeed empty, then both the TSLS estimators and those we

obtained in Corollary 3 should identify the LATEs on the 1- and 2-compliers. Comparing

their values is a useful (if informal) way of testing the assumptions and of exploring further

the heterogeneity of the treatment effects.

22See their Corollary 5 and Table 1 for details.
23It holds if C212 and C112 have positive probability and either C010

Ť

C012 or C002

Ť

C012 has positive
probability.
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4 Empirical Example: The Head Start Impact Study

We now reexamine the Kline and Walters’s (2016) analysis of the Head Start Impact Study

(HSIS) using our framework. We use exactly the same data as they did; we only apply

different identifying assumptions.

Head Start is a federal program in the US that addresses various factors affecting chil-

dren’s development in low-income families. It provides early childhood education (hereafter

“preschool”) and health and nutrition services. HSIS was a longitudinal study conducted

from 2002 to 2010 to assess the program’s impact on cognitive, social-emotional, and health

outcomes. It focused on 84 communities where the demand for Head Start services was larger

than the supply. HSIS randomly assigned about 5,000 three and four year old preschool chil-

dren to either a treatment group which was offered Head Start services, or a control group

which received no such offer. Children in either group could also attend other preschool

centers if offered a slot

The structure of HSIS is identical to that of Example 1: it is a 2 ˆ 3 model. The

treatments here consist of no preschool (n), Head Start (h), and other preschool centers (c):

T “ tn, h, cu. The instrument is binary, with a control group (z “ 0) and a group that is

offered admission to Head Start (z “ 1). The outcome variable is test scores, measured in

standard deviations from their mean.

In the terminology of this paper, treatment assignment satisfies strict, one-to-one tar-

geting: strict targeting as the instrument is binary, and one-to-one targeting as z “ 1 only

targets Head Start24. Figure 6 reproduces Figure 3 in this setting. In addition to the three

always-taker groups Cnn, Ccc, and Chh, there are two complier groups: Cnh, and Cch. In

Sections 4.1 and 4.2, we focus on the LATEs on the two complier groups Cnh and Cch. Sec-

tion 4.3 embeds the model into a larger, 3ˆ 3 model in order to evaluate the marginal value

of the public funds used in Head Start.

4.1 Group proportions and counterfactual means

Our estimates of the proportions of the two complier groups in the sample use (3.2) in

Proposition 5; they are shown in Panel A of Table 5. As expected, they coincide with those

in Kline and Walters (2016).

Panel B of Table 5 shows the counterfactual means of test scores for the complier groups,

as per Proposition 6. While ErYipnq|i P Cnhs is negative, ErYipcq|i P Cchs is above 0.1

standard deviation—not a negligible value in this field. This suggests that some of the

24Kamat (2024) analyzes HSIS using a different approach that focuses on how the choice sets available to
a child vary with the value of the instrument.
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Figure 6: The Kline and Walters (2016) Model of Preschool Choice

uih ´ uin

uic ´ uin

CnhCnn

Ccc

Chh

Cch

Pn
Ph

children who enter Head Start would have been at a good preschool otherwise. Kline and

Walters (2016) call this pattern the “substitution effect” of Head Start. However, Kline and

Walters (2016) do not report estimates of ErYipnq|i P Cnhs and ErYipcq|i P Cchs.

4.2 Treatment Effects

To fully measure the substitution effect, one needs to identify E rYiphq|i P Cnhs and E rYiphq|i P Cchs.
However, we know from Proposition 6 that they are only partially identified by

α0E rYiphq|i P Cchs`p1´α0qE rYiphq|i P Cnhs “
E rYi11pTi “ hq|Zi “ 1s ´ E rYi11pTi “ hq|Zi “ 0s

P ph|1q ´ P ph|0q
.

where α0 “ pP pc|0q ´ P pc|1qq{pP ph|1q ´ P ph|1qq. This is exactly the formula on Kline and

Walters (2016, pp.1811): as they point out, the LATE for Head Start is a weighted average

of “subLATEs” with weights determined by the proportion of Cch among compliers, which is

identified from the data25.

Kline and Walters (2016) first tried to identify ErYiphq ´ Yipcq|i P Cchs and ErYiphq ´
Yipnq|i P Cnhs separately using interactions of the instrument with covariates or experimental

sites. They acknowledged the limitations of this approach and resorted to a parametric

selection model à la Heckman (1979) instead. They report26 estimates of the local average

treatment effects of 0.370 for Cnh and ´0.093 for Cch, with respective standard errors 0.088

and 0.154. The resulting point estimate of the difference is quite large, at 0.463 standard

deviation.

Our Corollary 2 provides an alternative approach to separating the two treatment effects.

25Our α0 is denoted Sc in their paper.
26See Kline and Walters (2016, Table VIII, column (4), full model).
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Table 5: Proportions, Counterfactual Means and Treatment Effects by Response Groups

3-year-olds 4-year-olds Pooled

Panel A. Proportions of Response Groups via Proposition 5

Compliers from n to h (Cnh) 0.505 0.393 0.454
Compliers from c to h (Cch) 0.198 0.272 0.232

Panel B. Counterfactual Means of Test Scores via Proposition 6

ErYipnq|i P Cnhs -0.027 -0.116 -0.062
ErYipcq|i P Cchs 0.112 0.144 0.129

Panel C. Treatment Effects via Corollary 2

Upper Bound on ErYiphq ´ Yipnq|i P Cnhs 0.279 0.285 0.278
(0.063) (0.076) (0.050)

Lower Bound on ErYiphq ´ Yipcq|i P Cchs 0.140 0.025 0.087
(0.089) (0.097) (0.063)

Upper Bound on 0.139 0.260 0.191
ErYiphq ´ Yipnq|i P Cnhs ´ ErYiphq ´ Yipcq|i P Cchs (0.098) (0.115) (0.071)

Notes: Head Start (h), other centers (c), no preschool (n). Standard errors in
parentheses are clustered at the Head Start center level.

Given that compliers coming from other preschools (Cch) had better test scores than com-

pliers not originally in preschools (Cnh), it seems reasonable to assume that they also have

better test scores under Head Start:

(4.1) E rYiphq|i P Cchs ě E rYiphq|i P Cnhs .

This is a“positive selection”that fits within the framework of Corollary 2. It can be derived in

a simple model in which preschools, and especially Head Start, improve the outcomes of some

students; and students choose schools as a function of their expected outcome. We show in

Appendix B that this model generates positive selection under reasonable assumptions. The

pooled cohort estimates in Panel C of Table 5 indicate that the upper bound on ErYiphq ´
Yipnq|i P Cnhs is 0.28 and the lower bound on ErYiphq´Yipnq|i P Cchs is 0.09. The difference

between these two numbers gives an upper bound of 0.19 for the difference of these two

LATEs, with a standard error of 0.07. The testable prediction (3.7) implied by positive

selection translates here into the non-negativity of the upper bound; we cannot reject it at

any reasonable level. Conversely, negative selection (reverting the inequality (4.1)) would

make 0.19 a lower bound for the difference of the LATEs. At the same time, it would imply

that the lower bound is negative; this is soundly rejected by the data.
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Our upper bound of 0.19 is much lower than the point estimate reported by Kline and

Walters (2016). In fact, our 95% and 99% one-sided confidence intervals for

ErYiphq ´ Yipnq|i P Cnhs ´ ErYiphq ´ Yipcq|i P Cchs

are p´8, 0.308q and p´8, 0.356q. We conclude that the 0.463 estimate in Kline and Wal-

ters (2016) may overstate the difference between the two complier groups: it can only be

rationalized under negative selection, which is a much less plausible assumption.

4.3 Expanding Access to Head Start

Kline and Walters (2016) sought to evaluate the welfare effect of increasing the number of

slots in Head Start, as summarized by the marginal value of public funds (MVPF). They

note that any expansion of Head Start will vacate some slots at competing preschools, which

are oversubscribed. The relaxation of this rationing must be counted as an effect of Head

Start expansions. This is what they call “rationed substitutes”27.

The children who move from Ti “ n to Ti “ c when a slot is vacated by a child who

moves to Head Start consitute a Cnc group that is ruled out by the 2 ˆ 3 model. These

children increase their grades by Yipcq ´ Yipnq, whose average generates a LATE that we

denote LATEnc. Equation (9) in Kline and Walters (2016, p. 1816) shows that the value

of LATEnc is a crucial input in the computation of the MVPF of a Head Start expansion.

Identifying it requires either data on offers to all preschools, which Kline and Walters (2016)

do not have28, or additional modeling assumptions. They used their parametric selection

model to construct an estimate for LATEnc. Their estimate of LATEnc “ 0.294 results in a

high MVPF estimate of 2.02 (see Table IX in their paper).

We take a different approach by embedding the 2ˆ3 model within a 3ˆ3 model. In this

richer model, the instrument can take three values: in addition to the control group (z “ 0)

and those offered admission to Head Start (z “ 1), we have a new group that we denote

z “ 2. This group is only offered admission to competing preschools because some seats were

left free by students who moved to Head Start (the Cch group of the binary model). Note

that this maintains strict, one-to-one targeting.

Figure 7 shows the resulting treatment assignment, using tildes to denote the complier

27See Kline and Walters (2016, Sections V.D and IX.A) for details.
28See footnote 19 in their paper.
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groups of the 3ˆ 3 model29. Using this notation, LATEnc can be written as

LATEnc “ ErYipcq ´ Yipnq|i P C̃n˚cs,

where C̃n˚c “ C̃nnc
Ť

C̃nhc is the composite group of n Ñ c compliers. Comparing Figure 7

with Figure 6 shows that the other complier groups of the two models are linked by

Cnh “ C̃nh˚ “ C̃nhn
Ť

C̃nhc

Cch “ C̃ch˚ “ C̃chc.

Figure 7: Embedding Preschool Choice in a 3ˆ 3 Model

uih ´ ui0

uic ´ ui0

C̃nhc

C̃nhn

C̃nnc

C̃nnn
C̃hhh

C̃ccc

C̃hhc

C̃chc

PnPh

Pc

Now consider the new group of nÑ c compliers. It differs from C̃chc in that its members

will not go to a preschool unless they are offered a slot. We show in Appendix B that the

structural model that we used in the binary instrument case predicts the following inequality:

(4.2) ErYipcq|i P C̃n˚cs ď ErYipcq|i P C̃chcs.

Now consider the composite response-groups C̃n˚c “ C̃nnc
Ť

C̃nhc and C̃nn˚ “ C̃nnc
Ť

C̃nnn.

As Figure 7 shows, they only differ by the substitution of C̃nnn for C̃nhc. The former never

go to Head Start or to another preschool, while the latter are full compliers. Our structural

model generates the inequality

ErYipnq|i P C̃nnns ď ErYipnq|i P C̃nhcs
29Again, it is just Figure 4 with different notation.
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which implies

(4.3) ErYipnq|i P C̃nn˚s ď ErYipnq|i P C̃n˚cs.

Inequalities (4.2) and (4.3) again are “positive selection” assumptions that fall under our

Corollary 3.

Since C̃nn˚ coincides with Cnn and C̃chc is Cch, we already know the values of the right-

hand sides of both inequalities. Applying the same logic as in Corollary 3 gives us an upper

bound for LATEnc:

LATEnc ď ErYipcq|i P C̃chcs ´ ErYipnq|i P C̃nn˚s “ ErYipcq|i P Cchs ´ ErYipnq|i P Cnns.

As the MVPF is an increasing function of LATEnc, this gives us in turn an upper bound

on its value 30. We obtain LATEnc ď 0.164 and MVPF ď 1.55. These upper bounds are

noticeably smaller than the point estimates that result from the parametric selection model

of Kline and Walters (2016).

Concluding Remarks

We have shown that the idea of targeting is a useful way to analyze models with multi-

valued treatments and multivalued instruments. Our paper only analyzed discrete-valued

instruments and treatments. Some of the notions we used would extend naturally to con-

tinuous instruments and treatments: the definitions of targeting, one-to-one targeting, and

positive selection would translate directly. Strict targeting, on the other hand, is less ap-

pealing in a context in which continuous values may denote intensities. Our earlier paper

(Lee and Salanié, 2018) as well as Mountjoy’s (2022) can be seen as analyzing continuous-

instruments/discrete-treatments models. Extending our analysis to models with continuous

treatments is an obvious topic for further research. It would also be interesting to apply the

partial identification approach of Mogstad, Santos, and Torgovitsky (2018) in our setting.

Finally, there has been a surge of recent interest on understanding the properties of OLS

and 2SLS estimands when treatment effects vary with the covariates (Blandhol, Bonney,

Mogstad, and Torgovitsky, 2022; S loczyński, 2022; Goldsmith-Pinkham, Hull, and Kolesár,

2022). We believe that the targeting concept and the identifying assumptions explored in

this paper should be relevant in this context and that they merit further investigation.

30Online Appendix F derives the formula for the MVPF in this model.
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A Proofs for Section 3

Proof of Proposition 1. Suppose that for some t P T ˚, TipZ˚ptqq “ 0. Then ui0 ą Ūptq ` uit.

However, if z ‰ Z˚ptq then Ūptq ą Uzptq under Assumption 4. Therefore ui0 ą Uzptq ` uit,

and Tipzq cannot be t.

Proof of Proposition 2. Recall that Tipzq maximizes pUzptq ` uitq over t P T . Under strict

targeting, Uzptq is Ūptq if t P T ˚pzq and Uptq otherwise.

Proof of (i): Since Ūptq ą Uptq if t P T ˚, we have

V ˚i pzq ą max
tPT ˚pzq

pUptq ` uitq.

This implies that

max
tPT
pUzptq ` uitq “ max

ˆ

max
tPT ˚pzq

pŪptq ` uitq, max
tRT ˚pzq

pUptq ` uitq

˙

“ max
´

V ˚i pzq,max
tPT
pUptq ` uitq

¯

“ max pV ˚i pzq, V iq .

Moreover, if V i “ U ti
` ui,ti is the maximum and ti P T ˚pzq, then a fortiori U ti

` ui,ti ą

Ūti ` ui,ti . This gives a contradiction since Ūt ą U t for all strictly targeted t.

Proof of (ii): If z R Z˚, then T ˚pzq is empty and V ˚i pzq “ ´8.

Proof of Corollary 1. It follows directly from Proposition 2.

Proof of Proposition 3. Consider an observation i. The set Ai of Corollary 1 is a possibly

empty subset of T ˚. The top alternative treatment ti can be in Ai or in T z T ˚. If Ai has

a elements, this allows for a ` |T | ´ |T ˚| “ a ` q values of ti. Now every pair pAi, tiq fully

defines a response-group. Since |Z˚| “ |T ˚| “ p, this gives a total of

p
ÿ

a“0

ˆ

p

a

˙

pa` qq

response-groups. Using the identities

b
ÿ

a“0

ˆ

b

a

˙

“ p1` 1qb “ 2b

b
ÿ

a“0

a

ˆ

b

a

˙

“ bˆ
b´1
ÿ

a“0

ˆ

b´ 1

a

˙

“ bˆ 2b´1,
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we obtain a total of pp` 2qq ˆ 2p´1 types.

Proof of Proposition 4. Take z P Z and t P T . Consider any observation i and the corre-

sponding Ai Ă T ˚ and ti P Ai
Ť

pT z T ˚q. There are only two ways to obtain Tipzq “ t:

• if z R Ai, then Tipzq “ ti; therefore ti “ t. Summing over all subsets A of T ˚ that

exclude z gives the first term of (3.1).

• if z P Ai (which implies z P T ˚), we know that Tipzq “ z no matter what the value of

ti is; hence t must equal z. Summing over all subsets A that include z and all values

of ti P A
Ť

pT z T ˚q gives the second line in (3.1).

By construction, each CpA, tq completely defines the mapping from instrument values to

treatment values; therefore each CpA, tq is an elemental group. Their union is clearly the set

of all observations. If i P CpA, tq
Ť

CpA1, t1q, then A1 “ A “ Ai by the definition of Ai, and

t1 “ t “ ti. Therefore the CpA, tq partition the set of observations.

Proof of Lemma 1. For the sake of completeness, we provide the proof although the first

part of the Lemma is the same as Theorem T-1 of Heckman and Pinto (2018) (applied with

κpY q :“ Y ). Let

Ezpt|Cq ” EpYi11pTi “ tq|Zi “ z, i P Cq.

We start from the sum over all response groups:

Ēzptq “
ÿ

C

Ezpt|CqPrpi P Cq.

First note that if group C does not have treatment t under instrument z, it should not figure

in the sum. Now if C “ CR with Rpzq “ t, we have

Ezpt|Cq “ EpYi11pTi “ tq|Zi “ z, i P Cq

“ EpYiptq|Zi “ z, i P Cq

“ EpYiptq|i P Cq.

The second part of the Lemma is just adding up.

Proof of Proposition 5. The proof is in the text, with the exception of PrpC11q “ P p1|0q

which follows from the fact that the probabilities add up to 1.
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Proof of Proposition 6. Lemma 1 gives 2|T | equations:

Ē0p1q “ EpYip1q|i P Cpt1u, 1qqPrpi P Cpt1u, 1qq “ EpYip1q|i P C11qPrpC11q

for t ‰ 1, Ē0ptq “ EpYiptq|i P CpH, tqqPrpi P CpH, tqq

` EpYiptq|i P Cpt1u, tqqPrpi P Cpt1u, tqq

“ EpYiptq|i P CttqPrpCttq ` EpYiptq|i P Ct1qPrpCt1q

Ē1p1q “
ÿ

τPT
EpYip1q|i P Cpt1u, τqqPrpi P Cpt1u, τqq

“
ÿ

τPT
EpYip1q|i P Cτ1qPrpCτ1q

for t ‰ 1, Ē1ptq “ EpYiptq|i P CpH, tqqPrpi P CpH, tqq “ EpYiptq|i P CttqPrpCttq.

(A.1)

Since Proposition 5 identifies all type probabilities, the first and fourth equations in (A.1)

give directly EpYiptq|i P Cttq for all t. Then the second equation identifies EpYiptq|i P Ct1q for

t ‰ 1.

By subtraction, we obtain

pĒ1p1q ´ Ē0p1qq ´
ÿ

t‰1

pĒ0ptq ´ Ē1ptqq

“
ÿ

t‰1

E rYip1q ´ Yiptq|i P Ct1sPrpi P Ct1q.

Combining these results with Proposition 5 and Lemma 1 yields the formula in the Propo-

sition. The denominator

ÿ

t‰1

pP pt|0q ´ P pt|1qq “ P p1|1q ´ P p1|0q

is positive, since all terms in the sum are positive. It follows that all αt weights are positive

and sum to 1.

Proof of Corollary 2. Recall from (A.1) that when T “ 3,

Ē1p1q ´ Ē0p1q “ E rYip1q|i P C01sPrpi P C01q ` E rYip1q|i P C21sPrpi P C21q.
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Hence, under (3.5) we have

E rYip1q|i P C01s tPrpi P C01q ` Prpi P C21qu

ď Ē1p1q ´ Ē0p1q

ď E rYip1q|i P C21s tPrpi P C01q ` Prpi P C21qu .

The first conclusion of the corollary follows immediately, as

Prpi P C01q ` Prpi P C21q “ P p1|1q ´ P p1|0q.

The testable prediction is a direct consequence of this chain of inequalities.

Proof of Proposition 7. It is straightforward from Figure 4 and Table 4.

Proof of Proposition 8. By Lemma 1, we obtain

Ē1p0q “ E rYip0q|i P C000

Ť

C002sPrpi P C000

Ť

C002q,

Ē2p0q “ E rYip0q|i P C000

Ť

C010sPrpi P C000

Ť

C010q,

Ē2p1q “ E rYip1q|i P C111sPrpi P C111q,

Ē1p2q “ E rYip2q|i P C222sPrpi P C222q,

Ē0p0q ´ Ē1p0q “ E rYip0q|i P C010

Ť

C012sPrpi P C010

Ť

C012q,

Ē0p0q ´ Ē2p0q “ E rYip0q|i P C002

Ť

C012sPrpi P C002

Ť

C012q,

Ē1p1q ´ Ē0p1q “ E rYip1q|i P C010

Ť

C012

Ť

C212sPrpi P C010

Ť

C012

Ť

C212q,

Ē0p1q ´ Ē2p1q “ E rYip1q|i P C112sPrpi P C112q,

Ē2p2q ´ Ē0p2q “ E rYip2q|i P C002

Ť

C012

Ť

C112sPrpi P C002

Ť

C012

Ť

C112q,

Ē0p2q ´ Ē1p2q “ E rYip2q|i P C212sPrpi P C212q.

Then, the results follows from the fact that all group probabilities are identified.

Proof of Corollary 3. First note that C01˚ “ C010

Ť

C012. Under (3.8), we have

EpYip1q11pi P C010

Ť

C012qq “ EpYip1q11pi P C010

Ť

C012

Ť

C212qq ´ EpYip1q11pi P C212qq

“ EpYip1q11pi P C010

Ť

C012

Ť

C212qq ´ EpYip1q|i P C212qPrpi P C212q

ě EpYip1q|i P C010

Ť

C012

Ť

C212q ˆ Prpi P C010

Ť

C012

Ť

C212q

´ EpYip1q|i P C112qPrpi P C212q.
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Replacing the probabilities and conditional expectations with their values from Proposition 7

and Proposition 8, we obtain Prpi P C010

Ť

C012q “ P p0|0q ´ P p0|1q and

EpYip1q11pi P C010

Ť

C012qq ě Ē1p1q ´ Ē0p1q ´
Ē0p1q ´ Ē2p1q

P p1|0q ´ P p1|2q
pP p2|0q ´ P p2|1qq.

Finally, writing

EpYip1q ´ Yip0q|i P C010

Ť

C012q “
EpYip1q11pi P C010

Ť

C012qq

Prpi P C010
Ť

C012q
´

Ē0p0q ´ Ē1p0q

P p0|0q ´ P p0|1q

gives the result.

The proof under (3.9) is similar: we start from C0˚2 “ C002

Ť

C012. Under (3.8), we have

EpYip2q11pi P C002

Ť

C012qq “ EpYip2q11pi P C002

Ť

C012

Ť

C112qq ´ EpYip2q11pi P C112qq

“ EpYip2q11pi P C002

Ť

C012

Ť

C112qq ´ EpYip2q|i P C112qPrpi P C112q

ě EpYip2q|i P C002

Ť

C012

Ť

C112q ˆ Prpi P C002

Ť

C012

Ť

C112q

´ EpYip2q|i P C212qPrpi P C112q.

Replacing the probabilities and conditional expectations with their values from Proposition 7

and Proposition 8, we obtain Prpi P C002

Ť

C012q “ P p0|0q ´ P p0|2q and

EpYip2q11pi P C002

Ť

C012qq ě Ē2p2q ´ Ē0p2q ´
Ē0p2q ´ Ē1p2q

P p2|0q ´ P p2|1q
pP p1|0q ´ P p1|2qq.

Finally, writing

EpYip2q ´ Yip0q|i P C002

Ť

C012q “
EpYip2q11pi P C002

Ť

C012qq

Prpi P C002
Ť

C012q
´

Ē0p0q ´ Ē2p0q

P p0|0q ´ P p0|2q

gives the result.

B Positive Selection in Head Start

Let realized grades be given by

Yiptq “ kt `mipt ` ζit,

where mi ą 0

ph ą pc ą pn “ 0.
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These conditions imply that children with a larger mi benefit more from preschool, especially

from Head Start; mi does not play a role if i goes to neither type of preschool. The ζit shocks

are zero mean and idiosyncratic; we suppose that each subject i expects EipYiptqq “ kt`mipt.

Preference shocks depend positively on expected grades:

uit “ ai ` biEipYiptqq ` εit “ ai ` bikt ` bimipt ` εit,

with bi ą 0.

Let us define vit “ uit ´ uin; ηit “ εit ´ εin; and dt “ kt ´ kn for t “ c, h. With this

specification, we have

vit “ bidt ` bimipt ` ηit.

We assume that bi, mi, and the random vectors pηic, ηihq and pζin, ζic, ζihq are mutually

independent.

We will use the following lemma:

Lemma 2. Let Apηic, ηin, biq and Bpηic, ηin, biq be random subsets of R such that

supApηic, ηin, biq ď inf Bpηic, ηin, biq

with probability one. Then for t “ c, h,

EpYiptq | mi P Apηic, ηin, biqq ď EpYiptq|mi P Bpηic, ηin, biqq.

Proof of Lemma 2. Take t P tc, hu. Since EpYiptq|mi “ mq “ kt ` mpt, it is an increas-

ing function of m. Fix pηic, ηih, biq; obviously, the distribution of mi conditional on mi P

Bpηic, ηin, biq first-order stochastically dominates that of mi conditional on mi P Apηic, ηin, biq.

Therefore

EpYiptq | mi P Apηic, ηin, biq, ηic, ηih, biq ď EpYiptq | mi P Bpηic, ηin, biq, ηic, ηih, biq.

Taking the expectation over pηic, ηih, biq completes the proof.
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B.1 The Binary Instrument Case

In Section 4.2, subjects who are assigned z “ 1 receive a Head Start offer; those with z “ 0

do not. The complier group Cch has

U c ` vic ě maxp0, Uh ` vihq,

Ūh ` vih ě maxp0, U c ` vicq.

and the complier group Cnh has

0 ě maxpU c ` vic, Uh ` vihq,

Ūh ` vih ě maxp0, U c ` vicq.

Note that vic ě ´U c in Cch and vic ď ´U c in Cnh. Since vic “ bidc`bimipc`ηic and pcbi ą 0,

it follows that for given pηic, ηih, biq, mi ě mj for any i P Cch and j P Cnh. Therefore we can

apply Lemma 2 with t “ h to obtain

EpYiphq|i P Cchq ě EpYiphq|i P Cnhq,

which is our version of positive selection in the binary case.

B.2 The Ternary Instrument Case

In our setup in Section 4.3, subjects who are assigned z “ 1 receive a Head Start offer, and

those who are assigned z “ 2 are offered admission in another preschool; those with z “ 0

receive neither.

First note that under our assumptions,

EpYipnq | ηic, ηih, biq “ kn

is constant. Therefore, trivially,

EpYipnq|i P C̃nhcq ě EpYipnq|i P C̃nnnq.

Now let us consider the response-groups C̃n˚c and C̃chc. C̃n˚c is defined by the inequalities

(B.1) Ūc ` vic ą 0 ą maxpUh ` vih, U c ` vicq;
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and C̃chc is defined by the inequalities

(B.2) Ūh ` vih ą U c ` vic ą maxpUh ` vih, 0q.

(B.1) implies that vic “ bidc` bimipc` ηic ă ´U c, while (B.2) implies the reverse inequality.

Here also, applying Lemma 2 with t “ c directly gives the conclusion:

EpYipcq|i P C̃n˚cq ď EpYipnq|i P C̃chcq.
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Mourifié, I., and Y. Wan (2017): “Testing Local Average Treatment Effect Assumptions,”
Review of Economics and Statistics, 99(2), 305–313.
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Online Appendices to “Treatment Effects with Targeting In-

struments”

C Proofs for Section 3.4

Let us first translate Kirkeboen, Leuven, and Mogstad’s (2016) assumptions in our notation

to show that their assumptions are equivalent to strict one to one targeting.

KLM impose the following in their Assumption 4:

• if Tip0q “ 1 then Tip1q “ 1

• if Tip0q “ 2 then Tip2q “ 2.

This can be viewed as a monotonicity assumption. It excludes the twelve response groups

C10˚, C12˚, C2˚0, and C2˚1.

Their Proposition 2 proves point-identification of response-groups when one of three

alternative assumptions is added to their Assumption 4. We focus here on the irrelevance

assumption in their Proposition 2 (iii), which is the weakest of the three and the one their

application relies on. In our notation, it states that:

• if (Tip0q ‰ 1 and Tip1q ‰ 1), then (Tip0q “ 2 iff Tip1q “ 2)

• if (Tip0q ‰ 2 and Tip2q ‰ 2), then (Tip0q “ 1 iff Tip2q “ 1).

These complicated statements can be simplified. Take the first part. If both Tip0q and Tip1q

are not 1, then they can only be 0 or 2. Therefore we are requiring Tip0q “ Tip1q. Applying

the same argument to the second part, the irrelevance assumption becomes:

• if (Tip0q ‰ 1 and Tip1q ‰ 1), then Tip0q “ Tip1q

• if (Tip0q ‰ 2 and Tip2q ‰ 2), then Tip0q “ Tip2q.

It therefore excludes the response-groups C02˚, C20˚, C0˚1, and C1˚0. The response-group

C021 appears twice in this list; and four other response-groups were already ruled out by

Assumption 4. The reader can easily check that the 33
´ 12´ p11´ 4q “ 8 response-groups

left are exactly the same as in our Figure 4.

Proof of Proposition 9. The moment conditions that define β0, β1 and β2 are

(C.1) E rpYi ´ β0 ´ β111pTi “ 1q ´ β211pTi “ 2qq 11pZi “ zqs “ 0

i



for z “ 0, 1, 2.

Using counterfactual notation, we write

(C.2) Yi “ Yip0q ` pYip1q ´ Yip0qq11pTi “ 1q ` pYip1q ´ Yip0qq11pTi “ 2q,

which allows us to write Equation (C.1) as

(C.3) E rpYip0q ´ β0 ` bip1q11pTi “ 1q ` bip2q11pTi “ 2qq 11pZi “ zqs “ 0,

where biptq ” Yiptq ´ Yip0q ´ βt for t “ 1, 2.

Now since

11pTi “ tq “ 11pTip0q “ tq ` p11pTip1q “ tq ´ 11pTip0q “ tqq11pZi “ 1q

` p11pTip2q “ tq ´ 11pTip0q “ tqq11pZi “ 2q,

we can expand

rYip0q ´ β0 ` bip1q11pTi “ 1q ` bip2q11pTi “ 2qs ˆ 11pZi “ zq

“ rYip0q ´ β0 ` bip1q11pTip0q “ 1q ` bip2q11pTip0q “ 2q

`bip1qp11pTipzq “ 1q ´ 11pTip0q “ 1qq ` bip2qp11pTipzq “ 2q ´ 11pTip0q “ 2qqs ˆ 11pZi “ zq.

Since Zi is independent of tYiptq, Tipzq : t, z “ 0, 1, . . . , T ´ 1u, all of the terms that multiply

11pZi “ zq are independent of it. It follows that for z “ 0, 1, 2,

E rYip0q ´ β0 ` bip1q11pTip0q “ 1q ` bip2q11pTip0q “ 2q

`bip1qp11pTipzq “ 1q ´ 11pTip0q “ 1qq ` bip2qp11pTipzq “ 2q ´ 11pTip0q “ 2qqs “ 0.

When z “ 0, the second line is zero; therefore

E pYip0q ´ β0 ` bip1q11pTip0q “ 1q ` bip2q11pTip0q “ 2qq “ 0.

The other two equations become

E pbip1qp11pTipzq “ 1q ´ 11pTip0q “ 1qq ` bip2qp11pTipzq “ 2q ´ 11pTip0q “ 2qqq “ 0

ii



for z “ 1, 2. Remembering that biptq “ Yiptq ´ Yip0q ´ βt for t “ 1, 2, we obtain

E rpYip1q ´ Yip0qqp11pTipzq “ 1q ´ 11pTip0q “ 1qq ` pYip2q ´ Yip0qqp11pTipzq “ 2q ´ 11pTip0q “ 2qqs

“ β1Ep11pTipzq “ 1q ´ 11pTip0q “ 1qq ` β2Ep11pTipzq “ 2q ´ 11pTip0q “ 2qq.

Proposition 9 follows after noting that given Table 4,

• the variable 11pTipzq “ 1q ´ 11pTip0q “ 1q is 11pi P C1q for z “ 1 and ´11pi P C112q for

z “ 2;

• the variable 11pTipzq “ 2q ´ 11pTip0q “ 2q is 11pi P C2q for z “ 2 and ´11pi P C212q for

z “ 1.

Proof of Corollary 4. Solving the system of equations in Proposition 9 gives, after elementary

calculations,

β1D “ Prpi P C212q rE ppYip2q ´ Yip0qq11pi P C2qq ´ E ppYip1q ´ Yip0qq11pi P C112qqs

` Prpi P C2q rE ppYip1q ´ Yip0qq11pi P C1qq ´ E ppYip2q ´ Yip0qq11pi P C212qqs

“ Prpi P C1qPrpi P C2qE pYip1q ´ Yip0q|i P C1q ´ Prpi P C112qPrpi P C212qE pYip1q ´ Yip0q|i P C112q

` Prpi P C212qPrpi P C2q rE pYip2q ´ Yip0q|i P C2q ´ E pYip2q ´ Yip0q|i P C212qs .

The difference of treatment effects in the last line is simply D2; note that it is multiplied by

a non-negative term. Suppose for instance that D1,D2 ě 0. Then

β1D

ě Prpi P C1qPrpi P C2qE pYip1q ´ Yip0q|i P C1q ´ Prpi P C112qPrpi P C212qE pYip1q ´ Yip0q|i P C112q .

(C.4)

Moreover, it is easy to prove the following: define r “ pαa ´ βbq{pa ´ bq with a, b ě 0 and

a ‰ b. Then

1. if pα ´ βq and pa´ bq have the same sign, r ě maxpα, βq

2. if pα ´ βq and pa´ bq have different signs, r ď minpα, βq.
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Now take

a “ Prpi P C1qPrpi P C2q

b “ Prpi P C112qPrpi P C212q

α “ E pYip1q ´ Yip0q|i P C1q

β “ E pYip1q ´ Yip0q|i P C112q .

Note that a and b are non-negative, and a ´ b “ D ‰ 0. Suppose that D ą 0 so that

Equation (C.4) becomes β1 ě r. Since α ´ β “ D1 ě 0, we can apply result 1 and we get

β1 ě maxpα, βq “ α “ E pYip1q ´ Yip0q|i P C1q .

If on the other hand D is negative, then we have β1 ď r and since D and D1 have different

signs result 2 gives

β1 ď minpα, βq “ β

and a fortiori β1 ď α.

Similar arguments apply to β2, as well as to the the case when D1 and D2 are non-

positive.

D Revisiting the 2 ˆ 3 and 3 ˆ 3 Models via Heckman and

Pinto (2018)

D.1 Notation

We first adapt Heckman and Pinto (2018, HP hereafter)’s notation to our framework. As in

the main text, we focus on identifying the probabilities of the various response groups Prpi P

Cq and the group average outcomes EpYiptq|i P Cq. The following population quantities are

directly identified from data for all treatment values t:

PZptq “ pP pT “ t | Z “ zqqzPZ ,

QZptq “ pE pY 1pT “ tq | Z “ zqqzPZ .

We also define PZ “ pPZ ptqqtPT .

We choose an arbitrary ordering pC1, . . . , CS
q of the S non-empty response groups and

we define the S dummy variables csi “ 1pi P Cs
q. The response vector S is tc1, . . . , cSu.
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With this notation, our main objects of interest are

PS “ ES

QSptq “ E pY ptqSq for t P T ,

from which we obtain Prpi P Cs
q “ P s

S and EpYiptq|i P Cs
q “ Qs

Sptq{P
s
S .

As in HP, Bt denotes a binary matrix with dimension |Z| ˆ S whose element in row z

and column s equals 1 if response group Cs has Ti “ t when Zi “ z, and zero otherwise.

Finally, let B be the binary matrix of dimension p|Z| ¨ |T |q ˆ S generated by stacking the

matrices Bt vertically: B “
“

B1
0, . . . ,B

1
|T |´1

‰1
.

D.2 Theorem T-2 in HP

Let M : denote the Moore-Penrose pseudo-inverse of a matrix M . We define

Kt “ IS ´B
:
tBt and K “ IS ´B:B,

where IS denotes the identity matrix of dimension S. Note that K and Kt are orthogonal

projection matrices in RS that only depend on the binary matrices B and Bt. Theorem T-2

in HP shows that

PS “ B:PZ `Kλ,(D.1)

QSptq “ B
:
tQZptq `Ktλ̃,(D.2)

where λ and λ̃ are arbitrary S-dimensional vectors.

D.3 Identification in the 2ˆ 3 model

We can now re-derive our identification results for the 2 by 3 model using the theorems

in HP. To do so, we order the response-types as tC00, C11, C22, C01, C21u. Then the binary
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matrices B0,B1, and B2 are

B0 “

«

1 0 0 1 0

1 0 0 0 0

ff

,

B1 “

«

0 1 0 0 0

0 1 0 1 1

ff

,

B2 “

«

0 0 1 0 1

0 0 1 0 0

ff

,

and

B “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 1 0 1 1

0 0 1 0 1

0 0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It is easy to see that B has full column rank; it follows that B:B “ I6 and K is the 6 by 6

matrix with all elements zero. Therefore by Theorem T-2 in HP (see equation (D.1) above),

PS is point-identified as PS “ B:PZ .

Since

B: “ 1

6

»

—

—

—

—

—

—

–

1 5 1 ´1 1 ´1

´1 1 5 1 ´1 1

1 ´1 1 ´1 1 5

4 ´4 ´2 2 ´2 2

´2 2 ´2 2 4 ´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

this is not very transparent, however. To derive our identification results, we use (D.2)

instead. Note that the equation QSptq “ B
:
tQZptq `Ktλ̃ holds for any function of Y ptq. If

we take it to be a constant function of Y ptq, we get QSptq “ ES “ PS and QZptq “ PZptq,

so that (D.2) boils down to

(D.3) PS “ B
:
tPZptq `Ktλ̃ for all values of t.

vi



Now

B:

0 “

»

—

—

—

—

—

—

–

0 1

0 0

0 0

1 ´1

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK0 “

»

—

—

—

—

—

—

–

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

B:

1 “

»

—

—

—

—

—

—

–

0 0

1 0

0 0

´1{2 1{2

´1{2 1{2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK1 “

»

—

—

—

—

—

—

–

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1{2 ´1{2

0 0 0 ´1{2 1{2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

and

B:

2 “

»

—

—

—

—

—

—

–

0 0

0 0

0 1

0 0

1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK2 “

»

—

—

—

—

—

—

–

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let pesqs“1,...,5 denote the standard basis vectors in R5. If e1sKt “ 0, then (D.3) point-

identifies Prpi P Cs
q “ e1sPS “ e

1
sB

:
tPZptq. Clearly,

e11K0 “ e
1
4K0 “ e

1
2K1 “ e

1
3K2 “ e

1
4K2 “ 0;

this reproduces our identification results for PS in Proposition 5:

PS “
´

e11B
:

0PZp0q, e
1
2B

:

1PZp1q, e
1
3B

:

2PZp2q, e
1
4B

:

0PZp0q, e
1
5B

:

2PZp2q
¯1

.
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Returning to the counterfactual outcomes Y ptq, the same argument results in Proposition 6:

E pYip0q ¨ 1 ri P C00sq “ e
1
1B

:

0QZp0q,

E pYip1q ¨ 1 ri P C11sq “ e
1
2B

:

1QZp1q,

E pYip2q ¨ 1 ri P C22sq “ e
1
3B

:

2QZp2q,

E pYip0q ¨ 1 ri P C01sq “ e
1
4B

:

0QZp0q,

E pYip2q ¨ 1 ri P C21sq “ e
1
5B

:

2QZp2q.

We conclude that while the first part of Theorem T-2 in HP (i.e., PS “ B:PZ ` Kλ) is

useful to determine the degrees of identification by checking the rank of B, it does not yield

the most constructive form of identification. To get the objects of interest, it is better to

invoke the second part of Theorem T-2 (i.e., QSptq “ B
:
tQZptq `Ktλ̃). Note that since the

2ˆ 3 model satisfies the unordered monotonicity assumption, we could also obtain the same

results using Theorem T-6 in HP.

D.4 Identification in the 3ˆ 3 model

We now turn to our 3 by 3 model. We sort the response-types as

tC000, C111, C222, C010, C002, C012, C112, C212u .

Now

B0 “

»

—

–

1 0 0 1 1 1 0 0

1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0

fi

ffi

fl

,

B1 “

»

—

–

0 1 0 0 0 0 1 0

0 1 0 1 0 1 1 1

0 1 0 0 0 0 0 0

fi

ffi

fl

,

B2 “

»

—

–

0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 1 0 1 1 1 1

fi

ffi

fl

.
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Note that

B:

0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´0.25 0.5 0.5

0 0 0

0 0 0

0.25 ´0.5 0.5

0.25 0.5 ´0.5

0.75 ´0.5 ´0.5

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.25 0 0 ´0.25 ´0.25 0.25 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

´0.25 0 0 0.25 0.25 ´0.25 0 0

´0.25 0 0 0.25 0.25 ´0.25 0 0

0.25 0 0 ´0.25 ´0.25 0.25 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let pesqs“1,...,8 denote the standard basis vectors in R8. SinceK0 has no zero column, none of

the e1sK0 is zero and the argument in Section D.3 show that no population share Prpi P Cs
q

is point-identified by B:

0PZp0q. On the other hand,

B:

1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0

0 0 1

0 0 0

´1{3 1{3 0

0 0 0

´1{3 1{3 0

1 0 ´1

´1{3 1{3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 2{3 0 ´1{3 0 ´1{3

0 0 0 0 1 0 0 0

0 0 0 ´1{3 0 2{3 0 ´1{3

0 0 0 0 0 0 0 0

0 0 0 ´1{3 0 ´1{3 0 2{3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

so that e12K1 “ e17K1 “ 0, which point-identifies the population shares of C111 and C112.

Similarly,

B:

2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0

0 0 0

0 1 0

0 0 0

´1{3 0 1{3

´1{3 0 1{3

´1{3 0 1{3

1 ´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñK2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2{3 ´1{3 ´1{3 0

0 0 0 0 ´1{3 2{3 ´1{3 0

0 0 0 0 ´1{3 ´1{3 2{3 0

0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and e13K2 “ e
1
8K2 “ 0 so that the shares of C222 and C212 are point-identified. On the other

hand, the shares of C010, C002, and C012 are not identified. The results in Propositions 7
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and 8 follow.

Finally, note that B0 has the following 2ˆ 2 sub-matrix:

¨

˚

˝

rC010 C002s

rz “ 1s 1 0

rz “ 2s 0 1

˛

‹

‚

,

where we indicate the relevant columns and rows of matrix B0. Given this pattern, Theorem

T-3 and Remark 6.3 in Heckman and Pinto (2018) imply that the unordered monotonicity

assumption is not satisfied for the 3ˆ3 model. As mentioned in the main text, this , switching

from instrument value from 1 to 2 causes observations in C010 to move to treatment 0, while

those in C002 move out of treatment 0. Recall that the ARUM structure rules out “direct

two-way flows” (that is, instrument values 1 and 2, respectively, make treatments 1 and 2

more favorable for everyone). However, the 3ˆ 3 model allows for “indirect two-way flows”,

where treatment 0 is not targeted by either z “ 1 or z “ 2. Unordered monotonicity is more

restrictive than ARUM in that it rules out both direct and indirect two-way flows.

E The 3ˆ 3 Model of Pinto (2021)

Pinto (2021) has proposed a 3ˆ 3 model of the Moving to Opportunity (MTO) experiment.

Here we use our framework to identify response-group probabilities and several counterfactual

averages.

We follow the notation in Pinto (2021). Let Z “ tzc, ze, z8u and T “ tth, tl, tmu, where

• zc refers to control families, ze those who received the experimental voucher, and z8

those who received Section 8 voucher;

• th refers to families who did not move and chose high-poverty neighborhoods, tl those

who moved to low-poverty neighborhoods, and tm those who moved to medium-poverty

neighborhoods.

There are 7 response types in Pinto (2021): the three always-taker groups Chhh, Clll, and

Cmmm, and four complier groups:

• Chlm: families who choose high-poverty without vouchers, low-poverty with the exper-

imental voucher, and medium-poverty with Section 8 vouchers (Pinto calls this group

full-compliers);

• Chll: families who choose high-poverty without vouchers, low-poverty with either

voucher;
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• Cmlm: families who choose medium-poverty without the experimental voucher, low-

poverty with it;

• Chhm: families who choose high-poverty without Section 8 voucher, medium-poverty

with it.

Figure 8: MTO

uil ´ uih

uim ´ uih

Chlm

Chll

Chhm

Chhh
Clll

Cmmm Cmlm

PcPe

P8

The seven response groups are illustrated in Figure 8 and in Table 6.

Table 6: Response Groups in MTO

Tipzq “ th Tipzq “ tl Tipzq “ tm

z “ zc Chhh
Ť

Chhm
Ť

Chlm
Ť

Chll Clll Cmmm
Ť

Cmlm

z “ ze Chhh
Ť

Chhm Clll
Ť

Cmlm
Ť

Chlm
Ť

Chll Cmmm

z “ z8 Chhh Clll
Ť

Chll Cmmm
Ť

Chhm
Ť

Chlm
Ť

Cmlm

Proposition 10 (Response-group probabilities in MTO). The following probabilities are iden-
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tified:

PrpChhhq “ P pth|z8q,

PrpClllq “ P ptl|zcq,

PrpCmmmq “ P ptm|zeq,

PrpChhmq “ P pth|zeq ´ P pth|z8q,

PrpChllq “ P ptl|z8q ´ P ptl|zcq,

PrpCmlmq “ P ptm|zcq ´ P ptm|zeq,

PrpChlmq “ 1´ P pth|zeq ´ P ptl|z8q ´ P ptm|zcq.

(E.1)

The model has the following testable implications:

P pth|zeq ě P pth|z8q,

P ptl|z8q ě P ptl|zcq,

P ptm|zcq ě P ptm|zeq,

1 ě P pth|zeq ` P ptl|z8q ` P ptm|zcq.

(E.2)

The following proposition identifies a number of group average outcomes.

Proposition 11 (Identification in MTO). The following group average outcomes are point-
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identified:

E rYipthq|i P Chhhs “
Ēz8pthq

P pth|z8q
,

E rYiptlq|i P Chhhs “
Ēzcptlq

P ptl|zcq
,

E rYiptmq|i P Cmmms “
Ēzeptmq

P ptm|zeq
,

E rYipthq|i P Chhms “
Ēzepthq ´ Ēz8pthq

P pth|zeq ´ P pth|z8q
,

E rYiptlq|i P Chlls “
Ēz8ptlq ´ Ēzcptlq

P ptl|z8q ´ P ptl|zcq
,

E rYiptmq|i P Cmlms “
Ēzcptmq ´ Ēzeptmq

P ptm|zcq ´ P ptm|zeq
,

E rYipthq|i P Chll
Ť

Chlms “
Ēzcpthq ´ Ēzepthq

P pth|zcq ´ P pth|zeq
,

E rYiptlq|i P Cmlm
Ť

Chlms “
Ēzeptlq ´ Ēz8ptlq

P ptl|zeq ´ P ptl|z8q
,

E rYiptmq|i P Chhm
Ť

Chlms “
Ēz8ptmq ´ Ēzcptmq

P ptm|zeq ´ P ptm|zcq
.

The proofs of Propositions 10 and 11 are straightforward; we omit the details.

F The MVPF of Extending Head Start

Recall our ternary instrument setting:

• Z “ 0 means no offer of admission to Head Start or to another preschool;

• Z “ 1 means an offer of admission in Head Start only;

• Z “ 2 means an offer of admission in another preschool only.

Z “ 0 does not preclude other ways to get into h or c, Z “ 1 does not preclude other ways

to get into c, and Z “ 2 does not preclude other ways to get into h.

We denote ppzq the probability that Z “ z. We are considering an increase in pp1q:

more offers of admission to Head Start. As pp1q increases, we also increase pp2q to maintain

the number of slots in alternative preschools constant. Like Kline and Walters (2016), we

assume that this increase in pp2q only brings into alternative preschools children that would

otherwise not attend preschools.
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The MVPF is the ratio of the benefits dB of increasing pp1q by dpp1q to its budgetary

costs dC. We have B “ p1 ´ τqpEY , where p is the pre-tax return to expected scores, and

τ the tax rate. Hence

dB “ p1´ τqpdEY.

The budget costs are the subsidies (φj per student) to Head Start and other preschools,

minus the tax receipts:

C “ φh PrpD “ hq ` φc PrpD “ cq ´ τpEY.

Therefore

MVPF “
p1´ τqpdEY {dpp1q

φhdPrpD “ hq{dpp1q ´ τpdEY {dpp1q
.

In order to compute the MVPF, we start by evaluating the marginal return in expected

outcomes dEY {dpp1q.

F.1 The Expected Change in Outcomes

Since

PrpD “ cq “ PrpDp0q “ cq `
ÿ

z“1,2

ppzqpPrpDpzq “ cq ´ PrpDp0q “ cqq

to keep it constant we must have

dpp2q

dpp1q
“

PrpDp0q “ cq ´ PrpDp1q “ cq

PrpDp2q “ cq ´ PrpDp0q “ cq
.

Dp0q “ c implies Dp2q “ c since Z “ 2 targets c. Therefore PrpDp2q “ cq ´ PrpDp0q “ cq “

PrpDp2q “ c,Dp0q ‰ cq. Since Z “ 1 targets h, Dp1q “ c implies Dp0q “ c; and Dp0q “ c

implies that Dp1q can only be c or h. This gives us

PrpDp0q “ cq ´ PrpDp1q “ cq “ PrpDp0q “ c,Dp1q ‰ cq “ PrpDp0q “ c,Dp1q “ hq,

which is the proportion of the group Cch in the 2ˆ 3 model. Therefore

dpp2q

dpp1q
“

Prpi P Cchq

PrpDp2q “ c,Dp0q ‰ cq
.

The resulting change in expected scores is

dEY “ dpp1qEpY pDp1qq ´ Y pDp0qq ` dpp2qEpY pDp2qq ´ Y pDp0qq.
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Now an offer of Head Start (Z “ 1) can only move children to Head Start: Dp1q ‰ Dp0q

implies that Dp1q “ h. As a consequence,

EpY pDp1qq ´ Y pDp0qq “ EpY phq ´ Y pDp0qq|Dp1q “ h,Dp0q ‰ hq ˆ PrpDp1q “ h,Dp0q ‰ hq

and by the same argument,

EpY pDp2qq ´ Y pDp0qq “ EpY pcq ´ Y pDp0qq|Dp1q “ c,Dp0q ‰ cq ˆ PrpDp2q “ c,Dp0q ‰ cq.

Putting things together gives

dEY
dpp1q

“ PrpDp1q “ h,Dp0q ‰ hqˆ

pEpY phq ´ Y pDp0qq|Dp1q “ h,Dp0q ‰ hq ` EpY pcq ´ Y pDp0qq|Dp1q “ c,Dp0q ‰ cq ˆ Scq

“ PrpDp1q “ h,Dp0q ‰ hq ˆ pLATEh ` ScLATEcq ,

where

Sc “
Prpi P Cchq

PrpDp1q “ h,Dp0q ‰ hq

is, as in the text of the paper, the proportion of the h-compliers that come from c.

F.2 The MVPF

We still need to compute the denominator dPrpD “ hq{dpp1q. It is

pPrpDp1q “ hq ´ PrpDp0q “ hqq ´
dpp2q

dpp1q
pPrpDp0q “ hq ´ PrpDp2q “ hqq.

The first term in the difference is PrpDp1q “ h,Dp0q ‰ hq, the proportion of h-compliers.

The second term equals

Prpi P Cchq

PrpDp2q “ c,Dp0q ‰ cq
pPrpDp0q “ hq ´ PrpDp2q “ hqq.

Since Z “ 2 targets c, the difference PrpDp0q “ hq´PrpDp2q “ hq represents the proportion

of children who would get to Head Start under Z “ 0 and leave it when offered admission

to another preschool (Z “ 2) as pp1q increases. Since these children can only have Dp2q “ c,

our assumption rules out this group and the second term of the difference is zero.
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As in Kline and Walters (2016), LATEc “ LATEnc; we end up with

MVPF “
p1´ τqp pLATEh ` ScLATEncq

φh ´ τp pLATEh ` ScLATEncq
,

which happens to coincide with the formula used by Kline and Walters (2016).

G An Example of Positive Codependence

In this section, we provide details for the example that satisfies the positive codependence

assumption in Assumption 7. Recall that we have considered the example:

EpYip2q|ui0, ui1, ui2q ´ EYip2q “ a0ui0 ` a1ui1 ` a2ui2,

where a0, a1, and a2 are some constants. Rewrite

EpYip2q|ui0, ui1, ui2q ´ EYip2q “ pa0 ` a1 ` a2qui0 ´ a1pui2 ´ ui1q ` pa1 ` a2qpui2 ´ ui0q

“ pa0 ` a1 ` a2qui0 ´ a1ζi ` pa1 ` a2qξi

“ EpYip2q|ui0, ζi, ξiq ´ EYip2q.

Hence,

EpYip2q|ζi, ξiq ´ EYip2q “ pa0 ` a1 ` a2qEpui0|ζi, ξiq ´ a1ζi ` pa1 ` a2qξi.

Also, recall that we have assumed that pui0, ui1, ui2q are jointly normal and mutually uncor-

related with the common mean 0 and the common variance 1. Thus,

¨

˚

˝

ui0

ζi

ξi

˛

‹

‚

“

¨

˚

˝

1 0 0

0 ´1 1

´1 0 0

˛

‹

‚

¨

˚

˝

ui0

ui1

ui2

˛

‹

‚

„ N

»

—

–

¨

˚

˝

0

0

0

˛

‹

‚

,

¨

˚

˝

1 0 ´1

0 2 1

´1 1 2

˛

‹

‚

fi

ffi

fl

,

which implies that

Epui0|ζi, ξiq “
´

0 ´1
¯

˜

2 1

1 2

¸´1 ˜

ζi

ξi

¸

“
1

3
ζi ´

2

3
ξi.
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Combining all together yields

EpYip2q|ζi, ξiq ´ EYip2q “ pa0 ` a1 ` a2q

ˆ

1

3
ζi ´

2

3
ξi

˙

´ a1ζi ` pa1 ` a2qξi

“
a2 ` a0 ´ 2a1

3
ζi `

a2 ` a1 ´ 2a0

3
ξi

Thus, in this example, Assumption 7 holds if and only if

a2 ` a0 ě 2a1 and a2 ` a1 ě 2a0.
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