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Abstract

This paper develops a novel approach that leverages the information contained
in expectations datasets to derive empirical measures of beliefs regarding eco-
nomic shocks and their dynamic effects. Utilizing a panel of expectation re-
visions for a single variable across multiple horizons, we implement a time-
varying factor model to nonparametrically estimate the latent shocks and their
associated impulse responses at every point in time. The method is designed
to accommodate small sample sizes and relies on weak assumptions, requiring
no explicit modeling of expectations or assumptions about agents’ forecasting
models, information sets, or rationality. Our empirical application to consen-
sus inflation expectations identifies a single perceived shock that closely aligns
with observed inflation surprises. The time-varying impulse responses indicate
a significant decline in the perceived persistence of this shock, suggesting that
inflation expectations have become more “anchored” over time.
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1 Introduction

Data on expectations are increasingly recognized as crucial for understanding eco-
nomic dynamics and the formation of beliefs. This paper contributes to the literature
by demonstrating how the horizon dimension in expectations datasets, combined with
a focus on expectation revisions, can be leveraged to derive empirical measures of
key economic quantities: the shocks perceived by agents and their corresponding
dynamic effects (the impulse responses).

The necessary data are a balanced panel of expectation revisions for a single vari-
able across multiple future horizons and over time. These revisions can be obtained
from expectations datasets that encompass both time-series and horizon dimensions,
which are widely available in economics. Examples of such datasets include: sur-
veys of expectations (e.g., Blue Chip Analysts, Survey of Professional Forecasters,
I/B/E/S Earning Forecasts, Survey of Firms’ Inflation Expectations, University of
Michigan Survey of Consumers), market-based expectations (e.g., Treasury Inflation-
Protected Securities break-even inflation, inflation swap contracts, currency futures,
implied volatility from option contracts), and combinations of surveys and/or market-
based expectations (e.g., Cleveland Fed inflation expectations).1

At the core of this paper lies a simple yet powerful idea: fitting a factor model
with time-varying loadings to the panel of expectation revisions allows us to recover
two latent components at any given time. First, we extract a low-dimensional vector
of independent common factors - representing the shocks that drive agents’ revisions
across all horizons. Second, we extract the corresponding loadings - representing
agents’ beliefs about the dynamic effects of each shock, which can vary over time.
A key challenge we face is that existing nonparametric econometric methods are
inadequate in our context, where the small horizon dimension typical of the data
leads to small-sample bias. We favor nonparametric methods for their ability to
avoid additional structure and assumptions, and we propose a novel econometric
approach specifically designed to address these issues.

1 A revision is defined as the difference between the expectation of a variable at a future horizon
(e.g., inflation in May) generated in the current period (e.g., April) and the expectation of the same
variable (inflation in May) produced in the preceding period (e.g., March).
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Fitting a factor model to expectation revisions may initially appear arbitrary;
however, we demonstrate that such a factor structure emerges naturally from vari-
ous theories of expectation formation. For instance, when a rational agent utilizes a
Structural Vector Moving Average (SVMA) model to generate expectations (see, e.g.,
Plagborg-Møller, 2019), the expectation revisions for a given variable across multi-
ple horizons exhibit a factor structure without idiosyncratic errors, with factors and
loadings corresponding to the structural shocks and structural impulse responses,
respectively.2 Similarly, a dynamic factor model for the target variable inherently
suggests a factor structure for the revisions. Furthermore, certain theories of infor-
mation rigidities, such as the noisy information model in Coibion and Gorodnichenko
(2015), also imply a factor structure for expectation revisions without idiosyncratic
errors, where the loadings represent the model-implied impulse responses and the
factor is the agent’s perceived shock after filtering out the noise.

To illustrate one possible use of our method, we apply it to extract historical
perceived shocks and impulse responses related to inflation. We construct a term
structure of consensus expectation revisions across various horizons by integrating
two data sources: the Blue Chip Analysts for short- and medium-term horizons and
the Cleveland Fed expectations for long-term horizons. Our key findings are three-
fold. First, a single perceived shock drives inflation revisions across all horizons and
is highly correlated with inflation surprises, particularly those from Stock and Wat-
son (2007)’s model. However, the extracted impulse responses diverge significantly
from this model’s predictions. Second, the perceived impulse responses exhibit time-
varying shapes, showing a noticeable secular decline in perceived shock persistence.
Finally, we illustrate that our method can inform important policy questions, such as
whether shifts in long-term expectations signal beliefs in enduring effects of the shock
- indicative of deanchoring - or merely reflect the perception of a large shock. Subject
to the caveats of end-of-sample nonparametric estimation, our results suggest that
the large changes in long-term expectations observed in 2022 primarily resulted from
a large perceived shock rather than deanchoring.

2Note the potential to extract multiple shocks from expectations of only one of the variables in
the system.
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A key feature of our approach is its foundation on weak assumptions. By focusing
on revisions, we avoid the need to assume how agents form expectations, relying solely
on expectations data to extract beliefs about shocks and their dynamic effects. This
stands in contrast to the extensive literature on testing belief accuracy and rational-
ity, which utilizes ex-post data to construct forecast errors and imposes assumptions
regarding belief formation (e.g., the seminal paper by Coibion and Gorodnichenko,
2015 and the literature it spurred). Similarly, studies on ’belief distortions’ and their
impact on aggregate fluctuations (e.g., Bianchi et al., 2022, Enders et al., 2021) also
depend on forecast errors, necessitating assumptions about information sets and the
connection between expectations and fundamentals. Furthermore, we adopt a non-
parametric approach to estimate both shocks (via Principal Components Analysis, or
PCA) and time-varying impulse responses (allowing for smooth and flexible patterns
of temporal variation). Our methodology is robust to unmodeled serial correlation
in shocks and idiosyncratic errors, and it is specifically tailored to address the small
horizon dimension that is typical of expectations datasets.3

In terms of impulse responses, our method for deriving empirical measures of be-
liefs regarding the dynamic effects of shocks is, to our knowledge, a novel contribution
to the literature. The insights gained from perceived impulse responses can be valu-
able across various contexts, and engage with multiple strands of literature. First,
beliefs regarding the long-term effects of shocks are critical for central banks, and our
method can yield new insights into the anchoring of long-term inflation expectations
(e.g., Carvalho et al., 2023), such as those provided by our empirical application. Sec-
ond, our framework enables the documentation of new stylized facts related to the
perceived persistence of shocks and the shape of impulse response functions, which
can be instrumental in testing theories that link beliefs about shock persistence to
aggregate fluctuations (e.g. Blanchard et al., 2013). Third, the flexible nonpara-

3The core premise of this paper - fitting a time-varying factor model to expectation revisions
across horizons - could equally be approached through a parametric lens. For instance, one might
consider the Bayesian approach to factor models with time-varying loadings and stochastic volatility
by Del Negro and Otrok (2008). However, it is important to note that a parametric strategy requires
several crucial modeling decisions. These include modeling the serial correlation of both the factors
and idiosyncratic errors, specifying the nature of time variation, selecting prior distributions if a
Bayesian approach is employed, and addressing various identification and normalization challenges.
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metric nature of our approach challenges the conventional dichotomy of permanent
versus transitory shocks, allowing for a richer variety of impulse response shapes and
persistence patterns over time. For example, our empirical findings reveal impulse
response functions for inflation that are time-varying and differ markedly from those
predicted by the model in Stock and Watson (2007).

Our method also contributes to the literature on extracting empirical measures
of shocks by providing a rigorous econometric framework for shock extraction via
PCA that capitalizes on the horizon dimension of expectations data, even though it
is small. Our method not only corrects the small-sample biases of PCA methods,
but also facilitates the selection of the appropriate number of shocks. Furthermore,
our allowance for time-varying loadings results in the extraction of shocks that dif-
fer from those derived under constant loadings assumptions. A seminal paper in
this literature, Gürkaynak et al. (2005), extracts the first principal component from
changes in different measures of market-based expectations around monetary policy
announcements. Applied to this type of data, our approach can be seen as providing
a rigorous method that exploits the horizon dimension of the data.

A natural question to ask is whether the shocks extracted from expectations data
using the method proposed in this paper can be given a structural interpretation, e.g.,
be considered a policy shock. This presents a challenge similar to that encountered in
the literature on narrative measures of shocks - the need to disentangle policy shocks
from any other change in information and behavior that may occur between the
consecutive time periods underlying the revisions. Potential contamination of shocks
can exist even when revisions are computed within a narrow time window around
specific events such as monetary policy announcements (see, e.g., Miranda-Agrippino
and Ricco, 2021). While it is difficult to provide a general solution to this problem,
the method offers potential new avenues for identifying structural shocks. First, the
method allows for the recovery of multiple shocks that are independent of each other,
a key requirement for structural shocks. Second, the method recovers not only the
shocks but also their associated impulse responses, which, by design, have different
shapes (i.e., they are not collinear). The shapes of the impulse responses may provide
valuable information for assigning structural interpretations to the extracted shocks.
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For instance, if the analysis involves expectations for both price and quantity, and the
method identifies two shocks - one driving price and quantity in the same direction
and the other driving them in opposite directions - then the former can be interpreted
as a demand shock and the latter as a supply shock.

Our methodological contribution is the development of a procedure for PCA
in factor models with time-varying loadings and a small cross-sectional dimension.
Existing approaches (Motta et al., 2011 and Su and Wang, 2017) assume a large cross
section, but it is well-documented that PCA performs poorly in small samples due
to heteroskedasticity in idiosyncratic errors (e.g., Bai and Wang, 2016). We address
the problem by considering a finite-sample approach to PCA that accommodates
heteroskedasticity from the matrix completion literature in statistics (Zhang et al.,
2022) and adapting it to the context of time-varying loadings. We refer to this
method as time-varying Heteroskedastic PCA (tvHPCA). As with all factor models,
the extracted shocks and impulse responses are not separately identified. We address
this challenge by normalizing either the shocks or the impulse responses, depending
on which of the two objects is the primary interest of the analysis.

The intuition behind tvHPCA is simple: PCA under heteroskedasticity in small
samples leads to discrepancies between the estimated eigenvectors of the sample co-
variance matrix and the underlying factors. Under the assumption of cross-sectionally
uncorrelated idiosyncratic errors, the problem is with the diagonal of the sample co-
variance matrix. The solution is to iteratively substitute this diagonal with that of
the low-rank approximation of the sample covariance matrix. Our tvHPCA method
is easy to implement by applying the algorithm in Zhang et al. (2022) to a nonpara-
metrically estimated local (in time) covariance matrix of the expectation revisions.

The tvHPCA method is based on three key assumptions. First, as noted in
the previous paragraph, we assume that idiosyncratic errors in the factor model
for expectation revisions are uncorrelated across horizons. Although some theories
suggest a factor structure without these errors, practical issues - such as variations in
survey participation and data merging - can introduce measurement error. In such
cases, errors are plausibly uncorrelated.4

4Strong correlations would be captured by common factors, and if weak correlation is suspected,
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The second key assumption is the continuity of time-varying impulse responses
and a stable number of shocks over time, which facilitate the interpretation of shocks.
Our algorithm ensures continuity and determines the number of shocks using a local
version of the method by Onatski (2010), which also serves as validation of the sta-
bility assumption. Our modeling of time variation is common in the nonparametric
literature and is based on the assumption of local stationarity. This assumes that
expectation revisions are approximately stationary over short time intervals, thus
ruling out immediate changes due to, e.g., new information or policy shocks. Using
two-sided kernels for nonparametric estimation potentially raises concerns related
to the Lucas critique, as shocks may change agents’ behavior and affect local esti-
mates. Our assumption of local stationarity accommodates shock-induced behavioral
changes, provided these changes manifest slowly over time, with short bandwidths
helping to guard against contamination.5 While the horizon dimension of expec-
tations datasets is small, the typically large time dimension allows us to estimate
time variation in impulse responses nonparametrically. If the time dimension is also
small, the method can still be applied by assuming time-invariant impulse responses,
reducing it to the algorithm of Zhang et al. (2022).

The third key assumption is a standard one in the matrix completion literature,
referred to as “incoherence”, which is similar to the assumption of strong factors. We
investigate the implications of this assumption through simulations and identify the
worst-case scenario - calibrated to our empirical application - as one characterized
by a low signal-to-noise ratio (a measure that can be calculated in applications)
alongside a large proportion of zero impulse responses and rapidly decaying remaining
responses. In this context, although our ability to recover shocks and the average
bias of the estimated impulse responses remain largely unaffected, we do observe an
increase in bias for certain impulse response estimates.

increasing the number of horizons by merging datasets can help, as PCA is robust to weakly
correlated idiosyncratic errors in large cross-sections.

5While one-sided kernels could mitigate concerns about possible violations of local stationarity,
they introduce boundary biases. An informal diagnostic check for potential violations of local
stationarity could involve comparing results from two one-sided kernels, similar to techniques used
in regression discontinuity analysis. However, a formal investigation of this approach is beyond the
scope of this paper.
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One of the contributions of Zhang et al. (2022) is the demonstration that HPCA
not only performs well in simulations but also exhibits certain theoretical optimality
properties. However, these theoretical results depend on the assumptions of time-
invariant loadings and serially independent factors and idiosyncratic errors, which
appear overly restrictive in our context. Through a series of simulations, we show
that such stringent assumptions are in fact not necessary for the tvHPCA method
to perform well in realistic small-sample scenarios, aside from some performance de-
terioration at the sample boundaries (a common issue in nonparametric estimation).

In certain applications, obtaining confidence intervals for the extracted impulse
responses may be of interest, and we outline a procedure for doing so using the boot-
strap. However, an important caveat is that inference for PCA is known to perform
poorly in small samples (see, e.g., Maldonado and Ruiz, 2021 for a discussion on
confidence intervals for factors). Our simulations indicate that bootstrap confidence
intervals for impulse responses work well under serially uncorrelated shocks and id-
iosyncratic errors, though they tend to slightly undercover. The presence of serial
correlation in the shocks exacerbates this undercoverage issue. To our knowledge, the
literature lacks a proposal that ensures reliable finite-sample coverage of bootstrap
confidence intervals for factors and loadings under general conditions. Therefore,
until a satisfactory solution is identified, caution is warranted when interpreting con-
fidence intervals for perceived impulse responses to serially correlated shocks.

The paper is organized as follows. Section 2 outlines the methodology, presenting
the factor model idea, its link to theories of expectation formation, key assump-
tions, how to choose the number of shocks, estimation via the tvHPCA algorithm,
and bootstrap inference. Section 3 discusses the simulation results, while Section 4
presents the empirical application. Section 5 concludes, and the appendix addresses
bandwidth selection for nonparametric estimation.
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2 Methodology

2.1 Set-up and notation

The information required by our method is a (balanced) panel of expectation revisions
for one variable across a term structure of different horizons and over time. To fix
notation, denote by t the frequency at which the expectations are measured. At
each time t = 0, . . . , T we assume we have expectations of a target variable (denoted
simply by Yh) for a term structure of horizons h = 1, . . . , H. We allow for flexibility in
terms of the frequencies at which the expectations are produced and in the definition
of the target variable. The simplest case is when the expectations and the target
variable are based on the same frequency (e.g., monthly expectations of monthly
inflation) and Yh is the variable h months ahead, Yh = Yt+h. However, we can also
accommodate mixed frequencies (e.g., monthly expectations of quarterly inflation),
nowcasting (e.g., the first horizon is current-quarter inflation and t is a month within
the quarter) and unequally spaced horizons (e.g., h = 1, . . . , H could denote 1-, 2-
and 8-quarters ahead inflation). Also, Yh could be measured differently at different
horizons (e.g., one horizon could be one-quarter ahead inflation and another horizon
could be 5-year 5-year inflation).

Let Ŷh|t and Ŷh|t−1 denote the expectations of the same target variable Yh made
at times t and t − 1, respectively. We denote the expectation revision at time t for
the target variable at the h-th horizon as Xht = ∆Ŷh|t = Ŷh|t − Ŷh|t−1.6 Our panel
data is thus given by expectation revisions Xht for a set of horizons h = 1, ..., H and
over time periods t = 1, ..., T .

Throughout the paper we use the following notation: for a vector v and matrix
M , we denote by v′ and M ′ their transposes and ‖ · ‖ denotes the matrix spectral
norm.

6Some care must be applied to the construction of revisions in the mixed frequency case. E.g.,
if t is April and the first point in the term structure is current quarter inflation, the expectation at
t− 1 is the expectation for 1-quarter ahead inflation made in March.
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2.2 The idea: a factor model of expectation revisions

We model the expectation revisions across horizons h and over time t as a time-
varying factor model:

Xht = λ′htFt + eht, (1)

for t = 1, ..., T , h = 1, ..., H, where Ft = (F1t, F2t, . . . , Frt)
′ is a vector of r < H

independent latent factors, λht is a vector of factor loadings for the h-th horizon at
time t and eht is an idiosyncratic error with variance σ2

h,t. The model thus assumes
that there are a few common, latent factors that drive most of the comovements in
expectation revisions across horizons, with loadings (as well as error variances) that
are allowed to vary across horizons and over time.

At each time t, we interpret the independent latent factors Ft as the “perceived
shocks” and the corresponding loading λht for each horizon as the “perceived impulse
response” at that horizon, that is, the effect of the corresponding shock on the target
variable at the h-th horizon. A perceived impulse response function at time t is the
plot of λht as a function of h. Intuitively, the perceived shocks represent the drivers of
the expectation revisions at time t that were unanticipated at time t−1. As discussed
in the introduction, giving the shocks a structural interpretation generally requires
additional assumptions. However, we note that the factors are independent of each
other, so they satisfy one of the requirements for structural shocks. In addition,
in some applications it is possible that the information contained in the extracted
impulse responses can help give a structural interpretation to the extracted shocks.

Factor models have been extensively applied in economics and finance, see e.g.
Chamberlain (1983), Diebold et al. (2005), Stock and Watson (2016), and their
econometric properties have been studied by, e.g. Bai (2003), Stock and Watson
(2006), Bai et al. (2008), Choi (2012), Bai and Ng (2019). A key challenge in our
context is that the number of horizons H, i.e., the cross-sectional dimension in the
factor model in (1), is typically small in the datasets of expectations available to
economists. A main issue that arises in this context is the plausible presence of
heteroskedasticity in the idiosyncratic errors eht. Under additional assumptions (see
e.g. Bai, 2003, Bai, 2009), consistent estimates of both factors and loadings can
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be achieved if H is large. A recent literature in statistics has however highlighted
that, when H is finite, heteroskedastic errors can lead to inconsistent estimates of
the factors and loadings, see e.g. Florescu and Perkins (2016), Zhang et al. (2022).
In this paper we adapt the solution proposed in this literature to the general case of
time-varying factor models.

2.3 Relationship with theories of expectation formation

This section shows that the factor structure for expectation revisions is compatible
with some alternative theories of expectation formation. For simplicity, we assume
that the target variable is the variable at time t + h, Yh = Yt+h. Additionally,
we assume here that the model parameters are constant over time. However, the
examples could be adapted to incorporate time-varying parameters, provided the
variation is compatible with the assumption of local stationarity for the revisions, as
discussed in Section 2.4.3. For instance, one could allow for parameters that evolve
slowly, ensuring that there is effectively no temporal variation between periods t− 1

and t. It is easy to see that this type of time variation in parameters translates into
time varying loadings in the factor representation for the revisions.

2.3.1 Rational expectations and SVMA model

Suppose a representative agent uses a Structural Vector Moving Average (SVMA)
model to forecast the target variable Yt+h (See, e.g., Plagborg-Møller (2019), for how
a large class of economic models can be represented in this form). The model for the
target variable is thus one of the equations of the SVMA:

Yt = Θ(L)εt,

where εt is a vector of structural shocks and Θ(L) is a lag polynomial (for simplicity
here assumed to be of order greater than the number of horizonsH) whose coefficients
represent the structural impulse responses of the target variable to each structural
shock at the corresponding horizon.
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It is easy to see that in this case the expectation revision between times t−1 and
t for the target variable at the h-th horizon is given by

Xht = Ŷt+h|t − Ŷt+h|t−1 = θ′hεt,

where Ŷt+h|t is the conditional mean implied by the SVMA model. This implies a
factor structure for the revisions with no idiosyncratic errors, Xht = λ′htFt, where
the factors are the structural shocks, Ft = εt, and the loadings are the associated
structural impulse responses at horizon h, λht = θh.

We thus see that, if the agent uses a model that can be expressed as a SVMA,
our procedure can recover the latent vector of structural shocks and the structural
impulse responses. Note that we can in principle recover multiple structural shocks
from only observing the expectation revisions for one of the variables in the system
(provided the number of horizons is larger than the number of shocks).

2.3.2 Rational expectations and factor model

Factor models are frequently employed to model and forecast macroeconomic and
financial variables (see, e.g., Stock and Watson, 2002). For instance, interest rates
are typically represented using a factor model that captures the joint dynamics of
rates across various maturities (Diebold and Li, 2006). A factor model for the target
variable suggests a corresponding factor structure for the expectation revisions. For
example, consider the dynamic factor model

Yt = γ′βt + vt (2)

βt = Φβt−1 + εt.

The dynamic Nelson and Siegel model (see, e.g., Diebold and Li, 2006) for a specific
interest rate maturity Yt could be written in this form, with three latent factors in
the vector βt and a specific parameterization for γ that depends on the maturity.
Stock and Watson (2007)’s model of inflation is also a special case of (2), with βt
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scalar and γ = Φ = 1. The expectation for the target variable at horizon h is

Yt+h|t = γ′Φhβt,

which means that the revision of the expectation for Yt+h made between times t− 1

and t is given by
Xht = γ′Φh(βt − Φβt−1) = γ′Φhεt.

We thus once again obtain a factor structure for the revisions with no idiosyncratic
errors, Xht = λ′htFt, where the factors Ft = εt coincide with the shocks in the state
equation specifying the law of motion for βt and the loadings λ′ht = γ′Φh are the
impulse responses implied by the model. In this setting, therefore, our method can
recover the true impulse responses and can also back out the number of dynamic
factors in agents’ models by only observing how agents revise expectations for one
variable (e.g., one interest rate maturity) across different horizons.

2.3.3 Information rigidities

To see how existing theories of expectation formation with information rigidities
could give rise to a factor structure for expectation revisions, consider, e.g., the
noisy-information model in Coibion and Gorodnichenko (2015), where the target
variable follows an AR(1) process

Yt = ρYt−1 + εt,

with εt Gaussian white noise. Here the (single) true shock is εt and the true impulse
response at horizon h is given by ρh. The theory assumes that a representative agent
observes a noisy signal of Yt,

Zt = Yt + vt,
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with vt a Gaussian white noise process independent of εt. The agent forecasts using
the Kalman filter, so the expectation for the h-th horizon made at time t is

Ŷt+h|t = ρhŶt|t,

where
Ŷt|t = GZt + (1−G)Ŷt|t−1

and G is the Kalman gain, which captures the degree of information rigidity. The
revision is then given by

Xht = Ŷt+h|t − Ŷt+h|t−1 = ρh(Ŷt|t − Ŷt|t−1).

We thus again obtain a factor structure for the expectation revisions with no idiosyn-
cratic errors, Xht = λhtFt, where the loadings λht = ρh correspond to the true impulse
responses and the factor is the “filtered shock” Ft = Ŷt|t − Ŷt|t−1 = G(Zt − Ŷt|t−1),
that is, the surprise from the Kalman filter updating equation that the agent uses to
extract the signal from the noise.

2.4 Assumptions

The model for the expectation revisions in (1) can be written in vector notation as:

Xt
H×1

= Λt
H×r

Ft
r×1

+ et
H×1

, (3)

where Λt = (λ1t, . . . , λHt)
′ is the matrix of loadings (i.e., the perceived impulse

responses), Ft is the vector of common factors (i.e., the perceived shocks) and et is
the vector of idiosyncratic errors. Our method is based on local (in time) PCA, and
thus the objects of interest are local covariance matrices, defined as follows:

Σt = E [XtX
′
t] , ΣF,t = E [FtF

′
t ] , Σe,t = E [ete

′
t] . (4)

Our method relies on the following assumptions, which we group into different
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types to facilitate the discussion of their practical implications.

2.4.1 Shocks and idiosyncratic errors

Assumption 1 (Shocks and idiosyncratic errors):

(a) The shocks Ft have unconditional mean zero.

(b) The shocks Ft are cross-sectionally independent but can be serially correlated
(stationary). Moreover, cov(eht, Fjt−k) = 0 for any h, j, t and k.

(c) The errors et can be serially correlated (stationary), and et ∼ (0,Σe,t), where
Σe,t is a diagonal matrix with uniformly bounded eigenvalues for all t = 1, . . . , T .

Comments. Assumption 1(a) requires shocks to have unconditional mean zero.
This seems plausible, given that we are dealing with expectation revisions and a
non-zero mean would indicate forecast bias, which is unlikely to be present in the ex-
pectations data that economists typically analyze.7 Assumption 1(b) is the standard
PCA assumption that assumes the factors to be independent of each other and of the
errors. Note that we don’t require serial independence of shocks and errors. While
the examples in Section 2.3 imply serially uncorrelated shocks, it is possible that in
practice extracted shocks present some serial correlation. We show in simulations
that serial correlation in either the shocks or the idiosyncratic errors has no effect
on the performance of the tvHPCA method (in terms of bias of estimated impulse
responses, correlation between true and estimated shocks and residual mean squared
error). The key requirement of Assumption 1 is assumption 1(c) that the errors are
uncorrelated across horizons. We note that it is possible in principle to allow for a
small number of nonzero off-diagonal entries of Σe,t, but we do not further investigate
this possibility in the paper. The plausibility of this assumption should be assessed
in any given application. While the examples in Section 2.3 imply a factor structure

7A non-zero, time-invariant mean can be accommodated by extracting shocks from demeaned
Xht and then recovering the nonzero-mean shocks by adding back the impulse-response-weighted
average of the Xht means.
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for the revisions without idiosyncratic errors, errors can arise for different reasons:
changing composition of survey respondents across time and horizons (when consid-
ering consensus expectations); rounding of expectations; considering different types
of expectations or merging different datasets. All these examples of idiosyncratic er-
rors are plausibly uncorrelated across horizons. Weak correlation in the errors across
horizons is less of a concern if the number of available horizons H is large, since it is
well-known that in this case PCA is robust, see e.g., Bai and Wang (2016).

Practical Implications. In practical terms, Assumption 1 implies that, al-
though serial correlation in shocks and errors does not impede the methodology’s
ability to recover shocks and impulse responses, the assumption of uncorrelated
idiosyncratic errors across horizons is important when the number of horizons is
small. In scenarios where there are concerns regarding weak cross-sectional correla-
tion among idiosyncratic errors, one potential remedy is to increase the number of
horizons. This can be achieved, for instance, by carefully merging different expecta-
tions datasets, as demonstrated in our empirical application. Any strong correlation
among idiosyncratic errors will ultimately be absorbed by the extracted shocks.

2.4.2 Normalizations

As in standard factor models, there is a rotational indeterminacy in the identification
of shocks and impulse responses.8 This can be resolved by imposing a normalization
either on the shocks or the impulse responses, depending on the objectives of the
analysis. We consider the following examples of normalizations.

Assumption 2 (Normalizations):

(a) Unit-local shock variance normalization: Set ΣF,t = Ir, where Ir is the identity
matrix.

(b) Unit-effect normalization: Set Λ′tΛt = Ir, such that the shocks have unit effect
on all horizons.

8For any r × r nonsingular matrix At it follows that λ′htFt = (A−1t λht)
′(A′tFt) and therefore

shocks and impulse responses are not separately identified.
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(c) Unit-impact normalization: Set Λt[1, h] = 1 for h = 1, · · · , H, such that the
shocks have unit effect only on the first horizon (i.e., on impact).

Practical Implications. The practical implication of Assumption 2 is that one
must choose whether to normalize the shocks or the impulse responses based on
the primary focus of the analysis. If the emphasis is on the impulse responses, the
shocks can be normalized to have a unit local variance (Assumption 2(a)), allow-
ing the impulse responses to reflect the dynamic effects of a one-standard-deviation
shock. Conversely, if the goal is to recover the shocks, the impulse responses can
be normalized so that the shock magnitudes are interpretable (Assumption 2(b)).
Alternatively, one can impose a unit-impact normalization on the impulse responses
(Assumption 2(c)), which rescales the shocks to produce a unit effect on the first
horizon at each point in time. This normalization facilitates comparisons of impulse
response functions over time.

2.4.3 Time-varying impulse responses and nonparametric estimation

The time-varying impulse responses are assumed to be deterministic functions of
time:

λt = λ(t/T ) and Λt = Λ(t/T ). (5)

Such rescaling is common in nonparametric estimation (see e.g. Robinson, 1989,
Cai, 2007). The idea is that, as the number of observations increases in the rescaled
time framework, we “observe” the process on an increasingly dense grid on the unit
interval, and letting T → ∞ allows for the impulse responses to be consistently
estimated under infill asymptotics, see e.g. Motta et al. (2011), Su and Wang (2017).
Note that, since the λht in (1) is time-varying, Xht is no longer stationary, but locally
stationary in the sense of Dahlhaus et al. (2019), i.e., behaving in an approximately
stationary manner within short time periods. With the new notation, the locally
stationary model reads:

Xt,T = Λ(t/T )Ft + et, (6)
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where time variation in impulse responses gives rise to a triangular array Xt,T . This
framework allows us to analyze the dynamics of Xt,T locally by using a stationary
approximation9 given by:

Xt(u) = Λ(u)Ft + et, (7)

where Xt(u) is a locally stationary equivalent of Xt,T and where Λ(t/T ) ≈ Λ(u).
Note that Xt(u) is not observed in practice but is used as a theoretical construct.
For ease of exposition we henceforth drop the double subscript and simply write Xt.

Our procedure is based on the following nonparametric estimator of the local
covariance matrix of Xt:

Σ̂(u) = T−1
T∑
t=1

Kb(t/T − u)XtX
′
t, (8)

where Kb(·) = K(·/b)/b is a kernel function, with bandwidth b acting as a choice
parameter that determines the amount of data to be used in estimation.

We make the following assumptions.

Assumption 3 (Time-varying impulse responses and kernel estima-

tion):

(a) λht = λh(t/T ), t = 1, . . . , T , where for h = 1, . . . , H, λh( · ) : [0, 1] → R is
an unknown piece-wise continuous function of the rescaled time t/T . λh(·) :

[0, 1]→ R is twice continuously differentiable for any h = 1, . . . , H.

(b) For all u ∈ (0, 1) it holds that rank(Λ(u)) = r, where Λ(u) is defined in eq.(7).

(c) The kernel function K : R → R+ is a symmetric continuously differentiable
probability density function with compact support [−1, 1] normalized such that∫
K(z)dz = 1.

(d) As T →∞ b→ 0, such that Tb→∞.
9The idea is to approximate Xt,T by Xt,T = Xt(t/T ) ≈ Xt(u), where Xt(u) is a stationary

equivalent of Xt,T .
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Comments. Assumption 3 is similar to the assumptions in Su and Wang (2017).
Assumption 3(a) requires the time-varying impulse responses to be smooth (i.e., con-
tinuously differentiable) functions of time. Assumption 3(b) states that the number
of shocks is fixed across time. The assumption could be relaxed, but this would come
at the cost of losing interpretability and the ability to label the shocks across time.
Assumption 3(c) is the standard assumption in the nonparametric literature, applied
here to estimation of the local covariance matrix, requiring the chosen kernel to be
a symmetric probability density function. In the paper we use the Epanechnikov
kernel K(x) = 0.75(1 − x2)1{|x| ≤ 1}, rescaled when necessary to ensure consis-
tency even on the boundary points, where only the data on one side are available.10

Assumption 3(d) states typical conditions on the bandwidth b that ensure that the
local covariance matrix can be consistently estimated locally in time, see e.g. Motta
et al. (2011) and Su and Wang (2017).

Practical implications. Assumption 3 has several practical implications. First,
to evaluate the validity of the assumption of a constant number of shocks over time,
we recommend applying the approach proposed by Onatski (2010) locally in time
(detailed in section 2.5). Second, since shocks and impulse responses are identified
only up to a sign,11 ensuring continuity in time of the impulse responses necessitates
additional methodological steps. The algorithm presented in the following section
addresses this by employing two sequential sub-algorithms: Algorithm A extracts
shocks and time-varying impulse responses, while Algorithm B further ensures conti-
nuity of the impulse responses. Third, the time dimension T must be sufficiently large
to recover time-varying impulse responses. In cases where T is small, the method can
still be applied under the assumption of time-invariant impulse responses, reducing
to the algorithm in Zhang et al. (2022). Finally, the continuity of impulse responses
and the assumption of a stable number of shocks are crucial for enabling structural
interpretations of the extracted shocks through the lens of economic theory. For

10This is equivalent to applying the boundary kernel for the boundary regions, see e.g. Li and
Racine (2023) and is the same as the boundary kernel applied in Su and Wang (2017). The
rescaling is necessary to achieve consistency of the corresponding estimates on the boundary points
by ensuring that the first moment of the kernel is always normalized to 1.

11The normalization to address scale is managed by Assumption 2.
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instance, as discussed in the introduction, in a context with expectation revisions re-
garding price and quantity, a shock consistently yielding positive impulse responses
for both price and quantity may be interpreted as a demand shock, whereas a shock
that shows positive responses for quantity and negative responses for price could be
viewed as a supply shock. If shocks were permitted to disappear and re-emerge or
exhibited abrupt changes in impulse responses, it would be challenging to discern
whether these represent the same shock or a new one.

2.4.4 Local incoherence

The final assumption is known as the incoherence condition, a standard concept in
the matrix completion literature (see e.g., Candès and Recht, 2009, Zhang et al.,
2022). This condition ensures that the information contained in the row and column
spaces of the covariance matrix is not concentrated in too few rows or columns.
This is important because it enables the original high-dimensional matrix to be
approximated by a lower-dimensional one.

Given the time-varying nature of our approach, we need to apply this incoherence
condition locally, i.e., a “local incoherence” assumption.

Assumption 4 (Local Incoherence): There exists a constant c such that
the following holds for t = 1, . . . , T :

max
1≤h≤H

‖νhΛt(Λ
′
tΛt)

−1/2‖22 ≤ c, (9)

where νh denote the h-th standard basis of appropriate dimension with h-th coordi-
nate equal to 1 and other coordinates being 0s and, for a vector v, ‖v‖2 denotes its
l2-norm.

Comments. Condition in (9) is a slightly modified version of the incoherence
condition found in e.e.g Candès and Recht (2009), Zhang et al. (2022) to ensure
it holds under all normalizations stated in our Assumption 2. Specifically, we re-
normalize the loadings such that they are orthonormal regardless of the chosen nor-
malization. While Assumption 4 is high-level, it relates to the more familiar concept
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of “strong factors” (see, e.g., the discussion in Agarwal et al., 2023) and to the “per-
vasiveness” assumption found in the economics literature, see e.g. Onatski (2012),
and Fan et al. (2013). These assumptions ensure that the common component can
be discerned from the idiosyncratic component of the sample variance. For example,
under the unit-local shock variance normalization in Assumption 2(a), the condition
corresponds to the pervasiveness assumption ψmin(Λ′tΛt/H) > c > 0, where ψmin(M)

denotes the smallest eigenvalue of matrix M .
Practical implications. In practice, Assumption 4 means we need to be wary

of “weak factors” - scenarios where many impulse responses are zero or all responses
are close to zero. This may occur if expectations are infrequently revised, or if
the bandwidth for the nonparametric estimation of the local covariance matrix is
too small to capture sufficient variability in the data. We examine and provide
practical guidance on how to diagnose potential violations of this assumption and
their possible effects in one of our simulations in Section 3. There we identify the
worst-case scenario - tailored to our empirical application - as one marked by a low
signal-to-noise ratio (a measure that can be computed in applications), along with a
high proportion of zero impulse responses and quickly decaying remaining responses.

2.5 Choosing the number of shocks

Before implementing the algorithm described in section 2.6, it is necessary to deter-
mine the number of shocks, which we assume to be constant over time (see Assump-
tion 3(b)). We recommend applying a local version of the procedure proposed by
Onatski (2010), both as a guide for selecting the number of shocks and as a verifi-
cation of Assumption 3(b). Although we do not formally establish the theoretical
validity of this approach, we present simulation evidence in section 3 suggesting that
Onatski (2010)’s test is capable of recovering multiple shocks, even when the number
of horizons is very small.

This approach is grounded in the observation that the largest “idiosyncratic”
eigenvalues of the sample covariance matrix tend to cluster around a single point,
while the “systematic” eigenvalues - corresponding to the number of shocks - diverge
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to infinity. An estimator for the number of shocks is derived from the differences
between consecutive eigenvalues. By applying this approach locally, we can ascertain
the number of shocks at a specific point in time, with the overall number of shocks
determined by the maximum number of local shocks observed across time periods.

The procedure is outlined as follows:

1. Calculate the local eigenvalues from the eigendecomposition of the local covari-
ance matrix, ψ1,t, · · · , ψH,t,

2. Select rmax as a preliminary maximum number of shocks we are interested in
testing for (2 in our empirical application),

3. Setting j = rmax+1, regress ψj,t, · · · , ψj+4,t on a constant and (j−1)2/3, · · · , (j+
3)2/3,

4. Set δt = 2|β̂t|, where β̂t is the slope coefficient from the above regression,

5. Compute r(δt) = max{i ≤ rmax : ψi,t − ψi+1,t ≥ δt}, and r(δt) = 0 if ψi,t −
ψi+1,t < δt for all i ≤ rmax

6. If rmax 6= r(δt), set j = r(δt) + 1 and repeat from step 2 onward, otherwise
select rt = r(δt) as the number of local shocks,

7. Set r = maxt{rt} to determine the number of shocks in our data across time.

2.6 Estimation of shocks and impulse responses via tvHPCA

This section outlines the estimation of shocks, time-varying impulse responses, and
idiosyncratic variances for a specified number of shocks, r. To understand the small-
sample challenges we face, consider the tvPCA method discussed by Motta et al.
(2011) and Su and Wang (2017). This approach applies PCA to the estimated local
covariance matrix rather than the global one. While heteroskedastic errors are not a
problem when both the time dimension T and the horizon H are large, inconsistency
can arise under heteroskedasticity when H is fixed and small, as highlighted for PCA
by Paul (2007), Johnstone and Lu (2009), and Onatski (2012).
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To get an intuition for why this happens, note that, under the normalization
ΣF,t = Ir, we have:

Σt = E(XtX
′
t) = ΛtΛ

′
t + Σe,t, (10)

where Σe,t exhibits heteroskedasticity. When H →∞ and the factor is pervasive (i.e.
ΛtΛ

′
t → ∞), then ΛtΛ

′
t becomes the dominant term in (10). This ensures that the

principal eigenvector and eigenvalue of Σt are close to those of ΛtΛ
′
t. If H is fixed,

however, the first principal component eigenvector will put relatively large weight on
the component of Xt with the largest idiosyncratic variance. Such an eigenvector,
however, might be unrelated to any of the columns of Λt, which is necessary for
identification of factors and loadings.

Assuming that Σe,t is diagonal, heteroskedasticity introduces bias into the di-
agonal elements of the sample covariance matrix. A common approach to address
this issue is to use a diagonal-deletion Singular Value Decomposition (SVD), which
involves setting the diagonal elements of the sample covariance matrix to zero before
applying the SVD (see e.g. Florescu and Perkins (2016)). However, Zhang et al.
(2022) note that this approach can fundamentally alter the singular subspace which
determines the factors and their loadings, distancing it from the singular subspace
corresponding to the true factors and loadings. Zhang et al. (2022) propose an algo-
rithm, HeteroPCA, for estimating the factor model in the presence of heteroskedas-
ticity when H and T are fixed. The idea is to iteratively impute the diagonal entries
of the sample covariance matrix by the diagonals of its low-rank approximation.

The following algorithm extends the procedure in Zhang et al. (2022) to allow for
time-varying loadings (i.e., impulse responses).

The tvHPCA algorithm:
The following algorithm delivers estimates of the shocks F̂t, the time-varying impulse
responses Λ̂t, the errors êt = Xt − Λ̂tF̂t, and the diagonal matrix of time-varying id-
iosyncratic variances Σ̂e,t. Define the operator ∆(Σ(u)) = Σ(u) − D(Σ(u)), where
D(·) denotes the diagonal operator that returns the matrix containing only the di-
agonal entries. For a chosen number of shocks r and for each t = 1, . . . , T , perform
the following steps:
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A. Preliminary estimation of shocks and impulse responses

Step A1: Calculate the local covariance matrix Σ̂(t/T ) according to (8). Set maxi-
mum number of iterations M.

Step A2: Initialize the local tvHPCA algorithm at m = 0 by setting the diagonal
entries of Σ̂(t/T ) to zero,

N
(0)
t := ∆(Σ̂(t/T )), m = 0.

Step A3: Perform Singular Value Decomposition (SVD) on N
(m)
t and denote its

rank-r approximation by Ñ (m)
t . Specifically, for H ≥ r:

N
(m)
t =

H∑
i=1

ψ
(m)
it u

(m)
it (vmit )′, ψ

(m)
1 ≥ · · · ≥ ψ

(m)
H ≥ 0,

Ñ
(m)
t =

r∑
i=1

ψ
(m)
it u

(m)
it (vmit )′, (11)

where ψ
(m)
it is the i-th largest singular value (i.e., the square root of

the eigenvalue) of N (m)
t
′N

(m)
t , and u

(m)
it and v

(m)
it are the eigenvectors of

N
(m)
t N

(m)
t
′ and N (m)

t
′N

(m)
t , respectively.

Step A4: Update N (m+1)
t = D(Ñ

(m)
t )+∆(N

(m)
t ), that is, replace the diagonal entries

of N (m)
t by those of Ñ (m)

t :

N
(m+1)
hj,t =

N
(m)
hj,t = Ñ

(m)
hj,t , h = j;

Σ̂hj(t/T ), h 6= j.

Step A5: Calculate the convergence distance as the maximum change in eigenvalues
across horizons and time. Stop if the convergence distance is less than
a predefined threshold (we select 10−3),12 or if m = M , otherwise set

12A smaller threshold choice will typically lead to more accurate convergence at the cost of slower
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m = m+ 1 and return to Step A3 and continue to iterate.

Step A6: Upon convergence, set λ̃it = u
(m)
it for i = 1, . . . , r as the estimated normal-

ized impulse responses, which for a given t are identified up to the scale
and sign. The estimated common covariance matrix is given by N (m+1)

t .
The diagonal error covariance matrix estimator is:

Σ̂e,t = Σ̂(t/T )−N (m+1)
t .

Algorithm A above can be seen as an extension of the original HeteroPCA of
Zhang et al. (2022) to account for time-variation in the factor loadings, and it can
further be interpreted as the projection gradient descent (PGD) for the following
rank-constrained (nonconvex) optimization problem:

min
rank(Ñt)≤r

‖∆(Σ̂t − Ñt)‖2F , (12)

where for a matrixM we write ‖M‖F = (
∑
h,j

M2
hj)

1/2 to denote its Frobenius norm and

Σ̂t and Ñt are defined in (8) and (11) respectively.13 The algorithm requires choosing
a bandwidth b for the estimation of the local sample covariance matrix. Given that
the estimation is done via local singular value decomposition followed by several
steps of refinements, the bias-variance trade-off necessary to discuss a theoretically
optimal bandwidth is non-standard. We therefore follow Su and Wang (2017) and
use a data-driven way of selecting an optimal bandwidth by cross-validation, which
we describe in the appendix.

Next, to unify the identification of the sign of the impulse responses across time,
we leverage the fact that the impulse responses are continuous in time. Without loss
of generality, we therefore make an additional assumption that the impulse responses
are on average positive across time14, which identifies the entire path of the impulse

compute times. Our choice of 10−3 can be adjusted depending on the application. In our experience
a smaller threshold did not change our estimates but resulted in significantly longer compute times.

13All existing convergence results for PGD do not apply to nonconvex optimization problems
such as the one in (12), while Zhang et al. (2022) provide theoretical guarantees for their algorithm.

14It is also possible to fix the sign of the shocks’s correlation with some external variable instead.
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responses for each shock up to sign. Specifically, for t = 2, . . . , T , we perform the
following steps:

B. Ensuring continuity of impulse responses.

Step B1: For a given shock k = 1 . . . , r, compare the estimated impulse responses
at time t− 1 from step A and assign the sign according to the condition
below that ensures continuity across time:

sign(λ̃k,t) =

 sign(λ̃k,t−1) if ||λ̃k,t − λ̃k,t−1|| ≤ ||λ̃k,t + λ̃k,t−1||

−sign(λ̃k,t−1) otherwise
(13)

where || · || is the L2 norm.

Step B2: Estimate the latent shocks associated with Λ̃t = (λ̃1t, . . . , λ̃Ht)
′ by least

squares as
F̃t = Λ̃tΛ̃

′
t(Λ̃tXt)

−1, (14)

which will not generally have unit variance per shock across time.

Step B3: For k = 1, . . . , r, estimate the time-varying variance of the k-th shock
using a local constant kernel regression15:

F̃ 2
k,t = µ̂k(t/T ) + wk,t, (15)

to obtain the estimated standard deviation of shock k at time t as

σ̂k,t = max(
√
µ̂k(t/T ), 10−6). (16)

Step B4(a): The normalization in Assumption 2(a) is imposed by scaling the shocks
and the associated impulse responses as:

F̂t = D(σ̂t)
−1F̃t, Λ̂t = D(σ̂t)Λ̃t, (17)

We therefore suggest that the choice should be driven by the application at hand.
15For simplicity, we use the same bandwidth we used for local estimation of the sample covariance

matrix in (8).
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where D(σ̂t) is the diagonal matrix of the estimated shock standard devi-
ations, obtained from Step B3.

Step B4(b): The normalization in Assumption 2(b) is imposed by setting:

F̂t = F̃t, Λ̂t = Λ̃t (18)

as the impulse responses are eigenvectors that already have unit L2−
norm.

Step B4(c): The normalization in Assumption 2(c) is imposed by setting:

F̂t = D(Λ̃t[1, :])F̃t, Λ̂t = D(Λ̃t[1, :])
−1Λ̃t, (19)

where D(Λ̃t[1, :]) is the first row of Λt as a diagonal matrix.

2.7 Confidence intervals for impulse responses

Confidence intervals for impulse responses can be obtained using the bootstrap. The
following is a schematic description of a residual-based wild bootstrap procedure
that takes into account the uncertainty in both shocks and impulse responses. The
algorithm assumes that the shocks and the idiosyncratic errors of the factor model
are serially uncorrelated.

1. Apply tvHPCA on the original revisions data to obtain the shocks F̂t, the time-
varying impulse responses Λ̂t, the idiosyncratic errors êt = Xt− Λ̂tF̂t and their
diagonal covariance matrix Σ̂e,t.

2. Calculate the standardized errors ε̂t = Σ̂
−1/2
e,t êt.

3. Generate B samples of time points randomly with replacement for each t =

1, ..., T to obtain: {tb}Bb=1.

4. Use the resampled time points to generate B samples of bootstrapped stan-
dardized errors ε̂t and shocks F̂t to obtain: {εbt}Bb=1, and {F b

t }Bb=1.
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5. Combine the bootstrapped standardized errors with the estimated impulse re-
sponses, the bootstrapped shocks, and the estimated volatilities, to create B
bootstrap samples of data: {Xb

t = Λ̂tF
b
t + Σ̂

1/2
e,t ε

b
t}Bb=1.

6. Apply tvHPCA on each of the B bootstrap samples and retain the impulse
responses estimates: {Λ̂b

t}Bb=1.

7. Calculate boostrap confidence intervals for the impulse responses using their
empirical distribution across bootstrap samples.

3 Simulations

This section analyses the performance of our method in a similar setting as our
empirical application. We first consider time-invariant impulse responses and show
that: 1) HPCA corrects the poor performance of PCA under heteroskedasticity; 2)
HPCA is robust to serial correlation in shocks or idiosyncractic errors; 3) weak factors
have a lesser impact on the ability to recover shocks and on the average bias of the
estimated impulse responses, but result in increased bias for some impulse response
estimates; 4) the method can in principle recover more than one shock even though
the number of horizons is small. Second, we show that bootstrap confidence intervals
for impulse responses tend to undercover in small samples, the more so the higher the
serial correlation in the shocks. Third, we focus on time-varying impulse-responses
and show that our method can recover the time variation, with some deterioration
in performance at the boundaries of the sample. All simulations below are based on
1000 Monte Carlo replications.

3.1 HPCA vs. PCA

We generate data from the factor model (1), with r = 1, H = 7, T = 100, equal im-
pulse responses across horizons λh = 1 for all h, shock Ft ∼ i.i.d.N(0, 1) and different
variance for the first idiosyncratic error σ1 = 1, σh = 0.5 for h = 2, ..., 7. Since in
this design heteroskedasticity mainly affects estimation of the impulse response for
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the first horizon, we only present results for λ1. Figures 1 and 2 show that HPCA
improves on the performance on PCA. Figure 1 reports the estimates of λ1 across
the simulations, which show that HPCA corrects the bias of PCA in estimation of
the impulse response.

HPCA PCA
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Monte-Carlo impulse response estimates
True
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Figure 1: First impulse response estimates: HPCA vs. PCA.

The left panel of Figure 2 shows for both HPCA and PCA the distribution of
normalized residual MSEs16 across simulations, while the right panel shows the dis-
tribution of correlations between the estimated shock and the true shock across sim-
ulations. The figure shows that HPCA dominates PCA, by yielding lower average
MSE and higher average correlation between estimated and true shock.

16The normalized residual Mean Squared Error is obtained by summing the squares of the in-
sample residuals of the HPCA/PCA model divided by the true idiosyncratic volatility.
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Figure 2: Residual MSEs and estimated/true shock correlation: HPCA vs. PCA.

3.2 Robustness to serial correlation

Here we modify the simulation design in section 3.1 to allow for either a serially
correlated shock or serially correlated idiosyncratic errors. Regarding serial corre-
lation in the shock, we simulate the shock as an AR(1) process with autoregressive
coefficient 0.7 (chosen to match the extracted shock in our empirical application).

Figures 3 and 4 show estimates of the first impulse response and the distributions
of MSEs and correlations between estimated and true shocks across simulations for
HPCA, either with a serially independent or a serially correlated shock. The figures
show that serial correlation in the shock does not affect the performance of HPCA
(as the mean MSE and correlation across simulations are unchanged).
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Figure 3: First impulse response estimates: independent vs. serially correlated shock.
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Figure 4: Residual MSEs and estimated/true shock correlation: independent vs. serially
correlated shock.

Regarding serial correlation in the idiosyncratic errors, we modify the simulation
design in section 3.1 so that the idiosyncratic error is an AR(1) with autoregressive
coefficient ρ = 0.5 (rescaling the standard deviation of the error by (1 − ρ2)0.5 to
maintain the same unconditional variance as in the independent case).

Figures 5 and 6 report the estimates of the first impulse response and the distribu-
tions of MSEs and correlations between estimated and true shock across simulations
for HPCA either with independent or serially correlated errors. The figures show
that serial correlation in the errors does not affect the performance of HPCA (as the
mean MSE and correlation across simulations are unchanged).
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Figure 5: First impulse response estimates: independent vs. serially correlated errors.
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Figure 6: Residual MSEs and estimated/true shock correlation: independent vs. serially
correlated errors.

3.3 Impact of weak factors

In this section, we aim to evaluate the implications of violating Assumption 4, by ex-
amining the effects of weak factors on our HPCA method. We build on the literature
concerning the finite sample performance of PCA by first relating factor strength to
the signal-to-noise ratio (SNR), a quantity that can be computed in applications.
We then go beyond the existing literature by exploring whether, keeping the SNR
constant, the shape of the impulse response functions matters - specifically, their
rate of decay to zero and the number of zero responses. We consider the following
definition of SNR, which extends the measure considered by Maldonado and Ruiz
(2021) to account for heteroskedastic noise:

SNRt =

∑H
h=1 λ

2
h,t

maxH
h=1 σ

2
h,t

, (20)

which can be computed in applications by plugging in estimates of the impulse
responses λ2h,t and idiosyncratic variances σ2

h,t. The SNR can be viewed as a way
to quantify the amount of information available for estimating the latent shocks
and impulse responses. A higher SNR indicates that we can expect more accurate
estimates from our HPCA algorithm.

We select Monte Carlo parameters once again to match our application, with
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r = 1, H = 7, T = 100. For simplicity, we set all idiosyncratic variances to 1, so that
the SNR is the sum of squared impulse responses. In our empirial application, the
SNR varies significantly over time, with the lowest SNR, representing the worst-case
scenario, being just above 5. We thus set SNR=5 and vary the shapes of impulse-
response functions based on two characteristics: 1) the slope of the non-zero impulse
responses (ranging from 0 to 1), and 2) the number of impulse responses that are
exactly equal to zero. Figure 7 illustrates two examples of impulse response functions
with the same SNR: the left panel depicts a flat response with a slope of 0, while the
right panel shows a response that linearly decreases to zero with a slope of 1.
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Figure 7: Two examples of impulse response functions with SNR = 5.

We assess the performance of our HPCA estimation in terms of the residual
MSE, the correlation between estimated and true shock, the average (across horizons)
impulse response bias, and the maximum (across horizons) impulse response bias.
Figure 8 shows the summary of the performance across a matrix of different shapes
for the impulse responses, while keeping the SNR fixed at the worst-case scenario of
SNR=5.
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Figure 8: HPCA summary statistics across a matrix of IRF parametrizations.

Overall, we observe a good performance of HPCA, which is generally not affected
by the shape of the IRF in terms of MSE, correlation between true and estimated
shock and average bias for impulse responses across horizons. However some impulse
response estimates become more biased when the IRF has a steep slope and many
zeros, consistent with the incoherence assumption that covariance matrices should
not concentrate information in just a few rows and columns.
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3.4 Ability to recover multiple shocks

We generate data from model (1) with r = 2, H = 7, T = 100, with the two
shocks in Ft ∼ i.i.d.N(0, 1), independent of each other, impulse responses given by
λh = (1,−(h/H)), and heteroskedasticity given by σh = 0.6−0.4(h/H), h = 1, ..., H.
Across 1000 Monte Carlo replications, we apply Onatski’s (2010) procedure for de-
termining the number of shocks. The procedure correctly identifies the presence of
two shocks 82% of the time, and incorrectly identifies the presence of one shock 18%
of the time. This indicates that the procedure is in principle able to uncover the
presence of more than one shock, even in small samples where the cross-sectional
dimension H is very small and there is heteroskedasticity.

3.5 Bootstrap coverage

We investigate the coverage rates of the bootstrap procedure described in section 2.7
for obtaining confidence intervals for impulse responses. The simulation design is
the same as in section 3.1, assuming serially uncorrelated factors and idiosyncratic
errors. For each Monte Carlo replication, we generate bootstrap confidence intervals
using B = 1000 bootstrap iterations. The empirical coverage rates for the confidence
interval for the fist impulse response across Monte Carlo replications (averaged across
horizons) are 93% for a nominal 95%, 87.7% for 90% and 83% for 85%. We thus see
a slight tendency to undercover.

We then introduce serial correlation and generate the shock as an AR(1) with
autoregressive coefficient 0.7. In this case, the undercoverage of the confidence inter-
val is clearer, with empirical coverages 85.1% for a nominal 95%, 77.9% for 90% and
72.5% for 85%. This is unsuprising, since the bootstrap assumes no serial correlation.

3.6 Estimation of time-varying impulse responses

Here we introduce time-varying impulse responses in a model with two shocks and
analyze the ability of tvHPCA to recover time-varying impulse responses.

We generate data as in (1), withH = 7, T = 500, r = 2. The time-varying impulse
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responses are given by λh,t = [sin(2π(h/H + t/T )), e−1 sin(2π((h + 2)/H + t/T ))],
such that the second shock explains 1/e the variation of the first shock. The time-
varying idiosyncratic volatilities are given by σh,t = [3 + sin(2π(h/H + t/T ))]/5.
The two shocks in Ft are i.i.d. N(0, 1), independent of each other. We note that
these parameterizations imply a signal-to-noise ratio SNR (defined in equation (3.3))
for the first factor approximately stable around 5.5, and approximately 0.8 for the
second factor. We thus expect the second factor and its impulse responses to be less
precisely estimated.

Indeed, we find that both shocks are generally well recovered by the tvHPCA
estimation, although the first shock is more precisely estimated (0.94 correlation
with the true first shock) than the second shock (0.72 correlation).

Figure 9 shows the nonparametric estimates of the time-varying impulse responses
together with pointwise 95% confidence intervals. As expected, the impulse responses
to the first shock are more precisely estimated than those to the second shock. The
empirical confidence interval coverage rates (averaged across all horizons) are 97.2%
and 81.8% for the impulse responses to the first and second shocks, respectively,
for a nominal 95% coverage. Figure 9 reveals that our method is generally able to
recover the patterns of time variation in impulse responses, with some deterioration
in performance at the beginning and end of the sample.

A possible explanation for the deterioration in performance at the sample bound-
aries is that we use a locally-constant regression in estimating the local covariance
matrix, which introduces some bias. This is a known issue with locally-constant es-
timation, and a typical solution is to use a locally-linear estimation instead. This is
however challenging in our context of estimating covariance matrices, as the positive
definiteness constraint cannot be easily enforced in locally-linear estimators.17

17E.g., Chen and Leng (2015) discuss the bias of locally-constant estimation of covariance matri-
ces. They propose a locally-linear estimator, however this method leverages the Cholesky decom-
position which is dependent on the order of the variables and is not generally applicable.

36



1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 1

Sh
oc

k 
2 

ho
riz

on
 1

Estimated impulse responses
True impulse responses
95% bootstrap CI

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 2

Sh
oc

k 
2 

ho
riz

on
 2

Estimated impulse responses
True impulse responses
95% bootstrap CI

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 3

Sh
oc

k 
2 

ho
riz

on
 3

Estimated impulse responses
True impulse responses
95% bootstrap CI

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 4

Sh
oc

k 
2 

ho
riz

on
 4

Estimated impulse responses
True impulse responses
95% bootstrap CI

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 5

Sh
oc

k 
2 

ho
riz

on
 5

Estimated impulse responses
True impulse responses
95% bootstrap CI

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 6

Sh
oc

k 
2 

ho
riz

on
 6

Estimated impulse responses
True impulse responses
95% bootstrap CI

0 100 200 300 400 500
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sh
oc

k 
1 

ho
riz

on
 7

0 100 200 300 400 500

Sh
oc

k 
2 

ho
riz

on
 7

Estimated impulse responses
True impulse responses
95% bootstrap CI

Figure 9: Simulation bootstrap 95% confidence intervals for all impulse responses.
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4 Empirical application: perceived shocks and im-

pulse responses of inflation

In this section we use our tvHPCA method to extract historical perceived shocks
and impulse response functions from time series of expectations data on inflation.

4.1 Data

Our primary data source is the consensus expectations from the Blue Chip Economic
Indicators (BCEI) survey of professional forecasters. The consensus expectations are
the average of the individual expectations across all survey participants at any given
point in time. We focus on the expectations of quarterly CPI inflation (annualized
rate, percentage). In each calendar month, the survey reports expectations for the
quarters of the current and next calendar years. The number of available horizons
thus decreases throughout the year and the largest number of horizons available
every month is five.18 From the BCEI we thus consider a balanced panel of monthly
expectations for five horizons, for which we use indices h = 0, ..., 4 to highlight the
fact the first point in the term structure of horizons is a nowcast (h = 0) whereas
the remaining points are forecasts of the future four quarters (h = 1, ..., 4).19

In addition to the short- and medium-horizons expectations described above,
we would like to include measures of long-term inflation expectations. However,
a limitation of the BCEI is that long-term inflation expectations are surveyed less

18For instance, a survey conducted in January has eight horizons (2 full years), while a survey
conducted in December of the same year has only the current quarter and the four quarters of the
next calendar year.

19Some attention should be paid to issues of timing and information sets in the BCEI. The survey
is usually published in the middle of each calendar month, shortly after the CPI data release. The
information set of the forecasters typically contains the previous month’s CPI release, although this
is not necessarily guaranteed (for instance the forecaster may submit their response prior to the
CPI release). One thus needs to establish if the expectation provided in a given month constitutes
observed data, a nowcast or a forecast. For example, for the September survey the latest CPI
release is that of August and therefore Q3 CPI inflation is not yet observed. This means that the
Q3 expectation in September is a nowcast (corresponding to h = 0) and the revision is computed
as the change relative to the August survey expectation for Q3.
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frequently than short- and medium-term expectations.20

For long horizons, we therefore opt to use the inflation expectations series pub-
lished monthly by the Federal Reserve Bank of Cleveland (CF thereafter). This series
is obtained as a model-based composite of BCEI surveys and data (the latest CPI
release, treasury yields, and inflation swap prices). We find this to be the most ap-
pealing option as one can interpret these expectations as the result of updating the
infrequent professional survey expectations for long horizons using high-frequency
data. The CF expectations are updated each month immediately after the CPI re-
lease; therefore, their timing and information set are aligned with those of the BCEI
survey.21 From the CF inflation expectations series, we consider the expectation
revisions of 2-year 3-year and 5-year 5-year CPI inflation. These correspond approx-
imately to medium- and long-term inflation expectations, and they extend the time
span captured by the expectations from one year (for the BCEI) to 10 years.

To summarize, combining expectations data from BCEI and CF gives a balanced
panel of CPI inflation expectations monthly revisions from February 1982 to July
2023 for a term structure of seven horizons: the 0th-4th quarterly horizons and the
2-year 3-year and 5-year 5-year horizons.22

A possible concern of augmenting the BCEI expectations with the CF long-term
expectations is that the results are driven by the CF expectations. Figure 10 provides
reassurance that this is not the case, as we see that the (local) sample covariance
matrix from the merged dataset has similar eigenvalues as when considering only
BCEI data.

20Long-term expectations from the Survey of Professional Forecasters (SPF) are also similarly not
available every month. There are some market-based measures of inflation expectations available
at higher frequencies, including for long horizons. The breakeven inflation rate (the difference
between yields on nominal and real U.S. debt of similar maturities), for example, is often quoted
as a measure of inflation expectations. However, this measure is not ideal for our analysis because
it is confounded with the inflation risk premium.

21Note that the data prior to 2009 is constructed ex-post by CF using real-time data.
22Borağan Aruoba (2020) similarly combines different data sources to construct a term structure

of expectations (not revisions), but for the different purpose of linking asset prices to inflation expec-
tations. We note that we obtain a smaller set of points in the term structure than Borağan Aruoba
(2020), because for our purpose it is paramount that the expectations from different data sources
are based on aligned information sets.
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Figure 10: The three largest eigenvalues of the local sample covariance matrix from merged
BCEI and CF data (left panel) and BCEI data only (right panel).

4.2 Results

We now present the key findings from our empirical analysis. The bandwidth for the
tvHPCA was determined through cross-validation, resulting in a value of b = 0.121

(additional details can be found in the appendix). It is important to note that
confidence intervals for impulse responses should be interpreted with caution due to
the serial correlation of the extracted shocks in our application, which our simulations
indicate may lead to some undercoverage.

4.2.1 One perceived shock, highly correlated with inflation surprises

To determine the number of shocks, we apply the procedure described in Section 2.5,
based on a local (in time) version of the test proposed by Onatski (2010).
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Figure 11: Results of the test for the number of factors developed in Onatski (2010) applied
across time. The solid blue line depicts the log difference between the 1st largest eigenvalue
and the “0” factors case across time; the orange solid line depicts the log difference between
the 1st and 2nd largest eigenvalues. The dashed black line represents the critical values at
each point in time.

From Figure 11 we can see clear evidence of 1 shock consistently across time. This
is one of our main stylized facts. We then extract the shock by applying tvHPCA
using the normalization in Assumption 2(a). To gain insight into the nature of the
extracted shock, we try to relate it to actual data for the period under considera-
tion. First, we find that the shock is highly correlated with the 3-month 3-month
annualized rate of inflation (correlation 0.73) over the time period February 1982 to
July 2023.23 This could be interpreted as showing a fairly high correlation between
the shock and the surprises from a model that forecasts inflation as being constant
(e.g., at a given target). We then estimate and compute surprises from Stock and
Watson (2007)’s Unobserved Component Stochastic Volatility (UCSV) model over
the same period24 for quarter-on-quarter annualized CPI inflation. We find an even
higher correlation between our shock and the surprises from this model (the correla-
tion equals 0.81 over the whole sample, and 0.85 when only considering data up to

233-month 3-month inflation is calculated using headline CPI data from the U.S. Bureau of Labor
Statistics.

24The solution to the UCSV model is computed by Markov Chain Monte Carlo (MCMC) using
a diffuse prior for the initial condition and γ = 0.2 as the sole model parameter. The Matlab code
from Chan (2018) can be accessed at https://joshuachan.org/code/code_spectest.html. The
surprises are the estimated model’s residuals.
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2020).
The high correlation between the shock and the surprises from the UCSV model

can be seen in Figure 12. The figure also shows a change in pattern post-pandemic,
with shocks of persistently larger magnitude than the surprises from the UCSV
model. This could be interpreted as suggesting that agents in our expectation data
kept underestimating the persistence of inflation in the post-pandemic period, and
thus perceived a sequence of positive shocks, whereas the UCSV model more accu-
rately characterized the persistence of inflation in the data.
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Figure 12: Perceived shock vs. surprises from Stock and Watson’s (2007) model

4.2.2 Secular decrease in the perceived persistence of the shock

Below we show our estimates of the loadings across horizons and over time, obtained
under the normalization 2(a) of a unit local standard deviation of the shock.
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Figure 13: The graph presents the estimated impulse responses across the term structure
of horizons and over time.

Figure 13 shows clear evidence of time variation in impulse responses across time.
The impulse response function (capturing the dynamic effects of the shocks across
different horizons) at a given point in time can be obtained as a vertical slice from
the figure. These slices suggest time-varying shapes of the impulse response function,
with the effects of the shock generally decreasing with the horizon. The apparent
non-monotonicity at longer horizons in the 1990s is not statistically significant (see
Figure 14, which plots 95% confidence intervals for selected horizons between 1993-
1999).25

25Monotonicity requires that the 4th horizon impulse response lie between the 2nd and 5-year
5-year horizon impulse response. The point estimate for the 4th horizon impulse response is below
that of the 5-year 5-year horizon in the early 1990s and exceeds that of the 2nd horizon in the late
1990s. However, the overlap in confidence intervals shows that these deviations are not statistically
significant.
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Figure 14: 95% bootstrap confidence intervals for impulse responses at selected horizons,
1993-1999.

Because of the unit-standard-deviation normalization for the shock used in the
figure, the magnitude of the impulse responses reflects the volatility of expectation
revisions at that horizon. We see that this volatility increased around the financial
crisis of 2009 and at the end of our sample, which includes the Covid pandemic and
the post-pandemic recovery. The difference between the impulse responses at a point
in time contains information about the perceived persistence of shocks, indicating
for example quickly decaying responses to shocks around 2009.

Because the standard deviation of the shocks changes over time, the unit-standard
deviation normalization has too many moving parts to enable a clear comparison of
impulse responses over time. We thus recompute the impulse responses using the
unit-impact normalization in Assumption 2(c) and plot in Figure 15 the impulse
response functions for three selected times: during the Volker disinflation period
of 1986, during the financial crisis of 2009 and during the high-inflation period of
2022. The figure also reports bootstrap confidence intervals at each point in time,
computed as described in Section 2.7.
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Figure 15: Perceived impulse response functions during the Volker disinflation, the financial
crisis of 2009 and the 2022 high-inflation period

We see that during the Volker disinflation years, long-term inflation expectations
were deanchored, in the sense that the perceived persistence of the shock remained
high at long horizons. While in 2009 and 2022 the short-term inflation volatility was
higher (as reflected by the large impulse responses for the 0th horizon in Figure 13),
long-term inflation expectations remained anchored. In fact, the long-term impulse
response has decreased over time for these snapshots.26 It is worth noting that, al-
though long-term inflation expectations were at risk of becoming deanchored in 2022,
our data imply a historically low persistence of the shock at long horizons (subject
to the discussed caveats of nonparametric estimation at the sample boundaries).

The finding of time-varying (and rapidly decaying) impulse responses also sug-
gests that agents do not use Stock and Watson (2007)’s UCSV model to produce
forecasts, in spite of our finding in the previous section that our extracted shock
is highly correlated with the surprises from this model. This is because the UCSV
model implies a flat impulse response function (as can be deduced from equation (2)
and the discussion thereafter, the UCSV’s model-implied impulse response equals 1
at all horizons), which we do not observe in the data.

26This is consistent with the finding of Stock and Watson (2007) - and extends it to the current
period - that transitory shocks to inflation have become more volatile/relevant while permanent
shocks to inflation have become less volatile/relevant.
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4.2.3 A possible narrative about the 2022 high-inflation episode

Putting together the findings in the previous two sections, we can provide a possible
narrative for what happened during the post-pandemic high-inflation episode (again
subject to the caveat of possible increased bias at the sample boundaries).

In general, our method can provide an answer to the policy-relevant question:
if we see a large change in long-term inflation expectations, is it because agents
perceived a large shock or because they expected the shock to persist (i.e., a notion of
deanchoring)? The method can answer this question by disentangling the two latent
sources. The two subpanels of Figure 16 plot the perceived impulse response functions
at two points in time during 1986 and 2022 (left panel) and the full time series of
the extracted shock (right panel, smoothed using a 12-month moving average).

0 1 2 3 4 2y3yrev 5y5yrev
Forecast horizon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
im

pu
lse

 re
sp

on
se

s

Normalized PIRF snapshots

1986-09
95% CI
2022-06
95% CI

1985 1990 1995 2000 2005 2010 2015 2020 2025
Year

0.5

0.0

0.5

1.0

No
rm

al
ize

d 
sh

oc
k

Normalized shock 12-month moving average

12m MA
1986-09
2022-06

Figure 16: Perceived impulse response functions and corresponding shocks: 1986 vs. 2022

The figure reveals a clear contrast between the two dates: during 1986 agents
perceived a shock of normal magnitude by historical standards, but believed the
shock to be highly persistent (deanchoring), whereas in 2022 the perceived shock was
unprecedentedly large, but agents believed that its effects would essentially disappear
within a year (anchoring).
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5 Conclusion

This paper illustrated how utilizing the horizon dimension found in various expecta-
tions datasets, along with a focus on expectation revisions, enables the extraction of
novel empirical measures of time-varying beliefs about shocks and impulse responses.
The core concept involves fitting a time-varying factor model to the panel of revi-
sions across different horizons and time periods, which produces shocks (the factors)
and time-varying impulse responses (the loadings). Our nonparametric approach is
based on weak assumptions and is specifically designed to address the small-sample
characteristics of these datasets.

The versatility of our method allows it to be adapted to answer different eco-
nomic questions and to accommodate the unique opportunities and limitations as-
sociated with different types of expectations data. Here we focused on a balanced
panel with a sufficiently long time dimension, enabling the analysis of time-varying
impulse responses, which is typically achievable when examining aggregate expecta-
tions. However, given the small-sample nature of our method, it could be further
adapted to expectations at the individual level, to investigate heterogeneity in beliefs
about shocks and their dynamic effects.

Moreover, we note the potential to explore an additional dimension of the data
that we did not exploit in this paper: expectations related to multiple variables. We
briefly addressed how the extraction of shocks and impulse responses for various vari-
ables could help in providing a structural interpretation of these shocks. Considering
this additional dimension of the data could further enhance our understanding of the
expectation formation process, including whether agents respond to the same shocks
when forecasting different variables and whether their beliefs align with economic
theory. We leave the exploration of these important questions for future research.
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Appendix: Bandwidth selection

This appendix presents the details of the cross-validation used to determine the
optimal bandwidth b for nonparametric estimation of the sample covariance matrix.
Given that the estimation is done via local singular value decomposition followed
by several steps of refinements, the bias-variance trade-off necessary to discuss a
theoretically optimal bandwidth is non-standard. We therefore follow Su and Wang
(2017) and use a data-driven way of selecting an empirically optimal bandwidth
by a version of cross-validation (CV). Specifically, we select the empirically optimal
bandwidth b̂∗ by solving the following minimization problem:

min
b
CV (b) =

1

Tp

p∑
h=1

T∑
s=1

[
Xhs − λ̂(−s)hs F̂

(−s)
t

]2
, (21)

where λ̂
(−s)
hs and F̂

(−s)
t are the versions of λ̂hs and F̂t respectively with the s-th

time series removed when performing the local PCA analysis. In the context of our
application, the graph of the CV distance, defined in (21), is presented below with
the resulting optimal bandwidth b̂∗ = 0.121.
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Figure 17: Plot of CV distance, defined in eq. (21). The vertical red dashed line represents
the empirically optimal bandwidth corresponding to the minimum along the CV curve.
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