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In this paper we use the enhanced consumption data in the Panel Survey of Income
Dynamics (PSID) from 2005–2017 to explore the transmission of income shocks to
consumption. We build on the nonlinear quantile framework introduced in Arellano
et al. (2017). Our focus is on the estimation of consumption responses to persistent
nonlinear income shocks in the presence of unobserved heterogeneity. To reliably
estimate heterogeneous responses in our unbalanced panel, we develop Sequential
Monte Carlo computational methods. We find substantial heterogeneity in consumption
responses, and uncover latent types of households with different life-cycle consumption
behavior. Ordering types according to their average log-consumption, we find that low-
consumption types respond more strongly to income shocks at the beginning of the
life cycle and when their assets are low, as standard life-cycle theory would predict. In
contrast, high-consumption types respond less on average, and in a way that changes
little with age or assets. We examine various mechanisms that might explain this
heterogeneity.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The empirical analysis of consumption and income dynamics has an important place in a number of key areas of
conomic research and policy design. A large literature aims at understanding income persistence, income inequality and
ncome volatility, see Moffitt and Gottschalk (1993), Baker and Solon (2003) and references in Meghir and Pistaferri (2011).
parallel literature studies how income shocks impact consumption and savings decisions, see Hall and Mishkin (1982)
nd Blundell et al. (2008) among many other references. In this paper our goal is to empirically document the nature of
onsumption responses, with a particular focus on household heterogeneity and nonlinear persistence.
Economic models inform the empirical analysis of consumption and income. In a standard incomplete markets model

f the life cycle, how much a household consumes in a given period is determined by the level of assets, the stage of the
ife cycle, as well as the income stream, see Deaton (1992) for a comprehensive review. Changes to income components
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with different degrees of persistence lead to different consumption responses. In addition, the shape of the consumption
function may differ among households for a variety of reasons, such as heterogeneity in preferences or discounting,
household-specific returns to assets, or heterogeneous access to other sources of insurance.

Our starting point is the nonlinear panel data framework proposed by Arellano et al. (2017, ABB hereafter) which
nvolves a Markovian permanent-transitory model of income, and a flexible age-dependent nonlinear consumption rule
hat is a function of assets, permanent income and transitory income. ABB found that individual income dynamics feature
onlinearities that matter for economic decisions. Specifically, they found evidence that the persistence of past earnings
aries substantially with the sign and magnitude of shocks across the past earnings distribution. Thus, ex ante identical
ndividuals may have experienced a very different propagation of a past shock into their income depending on their
istory of subsequent shocks. Using a balanced panel from the PSID, from 1999 to 2009, ABB showed how nonlinear
ncome dynamics lead to nonlinear responses of consumption to income shocks.1

Given this background we make three main contributions. First, we exploit the important extension to the set of
onsumption goods in the recent waves of the PSID to produce new estimates of the degree of nonlinear persistence
nd consumption insurance. The improved panel survey redesign in the 1999 PSID was further enhanced in 2005 and, in
ddition to food at home and food away from home, includes health expenditures, utilities, gasoline, car maintenance,
ransportation, education, clothing, and leisure activities, see Andreski et al. (2014). We bring this together with the
etailed data on earnings, family income, and financial and real estate assets. Using the 2005–2017 PSID panel survey
aves, we estimate the nonlinear nature of income shocks and the consumption implications of the insurance to income
hocks. In addition, unlike ABB we do not restrict the sample to be balanced. This leads us to consider a larger and more
omprehensive sample, more than 2000 households compared to approximately 800 in ABB.
Our second main contribution is to empirically document household heterogeneity in consumption responses. To do

o, we move away from the partial insurance consumption growth framework of Blundell et al. (2008) and estimate a
ynamic model where we specify the entire conditional distribution of consumption given assets, age, and the income
omponents. This modeling approach contrasts with that adopted in ABB, who specified the link between consumption
nd its determinants using a nonlinear mean model with separable heterogeneity. Allowing for non-separabilities, we
how how to estimate the joint distribution of latent and observed variables, and to consistently estimate log-derivatives
f the consumption function as a result.2
The average log-derivatives of the consumption function that we focus on are nonlinear coefficients quantifying how

ell insured households are, at different points of the life cycle and depending on their level of assets. Importantly, we
odel the consumption function as heterogeneous across households, by indexing consumption on a latent time-invariant
ontinuous type. This unobserved consumer type may reflect heterogeneity in economic primitives, and leads to different
onsumption derivative responses for two households that are at the same point of the life cycle, face the same income
tream, and own the same level of assets. We show this heterogeneity to be a salient feature of the PSID.
To study a larger sample using a more complex model, we modify the computational techniques that ABB relied on.

he use of new computational tools represents our third main contribution. Specifically, we examine improved sequential
omputational methods for the estimation of the nonlinear latent/hidden quantile Markov model. The Markovian structure
or latent earnings components allows us to make use of Sequential Monte-Carlo (SMC) methods to improve the Markov
hain Monte Carlo algorithm, see Creal (2012) for a review. SMC methods can be used to generate efficient proposals
ithin a Particle Markov Chain Monte Carlo (PMCMC) algorithm, as proposed by Andrieu et al. (2010). We develop an

mplementation in the latent Markov setting of this paper. The PMCMC approach allows us to produce numerically robust
stimates of derivatives of log-consumption with respect to the latent income components, in a nonlinear quantile model
hat allows for unobserved types.

Empirically, we confirm the nonlinear income dynamics found in ABB while documenting new patterns in consumption
esponses. The estimated quantile Markovian permanent-transitory model of income reveals asymmetric persistence of
arnings and income shocks. We show the use of enhanced computational techniques leads to essentially the same results
s ABB in their balanced sample. However, estimates based on SMC techniques are more stable numerically. The use of
equential Monte Carlo methods allows us to draw robust conclusions in our larger unbalanced sample, and to document
onlinear patterns in the dynamics of income.
Our main results concern the nature of consumption responses to income shocks. We find that older and wealthier

ouseholds adjust their consumption less as a response to an income shock than younger and less wealthy households.
or our main sample of dual earners the average derivative of log-consumption to the persistent income component is
.33 on overall average, yet it can be much higher for younger households with low levels of assets and, conversely,
s low as 0.10 for older and wealthy households. These findings are qualitatively consistent with the implications of
tandard life-cycle models of consumption and saving behavior. We show that accounting for latent income components

1 See De Nardi et al. (2020) and Anghel et al. (2018) for recent applications of the nonlinear dynamic approach introduced in ABB.
2 As we will explain below, our approach exploits the weak exogeneity of the observed state variables (i.e., assets and income components),

conditional on a latent time-invariant type, to identify average response functions, see Matzkin (2013) for a review of identification results in
models with non-separable heterogeneity. Relaxing exogeneity would require valid instruments and appropriate structure on the first stage (Imbens
and Newey, 2009). Also, while the distribution of consumption responses is generally not identified beyond its mean, partial information about this
distribution can be obtained by using a result from Hoderlein and Mammen (2007). We will apply this strategy to compute a lower bound on the
variance of responses.
2
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with varying degrees of persistence, and for unobserved heterogeneity in consumption, are both important to accurately
document these patterns quantitatively. Heterogeneity in consumer responses to income shocks matters for understanding
the impact not only of fiscal policies but also of monetary policies which, as Auclert (2019) notes, can create large
redistribution in favor of high MPC agents and be expansionary over and beyond the effect on real interest rates.

Our key finding is that consumption responses vary substantially with unobserved types. Our results clearly separate
ower consumption types, who appear to follow the life-cycle patterns in consumption responses implied by standard
odels, from higher types, whose consumption responses to income shocks vary little with either assets levels or the stage
f the life cycle. High-type households consistently have higher consumption levels, and relative to low-type households
hey have slightly higher incomes and levels of assets. For the younger low types, consumption responses to persistent
ncome shocks exceed 0.50 while for older low types this falls below 0.20. Moreover, based on bootstrapped confidence
ntervals we conclude the difference between the two coefficients is significant at conventional levels. For the higher
ypes, consumption responses are flatter across age and assets, and differences across age and assets are insignificant.
hese findings shed new light on the presence of heterogeneity in consumption behavior across households, on which
here has been extensive micro- and macroeconomic research, see Alan et al. (2018), Crawley and Kuchler (2020), and
eferences therein.

We examine several mechanisms that could lead to such heterogeneous consumption responses. First, the fact that
igh types consume more and hold more assets is difficult to reconcile with an explanation based on heterogeneity in
references or discounting. Second, we estimate a specification that allows for latent heterogeneity in asset accumulation
nd find that the heterogeneity in consumption responses is virtually unaffected. Lastly, we link a subset of household
eads in our sample (33%) to their parents, using the inter-generational linkages that the PSID provides. We find that
igh-type household heads have on average parents with higher consumption and income levels, suggesting that the
eterogeneous responses that we find might in part reflect heterogeneity in access to other sources of insurance such as
arental insurance.
We show the main results are robust to a number of specification changes. In particular, while we use disposable

ncome in most of the analysis, we find similar patterns when using pre-tax labor income, with some quantitative
ifferences. In addition, we find that including households where one member may not be working does not lead to major
hanges in our results. Lastly, we probe the robustness of our scalar individual effect modeling approach by allowing for
separate effect of education on consumption responses, in addition to the latent type. While the heterogeneity results
emain qualitatively similar, the findings based on this specification allow us to discuss some limitations of our scalar
ndividual effect modeling approach and to motivate future work.

The outline of the paper is as follows. In Section 2 we describe the sample and present motivating evidence on the
ature of consumption responses. In Section 3 we provide a general description of the model, and in Section 4 we discuss
mplementation and present the computational methods we use. We then show our main empirical results in Section 5.
n Section 6 we study possible mechanisms for those results. In Section 7 we show results based on extensions of our
ain model. We conclude in Section 8. An appendix describes implementation and provides additional empirical results.
astly, replication codes are available in an onlinerepository.

. Data

In this section we describe the PSID sample, and we provide preliminary motivating evidence about how consumption
esponds to income changes.

.1. The PSID sample

We rely on the newly redesigned PSID, from 2005 to 2017. Since 1999, the PSID presents a unique combination of
ongitudinal data on income, consumption, and assets holdings for the US. Unlike the annual information available every
ear before 1997, after 1999 a new wave is only available every other year. Since 2005, the consumption information
as been enhanced, with additional categories, see Li et al. (2010). The recent waves include food at home and away
rom home, gasoline, health, transportation, utilities, clothing, and leisure activities. Andreski et al. (2014) provide a
etailed analysis of the post-2005 data and assess the new methodology developed by the PSID for collecting household
xpenditure data. The new survey methodology allows unfolding brackets as well as choice of time-frame for different
onsumption categories. They show that since 2005 the PSID has captured almost all expenditures measured in the
ross-sectional Consumer Expenditure Survey (CE) and suggest the new measurement design is likely to improve on the
ccuracy of the expenditure data. For this reason, we expect the post-2005 PSID to provide more accurate information
bout household consumption patterns than the earlier period used in ABB.
Another difference with ABB is that we do not restrict the panel to be balanced. Following Blundell et al. (2016), we

ocus on a sample of household heads that participate in the labor market and are between 25 and 60 years old. Since we
o not model labor supply, either at the extensive or intensive margin, in our baseline sample we focus on households
here both adult members are working and present in at least two waves, and we keep their first spell of non-zero

ncome observations. We refer to this baseline as the ‘‘dual earners’’ sample. However, in Section 7 we will also present

esults based on a broader sample that includes households where only one member is employed.

3
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Table 1
Descriptive statistics.

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,681.46 10,652.44 10,356.33 10,516.91 10,778.89 11,287.65 11,916.79
(5,280.66) (5,497.57) (5,035.15) (5,107.21) (5,744.91) (5,385.16) (5,673.31)

Non-durables (excl. food) 28,476.06 29,563.67 28,264.68 28,694.76 30,310.30 29,906.71 28,432.69
(19,445.13) (19,881.54) (19,295.93) (18,331.37) (18,247.37) (17,265.61) (14,547.69)

Total Non-durables 39,179.31 40,233.90 38,669.21 39,265.89 41,129.95 41,246.63 40,383.30
(22,220.87) (22,516.17) (21,678.39) (21,154.18) (20,962.80) (19,845.41) (17,547.23)

Home equity 161560.91 169580.40 137089.26 121021.37 111956.54 113269.94 130350.80
(216942.00) (229763.44) (197997.93) (166538.89) (154874.43) (143419.48) (144146.96)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.02 0.01 0.01
(0.08) (0.10) (0.16) (0.16) (0.15) (0.09) (0.10)

Wealth (excl. home) 206679.75 278971.16 269420.39 247951.44 231130.23 256813.63 333757.83
(709285.07) (1.00e+06) (933414.69) (536086.47) (516957.59) (566105.75) (1.06e+06)

Total wealth 446917.54 512678.86 448989.83 388763.07 349033.92 370083.56 448654.75
(970857.51) (1.25e+06) (1.14e+06) (656915.67) (621844.77) (636801.00) (1.07e+06)

Labor income 126181.76 127847.66 133105.34 129458.55 128366.66 124779.30 131051.39
(143916.08) (148500.93) (194142.24) (129247.51) (128479.97) (72,585.03) (69,355.95)

Net income 95,598.70 97,089.32 100204.10 99,234.77 98,238.57 95,004.23 99,192.91
(86,212.45) (89,857.83) (116281.39) (78,750.29) (77,931.32) (46,552.59) (45,252.48)

Observations 1288 1544 1400 1149 1023 948 755

Notes: PSID, 2005–2017. Means of variables, standard deviations in parentheses. Our baseline measure of consumption includes the following
categories: food at home, food delivery, eating out, food stamps, clothing, gasoline, utilities, telephone bills, automobile insurance, parking, transport,
education, childcare, institutional medical services, doctor services, prescriptions, health insurance, and trips and other recreation.

Our final dual earners sample contains 2,113 households and seven biennial waves from 2005–2017. In Table 1 we
eport some descriptive statistics about this sample. Food consumption, which was the only consumption item available
n the PSID prior to the redesign of the data set, accounts for approximately one fourth of total non-durables consumption.
et disposable income is approximately 30% lower than pre-tax labor income. Since it is disposable income and not pre-tax
ncome that should affect consumption decisions, we will focus on disposable income in most of the analysis. In Section 7
e will also present results using pre-tax labor income.
Table 1 also shows that total wealth tends to decrease around the 2008 recession, whereas income and especially

onsumption seem more stable over the period. See Krueger et al. (2015) for an analysis of consumption, income and
ealth using the PSID with a focus on the great recession. In our analysis we will not focus on business cycle fluctuations,
nd we will attempt to remove calendar time effects in a prior partialling-out estimation step.
In Appendix Table D.1 we show additional statistics in order to describe the unbalanced structure of the panel sample.

n the first column of that table we report statistics for households who are only observed for one wave, although we
o not include these households in our main sample due to our focus on unobserved heterogeneity. More than half of
ouseholds in our main sample are observed for at most three waves. For this reason, it will be important to account for
he unbalancedness of the PSID in the modeling of income and consumption dynamics.

Following a common practice in the previous literature on income dynamics, we will work with residuals of log-
isposable income on a set of demographics and time indicators. This partialling-out is meant to make household
emographics as comparable to each other as possible, and to control for aggregate time effects. Specifically, we net
ut household size, year of birth, state indicators, number of kids, race of both adults, a higher education indicator for
oth adults interacted with age indicators, and a full set of age indicators interacted with year indicators. We similarly
onstruct residuals of log-consumption and log-assets net of the same set of controls. Working with logarithms requires
emoving observations with zero or negative assets, which reduces the number of observations by approximately 200
ouseholds per year. In Appendix Table D.2 we report additional statistics for a sample which includes households with
egative asset balances.

.2. A first look at consumption responses

We will analyze the PSID sample using a dynamic model of income, consumption, and assets holdings. The model is
lexibly parameterized and it features various latent variables. Before describing how we specify the model and estimate
t, here we provide preliminary motivating evidence about consumption and income, only using observed covariates and

imple econometric methods. We highlight two features of the data in turn.

4
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Fig. 1. Average derivative of log-consumption with respect to log-income.
Notes: The graph shows averages of the derivative of log-consumption with respect to log-income, conditional on log-income, age and log-assets. Estimates
are based on a linear regression of log-consumption on a second-order polynomial in log-income, age, and log-assets. The two horizontal axes show age
and assets percentiles. µ and σ denote the mean and standard deviation of the average derivatives, respectively.

Fig. 2. Quantile derivatives of log-consumption with respect to log-income.
Notes: The graphs show averages of the derivatives of quantile functions of log-consumption with respect to log-income, conditional on income, age and
assets. In the left graph we report results for the bottom tercile (averaged over a fine grid of percentiles), in the right graph we report results for the top
tercile. Estimates are based on quantile regressions of log-consumption on a second-order polynomial in log-income, age, and log-assets. The two horizontal
axes show age and assets percentiles.

In Fig. 1, we show average derivatives of log-consumption with respect to log-income, controlling for age and log-
ssets.3 The derivative effect is 0.45 on average, with a standard deviation of 0.07. In particular, wealthier and older
ouseholds have a lower derivative (i.e., lower than 0.30), suggesting that they are relatively well insured against income
hocks. In contrast, younger and less wealthy households have a higher derivative (i.e., higher than 0.50), suggesting less
bility to insure.
In Fig. 2, we show quantile derivatives of log-consumption with respect to log-income. In the left graph, we average

uantile derivatives over the bottom tercile, while in the right graph we report an average over the top tercile. We see
hat these quantile derivative coefficients tend to be somewhat higher at the bottom of the consumption distribution
0.48 on average) than at the top (0.43 on average). The main difference between the two graphs concerns the younger
nd less wealthy households, for whom the derivative drops from 0.60 to 0.40 when moving from the bottom tercile to
he top tercile.4

This evidence is suggestive of the presence of heterogeneity in consumption responses and insurance. However, there
re several reasons why it may be incomplete and quantitatively inaccurate. Standard consumption models imply that
ncome components with varying degrees of persistence have a different impact on consumption. Hence, while in Fig. 1

3 Here and in the following we simply refer to log-income residuals in a regression on demographics and time indicators as ‘‘log-income’’, and
we similarly refer to log-consumption residuals and log-assets residuals as ‘‘log-consumption’’ and ‘‘log-assets’’, respectively.
4 In Appendix Fig. D.1 we show bootstrapped confidence bands corresponding to both Figs. 1 and 2.
5
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we report derivatives with respect to observed income, in a model where log-income is the sum of a persistent and
a transitory component, economically-relevant consumption derivatives should be computed with respect to the latent
components of income. To do so, a dynamic model with latent variables is needed. The heterogeneity suggested by Fig. 2
is similarly ambiguous. Indeed, consumption quantiles are likely to reflect a combination of time-invariant household
heterogeneity and time-varying shocks. Distinguishing the two requires estimating a dynamic panel data model that
features latent heterogeneity explicitly. In the next two sections we describe such a model, and we explain how we
estimate it using the PSID.

3. Overview of the model

3.1. Consumption behavior

Our primary interest is to understand how shocks to income translate into consumption for different types of
onsumers. Consumers are allowed to differ along a number of dimensions, specifically according to their assets, the
tage in their life cycle, observable characteristics, and unobserved heterogeneity. Our underlying framework is one
here households act as single agents with access to a single risk-free asset. They receive income shocks each period
nd make consumption decisions subject to a period-to-period budget constraint. We assume all distributions are known
o households, and there is no aggregate uncertainty.

In modeling the dynamic responses of consumption to earnings shocks, one strategy is to specify the functional form of
he utility function and the distributions of the shocks, and to calibrate or estimate the model’s parameters by comparing
he model’s predictions with the data, see Kaplan and Violante (2010) and references therein. Another strategy is to follow
he partial insurance approach of Blundell et al. (2008) and linearize the Euler equation, with the help of the budget
onstraint. The approach we follow in this paper builds on the framework introduced in ABB. It differs from the earlier
trategies as we directly estimate the consumption rule that comes from the optimization problem. In this approach the
evel of consumption is modeled as a function of beginning of period assets, income components, consumer characteristics
nd individual heterogeneity. The framework we develop here is a generalization of the main specification in ABB to allow
or individual unobserved heterogeneity and a more flexible policy rule. The shape of the consumption function and its
erivatives will depend on the distributions of beliefs about future incomes and characteristics. We are therefore able to
ocument a rich set of derivative effects but, as our model does not separate the role of preferences from expectations,
e cannot recover counterfactuals that involve a change in the income process.
In our approach, the income process is modeled using the framework of ABB which allows for nonlinear persistence. In

his framework, log-income is decomposed into a predetermined life-cycle component and two latent stochastic factors
hat represent the level of persistent income and the level of transitory income. We consider an unbalanced panel of
ouseholds, i = 1, . . . ,N , in which household i is observed Ti consecutive time periods. For any household i at time t
e denote the persistent income component as ηit and assume it follows a nonlinear first-order Markov process. The
ransitory income component εit is assumed to be distributed independently across time and independent of the η′s.
og-income residuals are then yit = ηit + εit . The details of the income specification are developed in the next subsection.
Given beginning-of-period-t assets ait , and the realizations of the persistent and transitory income components ηit and

it , consumers make their consumption choices according to the policy rule

cit = gt (ait , ηit , εit , ageit , ξi, νit) , i = 1, . . . ,N, t = ti, . . . , ti + Ti − 1, (1)

here ti denotes the period when i enters the panel, cit is log-consumption for household i in period t , ait is log-assets,
geit is the age of the household head in period t , and unobserved heterogeneity is given by the ‘‘fixed effect’’ ξi.5 As
entioned above, both cit and ait are net of common effects of age and other demographics, and of time indicators. We
lso allow consumption choices to depend on transitory preference shocks νit , with arbitrary dimension.
Our main goal is to estimate the empirical consumption response parameters

φ(ageit , ait , ηit , εit , ξi) = Eνit

[
∂gt (ait , ηit , εit , ageit , ξi, νit)

∂η

]
. (2)

verage derivative effects such as (2) can be identified without restricting the dimensionality of νit , see Matzkin (2013)
nd references therein.6 Reporting features of estimates of the individual transmission parameters

φit = φ(ageit , ait , ηit , εit , ξi)

n the PSID will shed light on how much variation there is in consumption responses and insurance, over the life cycle
nd as a function of assets and income. Importantly, the dependence of the consumption function on the latent type ξi

5 Below we will postulate that ξi follows a certain distribution (albeit a rather flexible one) conditional on cohort, education and income. An
lternative description of ξi would thus be as a ‘‘correlated random effect’’.
6 However, in our setting, some of the arguments of the structural function gt (i.e., ηit , εit , and ξi) are latent. Identification of average derivatives

hus requires showing that the distribution of (c , a , η , ε , age , ξ ) is identified.
it it it it it i
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will allow us to document individual heterogeneity in consumption responses. Exploring the relationship between φit and
i is a main objective of this paper.
In order to estimate the consumption function gt in (1), one needs to recover the persistent and transitory income

omponents ηit and εit , and the time-invariant consumption type ξi, all of which are unobserved to the econometrician.
or this purpose, we will estimate a dynamic model of income and consumption with latent variables, following ABB.

sset accumulation. Estimation of the consumption function gt requires taking a stand on the accumulation of assets. A
imple case is when current assets only depend on lagged assets, income, and consumption, but not on the latent income
omponents and heterogeneity separately. This would hold in a textbook asset accumulation rule with a constant risk-
ree interest rate, for example. Under the assumption that asset accumulation does not depend on the latent variables,
ne can estimate the consumption function consistently without having to model the assets process, in the spirit of
artial likelihood estimation. We will use this approach in our main results. More generally, our approach can allow
he latent income components and type heterogeneity to affect current assets, and we will report results based on such
specification as well, see Section 6.3.

ispersion of consumption derivatives. Lastly, while we focus on recovering the average response parameters φit , the
istribution of the consumption derivatives

∂cit
∂η

=
∂gt (ait , ηit , εit , ageit , ξi, νit)

∂η
,

conditional on (ait , ηit , εit , ageit , ξi), is generally not identified unless νit is scalar and has a monotone effect on gt . Yet,
using an insight from Hoderlein and Mammen (2007), one can compute a lower bound on the variance of the consumption
derivatives ∂cit

∂η
, even though the variance itself is not identified. We make this point formally in Appendix C, and we will

report empirical estimates of bounds on variances as a complement to our main average coefficients.

3.2. Income and consumption

Our modeling of the income process closely follows ABB, with the main difference that we extend the model to an
nbalanced panel. Specifically, let yit be the log-disposable income of household i in year t , net of common effects of age
nd other demographics, and time indicators. We specify the following persistent-transitory model

yit = ηit + εit , i = 1, . . . ,N, t = ti, . . . , ti + Ti − 1, (3)

where the persistent and transitory components ηit and εit , respectively, are zero-mean continuous latent variables given
age.

We model the processes ηit and εit using their quantile representations. Let QA(B, v) be a generic notation for the
conditional quantile of A given B, evaluated at the percentile v in the unit interval. The quantile representation of A given
B implies that A = QA(B, V ), where V is standard uniform independent of B.7

The persistent income component ηit follows a nonlinear first-order Markov process with age-specific transitions; that
is,8

ηit = Qη(ηi,t−1, ageit , u
η

it ),
(
uηit | ηi,t−1, ageit

)
∼ iidUniform (0, 1) , t > ti. (4)

In order to model entry in the panel, we let the initial persistent latent component ηi,ti depend on years of education and
birth cohort of the household head, and on age at entry in the sample:

ηi,ti = Qη1 (cohorti, educi, agei,ti , u
η1
i ),

(
uη1i | cohorti, educi, agei,ti

)
∼ iidUniform (0, 1) . (5)

In turn, the transitory component εit is assumed to be independent over time and independent of ηis for all s with an
age-specific distribution,

εit = Qε(ageit , uεit ),
(
uεit | ageit

)
∼ iidUniform (0, 1) . (6)

Note that the income process is common across households. In this paper we do not attempt to model latent time-invariant
heterogeneity in the income process beyond heterogeneity in initial conditions. However, we allow for an unobserved type
that affects consumption and may be correlated with income.

Turning to consumption, we let the unobserved heterogeneity variable ξi be correlated with birth cohort, education,
and income; that is, we specify

ξi = Qξ (cohorti, educi, incomei, u
ξ

i ),
(
uξi | cohorti, educi, incomei

)
∼ iidUniform (0, 1) . (7)

7 For example, QA(B, 0.50) is the conditional median of A given B, and QA(B, 0.90) is the conditional 90th percentile of A given B. The fact that
A = QA(B, V ), where V is standard uniform independent of B, is referred to as the Skorohod representation in the literature, see, e.g., Chernozhukov
and Hansen (2005).
8 In our sequential model, we assume that uηit | ηt−1

i , ageti is standard uniform, where ηt−1
i and ageti denote sequences of lags of η and age. For

conciseness we leave the full conditioning implicit in the notation.
7
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Here incomei is a measure of the household’s ‘‘normal’’ income. In our baseline specification we will take incomei to be
the average log-income over the period of observation. In addition, note that the age at entry in the panel does not affect
ξi given cohort, education, and income. Hence, ξi is a time-invariant household characteristic that does not depend on
when the household starts being recorded in the PSID, whereas the value of the initial persistent latent component in (5)
depends on the stage of the life cycle the household was at when she entered the panel.

We then specify the log-consumption function as

cit = Qc(ait , ηit , εit , ageit , ξi, uc
it ),

(
uc
it | ait , ηit , εit , ageit , ξi

)
∼ iidUniform (0, 1) . (8)

For the purpose of documenting consumption responses, it is important to know under which conditions estimating
(8) allows one to learn about features of the household’s consumption function gt in (1). Suppose that the transitory
preference shocks νit in (1) are i.i.d., independent of past assets and income components, age, and latent type ξi. If in
addition νit are scalar and have a monotone impact on the consumption function gt , then gt will be identified based on
8), up to a nonlinear transformation of its last argument. Moreover, when the economic primitives are such that νit are
ultidimensional or have a non-monotone impact on consumption, the conditional mean function of log-consumption

mplied by (1) will still be identified based on (8), even though the individual consumption function gt will not be
dentified in general. Indeed, under our assumptions we have

φit = Eνit

[
∂gt (ait , ηit , εit , ageit , ξi, νit)

∂η

]
= Eucit

[
∂Qc(ait , ηit , εit , ageit , ξi, uc

it )
∂η

]
.

In other words, using quantile methods to flexibly estimate the function Qc in (8), we will be able to consistently estimate
our main target parameters, which are the average derivative quantities φit .

Note that, under mild assumptions, the consumption response parameters in (2) are equal to the derivatives of the
conditional mean of consumption given the state variables,

φit =
∂

∂η
E
[
cit | ait , ηit , εit , ageit , ξi

]
.

owever, ηit , εit and ξi are unobserved in the data, so it is not enough to model the conditional mean E [cit | ait , ηit , εit , ageit ,
to recover our key parameters φit . ABB specified a nonlinear mean model with separable heterogeneity. A concern
with their specification is that it might be too restrictive as a model of the conditional distribution of cit given
(ait , ηit , εit , ageit , ξi). In contrast, in this paper we employ a quantile specification to achieve a more flexible modeling
of that conditional distribution.

In our baseline model where assets do not depend on the latent variables ηit , εit , and ξi directly, a specification of the
assets process is not needed. However, assuming that asset accumulation does not depend on the latent variables might
be restrictive if, for example, assets returns are heterogeneous and the assets process is not independent of ξi. For this
reason, we will also estimate a model where we specify a reduced-form assets process as

ai,t+1 = Qa(ait , ηit , εit , cit , ageit , ξi, ua
i,t+1),

(
ua
i,t+1 | ait , ηit , εit , cit , ageit , ξi

)
∼ iidUniform (0, 1) , (9)

where in addition ua
i,t+1 and uc

i,t+1 are independent. In this model, we will specify initial assets holdings as

ai,ti = Qa1 (ηi,ti , agei,ti , cohorti, educi, ξi, u
a1
i,ti

),(
ua1
i,ti

| ηi,ti , agei,ti , cohorti, educi, ξi
)

∼ iidUniform (0, 1) . (10)

To summarize the framework laid out in this section, we have described a model with three latent components. The
time-invariant type ξi is intended to capture household pre-sample-period observed and unobserved heterogeneity. The
other two latent components enter the income process. The persistent component ηit captures household heterogeneity
that results from the accumulation of persistent shocks over time. Finally, independent transitory shocks εit with an
age-specific distribution combine with the persistent component and its profile to produce observed labor income.

The presence of the latent type ξi as an argument of the consumption function may potentially reflect several mecha-
nisms. For example, ξi may indicate preference or discounting heterogeneity. Alternatively, it may capture heterogeneity in
returns to assets. Yet another possible interpretation of ξi is as additional resources that are available to the household but
not observed in the data, such as consumption insurance provided by parents. We will examine the plausibility of these
various mechanisms empirically in Section 6. We let the latent type ξi correlate with income through the conditioning on
incomei in (7). In addition, although here we will use our most parsimonious specification as a baseline when reporting
results, in an extension we will let ξi enter asset accumulation directly, see Eqs. (9)–(10).

The model thus features two levels of heterogeneity: (a) demographics and time effects, which we partial out linearly
in an initial step, and (b) the latent type ξi, which we include as part of our nonlinear model. We will study the possibility

of an additional nonlinear impact of demographic heterogeneity in Section 7.4.

8
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4. Estimation methodology and implementation

To specify and estimate the model, we closely follow ABB, with some differences. While in this section we focus
n estimation and practical implementation, we note that given the similarity of the model’s structure to that of ABB,
onparametric identification can be shown using the arguments they provide. Those arguments rely on insights from the
iterature on nonparametric instrumental variable models and nonlinear models with latent variables (see, among others,
Newey and Powell, 2003; Hu and Schennach, 2008; Wilhelm, 2015)).

.1. Specification

Following ABB, we model all conditional quantile functions using linear quantile specifications at a grid of percentiles.
s an example, we model the conditional quantile function of the persistent latent component of income in (4) as

Qη(ηi,t−1, ageit , τ ) =

K∑
k=0

aηk (τ )ϕk(ηi,t−1, ageit ), (11)

here ϕk are low-order products of Hermite polynomials in age and the lagged persistent latent component of income, and
η

k (τ ) are piecewise-linear polynomial functions of τ . In practice we use a grid of 11 equidistant percentiles. In addition,
ollowing ABB we augment the model by specifying aηk (τ ) using an exponential modeling of the tails of the intercept
oefficients. We use similar specifications for all the other Eqs. (6)–(10). We provide details in Appendix A.
A difference with ABB is that, while they modeled the nonlinear mean of log-consumption and assumed separable

rrors, here we flexibly estimate the entire conditional quantile function of log-consumption in (8) without imposing
eparability between uc

it and the other determinants of consumption. This is important for estimating the average
onsumption derivative parameters φit in the presence of latent variables, in a way which is robust to the presence of
on-separabilities implied by the economic model.
Fully nonlinear estimation of consumption quantiles has implications for the econometric specification of the model,

iven that the type ξi is a latent variable. Indeed, note that ξi and the conditional quantile function Qc are not separately
onparametrically identified, since it is always possible to take a transformation of ξi, and to undo it in Qc .9 In a general
uantile model such as (8), we impose the following restriction:

E[cit | ait = a, ηit = η, εit = ε, ageit = age, ξi = ξ ] =

∫ 1

0
Qc(a, η, ε, age, ξ , τ )dτ = ξ, for all ξ, (12)

where a, η, ε, age are some fixed reference values for log-assets, persistent and transitory income components, and
age. Imposing this restriction resolves the indeterminacy.10 In this way, ξi is measured in consumption units, which is
eaningful when studying its distribution. In the implementation we set a, η, age to be the unconditional sample averages

of log-assets, log-income and age, respectively, and we set ε to zero.

4.2. Estimation

To estimate the model we adapt the multi-step approach proposed by ABB to our setting. In a first step, we compute
regression residuals of log-income, log-consumption, and log-assets on a set of controls, which includes demographics
and time indicators, see Section 2 for the full list of controls. This allows us to construct the residualized variables yit , cit ,
and ait .

In a second step, we estimate the income process. To this end, we use a stochastic EM algorithm (Nielsen, 2000), which
alternates between draws of the latent income components ηit and εit , and parameter updates based on the latent draws.
The updates are performed using quantile regressions, similarly to ABB. For example, to estimate the parameters aηk (τ ) at
grid of τ values in (11), we run multiple quantile regressions.11
To generate the latent draws, we depart from ABB who relied on Metropolis Hastings, and use a Sequential Monte Carlo

sampling method. We describe this method in the next subsection. The reason for using a different sampler compared to
ABB is numerical stability. Indeed, the performance of Metropolis Hastings tends to deteriorate as the length of the panel
and the number of households increase. In the longer and larger panel sample we use in this paper, Sequential Monte
Carlo methods tend to be more robust to numerical issues such as initialization and seeding than Metropolis Hastings in
our experience. A feature of Sequential Monte Carlo methods is that they take advantage of the Markovian structure of
the model to improve performance relative to naive importance sampling.

9 For example, for any invertible function ψ we can write Qc (ξ ) = (Qc ◦ ψ−1)(ψ(ξ )).
10 If Qc is linear, (12) selects a form of the fixed effect that is inclusive of all the intercept components. See Hu and Schennach (2008) and the
subsequent literature for related assumptions.
11 Before every update step, we compute an empirical counterpart of the left-hand side in (12) by regressing log-consumption on the draws of η,
ε, ξ , log-assets, and age, and we set ξ to be the corresponding predicted value. See Appendix A for details.
i
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In a third step, we estimate the consumption function, for given values of the parameters governing the income
process. We perform this step using a similar strategy to the one we use for income. In this case also, we depart
from ABB in the sampling step of the stochastic EM algorithm. However, the presence of the latent type ξi further
omplicates implementation, since one needs to repeatedly draw ξi together with the sequences of persistent and
ransitory components. To generate valid draws, we rely on the pseudo-marginal Markov Chain Monte Carlo algorithm
roposed by Andrieu et al. (2010), which itself makes use of Sequential Monte Carlo sampling. We describe our
mplementation in the next subsection.

uantile monotonicity. Given our quantile modeling, the parameters satisfy monotonicity restrictions (e.g., Chernozhukov
t al. (2010). For example, in (11) the mapping τ ↦→

∑K
k=0 a

η

k (τ )ϕk(ηi,t−1, ageit ) is non-decreasing. In practice we do not
enforce monotonicity in estimation. However, in each expectation step of the stochastic EM algorithm we draw from the
likelihood implied by the estimated parameters. This ensures that we obtain posterior draws from a valid distribution of
η’s and ξ ’s, irrespective of the lack of monotonicity of the quantile parameter estimates. To provide intuition in a simple
setup, note that to draw ηit according to model (11) one can compute, as in Machado and Mata (2005),

η̃it =

K∑
k=0

âηk (u
η

it )ϕk (̃ηi,t−1, ageit ) for t > ti, η̃i,ti = ηi,ti ,

where uηit are i.i.d. standard uniform. Although the estimates âηk (τ ) may not satisfy monotonicity restrictions, this approach
roduces η̃it draws from a valid distribution function. In our setting we use this strategy to generate posterior draws of
’s and ξ ’s, see Appendix A for details.

symptotic distribution and inference. Under the assumption that the parametric model is correctly specified,12 averages of
parameter draws are consistent and asymptotically normal with an asymptotic variance that can be estimated by bootstrap
or analytical approximations, see Arellano and Bonhomme (2016) and ABB for details. We will report confidence bands
computed using two versions of the bootstrap: a parametric bootstrap that relies on the model’s structure for simulations,
and a nonparametric bootstrap clustered at the household level.

4.3. Computational sampling techniques

Here we describe how we draw latent variables in every step of the stochastic EM algorithm. We present, in turn,
the methods we use for the latent income components ηit , εit , and for the latent consumption type ξi. In practice we run
these simulation steps in parallel across households, which makes it easy to estimate the model on an unbalanced panel.

Income components: Sequential Monte Carlo. Estimating the income process requires solving a nonlinear filtering problem,
where ηi,ti , . . . , ηi,ti+Ti−1 are latent variables. To draw from their posterior distribution given the income data we use a
Sequential Monte Carlo (SMC) approach, see Creal (2012) and Kantas et al. (2015) for surveys.

To describe the SMC approach, we focus on the problem of sampling ηi,ti , . . . , ηi,ti+Ti−1 for a single household i from
the posterior distribution f (ηi,ti , . . . , ηi,ti+Ti−1|yi,ti , . . . , yi,ti+Ti−1). In practice we sample in parallel across households. With
importance sampling, one might first sample directly from some proposal distribution π (ηi,ti , . . . , ηi,ti+Ti−1), and then
re-sample using importance sampling weights

wi ∝
f (ηi,ti , . . . , ηi,ti+Ti−1|yi,ti , . . . , yi,ti+Ti−1)

π (ηi,ti , . . . , ηi,ti+Ti−1)
,

where ∝ is a proportionality symbol. However, finding a suitable proposal distribution in our flexible nonlinear model is
challenging. Instead, we try and generate draws (also called ‘‘particles’’) sequentially.

At t = ti, we initialize S particles η(s)i,ti
from a suitable proposal distribution π (ηi,ti ). Re-sampling with weights

w
(s)
i,ti

∝

f
(
η
(s)
i,ti

|yi,ti
)

π

(
η
(s)
i,ti

)
ives S particles approximately distributed according to f (ηi,ti |yi,ti ).
At t = ti + 1, we now aim to approximate

f (ηi,ti , ηi,ti+1|yi,ti , yi,ti+1) =
f (yi,ti+1|ηi,ti+1)f (ηi,ti+1|ηi,ti )

f (yi,ti+1|yi,ti )
f (ηi,ti |yi,ti ).

12 One may also view the parametric model as a sieve approximation to a nonparametric distribution, where the size of the grid of τ values, and
ence the number of parameters, would grow with the sample size at an appropriate rate. The theoretical justification we mention here is for a
ell-specified parametric model.
10
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Since we already have S particles approximately distributed according to f (ηi,ti |yi,ti ), we can simply use a second proposal
distribution π (ηi,ti+1|ηi,ti ) to extend these existing particles. Re-sampling with weights

w
(s)
i,ti+1 ∝

f
(
η
(s)
i,ti+1|yi,ti+1, η

(s)
i,ti

)
π

(
η
(s)
i,ti+1|η

(s)
i,ti

)
gives S particles approximately distributed according to f (ηi,ti , ηi,ti+1|yi,ti , yi,ti+1). The process continues until we obtain S
articles approximately distributed as f (ηi,ti , . . . , ηi,ti+Ti−1|yi,ti , . . . , yi,ti+Ti−1).13
The choice of proposal distributions π is important for numerical performance. We found that a simple generalization

of a linear permanent-transitory earnings model with Gaussian errors performed well. Specifically, we postulate the
following model:

yit = ηit + εit , εit ∼ iid N (0, σ 2
ε ), (13)

ηit = m(ηi,t−1, ageit ) + v
η

it , v
η

it ∼ iid N (0, σ 2
v ), (14)

where εit and v
η

it are independent at all lags, and m is a Hermite polynomial. We re-estimate this model at each iteration of
the stochastic EM algorithm, and then set π (ηit |ηi,t−1) to be the posterior distribution based on it. We provide details about
the implementation of the SMC sampler in Appendix A. In addition, we provide a comparison of the SMC and Metropolis
Hastings sampling methods in the ABB sample in Appendix B. We find that, while our SMC algorithm recovers similar
estimates of nonlinear persistence to those reported in ABB, the SMC method is less sensitive to numerical instability than
Metropolis Hastings.

Unobserved type in consumption: Particle Markov chain Monte Carlo. In order to incorporate unobserved heterogeneity ξi,
we embed the SMC sampler into a Particle Markov Chain Monte Carlo (PMCMC) algorithm, following Andrieu et al. (2010).
We use this method to estimate the parameters of the consumption process, after having estimated the parameters of
the income process.

To outline the PMCMC approach, suppose we wish to sample ξi, ηi,ti , . . . , ηi,ti+Ti−1 from the posterior distribution
f (ξi, ηi,ti , . . . , ηi,ti+Ti−1 | wi,ti , . . . , wi,ti+Ti−1), where wit = (yit , cit , ait ) is a vector of household i’s observed income,
consumption and assets at time t. In the PMCMC approach, SMC algorithms are used to generate efficient proposals to
be used within a Metropolis Hastings algorithms. An important feature of these methods is that they only rely upon
the availability of unbiased estimates of the marginal likelihood f (wi,ti , . . . , wi,ti+Ti−1|ξi), which are readily available as
a by-product of the SMC algorithm. The use of unbiased estimates of a target distribution within a Metropolis Hastings
algorithm can be viewed more generally as an example of a pseudo-marginal approach in which the resulting algorithms
can be presented as bona fide Metropolis Hastings samplers whose marginal distribution is the target distribution of
interest. We provide details about the implementation of the PMCMC sampler in Appendix A.

5. Main results

In this section we present the main empirical results on income and consumption, obtained using our baseline
nonlinear model with unobserved heterogeneity.

5.1. Income persistence

We start by reporting the results on nonlinear income persistence. In the left graph of Fig. 3 we show the derivative
of the conditional quantile function of log-income given lagged log-income and age, with respect to lagged log-income.
Formally, we compute an estimate of

ρy(y, age, τ ) =
∂Qy(y, age, τ )

∂y
, for τ ∈ (0, 1),

here Qy is the conditional quantile function of log-income given lagged log-income and age, and average it with respect
o age. The nonlinear persistence parameters ρy(y, age, τ ) can be interpreted as heterogeneous autoregressive coefficients,
hich may depend on both the income level y and the income shock τ .14 We plot the derivative as a function of lagged

og-income (which we refer to as ‘‘initial income’’) and of the innovation in the quantile model (which we refer to as
‘income shock’’).

The results show that most households, for most shocks, have current disposable incomes that are quite persistent,
ith a derivative coefficient that is above 0.80. However, households with low initial income and high income shocks
ave incomes that are substantially less persistent, with a coefficient as low as 0.40. Likewise, persistence is also low for
ouseholds with high initial income and low income shocks, with a coefficient of a similar magnitude. These nonlinear
ersistence estimates are closely related to those found by ABB on a smaller balanced sample drawn from the earlier
re-recession years of the PSID.

13 In practice, re-sampling at every time increment can result in degeneracy among the available particles. For this reason, we instead use an
adaptive rule which avoids degeneracy (see Creal (2012)).
14 In Appendix Fig. D.2 we show a different projection of the same three-dimensional surfaces, to ease visualization.
11
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Fig. 3. Nonlinear income persistence.
Notes: PSID, 2005–2017 sample, disposable income, dual earners. The left graph shows quantile derivatives of log-income with respect to lagged log-income,
ρy(y, age, τ ) averaged over age. The right graph shows quantile derivatives of the persistent latent component ηit with respect to ηit−1 , ρη(η, age, τ ) averaged
ver age, in a model estimated using sequential Monte Carlo with a stochastic EM algorithm. In this case, the two horizontal axes show percentiles of ηit−1
‘‘initial income’’) and conditional percentiles of ηit given ηit−1 (‘‘income shock’’), respectively.

In the right graph of Fig. 3 we show nonlinear income persistence, but now for the persistent latent component ηit .
hat is, we show

ρη(η, age, τ ) =
∂Qη(η, age, τ )

∂η
, for τ ∈ (0, 1),

where Qη is the conditional quantile function of ηit given ηi,t−1 and age, see (4). We plot the derivative as a function of
ηi,t−1 (‘‘initial income’’) and the innovation in the quantile model (‘‘income shock’’).15 We see that average persistence
s higher than for the case of log disposable income – it is 0.92 in the right graph, versus 0.78 in the left graph – due to
he removal of the transitory income component. For households with high values of initial persistent income and high
hocks, persistence is close to unity, and similarly for households with low initial persistent income and low shocks.16
he nonlinear pattern for the persistent latent component ηit is qualitatively similar to the one for log-income, although
t is quantitatively less pronounced.

These nonlinear persistence patterns are rather precisely estimated, see the parametric bootstrap 95% confidence bands
n Appendix Fig. D.3 and the nonparametric bootstrap 95% confidence bands in Appendix Fig. D.4. In addition, comparing
ig. 3 to Appendix Fig. B.1, we see that, while nonlinearities are somewhat more salient in our larger and more recent
ample compared to the balanced sample used in ABB, the persistence patterns in both cases are comparable.17

.2. Average consumption responses to income shocks

The main goal of the paper is to study heterogeneity in consumption responses to unexpected changes in income. That
s, the way income shocks are transmitted into consumption which underpins the degree of ‘‘partial insurance’’ achieved
y the household. In this subsection, and the next, we document several key features of household partial insurance,
hich we measure using the household-and-time-varying transmission coefficients

φit = φ(ageit , ait , ηit , εit , ξi)

iven by the average derivative effects (2) introduced in Section 3.1. The transmission coefficient φit quantifies the change
in consumption induced by an exogenous marginal change in the persistent latent component of income.

In Fig. 4 we start by showing how the mean of the estimated transmission parameters φit varies with assets levels
nd over the life cycle. We compare four specifications. The ‘‘models without filtering’’ in the upper panel correspond to
pecifications without transitory component εit , so the derivative on the right-hand side of (2) is taken with respect to
og current disposable income yit instead of the persistent latent component ηit . The ‘‘models with filtering’’ in the lower

15 To produce the plot, we use posterior draws computed from the model. We proceed similarly when plotting all subsequent results involving
latent variables.
16 Note that it is possible for the nonlinear income persistence measure to exceed one.
17 In Fig. 3 we average the persistence measure across age values. In contrast, the main nonlinear persistence figures in ABB are evaluated at a
reference age value. The analog of Fig. 3(a) in ABB is Figure S3 in their supplemental appendix.
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Fig. 4. Average consumption responses.
Notes: PSID, 2005–2017 sample, dual earners. The graphs show the average derivative of log-consumption with respect to log-income (in the top panel)
and the persistent latent component ηit (in the bottom panel). The left graphs correspond to a model without unobserved heterogeneity ξi in consumption,
hereas the right graphs correspond to a model with unobserved heterogeneity ξi . The two horizontal axes show age and assets percentiles, respectively.

anel allow for a separate role of ηit and εit . For both models with and without filtering, we distinguish two specifications
ith and without unobserved heterogeneity ξi, in the left and right columns, respectively.
Fig. 4 shows that all specifications agree quite well qualitatively. In particular, the association between consumption

nd income or its persistent latent component is weaker for older and wealthier households. At the same time, there are
mportant quantitative differences between the four specifications. We find that allowing for unobserved heterogeneity ξi
ends to dampen the consumption impacts of income shocks, the difference being particularly noticeable for the models
ithout filtering where average responses decrease from 0.40 to 0.14. The impact of heterogeneity can be explained by
he fact that, according to our estimates, ξi is positively correlated with income, see Section 6. In contrast, allowing for
transitory income component tends to increase consumption responses to income shocks, as is typically the case in
stimates that correct for measurement error bias. As a result, in our main model with unobserved heterogeneity and
transitory component, the lower right hand graph shows an estimated average response parameter of 0.33. There are
13
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strong differences by assets and age too, with the estimated average transmission coefficient dropping towards 0.10 for
older and wealthier households, while for younger households the estimated mean transmission rises to around 0.40.18

omparison with ABB. It is informative to compare the average responses in Fig. 4 to the results obtained by ABB. In a
odel without heterogeneity but with a transitory component, ABB found an average transmission coefficient of 0.38. This

s lower than the responses in Fig. 4(c), which are 0.54 on average.19 As we previously noted, the period of observation,
he sample of households, and the income measure used in ABB all differ from the ones we focus on in the current paper.
n particular, ABB focus on labor income as opposed to disposable income. Our estimates of consumption responses based
n labor income are substantially lower than the responses based on disposable income shown in Fig. 4, see Section 7.

est of homogeneity. By comparing average response coefficients in models with and without household-specific hetero-
eneity, one can assess whether the data supports an homogeneous model without latent types. To do this, in Appendix
ig. D.5 we report confidence bands based on the nonparametric bootstrap clustered at the household level for the average
esponses depicted in the lower panel of Fig. 4. We find a 95% confidence interval for the mean across these responses of
0.50, 0.59] in the model without heterogeneity, and of [0.21, 0.44] in the model with heterogeneity. The fact that the two
confidence intervals do not overlap represents a formal rejection, at the 5% level, of the null hypothesis of homogeneity.
The same conclusion holds when we use the parametric bootstrap to produce confidence intervals, see Appendix Fig. D.6.

5.3. Heterogeneity in consumption responses to income shocks

We have already seen that the introduction of unobserved heterogeneity has a systematic effect on the estimated
average response of consumption to changes in income. We hypothesize that there are also systematic differences
in responses across consumers that differ according to unobserved heterogeneity. To examine this, we study how
consumption responses differ among households that are at the same point in the life cycle and have the same level
of assets. For this purpose, we show how the transmission coefficients φit vary by quantiles of the unobserved type ξi, in
addition to showing how they vary with assets levels and over the life cycle.

In Fig. 5 we show transmission parameters as a function of assets and age, for five different percentiles of ξi, and we also
show the average across ξi values. The results show clear evidence of household heterogeneity in consumption responses
to income shocks. Consider the 10th percentile of ξi, in the top left graph. For these ‘‘low consumption type’’ households,
average transmission is 0.36, yet the magnitude of the transmission coefficient varies substantially with age and assets.
Indeed, while younger and less wealthy households have transmission coefficients of close to 0.60, the coefficient is as low
as 0.10 for older and wealthier households. This pattern is qualitatively consistent with the implications of a standard life-
cycle model of consumption and saving behavior in which persistent shocks are harder to self-insure for young consumers
and for those consumers with low levels of net assets.

This ‘‘life-cycle consistent’’ pattern of responses is maintained through to the median type, albeit less pronounced. As
we move to the higher consumer types, a pattern that is much less sensitive to assets and age appears. Consider the 90th
percentile of ξi, in the bottom right graph of Fig. 5. For these high-type households, the transmission coefficients are 0.29
on average, hence lower than the coefficients of the low-type households. In addition, the variation of the transmission
coefficients with assets and age is less pronounced than for the low types. Indeed, while coefficients are approximately
0.15 for the older and wealthier households, the young and less wealthy households have coefficients that do not exceed
0.40. These patterns for the high-types are less in accordance with the forces at play in conventional life-cycle models of
the individual household.

In order to provide measures of uncertainty associated with our main results, we rely on the bootstrap. We report
results based on a parametric bootstrap approach, where we use the model to simulate bootstrapped data sets given
parameter estimates. In Appendix Fig. D.7 we report pointwise 95% bands for the transmission parameters of Fig. 5. We
see that our estimates are rather precise. As a complement to the parametric bootstrap, in Appendix Fig. D.8 we report
pointwise 95% bands based on the nonparametric bootstrap clustered at the household level. Precision is lower in this
case, which is not surprising, since, relative to the clustered nonparametric bootstrap, the parametric bootstrap exploit
our modeling of the time-series dependence.

As a summary measure of the salient dimensions of heterogeneity that we find, in the top panel of Table 2 we report
estimates of average transmission parameters for various categories of households: high and low types, corresponding to
ξi being at the 90th percentile or the 10th percentile, young/low assets for whom age and assets are below the median,
and old/high assets for whom age and assets are above the median. In the bottom panel we repeat the exercise for high
types corresponding to ξi being at the 75th percentile and low types corresponding to ξi being at the 25th percentile.
longside point estimates, we report 95% confidence intervals based on the parametric bootstrap.

18 The relative magnitudes of the nonlinear estimates in Fig. 4 are reminiscent of the situation in a linear model with a mismeasured persistent
regressor and fixed effects, where the (positive) fixed effects bias and the (negative) measurement error bias tend to offset each other, while only
accounting for fixed effects exacerbates the measurement error bias (Griliches and Hausman, 1986).
19 The consumption responses in a model without heterogeneity in ABB can be found in their Fig. 5(c). In addition, ABB also reported average
responses based on a model with unobserved heterogeneity, albeit using a different specification for the consumption rule. They found lower
responses in this case, amounting to 0.32 on average, see Figure S24(b) in the supplementary appendix of ABB.
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Fig. 5. Heterogeneity in consumption responses.
Notes: See the notes to Fig. 4. Here we report the results by percentiles of heterogeneity ξi in consumption.

We find that, while for high consumption types at the 90th percentile the transmission of income shocks is only 0.09

igher for young/low assets households and insignificant at conventional levels, for low types at the 10th percentile the
15
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Table 2
Summarizing heterogeneity across types, parametric bootstrap.
A. 90th vs 10th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.31 0.22 0.09
[0.20, 0.39] [0.12, 0.34] [−0.03, 0.19]

Low ξ 0.48 0.21 0.27
[0.40, 0.62] [0.13, 0.33] [0.16, 0.38]

∆ −0.17 0.01 −0.18
[−0.36, −0.06] [−0.15, 0.13] [−0.34, −0.06]

B. 75th vs 25th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.36 0.21 0.15
[0.28, 0.42] [0.14, 0.31] [0.04, 0.20]

Low ξ 0.45 0.21 0.24
[0.38, 0.55] [0.15, 0.31] [0.14, 0.31]

∆ −0.09 0.00 −0.09
[−0.17, −0.03] [−0.08, 0.06] [−0.17, −0.03]

Notes: See the notes to Fig. 4. Here we report average consumption responses for young and low assets
households compared to old and high assets households, for different percentiles of heterogeneity ξi in
consumption. Values are calculated by evaluating the average consumption response for households at a
fixed percentile of ξi when assets and age are fixed at the τ th percentile. Reported values for young and
low assets households are then shown by averaging over τ ∈ (0, 0.5). Reported values for old and high
assets households are then shown by averaging over τ ∈ (0.5, 1). Parametric bootstrap 95% confidence
intervals based on 200 replications are shown in brackets.

verage response coefficient is 0.27 higher for the young and low assets and significant at the 5% level. This supports
ur main conclusion regarding the fact that the behavior of low types appears to be consistent with a standard life-cycle
odel of consumption and saving, yet the behavior of high types appears less consistent with the mechanisms of the
odel. In addition, the cross-type difference 0.09 − 0.27 = −0.18 between these two estimates, which is akin to a

difference-in-differences estimate, is significant at the 5% level.20
The results in this section, based on a dynamic model with latent income components and unobserved heterogeneity,

provide evidence for the presence of heterogeneous types of consumers, confirming what Fig. 2 suggested. In the next
section, we develop the implications of these results for life-cycle patterns of consumption and savings, and we examine
various possible mechanisms for the patterns in transmission parameters displayed in Fig. 5.

Dispersion of consumption responses around their means φit . While our main focus is on the average consumption
response parameters φit , there may be dispersion around those averages. In Appendix C we show how to compute an
upper bound on the share of variance in responses ∂cit

∂η
explained by the means φit , obtained by calculating a lower

ound on the variance of ∂cit
∂η

conditional on (ait , ηit , εit , ageit , ξi). The reason why only bounds are available is because
transitory preference shocks νit , which may generate additional heterogeneity in responses beyond the mean transmission
parameters φit , may be multi-dimensional. We report estimates of the upper bounds on the variance shares in Appendix
Fig. D.9. We find high variance shares, in many cases higher than 80%, suggesting that the φit parameters capture a large
part of the heterogeneity in responses (although we note that, since those are upper bounds, this evidence does not strictly
speaking rule out the presence of substantial additional heterogeneity).

6. Candidate mechanisms to explain the heterogeneity

In this section we study various mechanisms that might potentially explain the type heterogeneity that we find.

6.1. Three candidate mechanisms

Informed by standard models of consumption and saving decisions, which guide our empirical analysis, we can outline
three candidate mechanisms to explain the heterogeneous types that we document.

A first possible explanation is heterogeneity in preferences and discounting. There is a long history of incorporating
discount rate heterogeneity to help explain lifetime wealth accumulation, for example Krusell and Smith (1998) and

20 In Appendix Table D.3 we report confidence intervals based on the nonparametric bootstrap clustered at the household level. In this case,
for low types below the 10th percentile the average response coefficient remains significantly higher for the young and low assets. However, the
cross-type difference is insignificant at the 5% level.
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Fig. 6. Life-cycle profile.
Notes: Average non-residualized log-consumption in graph (a), log-assets in graph (b), and persistent latent component of log-income in graph (c), for
different ages and percentiles of ξi (10%, 25%, Median, 75%, 90%). The dashed lines show the age-specific unconditional 10th and 90th percentiles for each
outcome measure.

Hendricks (2007). Everything else equal, individuals with higher marginal utility of consumption will consume more, and
hold fewer assets. Individuals with higher discount factors will delay consumption relative to those with lower discount
factors, and hold more assets. This type of heterogeneity should lead to high-type households consuming more and holding
fewer assets. We examine this hypothesis by showing how consumption and assets profiles depend on the latent type.

A second candidate explanation is heterogeneity in returns to assets. The rate of return is a key determinant of
consumption choice in standard models, so the types we find might in fact reflect heterogeneity in those returns across
households. Fagereng et al. (2016) find evidence of individual heterogeneity in returns to wealth using administrative
records from Norway. We examine this heterogeneity in the PSID by estimating an extension of the model with
heterogeneity in the asset accumulation rule (see Eqs. (9)–(10)), and by empirically documenting the form of this rule.

A third candidate explanation is heterogeneity in access to external resources, such as parental insurance. Individuals
with access to other forms of insurance would be expected to consume more, for a comparable level of income and assets.
Altonji et al. (1992), Hayashi et al. (1996) and, more recently, Charles et al. (2014) and Attanasio et al. (2019), use the
generational links in the PSID to document a significant role for parents and family networks in providing additional
insurance. To probe this hypothesis, we link the household heads in the PSID to their parents, and study how the latent
types relate to parental income, wealth, and consumption.

6.2. Life-cycle profiles

As a step towards examining the plausibility of a preference and discounting channel, we show the life-cycle profiles
implied by our dynamic model, for various percentiles of the unobserved heterogeneity ξi. In the top panel of Fig. 6
we show consumption profiles, in logs.21 We see that consumption levels are monotone in the types. This is partly a
result of our restriction in (12), which implies monotonicity at the reference age. In addition, comparing the dispersion
of the solid lines (which correspond to the ξi percentiles) with the dashed lines (which correspond to 10th and 90th
unconditional percentiles of log-consumption), we see that type heterogeneity explains a large part of the overall variation
in log-consumption. Our results imply that ξi accounts for 25% of the variance of log-consumption.22

In the bottom panel of Fig. 6 we show the profiles of assets and income, in logs. In the left graph we see that, similarly
to consumption, assets are monotone in types. This suggests that, while high-type households consume more than low
types, they also hold more assets. However, the variation in types explains a relatively small share of the overall variation

21 To draw these profiles we proceed by simulation, using a similar strategy to ABB. In addition, in the graphs we show non-residualized variables;
that is, we add back the predictions of the first-stage regressions to the residuals of log-consumption, log-assets, and log-income. Note these
predictions include the effects of calendar time in addition to those of demographics.
22 In Appendix Fig. D.10 we plot the median and 10th and 90th percentile of log-consumption, over the life cycle, for three percentiles of ξi (10th,
edian, and 90th). This confirms that the between-ξ dispersion of consumption is substantial, even though there is large within-ξ variation as well.
i i
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Table 3
Heterogeneity and parental outcomes.
A. All households

(1) (2) (3) (4) (5) (6) (7) (8)

Parent consumption 0.05 0.07 0.04 0.05
(0.02) (0.02) (0.02) (0.02)

Parent income 0.03 0.04 0.02 0.02
(0.01) (0.01) (0.02) (0.02)

Parent assets 0.01 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

Controls No Yes No Yes No Yes No Yes

B. Young adults only

(1) (2) (3) (4) (5) (6) (7) (8)

Parent consumption 0.05 0.06 0.03 0.04
(0.02) (0.02) (0.02) (0.02)

Parent income 0.03 0.04 0.02 0.02
(0.01) (0.01) (0.02) (0.02)

Parent assets 0.01 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

Controls No Yes No Yes No Yes No Yes

Notes: PSID, 2005–2017 sample, household heads aged 25–60 (top panel) and 25–45 (bottom panel). Regressions of posterior ξi draws
on parental outcomes. Parental links are obtained for approximately 33% of panel. Parental outcomes are obtained as average residuals
net of cohort and year effects. Results are based on 10 posterior draws per household. Controls include an education dummy for the
household head and a quadratic specification for first period age. Standard errors clustered at the household level do not account for
the uncertainty in the posterior parameter estimates.

n log-assets. Note that, while the restriction in (12) imposes that log-consumption increases with the type ξi at particular
covariates values, nothing in our approach restricts log-assets to be monotone in the type. Quantitatively, we find that ξi
accounts for 3% of the variance of log-assets. In the right graph we show the results for the persistent latent component of
income. We see the same monotone behavior in the type as for consumption and assets. Our results imply that ξi accounts
for 4% of the variance of the persistent latent component of log-income.23 We have already seen that the correlation
between the latent type and income is sufficient to generate sizable differences between specifications with and without
latent heterogeneity, see Fig. 4.

Overall, our results show that high-type households consume more, hold more assets, and have higher income.
Quantitatively, individual types mainly differ in their consumption profiles. While these findings do not rule out that
differences in preferences and discounting may be present in the data, they are difficult to reconcile with this channel
being the main driver of the heterogeneity in consumption responses that we find.

6.3. Heterogeneity in consumption and assets

We next assess the role of heterogeneity in assets returns as an explanation for type heterogeneity. For this purpose,
we estimate a specification where asset accumulation depends on the latent type ξi, see Eqs. (9)–(10). The results based
on this specification are similar to the baseline ones for both income and consumption. In Appendix Fig. D.12 we show
the type heterogeneity in consumption responses to variation in the persistent latent component of income, and find
overall very similar responses to the ones based on a specification without assets heterogeneity. In Appendix Figs. D.13
and D.14 we report estimates of assets responses, by type, in this generalized specification that allows the latent type
to enter the asset accumulation rule. We find that the association between lagged assets and current assets conditional
on lagged income and consumption increases with the latent type, and that assets responses are higher for the young,
decrease with the level of lagged assets, and increase with the type ξi, especially for older households.

Overall, the results based on the extended specification with latent heterogeneity in assets and consumption suggest
that returns to assets are indeed heterogeneous across households in the data. However, allowing the heterogeneity to
enter asset accumulation does not materially affect the conclusions regarding the heterogeneity in consumption responses.

6.4. Heterogeneity in parental insurance

A third candidate mechanism is heterogeneity in access to other forms of insurance, such as parental insurance. In
order to examine the plausibility of this mechanism, we take advantage of the inter-generational linkages available in the

23 In Appendix Fig. D.11 we plot the median and 10th and 90th percentile of log-assets and the persistent latent component of log-income, over
the life cycle, for three percentiles of ξ . The results confirm that most of the dispersion in assets and income is within-ξ .
i i
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PSID to match households to their parents. This aspect makes the PSID uniquely suited to study income and consumption
dynamics in the presence of links across generations. Specifically, we start by matching the heads of each household to
those households headed by a parent of the head. If matches to the household head are not available, we alternatively try
and match the spouse of each household to those households headed by a parent of the spouse. In our baseline sample
we are able to successfully match approximately 33% of households.

Given this matched panel dataset, we then regress posterior means of the types ξi on various parental outcomes,
such as consumption, income, and assets. In Table 3 we report the results of various specifications with different sets
of controls. For robustness, in addition to the results for all households (in the top panel) we also report results for
household heads who are less than 45 years old (in the bottom panel). We find that parental income and consumption
correlate positively with the mean type, although the correlation with assets is insignificant from zero at conventional
levels. When including all parental variables together, parental consumption remains significantly positively correlated
with the type. This suggests that, indeed, the latent type ξi may partly reflect heterogeneous access to parental insurance.
This interpretation is further supported by the monotonicity of assets in the type documented in Fig. 6.

However, these results are purely indicative and we leave it to future work to assess whether this channel is
quantitatively important.

7. Other results and extensions

In this section we report results based on extensions of the model and other robustness checks.

7.1. Impulse responses

We start by reporting impulse responses implied by the model’s estimates. In Fig. 7 we estimate the impact of a shock
to the persistent latent component of income, ηit , at age 34. The figure is divided into three parts. In the upper part,
we report the difference between the average persistent latent component of income for households hit by the shock
and the average persistent latent component of income for households hit by a ‘‘median’’ shock, i.e., corresponding to
the 50th percentile of ηit conditional on ηi,t−1. To highlight the heterogeneity in impulse responses, we show results for
various percentiles of the latent type distribution. In the middle and bottom parts of the figure we proceed similarly for
log-consumption and log-assets, respectively, instead of the income component.

Within each part of the figure, we show impulse responses for various values of initial income and the shock. In the
left, middle and right columns we consider households who are at the 10th, 50th and 90th percentile of the distribution of
the persistent income component at age 32, respectively. In the top (respectively, bottom) subpanels, we show the results
for a shock at the 10th (respectively, 90th) percentile of the distribution of shocks. Hence, top subpanels correspond to
negative income shocks, whereas bottom subpanels correspond to positive income shocks.

Focusing first on the upper part of Fig. 7, and moving across columns, we observe that negative shocks tend to have a
stronger impact for those on higher income, and that positive shocks have a stronger impact for those on lower income.
This illustrates the nonlinear persistence in the income process documented in ABB. In addition, the fact that all lines
corresponding to different values of the latent type ξi reflects our assumption that the income process does not depend
on ξi.

Moving then to the middle part of Fig. 7, we also observe nonlinearities in consumption responses, although those
are stronger for the negative income shocks than for the positive ones. In addition, the differences between lines reflect
the heterogeneity between types. In particular, low types with higher income tend to respond more strongly to negative
shocks than other types. To further illustrate this heterogeneity, in Appendix Fig. D.15 we show how consumption levels
evolve, on impact, after an income shock.

Lastly, focusing on the bottom part of Fig. 7 we see only moderate differences in assets evolution after a shock
depending on the initial income level. In Appendix Fig. D.16 we show impulse responses based on the model that allows for
heterogeneity in both assets and consumption, see Eqs. (9)–(10) and the results discussed in Section 6.3. The responses
to a shock to the persistent latent component of income are overall similar to the ones based on the model without
heterogeneity in the asset accumulation rule.

7.2. Robustness to the complexity of the quantile model used in estimation

The complexity of our empirical specification is controlled in part by the number of knots at which we evaluate the
quantiles of the variables in the model (i.e., the income components, consumption, and the latent type). Our estimates of
the functions, such as aηk (τ ) in (11), interpolate between those τ values. Hence, a large number of knots can approximate
any continuous quantile function well, while a small number of knots may provide a worse approximation. However, in
estimation one faces the usual bias/variance trade-off, and the impact of the number of knots on the estimates is a priori
unclear. To probe the sensitivity of our main results to the number of knots, we report average consumption derivatives
based on 19 knots in Appendix Fig. D.17. By comparison, our baseline results were obtained using 11 knots (see Fig. 5).

Overall the two sets of estimates agree very well.
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Fig. 7. Heterogeneity in impulse responses.
Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) percentiles, relative to median. See the text for a
description. The different lines correspond to different percentiles of ξi .
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7.3. Robustness to income definition and sample restriction

Next, we probe the robustness of our results to changes in income definition and sample restriction. While our
ain results rely on using disposable, post-tax income, in Appendix Fig. D.18 we report results on nonlinear income
ersistence based on pre-tax labor income. In Appendix Fig. D.19 we report the corresponding results for heterogeneity
n consumption responses. The findings suggest a higher degree of nonlinearity in income persistence, and a higher
egree of consumption insurance, compared to the results based on disposable income. This is not surprising, as the
on-proportionality in the tax system can be interpreted as a source of insurance to households. Moreover, since the
esults in ABB were based on labor income, these findings help explain the quantitative differences between the results
n ABB and the ones we report in this paper when relying on disposable income.

Another important feature of our sample is the restriction to dual earner households. While this restriction is motivated
y the goal to abstract from extensive labor supply decisions, it also results in a smaller and potentially more insured
ample. We have estimated our model on a larger sample that also includes single earners, where the second member
f the household is not working.24 In Appendix Fig. D.20 we report the results for income persistence, and in Appendix
ig. D.21 we reproduce our main results on heterogeneity in consumption responses to income shocks. Our findings are
ualitatively unchanged relative to our baseline sample of dual earners.

.4. Additional dimensions of heterogeneity

Our specification of the consumption function flexibly allows for heterogeneity in income, assets, age effects, and the
ffect of the latent type, see Eq. (1). However, it is possible that the effects of additional observed and unobserved factors
ight matter for consumption insurance. For example, differences in education and birth cohorts might be associated with
ifferent consumption responses to income shocks. In Appendix Fig. D.23 we show that neither education nor cohort are
trongly associated with the latent type ξi. Yet, it is theoretically possible that they enter the consumption function, and
nteract with income components in meaningful ways, even though our modeling approach rules out this possibility.

To tentatively explore this question, in Appendix Fig. D.24 we report consumption responses to income shocks, by type
i, in a specification that also controls for a fully interacted education indicator. Since we do not re-estimate the model with
atent variables, we view this exercise as indicative. We see that the consumption responses across types are qualitatively
imilar to the baseline ones, yet those responses appear somewhat muted. This motivates future work extending our
ramework to allow for multiple observed and unobserved sources of heterogeneity in consumption insurance and income
rocesses across households.

. Conclusion

The motivation for this research has been to better understand nonlinear income dynamics and heterogeneous
onsumption responses to changes in income. In this paper we have developed methods that build on and extend Arellano
t al. (2017), and we have applied them to a larger and more comprehensive sample from the PSID which includes a richer
et of consumption categories. We have developed computational tools to better handle larger and more complex models,
ncluding in settings with unbalanced panels, within a nonlinear quantile-based latent variables framework. These new
ata and tools allow us to go beyond confirming the presence of nonlinear income and consumption dynamics, and to
ocument rich heterogeneity in consumption responses across households.
Our results point to consumption responses to income shocks that vary substantially with unobserved types. We

istinguish lower types, who appear to follow the life-cycle patterns in consumption responses implied by standard
odels, from higher types, whose consumption responses to income shocks vary little with either assets levels or the stage
f the life cycle. High-type households consistently have higher consumption levels and, relative to low-type households,
ave slightly higher incomes and levels of assets. For the younger low types, consumption responses to persistent income
hocks are close to 0.60 while for older low types this falls to 0.10. For the higher types, consumption responses are flatter
cross age and assets.
We examined alternative mechanisms that could lead to such heterogeneous consumption responses. The fact that high

ypes both consume more and hold more assets is difficult to reconcile with an explanation based on heterogeneity in
references or discounting. We also argue that it is difficult to align with a specification that allows for latent heterogeneity
n asset accumulation, finding that the heterogeneity in consumption responses is virtually unaffected by this extension.
o explore a third mechanism, parental insurance, we used the inter-generational linkages in the PSID to link a subset of
ousehold heads in our sample to their parents. We found that high-type household heads have on average parents with
igher consumption and income levels, suggesting that the heterogeneous responses might in part reflect heterogeneity
n access to other sources of insurance such as parental insurance.

Our findings motivate further work on two fronts. First, whilst we have examined several mechanisms and found
correlation between the latent types and parental consumption, we lack a quantitative understanding of how these
nd other factors shape the household differences in consumption responses and insurance. Second, although we have
everaged a single-latent-factor model to maintain tractability in the presence of heterogeneous responses, generalizing
he model to account for other sources of heterogeneity is an important next step. In particular, it would be valuable to
xtend the model to allow for time-invariant heterogeneity in income, in addition to the latent consumption type.

24 In Appendix Table D.4 we show descriptive statistics for this broader sample.
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Appendix A. Modeling and estimation details

A.1. Empirical specification

Earnings components. Let ϕk, for k = 0, 1, . . ., denote a dictionary of functions, with ϕ0 = 1. In practice we use low-order
products of Hermite polynomials for ϕk. We specify, for t ∈ {ti + 1, . . . , ti + Ti − 1}, the conditional quantile function of
ηit given ηi,t−1 and ageit as in (11). We specify the quantile function of εit (for t = 1, . . . , T ) given ageit , and that of ηi1
given age at the start of the period agei1, in a similar way. Specifically, we set

Qε(ageit , τ ) =

K∑
k=0

aεk(τ )ϕk(ageit ),

Qη1 (cohorti, educi, agei,ti , τ ) =

K∑
k=0

aη1k (τ )ϕk(cohorti, educi, agei,ti ),

with outcome-specific choices for K and ϕk.

Consumption type. To specify the latent type we set

Qξ (cohorti, educi, incomei, τ ) =

K∑
k=0

aξk (τ )ϕk(cohorti, educi, incomei).

Consumption rule. To specify the consumption process we set

Qc(ait , ηit , εit , ageit , ξi, τ ) =

K∑
k=1

ack(τ )ϕk(ait , ηit , εit , ageit , ξi). (A.1)

To fix the scale of the function we impose that∫ 1

0
Qc(a, η, ε, age, ξ , τ )dτ = ξ,

which translates into linear restrictions on the parameters
∫ 1
0 ack(τ )dτ .

ssets evolution. For initial assets we set

Qa1 (ηi,ti , agei,ti , cohorti, educi, ξi, τ ) =

K∑
k=0

aa1k (τ )ϕk(ηi,ti , agei,ti , cohorti, educi, ξi). (A.2)

For assets evolution we set

Qa(ait , ηit , εit , cit , ageit , ξi, τ ) =

K∑
k=0

aak(τ )ϕk(ait , ηit , εit , cit , ageit , ξi, τ ). (A.3)

Implementation. We base our implementation on ABB, and model the functions ak(τ ) as piecewise-linear interpolating
splines on a grid [τ1, τ2], [τ2, τ3], . . . , [τL−1, τL], contained in the unit interval. We extend the specification of the intercept
coefficient a0 on (0, τ1] and [τL, 1) using a Laplace model indexed by λ− (for the left tail) and λ+ (for the right tail). All
ak for k ≥ 1 are constant on [0, τ1] and [τL, 1], respectively. We denote akℓ = ak(τℓ). In practice, we take L = 11 and
τℓ = ℓ/(L+1). We use tensor products of Hermite polynomials for ϕk, each component of the product taking as argument
a standardized variable.

A.2. Estimation

Overview of the estimation strategy. We start by estimating the earnings parameters. Next, we recover estimates of the
consumption, assets, and type parameters, given the previous earnings estimates.

Parameters. We collect all parameters governing the income process into a vector θ , given by

θ =

(
aη, λη, aε, λε, aη1 , λη1

)
.

Likewise, we collect all parameters governing the consumption process into a vector µ, given by

µ =

(
aξ , λξ , ac, λc, aa1 , λa1 , aa, λa

)
.

We estimate θ and µ sequentially.
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Model’s restrictions. Let ρτ (u) = u(τ − 1{u ≤ 0}) denote the ‘‘check’’ function of quantile regression. Consider the
parameters of Qη; that is, the aηkℓ and the corresponding Laplace parameters λη . The true values of aηkℓ maximize

E

⎡⎣ti+Ti−1∑
t=ti+1

∫
ρτℓ

(
ηt −

K∑
k=0

aηkℓϕk(ηt−1, ageit )

)
fi(η)dη

⎤⎦ = 0,

here fi is the posterior distribution of the (ηi,ti , . . . , ηi,ti+Ti−1) given the data and the true parameter values. In turn, the
rue values of λη satisfy

λ
η

−
= −

E
[∑ti+Ti−1

t=ti+1

∫
1
{
ηt ≤

∑K
k=0 a

η

k1ϕk(ηt−1, ageit )
}
fi(η)dη

]
E
[∑ti+Ti−1

t=ti+1

∫ (
ηt −

∑K
k=0 a

η

k1ϕk(ηt−1, ageit )
)
1
{
ηt ≤

∑K
k=0 a

η

k1ϕk(ηt−1, ageit )
}
fi(η)dη

] ,
with an analogous formula for the upper tail parameter λη+. The model implies related restrictions on all the other quantile
nd tail parameters in θ and µ.

ikelihood function. The likelihood function is, letting zi = (cohorti, educi) and Ti = {ti, . . . , ti + Ti − 1},

f (yTi
i , c

Ti
i , a

Ti
i , η

Ti
i , ξi | ageTi

i , zi; θ, µ)

=

∏
t∈Ti

f (cit |ait , ηit , yit , ξi, ageit;µ)

×

∏
t∈Ti,t>ti

f (ait |ai,t−1, yi,t−1, ci,t−1, ηi,t−1, ξi, ageit;µ)

×

∏
t∈Ti

f (yit |ηit , ageit; θ )
∏

t∈Ti,t>ti

f (ηit |ηi,t−1, ageit; θ )

× f (ai,ti |ηi,ti , agei,tizi, ξi;µ)f (ηi,ti | zi, agei,ti; θ )f (ξi | zi, incomei;µ),

where notice we have imposed the assumption that ξi is independent of (yTi
i , η

Ti
i ) given (zi, incomei).

Similarly to ABB, the likelihood function is available in closed form. For example, we have

f (yit |ηit , ageit; θ ) = 1
{
yit − ηit < Aεit (1)

}
τ1λ

ε
−
exp

[
λε

−

(
yit − ηit − Aεit (1)

)]
+

L−1∑
ℓ=1

1
{
Aεit (ℓ) ≤ yit − ηit < Aεit (ℓ+ 1)

} τℓ+1 − τℓ

Aεit (ℓ+ 1) − Aεit (ℓ)

+1
{
Aεit (L) ≤ yit − ηit

}
(1 − τL)λε+ exp

[
−λε

+

(
yit − ηit − Aεit (L)

)]
,

here

Aεit (ℓ) ≡

K∑
k=0

aεkℓϕk(ageit ) for all (i, t, ℓ).

ote that the likelihood function is non-negative by construction. In particular, drawing from the posterior density of η
utomatically produces rearrangement of the various quantile curves (Chernozhukov et al., 2010).

stimation algorithm. Like in ABB, starting from initial parameter values, we iterate between two steps.
In the stochastic E-step, we draw M values η(m)

i = (η(m)
i,ti
, . . . , η

(m)
i,ti+Ti−1) and ξ (m)

i from their posterior distribution. In
ractice we take M = 1.
In the M-step, we estimate parameters by solving empirical counterparts of the population restrictions. This involves

unning multiple quantile regressions in order to estimate the akℓ parameters, and estimating the λ parameters which
re available in closed form.

olving the indeterminacy in consumption. To impose the restriction (12), which solves the indeterminacy in the relation-
hip between consumption and the latent type, we proceed as follows. At the start of every M-step, given draws η(m)

i and
ξ
(m)
i , we regress cit on polynomials in ait , η

(m)
it , ε(m)

it = yit − η
(m)
it , ageit , and ξ

(m)
i , using the same polynomial specification

as in the quantile model for log-consumption. Letting ĉit denote the predicted value at (a, η, ε, age, ξ (m)
i ), we then reset

it ↦→ ξ
(m)
i .

Stochastic E-step (income estimation). The target for a given household i is the posterior distribution

f (ηi,ti , . . . , ηi,ti+Ti−1|yi,ti , . . . , yi,ti+Ti−1).

At t = ti, we initialize S particles η(s)i,ti
from the following proposal distribution π :

η ∼ N (µ , σ 2),
i,ti i
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µi =

(
1 −

σ 2
η1

σ 2
η1

+ σ 2
ε

)
K∑

k=0

βεkϕk(cohorti, educi, agei,ti ) +
σ 2
η1

σ 2
η1

+ σ 2
ε

yi,ti ,

σ 2
=

c
1
σ2
η1

+
1
σ2
ε

,

here the βεk , σ
2
η1

and σ 2
ε are parameters estimated by running OLS counterparts to the M-step quantile regressions (in

the previous stochastic EM iteration), and c ≥ 1 is a constant (we take c = 2). Time t = ti re-sampling weights are then
iven by

w
(s)
i,ti

∝
f (η(s)i,ti

|yi,ti )

π (η(s)i,ti
)
,

here π is the normal density with mean µi and variance σ 2. These weights, which are available in closed form, are used
o re-sample particles with replacement from the set of particles η(s)i,ti

, if the effective sample size 1∑S
s=1(w

(s)
i,ti

)2
exceeds some

threshold (see below). This simple adaptive rule avoids degeneracy of the particles. After re-sampling we reset w(s)
i,ti

=
1
S .

therwise we keep all the existing particles and weights.
At t = ti + r > ti, we use the following proposal distribution, again denoted as π , to generate new draws to append

o the existing set of particles:

ηi,ti+r | ηi,ti+r−1 ∼ N (µ̃i,r , σ̃
2),

µ̃i,r =

(
1 −

σ 2
η

σ 2
η + σ 2

ε

)
K∑

k=0

βεkϕk(ηi,t+r−1, agei,ti+r ) +
σ 2
η

σ 2
η + σ 2

ε

yi,ti+r ,

σ̃ 2
=

c
1
σ2
η

+
1
σ2
ε

,

here again the βεk , σ
2
η and σ 2

ε are parameters estimated by running OLS counterparts to the M-step quantile regressions.
The re-sampling weights are given by

w
(s)
i,ti+r ∝ w

(s)
i,ti+r−1

f (η(s)i,ti+r |yi,ti+r , η
(s)
i,ti+r−1)

π (η(s)i,ti+r |η
(s)
i,ti+r−1)

,

which are used to re-sample particles if the effective sample size 1∑S
s=1

(
w

(s)
i,ti+r

)2 exceeds the threshold.

tochastic E-step (consumption estimation). The target for a given household is the posterior distribution

f (ξi, ηi,ti , . . . , ηi,ti+Ti−1 | xi,ti , . . . , xi,ti+Ti−1),

here xit = (yit , cit , ait , ageit ) is a vector of household i’s observed income, consumption, assets and age at time t .
lgorithm Algorithm A1 provides a pseudo-code for the implementation. The SMC sampling steps (used to generate
fficient proposals within a Metropolis Hastings algorithm) are identical to those outlined above with the exception that
e-sampling weights at times t = ti and t > ti are now given by

w
(s)
i,ti

∝

f
(
η
(s)
i,ti

|ξ ∗

i , xi,ti
)

π

(
η
(s)
i,ti

) ,

nd

w
(s)
i,ti+r ∝

f
(
η
(s)
i,ti+r |ξ

∗

i , xi,ti+r , η
(s)
i,ti+r−1

)
π

(
η
(s)
i,ti+1|η

(s)
i,ti

) ,

respectively, where ξ ∗

i is a draw from a random walk proposal. We make use of the same proposal distributions π as in
the income estimation.

In the very first iteration of the stochastic EM algorithm we initialize the Metropolis Hastings chains using random
draws from the following proposal:

ξ ∗

i ∼ N (νi, ω2),

where νi =
∑K

k=0 β
ξ

k ϕk(cohorti, educi, incomei). The parameters βξk and ω2 are estimated by running OLS counterparts to

he corresponding M-step quantile regressions. At subsequent iterations of the stochastic EM we initialize the Metropolis
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Hastings chains using draws from the previous iteration. After initialization we use a Gaussian random walk proposal
with variance 3.5ω2.

Whilst running the SMC samplers we obtain unbiased estimates of the marginal likelihood which can be calculated
recursively as p̂(xi,ti+r , . . . |ξ

∗

i ) =
∑S

s=1 p̂(xi,ti+r−1, . . . |ξ
∗

i )w
(s)
i,ti+r . The unbiasedness of these marginal likelihood estimates

mplies that the resulting algorithm can be represented as a bona fide Metropolis Hastings algorithm yielding the desired
arget as its marginal.

seudo-code of the stochastic EM algorithm. A short pseudo-code for the algorithm we use is presented in Algorithm A1.

lgorithm A1 (Stochastic EM).
1: for ℓ=1:L do
2: Stochastic E-Step:
3: Set ξ 0i and (η0i,ti , ..., η

0
i,ti+Ti−1) to some starting values.25

4: for k=1:K do
5: Sample ξ ∗

i ∼ q(.|ξ k−1
i ), where q is a proposal distribution.26

6: Run an SMC algorithm targeting p(ηi,ti , ..., ηi,ti+Ti−1|ξ
∗

i , wi,ti , ..., wi,ti+Ti−1).
7: Store the marginal likelihood estimate, p̂(ξ ∗

i ) = p(wi,ti , ..., wi,ti+Ti−1|ξ
∗

i ), and the resulting particles η∗

i,ti
, ...,

η∗

i,ti+Ti−1, both of which are available as output of the SMC algorithm in line 6.
8: Let f denote the density of ξi, whose expression is given in Appendix A. With probability

min
(
1, p̂(ξ∗

i )f (ξ
∗
i )q(ξ

k−1
i |ξ∗

i )

p̂(ξk−1
i )f (ξk−1

i )q(ξ∗
i |ξk−1

i )

)
set ξ ki = ξ ∗

i and (ηki,ti , ..., η
k
i,ti+Ti−1) = (η∗

i,ti
, ..., η∗

i,ti+Ti−1); otherwise set ξ ki = ξ k−1
i and

(ηki,ti , ..., η
k
i,ti+Ti−1) = (ηk−1

i,ti
, ..., ηk−1

i,ti+Ti−1).
9: end for

10: Keep the last values ξKi and (ηKi,ti , ..., η
K
i,ti+Ti−1).

11: M-Step:
12: Estimate the quantile parameters by quantile regressions given the draws ξKi and (ηKi,ti , ..., η

K
i,ti+Ti−1), as explained

in Appendix A. Estimate the Laplace tail parameters.
13: Update the parameters of the proposal distribution, as explained in Appendix A.
14: end for

Practical issues: number of particles and threshold for effective sample size. In practice, we set an i-specific number of
particles equal to Si = 50Ti, where Ti is the number of observations of household i. We set the threshold for effective
sample size to Si/2.

Practical issues: specification. In practice we set the following polynomial degrees K for our baseline specification, chosen
after some experimentation:

• Qη: K η = 3, K age
= 2.

• Qη1 : K
educ

= 1, K cohort
= 1, K age

= 2.
• Qε: K age

= 2.
• Qc : K age

= 1, K a
= 2, K η = 2, K ε = 1, K ξ = 1.

• Qa: K age
= 1, K a

= 2, K y
= 1, K c

= 1.
• Qa1 : K

age
= 1, K η = 1, K ξ = 1, K education

= 1, K cohort
= 1.

• Qξ : K income
= 1, K educ

= 1, K cohort
= 1.

Practical issues: starting values. In practice, we start the algorithm from different parameter values. For example, for the
initial values of the quantile parameters in ηit , we run quantile regressions of log-earnings on lagged log-earnings and age.
We proceed similarly to set other starting parameter values, including those for the proposal distributions. In addition,
we use latent draws from the income model as initial draws when estimating the consumption model. We experimented
with a number of other choices.

Practical issues: numerical performance. Our aim is to ensure that the stochastic EM parameter Markov chains mix well.
Among the factors that influence mixing (as measured by the decay rate of auto-correlations along the parameter Markov
chains), we found three key ones to be the number of particles, the length of the Metropolis chains, and the number
of iterations in the overall EM algorithm. Given our experiments, we found that setting moderate numbers for the first
two (we set Si = 50Ti particles, as indicated above, and we run each Metropolis chain for 50 iterations), and relatively
large numbers for the third (we run the stochastic EM for 2000 iterations), gave best performance given computation
constraints in our short panel data setting.

25 When ℓ > 1 we simply take ξ 0i to be the ξi draw from the previous (ℓ − 1) step. When ℓ = 1 we always accept the first proposal. In both
ases, we run an SMC algorithm (see line 6 in the pseudo-code) based on ξ 0i to generate a draw (η0i,ti , ..., η

0
i,ti+Ti−1).

26
 In practice, we use a random walk proposal. We tune the variance of the proposal so that the acceptance rate is approximately 30%.
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Appendix B. Numerical comparison with ABB

The SMC approach differs from the Metropolis Hastings method that was used in ABB. Here we compare the income
ersistence implied by SMC and Metropolis Hastings, when using the original 6-wave balanced panel from ABB.
In Fig. B.1 we show the nonlinear income persistence predicted by the algorithm using SMC, and compare it to the

stimates based on the Metropolis Hastings algorithm from ABB. We see that the results are little affected by the change
n method. In particular, we see that, for households with a low persistent income component, high shocks are associated
ith less income persistence, and for households with a high persistent income component, low shocks are associated
ith more income persistence. These patterns differ from the implications of a linear process such as a random walk,
here income persistence would be flat, independent of both the income level and the income shock. Formally, the

Fig. B.1. Comparing Metropolis Hastings and Sequential Monte Carlo in the balanced panel used in Arellano et al. (2017, ABB).
otes: 6-wave balanced sample from the PSID used in ABB, 1999–2009. The graphs show the quantile derivatives of the persistent income component ηit
ith respect to ηit−1 , averaged over ages in the sample. In the left graph we show the result obtained using a Metropolis Hastings, using the codes from
BB. In the right graph we show the results obtained using the Sequential Monte Carlo algorithm. The two horizontal axes show percentiles of ηit−1 (‘‘initial
ncome’’) and conditional percentiles of ηit given ηit−1 (‘‘income shock’’), respectively..

Fig. B.2. Pointwise numerical stability bands of nonlinear persistence estimates.
otes: 6-wave balanced sample from the PSID used in ABB, 1999–2009. The graphs show the quantile derivatives of the persistent income component ηit
ith respect to ηit−1 , averaged over ages in the sample, and evaluated pointwise at the 2.5th and 97.5th percentiles over 200 runs of the stochastic EM
lgorithm, using different seeds every time. In the left graph we show the result obtained using a Metropolis Hastings sampler, using the codes from ABB.
n the right graph we show the results obtained using the Sequential Monte Carlo algorithm. The two horizontal axes show percentiles of ηit−1 (‘‘initial
ncome’’) and conditional percentiles of ηit given ηit−1 (‘‘income shock’’), respectively.
26
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income persistence measure proposed by ABB is, in the case of the persistent income component ηit ,

ρ(η, age, τ ) =
∂Qη(η, age, τ )

∂η
, τ ∈ (0, 1), (B.4)

here Qη is the quantile function appearing in (4).27
The income persistence results reported in ABB are based on comparing various estimation runs, and selecting the

ne that provides the highest value of the likelihood. However, compared to Metropolis Hastings used in ABB, we found
he SMC approach to be more effective at reducing the numerical instability across estimation runs. To illustrate this, in
ig. B.2 we report numerical stability bands that indicate the variability of income persistence estimates obtained from
00 runs of our estimation algorithm using different seeds, based on the two different sampling methods. In the left
raph of the figure we report results based on Metropolis Hastings. In the right graph we report results based on the SMC
lgorithm we rely on in this paper. The SMC results show substantially less numerical variability.
Lastly, although reported estimates in ABB appear reliable in the shorter balanced sample, in our experience increasing

he number of households and the length of the panel makes it more challenging to rely on Metropolis Hastings for
ampling. In contrast, we found our SMC implementation to remain numerically stable in such cases.

ppendix C. Which features of the consumption policy rule can be identified?

Consider a structural policy rule of the form

C = g(X, ν),

here ν, of unrestricted dimension, is independent of X . To simplify the presentation we assume that X is scalar. In
his paper, C denotes consumption, and X contains all state variables, including the income components. Denote the
onditional quantile function of C given X as Q (X, τ ). Hence, for U uniform independent of X , we can write

C = Q (X,U).

e are interested in moments of the marginal effects

∆xC =
∂g(x, ν)
∂x

.

The key challenge is that, while Q is identified from data on (C, X), g is generally not.

Average responses. We have, under standard conditions,

E [∆xC] =
∂

∂x
E [g(x, ν)] ,

hence

E [∆xC] =
∂

∂x
E [C | X = x] ,

or, equivalently,

E [∆xC] =
∂

∂x
E [Q (x,U)] ,

that is,

E [∆xC] = E
[
∂

∂x
Q (x,U)

]
.

Hence, average marginal effects are identified, irrespective of the dimensionality of ν and the monotonicity properties of
g .

Variance of responses. By Theorem 2.1 in Hoderlein and Mammen (2007) we have

E [∆xC | X = x, C = Q (x, τ )] =
∂

∂x
Q (x, τ ),

for all τ and x. We thus can write
∂

∂x
Q (x,U) = E [∆xC] + V ,

here

V =
∂

∂x
Q (x,U) − E [∆xC]

27 Note that ρ(η, age, τ ) also depends on age, which we average out in Fig. B.1.
27
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has mean zero, and variance

Var
(
∂

∂x
Q (x,U)

)
= Var (E [∆xC | X = x, C = Q (x,U)])

= R2Var (∆xC) ,

here R2 corresponds to the nonparametric regression of∆xC on C and X . Hence, the variance of ∂
∂xQ (x,U) underestimates

he variance of ∆xC , by an amount that depends on how well C and X explain ∆xC .
For example, if ν is scalar and has a monotone effect on g , then R2

= 1 and the variances are equal. In that case, Q = g ,
nd g is identified. More generally, even though g is may not be identified, the mean of ∂g(x,ν)

∂x is identified and one can
compute a lower bound on the variance of ∂g(x,ν)

∂x .

Appendix D. Additional tables and figures

D.1. Tables and figures for Section 2

See Tables D.1 and D.2 and Fig. D.1.

D.2. Tables and figures for Section 5

See Table D.3 and Figs. D.2–D.9.

D.3. Tables and figures for Section 6

See Figs. D.10–D.14.

D.4. Tables and figures for Section 7

See Table D.4 and Figs. D.15–D.24.

Table D.1
Additional descriptive statistics about the unbalanced panel.

(1) (2) (3) (4) (5) (6) (7)
Waves 1 Waves 2 Waves 3 Waves 4 Waves 5 Waves 6 Waves 7

Age 38.29 39.66 40.58 40.95 40.90 40.08 38.25
(10.51) (10.70) (10.13) (9.55) (9.23) (8.52) (6.71)

Education 4.88 4.95 5.00 5.06 5.05 5.16 5.14
(1.09) (1.10) (1.10) (0.99) (1.05) (0.95) (0.98)

Kids 1.22 1.05 1.08 0.90 1.02 1.17 1.35
(1.16) (1.15) (1.17) (1.00) (1.22) (1.08) (1.01)

Food 10,224.82 10,297.24 10,231.33 10,417.36 10,618.86 10,873.81 10,339.80
(5,618.54) (4,871.19) (4,884.57) (5,322.02) (5,205.25) (5,295.29) (5,566.94)

Non-durables (excl. food) 24,446.69 25,271.07 27,640.10 26,705.96 27,597.78 29,553.66 27,365.30
(23,423.94) (14,975.07) (20,170.04) (19,519.81) (18,453.14) (18,044.51) (18,732.42)

Total Non-durables 34,818.81 35,657.00 37,929.68 37,137.98 38,269.81 40,427.48 37,731.48
(26,171.72) (17,197.60) (22,674.04) (22,345.36) (21,752.17) (20,778.80) (21,432.31)

Home equity 94,353.18 93,634.64 134445.57 142168.95 146854.98 144322.37 145431.99
(221908.96) (157549.09) (218194.70) (196533.44) (231684.48) (171917.47) (182450.48)

Negative Equity Dummy 0.03 0.01 0.02 0.02 0.03 0.02 0.01
(0.16) (0.12) (0.13) (0.12) (0.16) (0.15) (0.10)

Wealth (excl. home) 236379.23 151718.99 192237.00 207947.79 245846.12 149537.06 144836.15
(1.85e+06) (452508.81) (480574.21) (1.03e+06) (713417.52) (437249.71) (607971.51)

Total wealth 369397.05 283854.13 387068.75 414928.35 464594.00 349645.50 352285.71
(2.26e+06) (648961.96) (714758.54) (1.30e+06) (1.00e+06) (604613.97) (791042.37)

Labor income 105504.37 106842.60 121094.14 134196.63 136728.34 118852.50 117218.18
(131690.40) (90,625.35) (131051.85) (226750.06) (132471.38) (65,851.87) (53,500.79)

Net income 83,800.29 84,063.03 92,061.60 100974.16 101662.12 90,869.67 90,045.96
(80,287.10) (57,270.53) (80,307.77) (132837.00) (79,228.69) (42,442.62) (34,698.92)

Observations 1002 668 484 263 223 177 299

Notes: PSID, 2005–2017. Means of variables, standard deviations in parentheses.
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Fig. D.1. Consumption responses at various quantiles, confidence bands.
otes: See the notes to Figs. 1 and 2. Bootstrapped pointwise 95% confidence bands clustered at the household level.

Fig. D.2. Nonlinear income persistence.
otes: PSID, 2005–2017 sample, disposable income, dual earners from an alternative perspective. The left graph shows quantile derivatives of log-income
ith respect to lagged log-income. The right graph shows quantile derivatives of the persistent latent component ηit with respect to ηit−1 , model estimated
sing sequential Monte Carlo with a stochastic EM algorithm. The two horizontal axes show percentiles of ηit−1 (‘‘initial income’’) and conditional percentiles
f ηit given ηit−1 (‘‘income shock’’), respectively.
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Table D.2
Additional descriptive statistics about the main sample, including negative assets.

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,632.46 10,584.68 10,231.23 10,517.05 10,701.87 11,154.70 11,761.09
(5,299.94) (5,480.66) (4,985.32) (5,039.51) (5,575.75) (5,262.43) (5,514.86)

Non-durables (excl. food) 28,005.27 29,138.06 27,784.64 28,336.56 30,089.00 29,597.75 28,312.56
(18,936.74) (19,416.39) (18,768.90) (17,696.35) (17,860.16) (17,018.40) (14,572.47)

Total Non-durables 38,669.31 39,750.28 38,081.61 38,921.75 40,869.60 40,824.46 40,119.38
(21,699.98) (22,033.74) (21,113.38) (20,391.50) (20,440.32) (19,538.10) (17,414.63)

Home equity 150404.41 156582.18 117029.77 97,240.09 91,229.90 94,851.48 108298.61
(212201.08) (224409.31) (192280.79) (161856.05) (146908.40) (135356.38) (135913.11)

Negative Equity Dummy 0.01 0.01 0.07 0.08 0.06 0.02 0.02
(0.12) (0.12) (0.26) (0.28) (0.24) (0.14) (0.12)

Wealth (excl. home) 188962.86 255179.00 230841.97 201148.10 183919.95 203580.64 272524.94
(683870.01) (964936.86) (874673.16) (497471.78) (476877.85) (519691.15) (1.01e+06)

Total wealth 411875.17 470628.74 384224.26 314392.55 279919.36 298432.12 368142.89
(940132.05) (1.20e+06) (1.07e+06) (617956.79) (578419.27) (590056.80) (1.01e+06)

Labor income 122972.70 124391.48 126510.00 123237.46 121745.86 120544.04 125475.14
(139187.13) (143195.31) (182296.90) (119741.17) (118132.57) (72,546.62) (66,226.60)

Net income 93,504.28 94,804.55 95,893.52 95,289.90 94,087.25 92,224.02 95,572.56
(83,501.16) (86,771.32) (109386.52) (73,204.74) (71,919.39) (46,205.59) (43,329.49)

Observations 1397 1684 1616 1399 1269 1192 968

Notes: PSID, 2005–2017. Means of variables, standard deviations in parentheses.

Table D.3
Summarizing heterogeneity across types, nonparametric bootstrap.
A. 90th vs 10th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.31 0.22 0.09
[0.08, 0.48] [0.04, 0.44] [−0.15, 0.22]

Low ξ 0.48 0.21 0.27
[0.27, 0.68] [0.04, 0.42] [0.01, 0.43]

∆ −0.17 0.01 −0.18
[−0.56, 0.08] [−0.27, 0.28] [−0.54, 0.08]

B. 75th vs 25th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.36 0.21 0.15
[0.19, 0.46] [0.08, 0.40] [−0.02, 0.24]

Low ξ 0.45 0.21 0.24
[0.27, 0.58] [0.09, 0.39] [0.02, 0.34]

∆ −0.09 0.00 −0.09
[−0.27, 0.04] [−0.13, 0.14] [−0.25, 0.04]

Notes: See the notes to Fig. 4. Here we report average consumption responses for young and low assets
households compared to old and high assets households, for different percentiles of heterogeneity ξi in
consumption. Values are calculated by evaluating the average consumption response for households at
a fixed percentile of ξi when assets and age are fixed at the τ th percentile. Reported values for young
and low assets households are then shown by averaging over τ ∈ (0, 0.5). Reported values for old and
high assets households are then shown by averaging over τ ∈ (0.5, 1). Nonparametric bootstrap 95%
confidence intervals clustered at the household level based on 200 replications are shown in brackets.
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Fig. D.3. Nonlinear persistence in ηit , 95% pointwise confidence bands (parametric bootstrap).
otes: Pointwise 95% confidence bands based on the parametric bootstrap. 200 replications.

Fig. D.4. Nonlinear persistence in ηit , 95% pointwise confidence bands (nonparametric bootstrap).
otes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is clustered at the household level.

Fig. D.5. Average insurance in model with and without heterogeneity 95% pointwise confidence bands (nonparametric bootstrap).
otes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is clustered at the household level.
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Fig. D.6. Average insurance in model with and without heterogeneity 95% pointwise confidence bands (parametric bootstrap).
otes: Pointwise 95% confidence bands based on parametric bootstrap.

Fig. D.7. Heterogeneity in consumption responses, 95% pointwise confidence bands (parametric bootstrap).
otes: Pointwise 95% confidence bands based on parametric bootstrap. 200 replications.

Fig. D.8. Heterogeneity in consumption responses, 95% pointwise confidence bands (nonparametric bootstrap).
otes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is clustered at the household level.
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Fig. D.9. Heterogeneity in residual variation of consumption responses.
otes: See the notes to Fig. 5. The figure shows an upper bound on the proportion of the variation in consumption responses to ηit explained by the average
onsumption response, conditional on age and assets, see Appendix C. The various graphs corresponds to different percentiles of ξi .

Fig. D.10. Life-cycle profile of log-consumption, for different percentiles of unobserved types.
Notes: Average non-residualized log-consumption, for different ages and percentiles of ξi (10%, Median, 90%). The dashed lines show the age-specific and
ξi-specific 10th and 90th percentiles of log-consumption.

Fig. D.11. Life-cycle profiles of log-assets and log-income, for different percentiles of unobserved types.
Notes: Average non-residualized log-assets and persistent latent component of log-income, for different ages and percentiles of ξi (10%, Median, 90%). The
dashed lines show the age-specific and ξi-specific 10th and 90th percentiles for each outcome measure.
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p

Fig. D.12. Heterogeneity in consumption responses, model with heterogeneity in assets.
Notes: See the notes to Fig. 5. The results are based on a model with latent heterogeneity ξi in consumption and assets. Here we report the results by
ercentiles of heterogeneity ξi .
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Fig. D.13. Heterogeneity in assets dynamics, model with heterogeneity in assets.
Notes: The figure shows the average total derivative of log-assets with respect to lagged log-assets, conditional on lags of log-assets, income components,
log-consumption, age, and the latent type. Here we report the results by percentiles of heterogeneity ξi .
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Fig. D.14. Heterogeneity in assets responses, model with heterogeneity in assets.
Notes: The figure shows the average total derivative of log-assets with respect to lagged η, conditional on lags of log-assets, income components, age and
the latent type. Here we report the results by percentiles of heterogeneity ξi .
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Fig. D.15. Heterogeneity in impulse responses: consumption trajectories.
Notes: Trajectories shown for shocks at the 10th (top subpanel), 50th (middle subpanel) and 90th (bottom subpanel) percentiles.

Table D.4
Descriptive statistics about the main sample without dual earners restriction.

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,739.58 10,629.51 10,294.05 10,523.17 10,728.10 11,195.42 12,049.05
(5,602.43) (5,617.21) (5,131.22) (5,066.30) (5,701.24) (5,290.79) (5,872.98)

Non-durables (excl. food) 27,847.42 28,588.68 27,339.21 27,883.75 29,368.71 29,549.63 27,907.17
(23,625.00) (20,214.59) (19,243.79) (19,340.37) (19,382.75) (19,794.72) (16,322.99)

Total Non-durables 38,625.09 39,265.87 37,731.22 38,532.60 40,205.65 40,843.42 40,002.57
(26,482.07) (23,195.91) (21,701.55) (21,932.92) (22,194.81) (22,563.15) (19,525.89)

Home equity 168358.82 176300.55 136154.76 121783.91 116463.18 118089.14 133596.76
(262246.00) (283429.69) (207398.72) (175957.85) (165962.97) (152785.21) (150451.14)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.03 0.01 0.01
(0.08) (0.10) (0.17) (0.17) (0.16) (0.10) (0.10)

Wealth (excl. home) 211547.79 279544.52 278268.96 268297.79 260584.33 291511.77 346692.78
(1.09e+06) (1.16e+06) (1.02e+06) (704058.90) (656770.57) (765195.01) (1.07e+06)

Total wealth 461075.98 521015.10 457730.90 411004.15 383583.34 409600.91 464296.87
(1.51e+06) (1.51e+06) (1.23e+06) (841641.87) (762537.13) (834428.29) (1.09e+06)

Labor income 121962.17 120618.90 124276.87 121469.61 127809.57 124560.33 129948.36
(155403.02) (143009.67) (181097.03) (129296.65) (241344.84) (172615.50) (115383.29)

Net income 93,333.70 93,262.22 95,306.98 95,476.95 98,924.10 95,790.47 99,431.91
(92,700.09) (86,962.24) (108935.54) (82,869.14) (145844.22) (98,144.09) (69,882.14)

Observations 1730 2004 1843 1578 1436 1321 1090

Notes: PSID, 2005–2017. Means of variables, standard deviations in parentheses.
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Fig. D.16. Heterogeneity in impulse responses, model with heterogeneity in assets.
Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) percentiles, relative to median.
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Fig. D.17. Heterogeneity in consumption responses based on 19 knots.
Notes: See the notes to Fig. 5. In this figure we use 19 knots in estimation. For our baseline results in Fig. 5 we used 11 knots.

Fig. D.18. Nonlinear income persistence, labor income.
Notes: PSID, 2005–2017 sample, household labor income. The left graph shows quantile derivatives of log-income with respect to lagged log-income. The
right graph shows quantile derivatives of the persistent latent component ηit with respect to ηit−1 , model estimated using sequential Monte Carlo with a
tochastic EM algorithm. The two horizontal axes show percentiles of ηit−1 (‘‘initial income’’) and conditional percentiles of ηit given ηit−1 (‘‘income shock’’),
espectively.
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Fig. D.19. Heterogeneity in consumption responses, labor income.
Notes: See the notes to Fig. 5. Household labor income. Here we report the results by percentiles of heterogeneity ξi in consumption.
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Fig. D.20. Nonlinear income persistence, no dual earners restriction. Notes: PSID sample, no dual earners restriction. See the notes to Fig. 3.
41



M. Arellano, R. Blundell, S. Bonhomme et al. Journal of Econometrics xxx (xxxx) xxx
Fig. D.21. Heterogeneity in consumption responses, no dual earners restriction.
Notes: See the notes to Fig. 4. No dual earners restriction. Here we report the results by percentiles of heterogeneity ξi in consumption.
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Fig. D.22. Average consumption responses to labor income.
Notes: PSID, 2005–2017 sample, dual earners, labor income. The graph shows the average derivative of log-consumption with respect to the persistent latent
component ηit in a model without unobserved heterogeneity ξi in consumption. The two horizontal axes show age and assets percentiles, respectively.

Fig. D.23. Quantile–quantile plots for ξi by observables.
Notes: Quantile–quantile plots shown for (a) graduates and non-graduates (b) born before 1969 and born after 1969. The graphs show the quantiles of ξi
indicated on the x-axis against the quantiles of ξi indicated on the y-axis.
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H

Fig. D.24. Heterogeneity in consumption responses controlling for education.
Notes: See the notes to Fig. 4. We report average derivatives in a regression that includes a full set of interactions with a binary higher education indicator.
ere we report the results by percentiles of heterogeneity ξi in consumption.
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