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Abstract

We use a new empirical strategy to test various measures of school effectiveness in England.
Our approach exploits discontinuities in attendance probabilities that occur at unpredictable
distance cutoffs used as tiebreakers in admissions processes for oversubscribed schools. We
show that raw, unadjusted test score outcomes of schools are biased estimators of school effec-
tiveness due to sorting of certain types of students into certain types of schools. Controlling
for basic background characteristics (but not prior attainment) does not change this result. On
the other hand, we cannot reject the hypothesis that simple value added models which adjust
school test scores for difference in the prior attainment of their intake produce unbiased effec-
tiveness estimates. This includes "Progress 8", the measure of value added that has been used
in England since 2016, suggesting the measure accurately captures the true effect of schools on
pupils’ GCSE attainment. Adding additional background controls does not invalidate the esti-
mates, but it does not improve precision either. Finally, we combine our unbiased estimator of
effectiveness with data on secondary school applications to show that parents often do not put
the most effective school in their local area down as their first choice school. This is particularly
true for parents from poorer households, suggesting SES gaps in access to good schools could
be narrowed through changes to school application patterns.1

Keywords: value added models, school effectiveness
JEL Codes: I20, J24, C52

1This work has been funded by the Nuffield Foundation. The Nuffield Foundation is an independent charitable
trust with a mission to advance social well-being. It funds research that informs social policy, primarily in Education,
Welfare, and Justice. It also funds student programmes that provide opportunities for young people to develop skills
in quantitative and scientific methods. The Nuffield Foundation is the founder and co-funder of the Nuffield Council
on Bioethics and the Ada Lovelace Institute. The Foundation has funded this project, but the views expressed are those
of the authors and not necessarily the Foundation. We thank our Advisory Group for their contribution to the work
and Laura van der Erve and Louis Hodge for additional research input. This work contains statistical data from ONS
which is Crown Copyright. The use of the ONS statistical data in this work does not imply the endorsement of the
ONS in relation to the interpretation or analysis of the statistical data. This work uses research datasets which may not
exactly reproduce National Statistics aggregates. The work was carried out in the Secure Research Service, part of the
Office for National Statistics.



1 Introduction

Measuring school effectiveness is important for informing parental choice, for incentivising high

teaching standards, for identifying good (and bad) school practice, and for thinking about equality

of opportunity in education. It is generally accepted that using raw, unadjusted school outcomes,

such as average test scores or the proportion of students passing a certain threshold,2 are not good

measures of effectiveness due to there being large differences in the types of students attending

different schools.

Value added models (VAMs) attempt to address this by adjusting school outputs (usually stu-

dent test scores) for the prior achievement and often additional demographic characteristics of the

student body. In England, VAMs of various guises have been used to measure secondary school

effectiveness since the early 2000s (see Leckie and Goldstein, 2017, for a review). The most recent

of these was introduced in 2016 and is called “Progress 8”. This is a very simple VAM that only ad-

justs for prior test scores. The decision to only adjust for prior attainment and not any additional

student characteristics has been criticised on the grounds that it is unlikely to satisfactorily control

for the way parents select into schools, which may generate inaccurate estimates of effectiveness

(Leckie and Goldstein, 2017).

However in practice, we do not know whether Progress 8 is a reliable measure. Clarity on

this issue is an important policy issue in the United Kingdom, as Progress 8 is highly visible and

influential.3 It is prominent on school comparison sites and is used to create publicly available

school rankings that influence parental choice and that teachers care about. Poor Progress 8 re-

sults can trigger inspections from the standards regulator and potentially influence school closure

decisions. And according to current teachers, it is increasingly influencing school practices.4

Although there are previous studies that have estimated bias in VAMs (Deming, 2014; Angrist

et al., 2017; Abdulkadiroğlu et al., 2020; Angrist et al., 2021), the applicability of those findings to

the English setting is unclear due to differences in institutional settings, differences in method-

ological choices, and differences in measures of school inputs and outputs. And in any case, the

2For example, in England the share of students who attained at least a C grade in five or more GCSE exams was a
commonly reported measure of school performance.

3The question is also relevant more generally. One clear advantage of Progress 8 (and similar variants) is that it
is not so demanding in terms of data, making it more realistic to introduce similar measures in settings other than in
England.

4For example, see the Twitter account of Katherine Birbalsingh, the Headteacher of Micheala school in London,
which was the highest ranked school in the country for Progress 8, in October 2022, when that year’s Progress 8 results
were released (she was also Chair of the UK Social Mobility Commission at the time). She highlights her schools success
but also encourages other schools to emulate the practices of the high performing schools in the Progress 8 rankings.
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previous evidence is highly ambiguous on this issue - while some papers find VAMs to be unbi-

ased, others find the opposite.

The studies listed above all evaluate the validity of VAMs by exploiting admissions lotteries

that are used to determine entry to oversubscribed schools in the United States. The basic intuition

is that if the VAM is valid, test score gains from winning an admissions lottery should align with

the gain predicted by VAM. However, like in most settings, admissions lotteries do not exist in

England. In this paper we present a new empirical strategy for identifying causal school effects

on test scores in England, which uses discontinuities in attendance probabilities around the edges

of unpredictable distance cutoffs used as tiebreakers in admissions processes for oversubscribed

English secondary schools. We use this to test whether a range of different measures produce

unbiased estimates of school effectiveness.

In English state secondary schools there are often sharp discontinuities in attendance that occur

at certain distances from the school to prospective students’ homes. Many of these discontinuities

are generated by natural barriers, such as rivers or roads, or specified catchment areas in which

pupils are close to guaranteed admission. Such discontinuities are unlikely to generate credible

experiments, as parents can select to live inside natural barriers or catchment areas in order to

attend their preferred school. However, many schools in the country remain oversubscribed once

their other selection criteria are applied. And in such cases, distance is commonly used as a final

tiebreaker. Since this distance cutoff depends on demand in a given cohort, it changes over time

and is not easily predicted, meaning it is not possible to manipulate it to be just inside or just

outside the cutoff.

Using a combination of web searches and Freedom of Information requests, we collected data

from secondary school admissions brochures published by Local Authorities between 2007 and

2012 on which schools used distance as a tiebreaker and the precise distance used. We then

matched this information to individual-level administrative data on all secondary pupils in Eng-

land. We argue that schools which have sharp attendance discontinuities at the precise distance

that corresponds to the brochure cutoff produce plausibly causal identification of the effect of at-

tending that school versus the school that individuals would have attended had they lived on the

other side of the cutoff.

We exploit this quasi-experimental variation to test a set of five measures of school effective-

ness measures for bias with varying sets of controls methods of construction. We find strong
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evidence that measures of school performance which do not adjust for prior attainment are bi-

ased. However, we are unable to reject the hypothesis that simple VAMs that adjust for prior

attainment only produce unbiased effectiveness estimates. This includes the government’s head-

line Progress 8 measure, suggesting it is reliable estimator of the true effect of secondary schools

on GCSE results. However we do find some suggestive evidence that controlling more flexibly for

prior attainment than Progress 8 does would produce a more reliable measure. Once we do this,

adding additional student demographic controls does not improve precision, weakening the case

for incorporating additional student demographic controls into the headline measure.

This is a growing branch of the literature that has developed out of research evaluating the va-

lidity of teacher VAMs (Kane and Staiger, 2008; Kane et al., 2013; Chetty et al., 2014; Bau and Das,

2020). These papers show that estimates of teacher effectiveness based on quasi-randomisation of

students to teachers broadly align with OLS-based estimates of teacher effectiveness, suggesting

such measures are unbiased. As mentioned above, we connect most directly to the small number

of papers that apply similar tests to evaluate school value added using school admissions lotter-

ies (see Angrist et al., 2022, for a comprehensive review of the evidence). Deming (2014) uses

data on lotteries from 118 schools in North Carolina, finding that even relatively simple value

added estimates are unbiased using a similar approach to those used in the teacher value added

literature. Angrist et al. (2017) formulates a new, more stringent test of value added bias via an

overidentification test of the orthogonality restrictions generated by a set of lottery instruments

from 29 schools in the Boston area. They find that while the forecast coefficient test suggests that

value added is unbiased, their overidentification test rejects the null that VAM estimates correctly

predict the effect of randomized admission at ever school with a lottery. They present evidence

suggesting that non-charter schools drive this result. Abdulkadiroğlu et al. (2020) implement the

tests suggested by Angrist et al. (2017) using 124 lotteries in New York City, concluding that the

VAM they use is unbiased for maths scores, but not for the more general PSAT scores. Finally, An-

grist et al. (2021) finds unbiased estimates for middle schools in Denver (based on 67 lotteries) and

New York City (448 lotteries), but biased estimates for New York City high schools (382 lotteries).

This evidence is therefore very mixed, though generally leaning towards VAMs being unbiased.

Our paper contributes to this literature by adding another test of VAM bias in a new insti-

tutional setting, exploiting a different source of identification. To our knowledge, the only other

papers that test for school VAM bias using identification sources other than lotteries are Ainsworth
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et al. (2022), which exploits discontinuities in attendance driven by entry requirements based on

prior attainment in Romania, and Andrabi et al. (2022), which exploits school switches driven by

school closures in Pakistan. Both papers conclude that the value added measures they test are

unbiased. As described above, our work is also highly relevant to the policy debate in the UK,

where findings from tests in different institutional settings are unlikely to apply.

An additional contribution of our work is to show that our data on the precise distance cutoffs

used by schools is crucial for identification. We find that we are unable to credibly increase our

sample by searching using for attendance discontinuities using a search algorithm, such as the

one used by Hoekstra (2009), even if we restrict our search to being within close proximity of

reported brochure cutoffs. This is an important result for those intending to test VAM validity

in alternative settings and for researchers trying to exploit attendance discontinuities around the

edge of secondary schools to answer other research questions.

In the final section of the paper, we draw upon the finding that we have credible estimates

of school effectiveness to investigate the extent to which parents leave value added “on the ta-

ble” when making their secondary school choices (following a similar approach to Ainsworth et

al., 2022). Making use of secondary applications data from 2014, we show that there are large

differences between the first preference school of parents and the most effective school in their

local area, even when that local area is restricted so that parents could not select a school that is

further away than the one their child actually attended. The gaps between the effectiveness of

the first choice school and effectiveness of the most effective local school are larger for parents

from poorer households than they are for parents from richer households, suggesting SES gaps in

school quality could be narrowed considerably if parents were to select on school effectiveness.

The rest of the paper is set out as follows. We discuss VAMs and results from the previous

literature in more detail in Section 2. We provide details on the English school system and the

data in Section 3 before outlining our empirical framework in Section 4. We show our results and

some robustness checks in Section 5. Section 6 presents our investigation of whether value added

is left on the table, before Section 7 concludes.
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2 Estimating school VAMs and testing for bias

2.1 School VAMs

Value added models (VAMs) commonly take the following basic form:

Yij =
J

∑
j=1

λjDij + X′i δ + εij (1)

where Yij is a school outcomes measures (usually test scores), Dij is a dummy for student i

attending school j with school 0 omitted, λ̂j is estimated impact of school j on test scores, or the

estimated VA of school j relative to school 0. Finally, Xi is vector of control variables, which must

include prior test scores, to be considered a “value-added” model, but often includes additional

background variables. The key assumption is that this model is well specified and λ̂j identifies

the causal impact of the school.

There are several ways to estimate VAMs, including different X variables (e.g. demographic

variables such as free school meal eligibility and ethnicity), different outcome variables (e.g. test

scores, university entry or earnings), different specifications (e.g. interacted models) and different

ways of dealing with noise (e.g. pooling, shrinkage or random effects).

Progress 8, the headline measure of effectiveness for English secondary schools is not con-

structed through a regression approach. The details of how it is constructed are given later in the

paper, but for the purposes of the following discussion, it is helpful to have the simple VAM from

equation (1) in mind.

2.2 Testing for bias using lotteries

Previous studies have tested school VAMs by exploiting admissions lotteries. The basic intuition

behind these tests is that if a school VAM is unbiased, the difference in test scores between lottery

winners and lottery losers should align with the difference in value added between lottery winners

and losers. That is, one would expect πY = πV from the following:

Yij = αY + πYZij + X′i Π
Y + ηY

ij (2)

Vij = αV + πV Zij + X′i Π
V + ηV

ij (3)
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where Yij is test scores of individual i attending school j, V is value added (using V = λ̂ from

above), Z is a dummy for winning the lottery, X is a set of control variables, αY,V are constants and

ηY,V are random noise.

This can be recast to a two-stage least squares set up:

Yij = aY + βV̂ij + X′i Θ
Y + ωY

ij (4)

Vij = aV + πZij + X′i Θ
V + ωV

ij (5)

where V̂ in (4) is estimated from the first stage equation (5). Here we expect β̂ = 1 since by

definition β̂ = πY

πV . In the literature, β̂ is referred to as the forecast coefficient.

This idea is straightforwardly extended to a setting where there are K lotteries, each associated

with a different school (we include a dummy for each school here and now drop the constant). Let

L be a dummy for entering the lottery, we then estimate:

Yij =
K

∑
j=1

θMY
j Lji + βMV̂ij + X′i Γ

MY + ζMY
ij (6)

Vij =
K

∑
j=1

θMV
j Lij +

K

∑
j=1

πM
j LijZij + X′i Γ

MV + ζMV
ij (7)

The test is then whether or not β̂M = 1. This approach mirrors Angrist et al. (2017), Abdulka-

diroğlu et al. (2020) and Angrist et al. (2021). Later, we refer to this approach as the ‘multi-IV’

approach (hence the “M” superscript) as it treats each of the lotteries as separate instruments for

value added. We use this to distinguish from the ‘single-IV’ approach, which interacts the instru-

ment, Z with ∆V = Vji −V−ji, so we have:

Yij =
K

∑
j=1

θSY
j Lji + βSV̂ij + X̃′i Γ

SY + ζSY
ij (8)

Vij =
K

∑
j=1

θSV
j Lij + πS

K

∑
j=1

LijZij∆Vij + X̃′i Γ
MV + ζSV

ij (9)

The key difference here is that this involves the estimation of one parameter on the instru-

ments, πS, rather than one parameter for each instrument (πM
j in the multi-IV approach, equation

7). This approach is similar to the one used by Deming (2014),5 and the test is now whether β̂S = 1.

5This approach also requires the inclusion of an additional control for V−ji, which add to X to create X̃.
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Table 1 summarises the evidence from four previous papers that have used lotteries to test

value added bias. Deming (2014) finds that when average test scores in maths and reading are

adjusted for lagged test scores, he is unable to reject the null that resulting estimate of school

effectiveness is unbiased (the forecast coefficient is 0.966, while the p value is 0.92) for a subset of

middle schools in North Carolina.

Table 1: Literature Summary
Angrist et al. (2017) Abdulkadiroglu et al. (2020)

Setting Boston Boston New York City New York City
Outcome: Math Math Math PSAT
School level Middle Middle High High
Lagged scores Yes Yes Yes Yes
Background chars. Yes Yes Yes Yes
Sample selection: Exc. Charters
Forecast coefficient 0.864 0.549 0.965 0.879
s.e. [0.075] [0.164] [0.038] [0.048]
p value 0.071 0.006 0.354 0.012
First stage F-Stat 29.6 11.2 6.1 2.3
OverID test p value 0.003 0.043 0.996 0.080
Lotteries 29 24 124 124
N 8718 6162 32131 32131

Deming (2014) Angrist et al. (2021)

Setting North Carolina Denver New York City New York City
Outcome: Math/reading Math Math SAT Math
School level Middle Middle Middle High
Lagged scores Yes Yes Yes Yes
Background chars. No Yes Yes Yes
Forecast coefficient 0.966 1.120 0.933 0.783
s.e. [0.342] [0.106] [0.041] [0.064]
p value 0.920 0.275 0.105 0.001
First stage F-Stat not reported 104.0 649.0 240.0
OverID test p value N/a 0.070 0.186 0.043
Lotteries 118 67 448 382
N 2599 7660 44498 30066

Abdulkadiroğlu et al. (2020) get the same result for test scores in math, but not the PSAT, for

which they also reject the null, based on a subset of New York City high schools. Angrist et al.

(2017) estimates a forecast coefficient of 0.86 (p=0.07) which is interpreted as a borderline pass

of the null. However, crucially Angrist et al. (2017) introduce a more stringent test of the overi-

dentification restrictions in their multiple instrument setup. They find that this test is rejected,

meaning that while the forecast coefficient is close to one overall, it is not close to one for some of

the school experiments. The authors are able to explain this by showing that once they exclude

Charter schools from their analysis, the forecast coefficient is significantly different to one. Ab-
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dulkadiroğlu et al. (2020) also perform this test, finding a pass for math scores and a borderline

pass for PSAT scores. Finally, Angrist et al. (2021) do not reject the null that basic value added

models are unbiased for middle schools in Denver and New York, although they present only a

borderline pass of the overidentification test in the former case. For New York City high schools,

however, they reject the null that the basic value added model is unbiased, as they estimate the

forecast coefficient to be 0.78 (p=0.001). They also reject the null for the overidentification test in

this setting.

The previous evidence on “conventional” value added models that control for lagged test

scores and often additional background characteristics of students is therefore very mixed, high-

lighting the need for testing VAM bias in individual institutional settings.6

3 Institutional background and data

We study English secondary schools, which pupils attend from age 11 to age 16 (also referred to

as Year 7 to Year 11). At the end of Year 11, secondary school pupils take the General Certificate

of Secondary Education (GCSE) examinations. Prior to entry to secondary school, pupils also take

national examinations called Standard Assessment Tests (which we refer to as “Year 6 SATs”) in

the final of year of primary school.7 The combination of these tests are used to construct ‘Progress

8’ which is now the most prominent measure of value added of English secondary schools. These

scores are made publicly available, and are therefore a highly visible measure of school effective-

ness. They can influence hiring and firing of teachers, school practices, and where schools perform

poorly, can trigger inspections.8

3.1 Details of student assignment process

Like many countries, English secondary schools do not use lotteries to determine entry. We will

therefore exploit alternative features of the school assignment process detailed below.

Parents (or caregivers) apply to secondary schools for their children in January of Year 6, the

6Conversely, the literature is unequivocal that using test scores without adjusting for background characteristics
does produce biased estimates of school effectiveness. Deming (2014), Abdulkadiroğlu et al. (2020) and Angrist et al.
(2021) all get forecast coefficients that are significantly different to one when testing this.

7We also have data on “Year 2 SATs” although these exams are not included as inputs to Progress 8.
8Schools are also routinely subjected to inspections from the Office for Standards in Education (Ofsted). Poor

Progress 8 performance can trigger an inspection - otherwise, schools are inspected roughly every four-five years,
depending on the results of previous inspections.
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final year of primary school. Pupils are then assigned to schools via a centralised deferred accep-

tance, Gale-Shapley algorithm. The algorithms works as follows:

1. Assign all pupils to their cth choice school (starting with c = 1, the first choice school).

2. For schools where the number of assigned students (Ns) exceeds the school’s capacity (Ss),

rank pupils by school preferences rs and keep students for whom rs ≤ Ss.

3. Reassign all students for whom Ss < rs ≤ Ns to their (c + 1)th choice school.

4. Repeat steps (2) and (3) until all pupils are assigned.

The algorithm crucially depends on rs, the school ranking of students. These will typically be

based on priorities such as:

1. Pupils with special educational needs

2. Pupils with a sibling in the school

3. In some cases, pupils who attended feeder primary school

4. In some cases, pupils with a specific religious affiliation

5. Everyone else9

Since these are discrete variables, a tiebreaker is required to sort students in each category. Typ-

ically, the distance from the pupils’ home address to the school at the time of application is used

for this.10 We refer to a school for which at any point in the algorithm Ns > Ss as being oversub-

scribed in a given application cycle. For such schools that then use distance as a final tiebreaker to

determine entry, there may be discontinuities in the probability of attendance at the school around

the specific distance cutoff used. Since the specific cutoff is based on the number of priority stu-

dents, the number of first preferences for the school, and the rejection rates of local schools, the

precise location of these distance cutoffs are impossible difficult to predict ex-ante. This therefore

generates pseudo-randomisation of households into or out of the school depending on whether

they are just inside or just outside the distance threshold. It is this pseudo-randomisation that we

are interested in exploiting in order to test VAM validity.

9Importantly, schools are not allowed to select on the students’ preference ranking, and in fact do not observe this.
In theory this makes the process ‘strategy-proof’ meaning parents should order their school preferences truthfully.

10For some schools, other tiebreakers are used. For example, schools are able to differentiate students based on their
evidence of religious affiliation. A very small number of London schools also used test scores as a tiebreaker.
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We do not have data on all of the assignment conditions. For example, the Department for

Education do not release information on siblings, and we do not know religion. However, we are

able to make use of information on specific distance tiebreakers.

3.2 Brochures

We require information on whether schools used a distance tiebreaker and the precise distance

used. This is necessary because discontinuities in attendance can occur at certain distances from

a school for reasons that are predictable, and they are therefore are likely to suffer from selection

of parents who choose to live inside or outside the cutoff in order to influence which school their

children can attend. For example, a river or a motorway might result in a big drop in attendance

probabilities around a desirable school, and parents might select to living on the side of the river

or motorway that makes access to the desirable school easier. We therefore do not think it is

reasonable to search for attendance discontinuities around all schools without being guided by

information on whether brochure cutoffs are used.

Table 2: Summary of brochure data
No. schools with
any cutoff info

Median distance
(km)

2007 298 2.94
2008 488 3.29
2009 418 3.33
2010 444 3.01
2011 528 3.37
2012 502 3.51

No. school-year obs 2678

No. schools 820

Source: Local Authority Brochures collected by the authors. Year is based on the secondary school cohort the distance
cutoff applied to.

Fortunately for our research design, this information is available, as Local Authorities in Eng-

land published admissions brochures that included information on the selection processes of sec-

ondary schools in their area, whether distance was used by the school as a tiebreaker, and if so,

the precise distance that was used.11 We collected the brochures through a combination of inter-

net searches and freedom of information requests sent to Local Authorities. The basic data that

we collected is summarised in Table 2. Across six years of data, we have 2678 precise distance

cutoffs from 820 different schools (with many schools reporting cutoffs for multiple years). The

11See Appendix A for examples.
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years correspond to the year of entry to secondary school, meaning the 298 cutoffs we observe in

2007 apply to the cohort of students which entered Year 7 in September 2007. We observe more

distance cutoffs (around 500) in later years as we were able to collect more brochures in the later

period. There were approximately 4,000 secondary schools in England during this period, mean-

ing around 20% report using distance cutoffs. The table also reports the median reported cutoff

distance in each year, which is around 3km in each year.

These brochures are not a representative sample from across the whole country - Figure 1

shows that the brochures we collected are predominantly from London, the South and the West

Midlands. This is not surprising as we expect oversubscription to be used in areas where there is

high population density.

Figure 1: LEAs with brochures

No cutoffs
Cutoff data exists

Note: Figure constructed from brochure data, based on whether we any cutoff data within each LEA between 2007 and
2012.

An important premise of our work is that the distance cutoffs are almost impossible to pre-

dict, due to the random variation in cohort sizes and applicant preferences. Figure 2 provides

supportive evidence of this point by showing the relationship between cutoff distances in year t

and in year t+1, t+2, t+3 and t+4 for schools that are observed at least twice in the dataset. Each
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plot shows just one observation per school. (Even though schools could in fact contribute up to

five observations to the top left hand plot of the Figure and up to two observations to the bottom

right plot. For each school, we show the observation for which the change in distance between the

years in question is the smallest, so as to emphasise the point that these distances bounce around

substantially over time). In practice, of the 1,072 points where we have data on cutoffs at t and

t+1, just 26 observations (2%) are the same. Just 18 cutoffs are the same at t and t+2, while only 9

are the same at t and t+3. None are the same at longer intervals.

Figure 2: Changes in straight line cutoff distances (in km) over time
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Note: Possible values of t range from 2007 to 2011. To avoid showing more than one observation per school and to
emphasise the fact that the cutoffs move around, only the observation that minimises |y− x| by school is shown.

3.3 Sample construction

We define samples at the cutoff-year level. A cutoff-year refers to a school for which there is a

known cutoff used in a particular year. We refer to the school as the “focal school". If we observe

more than one distance cutoff for a particular school across multiple years, then this school will
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generate multiple cutoff-year samples. For each cutoff-year a sample consists of all of the students

in the relevant year who live in close proximity to the focal school. The “Brochure Sample” is

therefore the set of individuals who live near a school with a reported distance cutoff.

Close proximity is based on distance is measured using a student’s address measured in Jan-

uary of Year 6. It is measured as straight-line distance from the entrance to the school.12 We create

a new variable, denoted Rij, that describes student i’s rank in the distribution of distance to school

j. Hence the first-ranked student is the one who lives closest to secondary school j in Year 6, the

year before entry, and so on.

Figure 3: Example schools (simulated data)
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Note: P(attend) is calculated based on the attendance rate at the school within a bin of n individuals.

In practice, although we have around 2000 brochure cutoffs, many of these will not generate

usable attendance discontinuities. An example of this is given in Figure 3, which shows how

attendance probabilities change around the brochure cutoff at two example schools (using simu-

lated data). For school 1, the brochure cutoff is associated with a large attendance discontinuity,

suggesting the cutoff was used to eliminate a large number of students. For school 2, the brochure

cutoff is not associated with a discontinuity in attendance. This is quite common, and happens

when the distance criteria was not used to eliminate many students.

12In practice, we do not have the precise addresses of students. Instead, we were given distance to the nearest 10
schools (and the identities of those schools).
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This analogous to the situation in studies that use lotteries to test for value added bias where

there some lotteries which only determine school entry for a very small number of individuals.

Abdulkadiroğlu et al. (2020) deal with this by excluding lotteries with at least 100 students who

have a nondegenerate risk of attending at least one school.

We generate an equivalent way to select from the full sample of cutoffs to focus only on those

which exclude non-trivial numbers of students from attending a school. As we do not have data

equivalent to entering a lottery, we instead estimate the following regression model at each of the

school-year cutoffs:

Aij = α1j + α2jRij + α3jRij ∗Out + α4jOut + εA
ij (10)

where R is individual i’s distance rank from school j and Out is a dummy set equal to one if

the individual’s reported distance from the school is greater than the reported cutoff.13

We then exclude schools where there is not a large drop in participation at the brochure cutoff.

We also exclude schools where average participation to the left of the cutoff is low. The top panel

of Table 3 shows the number of schools-years that would be kept under different selection criteria.

When using the reported cutoffs, as in the top panel of the table, we choose selection criteria of

a drop in attendance of at least 20% at the cutoff and an average participation rate of at least 30%

inside the cutoff. This leaves us with 122 school-years, which we refer to as the “Selected Brochure

Sample”.

We explore whether we can refine the selected brochure sample to account for measurement

error in the brochures or in the administrative data. We follow a similar methodology to Hoekstra

(2009) by searching for the precise distance cutoff used. Using the brochure cutoff as our starting

point, we estimate the equation (10) many times, where each time we vary the definition of “Out”

so that we cover every possible rank place within 75 rank places of the reported cutoff. We then

choose the definition of “Out” that minimizes the t-statistic on the “Out” coefficient for each school

(α4j in equation 10).

The bottom panel of Table 3 shows that this process increases the school-year sample substan-

tially. When we base our data on the estimated cutoffs, we tighten our selection criteria to a drop

in attendance of at least 30% at the (estimated) cutoff and an average participation rate of at least

13The specification includes a linear relationship between rank and attendance that differs either side of the cutoff.
We estimate this model including only individuals within 75 rank places of the cutoff for each school.
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50% inside the (estimated) cutoff. This leaves us with 267 usable cutoff samples, which we refer

to as the “Extended Selected Sample”.

Table 3: No. of school-years under different selection criteria
Reported cutoffs

Disc > 0% 0 Disc > 10% Disc > 20% Disc > 30% Disc > 40%
P(in)>0 1010 357 137 51 21
P(in)>10% 950 352 137 51 21
P(in)>20% 740 325 130 50 21
P(in)>30% 532 278 *122 48 20
P(in)>40% 373 213 102 44 18
P(in)>50% 263 155 78 36 15

Estimated cutoffs
P(in)>0 1951 1455 920 443 173
P(in)>10% 1823 1425 914 441 173
P(in)>20% 1401 1234 860 428 171
P(in)>30% 1015 958 745 391 165
P(in)>40% 723 705 589 343 158
P(in)>50% 475 470 426 *267 132

Note: P(in) is the share of students inside the cutoff who attend the focal school. Disc is the attendance discontinuity at
the cutoff. * indicates the selection criteria we choose for our main results.

Table 4 shows that almost all of the schools in the brochure sample, and all of the schools in

the selected samples are non-selective schools (while 5% of all schools are selective and 15% are

special schools). Consistent with Figure 1 above, the brochure schools are more likely to be in

London, although a lower share of the selected sample are London based.

Table 4: School level summary stats
Selected
Brochure
Sample

Ext.
Brochure
Sample

Brochure
Sample

All schools

(1) (2) (3) (4)

School type / location
Community 36.8% 29.8% 28.9% 23.1%
Academy 52.1% 53.8% 53.0% 53.6%
Selective 0.0% 0.0% 1.1% 4.0%
Special 0.0% 0.0% 0.0% 0.5%
London share 23.1% 24.0% 31.4% 14.2%

N (school-years) 122 267 2262 22579
N (schools) 102 161 770 4573

Note: The all schools sample includes schools appearing up to 6 times in the data to mirror the fact that the same school
can have multiple observations in the brochure samples.
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3.4 Bias driven by sample selection

A concern with the approach of selecting a subset of school cutoff experiments is that it might in

effect involve selecting the experiments which produce a large first stage F statistic. Recent work

(Abadie et al., 2019) has critiqued this practice, highlighting that it can generate biased final esti-

mates. However, we argue that our approach is legitimate for three reasons. First, there is a good

theoretical case to exclude schools with low participation, and this follows studies which used

lotteries to test VAM validity by selecting only the lotteries which randomised a sufficiently large

number of students between schools. Second, we show that the correlation between the size of

the discontinuity and the discontinuity in value added at the threshold is low (see Table 5), which

means that even though there are some cutoffs that generate large value added discontinuities

(that is, a large first stage F statistic), these are not necessarily the same schools as the ones with

large attendance discontinuities. Third, our specifications pass the basic regression discontinuity

checks of whether there are discontinuities in observable characteristics at the cutoff when we use

our selected samples (see Section 4.1).

Table 5: Correlation between attendance and value added discontinuities
Reported cutoffs Estimated cutoffs

2007 -0.005 -0.055
2008 0.095 0.051
2009 0.055 -0.079
2010 0.081 0.113
2011 0.063 0.094
2012 0.098 0.059

Note: Attendance discontinuities are estimated as in equation 10. Value added discontinuities are estimated in the same
way, but replacing attendance with VA as the dependent variable.

3.5 Administrative data

We have administrative data on six cohorts of students who we track through primary and sec-

ondary schooling. These cohorts completed primary school and entered secondary school in Au-

tumn of 2007-2012.

Table 6 summarises the pupil-level data, comparing data from all schools to schools with a

brochure, to our selected sample of schools from the brochures. The top panel shows a subset of

the student background characteristics we include in our models that includes gender, free-school

meal (FSM) eligibility, a white British dummy, and an indicator for English not being the students’
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main language. The panel shows that the brochure school pupils are less white, slightly more

likely to qualify for free school meals, and more likely to have English as a second language. This

is unsurprising, as schools which use brochure cutoffs are more likely to be in more heavily popu-

lated areas, where there are more non white pupils and more poor students. Notably, there is very

little difference between the selected brochure samples in columns (1) and (2) and the brochure

sample in terms of basic background characteristics. There is almost no discernible difference be-

tween columns (3) and (4), which differ because column (3) only includes those who live within

100 rank places of a reported cutoff.

Table 6: Pupil level summary stats
Selected
Brochure
Sample

Ext.
Brochure
Sample

Brochure
Sample

Any
Brochure
Sample

All schools

(1) (2) (3) (4) (5)

Student characteristics
Female 49.5% 52.6% 51.3% 51.3% 49.2%
FSM 15.4% 15.1% 16.9% 17.0% 15.5%
White British 65.0% 64.4% 64.9% 64.6% 77.5%
EAL 28.3% 27.3% 25.4% 25.7% 18.2%

Prior test scores
Y6 SAT Maths 0.040 0.062 0.036 0.034 0.000
Y6 SAT English 0.027 0.038 0.029 0.029 0.000

Student outcomes
GCSE scores (capped 8) 0.095 0.127 0.074 0.071 0.000
GCSE scores (all) 0.099 0.141 0.078 0.076 0.000

Longer-run student outcomes (Post 16 education)
Post GCSE participation 82.2% 81.4% 80.7% 80.5% 74.8%
No. A Levels (if > 0) 2.04 2.04 1.95 1.94 1.90
At least BBB at A Level 0.081 0.087 0.077 0.077 0.073

Observations 24153 52879 426962 680366 3340190

Longer-run student outcomes (Higher education)
Attended university 0.430 0.448 0.427 0.425 0.366
Attended selective university 0.113 0.121 0.108 0.107 0.094

Observations (HE outcomes) 14610 33210 256305 409450 2262135

Note: Source: ONS. Columns (1)-(3) only include individuals within close proximity to the reported cutoff (within
100 rank places). Column (4) includes everyone who lists a brochure school as one of their nearest 10. Column (5)
includes all individuals in the NPD who entered secondary school between 2007 and 2012. GCSE and SAT scores are
standardised to have mean zero and a SD for across the whole sample (separately by year to adjust for grade inflation).
Observations for higher education (“HE”) outcomes are rounded to the nearest 5 following disclosivity rules associated
with the HE data. The counts are lower for these as we do not observe HE outcomes for the last two cohorts as they are
still too young.

The next panel shows prior attainment information. Children in the brochure sample have
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slightly better Year 6 scores, but only by 2-3% of a standard deviation. The selected brochure sam-

ples generally have higher Year 6 attainment than the brochure schools, especially the extended

brochure sample in column (2), but this remains only around 5% of a standard deviation higher

than the overall average.

The next panel shows pupil outcomes GCSE outcomes, including best 8 (our primary outcome

of interest) and total points scores. GCSE performance is also higher amongst the brochure sample

by around 7% of a standard deviation. It is slightly higher again amongst the selected brochure

sample (9.5% of a standard deviation higher than the underlying population) and higher still

amongst the selected brochure sample (12.7% of a standard deviation higher than the population

mean).

Finally, the bottom panel shows longer run student outcomes, including the share staying

in education after GCSEs, the number of A-Level (which are typically taken at age 18) passes

obtained (amongst those with at least one A Level), the share of students achieving at least BBB

at A-Level, the share attending university within two years of finishing school, and the share

attending a selective university within two years of finishing school (where selective is defined

as being in the top 20% of universities ranked by average entry tariffs). Again, there is higher

performance across all these metrics amongst the brochure schools than for all schools, and again

the selected sample performance is higher than amongst all brochure schools. To summarize, the

table shows that schools in the brochure sample differ from schools in the full sample, in part

because they are more likely to be found in densely populated areas. Below, we will focus on

the selected and extended brochure samples and compare students either side of the admission

cutoffs, as this is ultimately the key test of our research design.

3.6 School effectiveness measures

We test five models of school effectiveness: “Raw scores”, which is raw GCSE test score outcomes;

“Background” which includes controls for a set of student background characteristics;14 “Progress

8” which is the main measure of school effectiveness in England; “Lagged scores” which includes

controls for Year 6 SAT scores only; and “CVA” which stands for contextualised value added,

and which combines background and lagged scores as controls. The final three measures are all

considered to be ‘value added’ measures as they adjust for prior test scores of the students.

14These include gender, ethnicity, free-school-meal eligibility and an English as an additional language indicator.
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With one exception, these measures are constructed following the regression model given in

equation (1), using best 8 GCSE scores as the outcome variable. The exception is Progress 8, which

uses a slightly different set of GCSE scores and is estimated using a non-parametric approach.15

The introduction of Progress 8 was controversial, as previous measures of effectiveness that had

been used in England had controlled for additional student characteristics Leckie and Goldstein

(2017). The government rationalised it by arguing that additional characteristics “the effect of ex-

pecting different levels of progress from different groups of pupils on the basis of their ethnic background,

or family circumstances, which we think is wrong in principle” (DfE, 2010). Our work contributes to

this debate by showing whether the inclusion of additional student background characteristics is

essential for generating unbiased measures of school effectiveness. The inclusion of the Lagged

Scores measure of VA would enable us to see whether any bias in the Progress 8 measure is due

to the lack of prior controls or due to the non-parametric approach to estimation.

Table 7: Summary of different school effectiveness measures
Value added measures

Raw scores Background Progress 8 Lagged CVA
Scores

Standard deviation 0.847 0.763 0.925 0.438 0.402

Raw scores 1.000
Background 0.990 1.000
Progress 8 0.881 0.871 1.000
Lagged scores 0.903 0.888 0.939 1.000
CVA 0.888 0.892 0.921 0.980 1.000

Note: Based on data from all schools, pooling the 2007-2012 entry cohorts.

Table 7 shows the standard deviations of each of these effectiveness measures correlation be-

tween the raw scores measure of school effectiveness and the value added measures. All of the

measures are highly correlated. In general, adjusting for basic background characteristics makes

very little difference to the measures of effectiveness, while the effect of including prior test scores

is much greater. The correlation of 0.86 between Progress 8 and raw scores is important, as it

shows that while there is a strong relationship between raw school performance and Progress 8,

there are some schools that perform quite poorly on one measure but well on the other.

15The outcome measure, referred to as Attainment 8, doubly weights scores in English and mathematics and then
has stricter restrictions on the set of subjects that can be included in the remaining 8 slots. The non-parametric approach
involves dividing students into 34 evenly sized bins based on their KS2 SAT results. An individuals’ Progress 8 score
is then their Attainment 8 score minus the the within-bin average Attainment 8 score (there is also some winsorizing
of scores at the bottom end of the distribution). A school’s Progress 8 score is the average of the individual Progress 8
scores of each of its pupils.
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Table 8 shows how the brochure schools compare to all schools in terms of the different effec-

tiveness measures. The selected schools generally have higher test scores and higher value added

scores. This is especially true for the extended brochure sample. Again, we are unconcerned by

this as the schools in our sample are from different areas and are oversubsubscribed, so we would

not expect them to look the same on average.

Table 8: School level summary stats
Selected
Brochure
Sample

Ext.
Brochure
Sample

Brochure
Sample

All schools

(1) (2) (3) (4)

Effectiveness measures
Raw scores 0.146 0.173 0.077 -0.003
Background 0.123 0.143 0.062 -0.002
Progress 8 0.249 0.279 0.186 0.000
Lagged scores 0.088 0.110 0.068 -0.001
CVA 0.067 0.083 0.039 -0.001

N (school-years) 122 267 2262 22579
N (schools) 102 161 770 4573

Note: Based on data from the 2007-2012 entry cohorts.

4 Empirical Framework

Our empirical specification mirrors the approach used with the lottery setting, but with a RD

framework. The basic intuition is that we expect the discontinuity in test scores at the cutoffs to

align with the discontinuity in value added at the cutoff. That is, if Vj is an unbiased estimator of

the value added of school j, we would expect πY = πV from the following:

Yij = αY
1 + αY

2 Rij + αY
3 (Rij ∗Outij) + πYOutij + X′i Π

Y + ηY
ij (11)

Vij = αV
1 + αV

2 Rij + αV
3 (Rij ∗Outij) + πVOutij + X′i Π

V + ηV
ij (12)

where Rij is distance rank of individual i from school j and Outij is a dummy set equal to

one for people living just outside the distance cutoff. In practice this would be estimated only

for people living near to the cutoff. Including the (R ∗Out) term allows the relationship between

distance rank and the outcome variable to differ inside and outside the cutoff.

As before, this can be recast to a two-stage-least-squares set up with N school-years with usable
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cutoffs:

Yij =
N

∑
j=1

θMY
j Cji +

N

∑
j=1

δMY
j CijRij +

N

∑
j=1

γMY
j CijRijOutij + βMV̂ij + X′i Γ

MY + ζMY
ij (13)

Vij =
N

∑
j=1

θMV
j Cij +

N

∑
j=1

δMV
j CijRij +

N

∑
j=1

γMV
j CijRijOutij +

N

∑
j=1

πM
j CijOutij + X′i Γ

MV + ζMV
ij (14)

Where Cij is a dummy for individual i being in a cutoff sample for focal school j, meaning they

live near to the cutoff for that school (this is equivalent to L, the dummy for entering a lottery,

from before)16. δMV
j and δMY capture the slopes for school j inside the cutoff, and γMV

j and γMY
j

capture the slopes for school j outside the cutoff. As before Xi is a set of student background

characteristics. This leaves πM
j in (14), which is the discontinuity in value added at the cutoff, and

captures the effect of our first-stage instruments, and βM in (13), which is the forecast coefficient.

We test whether this equals to one, referring to this as the ‘multi-IV’ approach (hence the “M”

superscript).

Finally, we can also take a ‘single-IV’ approach, which interacts the instrument, Out, with

∆V = Vji −V−ji, so we have:

Yij =
N

∑
j=1

θSY
j Cji +

N

∑
j=1

δSY
j CijRij +

N

∑
j=1

γSY
j CijRijOutij + βSV̂ij + X̃′i Γ

SY + ζSY
ij (15)

Vij =
N

∑
j=1

θSV
j Cij +

N

∑
j=1

δSV
j CijRij +

N

∑
j=1

γSV
j CijRijOutij + πS

N

∑
j=1

CijOutij∆Vij + X̃′i Γ
SV + ζSV

ij (16)

This is as before but we now estimate a single shift parameter at the cutoff in the V equation,

given by πS, while also including the term V−ji in X̃. Again, our test of bias in Vij comes down to

a test of whether βS, the forecast coefficient, is equal to one. The single-IV approach additionally

requires an assumption of V−ji, the school that individual i would have attended had they been

outside of the cutoff. For this, we use the most commonly chosen secondary school of primary

school peers that is not the focal school.

Rather than estimate a flexible polynomial in the running variable, we follow recommenda-

tions from Pei et al. (2022) and estimate a linear slope either side of the threshold but vary the

bandwidth used.
16In our main specification, we define individual as being in a cutoff sample for a school if they live withing 100

rank places from the cutoff, although we test the sensitivity of this choice in our robustness checks.
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4.1 RD specification checks

The validity of our research design depends on the assertion that there is no sorting of parents

either side of the brochure cutoff. Previously we argued that this is unlikely given the unpre-

dictability of the admissions process and we showed that the cutoffs bounce around from one

year to the next. Here we investigate whether there is evidence of sorting based on observable

student characteristics.

We do this by testing for discontinuities in observable student characteristics, x ⊂ X, at the

cutoffs, estimated by the following:

xij =
N

∑
j=1

θSX
j Cij +

N

∑
j=1

δSX
j CijRij +

N

∑
j=1

γSX
j CijRijOutij + πSX

N

∑
j=1

CijOutij + ζSX
ij (17)

Again, these include a full set of school-year dummies and school-year specific slopes either

side of the threshold (δj and γj terms). The results for a range of different characteristics are given

for the selected brochure sample and the extended selected sample in Table 9.17

Overall, these results strongly favour our research design. The coefficients are all small, and

there are very few estimates that are statistically significant at standard levels, suggesting that

there are no discontinuous jumps in any of the observable student characteristics at the distance

cutoffs. The only counter-example is the ‘female’ dummy, which is significant at the 50 and 75

bandwidths. However, we think this is most likely driven by sampling noise, as the coefficient is

quite noisy at different bandwidths, and also because we think this is the least likely characteristic

to change at the threshold.

17The top row shows estimates for ‘predicted ability’, which is the predicted value of test scores, Yij, from a regres-
sion of test scores on the full set of X variables included in our estimation. The remaining rows show a subset of the
individual characteristics that are easy to interpret.
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Table 9: Testing for discontinuities in student characteristics at the cutoffs
Bandwidth: 25 50 75 100 125

Selected brochure sample (N=122)

Predicted ability 0.044 0.011 0.000 0.001 -0.003
(0.036) (0.025) (0.020) (0.018) (0.016)

p val. 0.214 0.652 0.981 0.957 0.859
KS2 Maths 0.060 0.044 0.008 0.008 0.000

(0.050) (0.035) (0.028) (0.024) (0.022)
p val. 0.229 0.207 0.773 0.758 0.985

KS2 English 0.001 -0.001 -0.019 -0.005 -0.011
(0.047) (0.033) (0.027) (0.024) (0.021)

p val. 0.979 0.972 0.492 0.831 0.608
FSM -0.014 0.004 -0.001 0.004 0.004

(0.019) (0.014) (0.011) (0.010) (0.009)
p val. 0.455 0.747 0.961 0.646 0.677

EAL -0.005 -0.020 -0.014 -0.016 -0.013
(0.018) (0.013) (0.010) (0.009) (0.008)

p val. 0.773 0.125 0.182 0.083 0.099
White British -0.012 -0.001 -0.008 -0.008 -0.005

(0.019) (0.013) (0.011) (0.009) (0.008)
p val. 0.532 0.937 0.467 0.368 0.506

Female -0.042 -0.048 -0.031 -0.017 -0.009
(0.025) (0.017) (0.014) (0.012) (0.011)

p val. 0.097 0.006 0.028 0.165 0.424

Obs 6100 12200 18267 24178 29848

Extended selected sample (N=267)

Predicted ability -0.002 -0.005 -0.006 -0.017 -0.019
(0.024) (0.017) (0.014) (0.012) (0.011)

p val. 0.948 0.770 0.645 0.166 0.086
KS2 Maths 0.005 -0.012 -0.013 -0.018 -0.023

(0.033) (0.023) (0.019) (0.016) (0.015)
p val. 0.874 0.590 0.498 0.282 0.116

KS2 English -0.030 -0.012 -0.004 -0.017 -0.018
(0.033) (0.023) (0.019) (0.016) (0.015)

p val. 0.371 0.602 0.810 0.283 0.210
FSM 0.016 0.017 0.012 0.016 0.008

(0.013) (0.009) (0.008) (0.007) (0.006)
p val. 0.217 0.068 0.111 0.015 0.164

EAL -0.007 -0.003 -0.003 -0.006 -0.006
(0.012) (0.009) (0.007) (0.006) (0.006)

p val. 0.554 0.738 0.676 0.366 0.277
White British 0.010 -0.002 -0.006 -0.006 -0.002

(0.013) (0.009) (0.007) (0.007) (0.006)
p val. 0.430 0.803 0.399 0.371 0.800

Female -0.003 0.000 0.001 -0.001 -0.004
(0.017) (0.012) (0.009) (0.008) (0.007)

p val. 0.847 0.967 0.942 0.910 0.610

Obs 13350 26692 39919 52853 65291

Note: RD bandwidth is based on rank places either side of the cutoff. Standard errors are given in the parentheses.
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In Appendix Table A1, we show results when we interact the Out dummy with ∆V (and in-

clude an additional control for −ji, following the single-IV setup above. For the selected sample,

the results are very similar, but for the extended selected sample they are less convincing. While

the background characteristics (free school meal eligibility, English as an additional language,

white British) are all pass the tests, there are several estimates, including predicted ability as well

as prior maths and English scores that do not. While this is not the case at all bandwidths, our

takeaway from these results is that we should be cautious in using the searching method to iden-

tify cutoffs. It seems that even a relatively tight search around the reported cutoff can pick up

natural barriers around which parents select. Based on this, although we have to work with a

smaller sample when we focus on the precise brochure cutoffs, we prefer that as to the potentially

bias-inducing approach of searching for cutoffs.

5 Results

5.1 Main estimates

Our main estimates of the forecast coefficient are shown Table 10. These are our main estimates as

they test for bias in measures of secondary school effectiveness based on test scores taken at the

end of secondary school (GCSEs). The different columns show estimates of the forecast coefficient

for the five sets of effectiveness measures introduced in Section 3.6. In all cases we cluster standard

errors at the primary school level.

We show estimates for the single-IV and for multi-IV approaches using 2SLS and LIML. All

three approaches find that the effectiveness measures which do not adjust for prior test scores are

biased. In both columns (1) and (2), the forecast coefficients are around 0.5, and we strongly reject

the null that the coefficient is equal to one.
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Table 10: Forecast coefficient test, selected brochure sample
Value added measures

Raw scores Background Progress 8 Lagged Scores CVA
(1) (2) (3) (4) (5)

Single IV
Forecast coefficient 0.515 0.563 0.956 0.897 0.896
s.e. (0.096) (0.105) (0.133) (0.157) (0.167)
p value 0.000 0.000 0.739 0.513 0.532
First Stage F Stat. 149.9 144.0 181.3 180.4 172.7

N Schools: 102 School-years: 122 Pupils: 23,766

Multi IV (2SLS)
Forecast coefficient 0.503 0.576 0.837 0.933 1.002
s.e. (0.109) (0.117) (0.143) (0.157) (0.162)
p value 0.000 0.000 0.256 0.670 0.990
First Stage F Stat. 2.3 2.4 3.0 3.4 3.5
OverID test p value 0.078 0.100 0.053 0.232 0.266

N Schools: 102 School-years: 122 Pupils: 24,024

Multi IV (LIML)
Forecast coefficient 0.546 0.622 0.801 0.950 1.008
s.e. (0.156) (0.161) (0.183) (0.190) (0.194)
p value 0.004 0.019 0.278 0.792 0.967
First Stage F Stat. 2.3 2.4 3.0 3.4 3.5
OverID test p value 0.072 0.093 0.048 0.219 0.252

N Schools: 102 School-years: 122 Pupils: 24,024

Note: Outcome is best 8 GCSE point score for columns 1,2, 4 and 5 and Attainment 8 for column 3.

However, we are unable to reject the null that any of our value added estimates. The single

IV estimates are all 0.9-0.95, with p values of 0.5 or above. For the multi-IV approaches, we get

forecast coefficient estimates of close to 1 for the lagged score and CVA approaches, with p values

of around 0.7 or above. Also reported for the multi-IV models is the p-value from the overidentifi-

cation test proposed by Angrist et al. (2017). This essentially measures whether the estimator has

the same predictive power in every school-year cutoff experiment. The results in columns (4) and

(5) show that we also fail to reject the null for this test for the lagged scores and CVA estimates.

The multi-IV tests of Progress 8 bias are a little less compelling than the results in columns

(4) and (5). Although we still do not reject the null of unbiasedness, the coefficients are closer to

0.8 and we borderline reject the null for the overidentification test at the 5% level. Overall, these

results suggest that VAMs that control only for prior attainment are sufficient to alleviate bias. This

is more marginal in the case of Progress 8, which might suggest that Progress 8 does not control

for lagged scores in a flexible enough way, but the results do not provide a compelling case that
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the measure is systematically biased.18

A concern about the multi-IV estimates is the low F-statistic, which is indicative of a weak

IV problem. This is likely driven by schools not ultimately being that different either side of the

cutoff, meaning that just being outside the threshold does not shift value added by very much.

This could be problematic in the case of the forecast test, as it would mean the IV estimate is

biased towards the OLS estimate of effectiveness. This is why we also provide LIML estimates of

the multi-IV case, as this estimator performs well in the case of weak instruments (Angrist and

Frandsen, 2022). The results using LIML are very similar to the 2SLS case, which we find to be

reassuring.

5.2 Robustness

Table 11 shows our estimates of the forecast coefficients for our five sets of effectiveness measures

under a range of different robustness checks. In the first panel, we show that our results are

the same when we use the extended brochure sample, which is reassuring despite there being

question marks around the validity of this approach.

Next, we show that the precise selection criteria we use from our brochure sample do not

drive our results. In the second panel we tighten them so that the participation rate within the

cutoff has to be higher (at least 40%) and the attendance discontinuity has to be bigger (at least

30%), relative to our choices of 30% and 20% in the baseline case. This reduces our number of

school-year experiments to just 102 (see Table 3), but our conclusions are unchanged - that is, the

measures of school effectiveness in columns (1) and (2) are rejected, while the VAMs that adjust

for prior attainment are found to be unbiased. Again, the inclusion of background characteristics

in addition to prior attainment adds little to the precision of the estimates.

18Notably, a 2018 amendment to Progress 8 involved the introduction of a floor on scores to prevent very nega-
tive outliers from skewing the results. When we estimate Progress 8 without this amendment, we do find systematic
evidence that the measure is biased.
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Table 11: Forecast coefficient test, robustness checks
Value added measures

Raw scores Background Progress 8 Lagged Scores CVA
(1) (2) (3) (4) (5)

Extended Selected Sample
Forecast coefficient 0.479 0.551 0.917 0.848 0.891
s.e. (0.068) (0.077) (0.148) (0.127) (0.137)
p value 0.000 0.000 0.576 0.230 0.429

N Schools: 161 School-years: 267 Pupils: 52,212

Tighter selection ( P(in)>40%, Disc > 20% )
Forecast coefficient 0.483 0.534 0.865 0.835 0.869
s.e. (0.097) (0.107) (0.136) (0.160) (0.169)
p value 0.000 0.000 0.322 0.301 0.439

N Schools: 85 School-years: 102 Pupils: 19,822

Looser selection ( P(in)>20%, Disc > 10% )
Forecast coefficient 0.459 0.509 0.730 0.699 0.719
s.e. (0.103) (0.114) (0.144) (0.177) (0.190)
p value 0.000 0.000 0.061 0.089 0.138

N Schools: 226 School-years: 235 Pupils: 63,875

Bandwidth = 75 (Baseline 100)
Forecast coefficient 0.509 0.561 0.954 0.915 0.904
s.e. (0.118) (0.130) (0.165) (0.190) (0.201)
p value 0.000 0.001 0.781 0.656 0.632

N Schools: 102 School-years: 122 Pupils: 17,933

Bandwidth = 125
Forecast coefficient 0.489 0.546 0.905 0.888 0.917
s.e. (0.085) (0.093) (0.122) (0.146) (0.157)
p value 0.000 0.000 0.435 0.442 0.598

N Schools: 102 School-years: 122 Pupils: 29,388

Outcome: total GCSE points
Forecast coefficient 0.579 0.634 - 0.954 0.965
s.e. (0.090) (0.096) - (0.135) (0.138)
p value 0.000 0.000 - 0.731 0.802

N Schools: 102 School-years: 122 Pupils: 23,766

Note: Robustness checks are shown for the single-IV estimates.

In the third panel we loosen the selection criteria, so that the participation rate within the cutoff

only needs to be at least 20%, while the drop in attendance at the cutoff is only required to be 10%.

This reduces the forecast coefficient to around 0.7 and it becomes only a borderline pass of the test.

The next two panels show that our main results are not sensitive to the RD bandwidth used.

This check is essential as it shows that our findings are not driven by our choice to impose the

restriction of linear (school-specific) slopes either side of the threshold. Combining the fact that we

allow these slopes to differ either side of the threshold and the robustness to different bandwidths
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suggests that the findings are not sensitive to our choice of specification.

Finally, the table shows the sensitivity to the choice of outcome variable, using total GCSE

points, rather than points from each student’s best eight GCSEs (including English and maths).

The overall results are again very similar.

5.3 Heterogeneous treatment effects and parental inputs

One concern with the forecast coefficient test is that it assumes homogeneous treatment effects of

schools. As pointed out by Angrist et al. (2017), rejection of the null hypothesis could be driven by

heterogeneous treatment effects, rather than by unobserved selection bias. In our context, it could

be the case that pupils who live close to these cutoffs might be systematically different and might

therefore experience a different effect from getting into the focal school than the average student.

Ultimately, we consider this issue to be less important because we do not reject the null that our

value added measures are unbiased. The failure to reject the null for the overidentification test -

at least in the case of the lagged scores and CVA models - is also evidence to support our defence

that our findings are driven by this issue.

We make a similar argument about the role of parental inputs: one concern might be that

parents who just miss out on their preferred school compensate by increasing inputs (Greaves et

al., 2023, show this mechanism to be important in other contexts). Ultimately, this effect would

bias down our estimate of the forecast coefficient,19 which makes an invalid rejection more likely.

Since we do not have measures of parental inputs, this is a difficult hypothesis to test. However,

again the fact that we do not reject the null for our value added measures us less concerned about

this issue.

5.4 Longer run impacts

We also consider whether our effectiveness measures are predictive of longer run outcomes in Ta-

ble 12. For this exercise, we replace the outcome variable in the second stage equation (see equa-

tion 15) with longer run outcomes, including the number of A-Level grades obtained, whether

or not student achieve at least three B grades in their A-Level exams, whether students attend

university by age 19, and whether they attend a selective university by age 19.

19As described above, the forecast coefficient is equal to the ratio of the discontinuity in test scores to the disconti-
nuity in value added, β = αY

3 /αV
3 from equations (11) and (12) above. This mechanism would reduce αY

3 , and hence
bias down the estimate of β.
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Table 12: Longer run outcomes
Value added measures

Raw scores Background Lagged Scores CVA
(1) (2) (3) (4)

Total A-Levels
Forecast coefficient 0.597 0.625 0.759 0.759
s.e. (0.128) (0.136) (0.179) (0.185)
p value 0.002 0.006 0.179 0.193

N Schools: 102 School-years: 122 Pupils: 23,890

Achieve at least BBB at A-Level
Forecast coefficient 0.742 0.720 1.165 1.024
s.e. (0.283) (0.296) (0.496) (0.516)
p value 0.362 0.344 0.740 0.962

N Schools: 102 School-years: 122 Pupils: 23,935

Attend university
Forecast coefficient 0.600 0.644 0.771 0.907
s.e. (0.274) (0.292) (0.452) (0.478)
p value 0.145 0.222 0.613 0.846

N Schools: 65 School-years: 74 Pupils: 14,405

Attend selective university
Forecast coefficient 0.669 0.687 1.231 1.197
s.e. (0.324) (0.342) (0.530) (0.552)
p value 0.307 0.359 0.663 0.722

N Schools: 65 School-years: 74 Pupils: 14,405

Note: Source: ONS. Longer run outcomes are shown for the single-IV estimates. Sample sizes are rounded to the
nearest 5 in accordance with disclosivity rules.

This exercise is potentially interesting, as it is possible that parents select into school based on

factors that influence longer-term outcomes of children. Therefore, it is plausible that the short

run effectiveness would be unbiased but they longer run measures would not. However, unfor-

tunately our test appears to lack adequate power to be able to say anything informative on this

issue (the Table shows that our standard errors are generally much larger).

6 Do parents leave value added on the table?

We now draw on the result that we have unbiased estimates of secondary school effectiveness

to investigate whether there are potential gains to be made from interventions in application be-

haviours of parents. To do this, we make use of additional data we have on school applications

made by parents in 2014.
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Table 13: Potential achievement gains from ranking schools based on effectiveness
Average value added SES Gap

Overall High SES Low SES

(1) (2) (3) (4)

Observed first preference 0.212 0.549 -0.109 0.658
(55.9) (67.4) (44.9) (22.5)

Nearest school 0.044 0.327 -0.217 0.545
(50.2) (60.2) (41.2) (18.9)

Choosing the highest VA school, given:
distn ≤ disto 0.407 0.682 0.168 0.514

(62.2) (71.5) (54.4) (17.1)
distn ≤ disto + 1km 0.722 0.875 0.668 0.207

(72.4) (77.3) (70.9) (6.4)
distn ≤ 1km 0.275 0.518 0.112 0.406

(58.0) (66.5) (52.5) (14.0)
distn ≤ 3km 0.849 0.915 0.911 0.003

(76.7) (78.6) (79.0) (-0.4)

N 409,112 95,184 73,017

Note: Value added estimates adjust for prior attainment and background scores and are standardised to have a mean
of zero with a standard deviation of 1 in the baseline population. Percentile ranks are given in the parentheses. High
SES includes individuals in the top quintile for SES while Low SES is the bottom quintile (SES is based on the IDACI
index, a measure of income deprivation). distn is distance to the newly assigned first choice school and disto is observed
distance to current school. We exclude individuals without preference data and without an observed value for disto
which cuts the sample size by about 20%.

Table 13 shows the average value added (in standard deviations, σ) of parents’ first choice

schools under different selection criteria. The first row shows the average value added of the

observed first preference school, overall and split by student socio economic status (SES). The

figures show that on average, the first preference school is 0.21σ above the overall average, or at

the 56th percentile of all schools. It also shows that there is a large SES gap in first choice school

value added of 0.66σ (around 23 percentiles), as parents from high SES backgrounds apply for

schools that are 0.55σ above average, while parents from low SES backgrounds apply for schools

that are slightly below (0.11σ) below average.

The second row shows the average value added of the nearest school to each individual.20

Notably, the SES gap in value added is considerably smaller (0.54σ, or 19 percentiles) than in the

first row, suggesting that higher SES parents are more willing or able to travel further to attend

more effective schools.

The following set of four rows of results then show how these numbers would be affected

20This excludes single (opposite) sex schools and independent schools.
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if parents were to apply to their most effective local school, where each of the four rows has a

different definition of “local”. In the first, we constrain it so that parents cannot select a school

that is further away than they one their child actually attended. In the second row, we allow

them to select a school that is up to 1km further away from their home than the school their child

actually attended. We then make more straightforward restrictions of selecting the most effective

school within a 1km radius of their home, and finally within 3km of their home.21

The figures from column (1) suggest students would lose out considerably by enrolling in

their first choice school rather than the most effective school locally. This loss is around a 20% of a

standard deviation on average (the difference between 0.407, the value added of the most effective

school within the radius of the individuals’ actual school, and 0.212, the average value added of

the first preference school) when we constrain travel distance to be no further than the school

actually attended. It is much larger (around 50% of a standard deviation) if we extend the local

search radius to the actual distance plus 1km. It is 65% of a standard deviation if parents choose

the most effective school within 3km of their home (and 6% of a standard deviation within 1km of

their home). These are very large potential gains in GCSE scores. These results are consistent with

Ainsworth et al. (2022) in that they suggest parents are leaving value added “on the table” when

choosing a secondary school for their children.22

The remaining columns suggest that this conclusion is more pronounced for those from lower

SES backgrounds. The gap in value added of first choice schools of 0.66σ would drop to 0.51σ if

distance is constrained to being no further than the distance to the actual school attended. It also

drops considerably in the other scenarios - most notably, the SES gap declines to effectively zero if

parents were to select the most effective school within 3km of their home.

7 Conclusion and discussion

This paper tests for bias in VAMs in a setting where school admissions lotteries do not exist.

Instead we exploit discontinuities in attendance probabilities that occur due to distance being

used as a tiebreaker in school admissions processes in England. While previous studies have

21In our 2014 data, around 50% of pupils in the state system attend a school within 1km of their home, while 95%
attend a school within 3km.

22In theory, a school application process would be “strategy proof” in that it would allow parents to apply for as
many schools as they like, ordering their preferences truthfully, as the centralised algorithm does not allow schools to
select on preference ranking. However, because in practice many parents are only allowed to select three options, they
are likely to be strategic in their application behaviour, as they might not want to risk not being allocated to any of the
schools that they apply to (Walker and Weldon, 2020).
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used school entry lotteries in the United States to test for bias in VAMs commonly used there, the

evidence is very mixed and in any case may well not apply to the English setting.

This issue is important within the institutional context due to the use of ‘Progress 8’ as the

primary measure of school effectiveness. This measure only adjusts school outputs for prior at-

tainment, which has generated some criticism by academics. We show that controlling for prior

attainment is essential to generate unbiased estimates of school effectiveness - but also that mea-

sures that only control for prior attainment in England are sufficient to capture true effectiveness.

The result is also important more generally, as it contributes to the small body of evidence that

suggests very simple controls for prior attainment are sufficient to generate unbiased estimates of

effectiveness (Deming, 2014). This is useful because such measures are much less demanding in

terms of data requirements, and they are also easier for schools to understand and target. Indeed

the latter factor might provide an explanation for why Progress 8 has become such a prominent

feature of the English system, in contrast to previous measures of value added (such as the ‘con-

textualised value added’ measure used in the mid-2000s).

Finally, we show that considerable test score improvements could be made if parents were to

select school based on their effectiveness. The results, which are consistent with Ainsworth et

al. (2022) and Abdulkadiroğlu et al. (2020), suggest that parents are leaving value added “on the

table” when choosing secondary schools. This could be because they see other school characteris-

tics as more important (for example Burgess et al., 2015, show that distance is a highly important

determinent of preferences), or because they are unaware of effectiveness measures or fail to un-

derstand them. This finding suggests that information campaigns to increase awareness and the

importance of attending more effective schools could potentially result in quite large overall gains

and could also narrow gaps between students from richer and poorer backgrounds.
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Appendix

A Cutoff data

Figure A1: Example brochure

Figure A2: Example inside the brochure

Kenilworth School Barnet Schools
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B Additional RD checks

Table A1: Testing for discontinuities in student characteristics at the cutoffs
Bandwidth: 25 50 75 100 125

Selected brochure sample (No. schools=122)

Predicted ability 0.117 -0.028 -0.057 -0.068 -0.067
(0.110) (0.074) (0.060) (0.052) (0.046)

p val. 0.287 0.704 0.340 0.189 0.148
KS2 Maths 0.148 -0.116 -0.126 -0.099 -0.068

(0.151) (0.097) (0.079) (0.068) (0.061)
p val. 0.326 0.234 0.112 0.147 0.266

KS2 English 0.121 -0.069 -0.130 -0.094 -0.106
(0.142) (0.097) (0.079) (0.069) (0.061)

p val. 0.395 0.474 0.101 0.169 0.081
FSM -0.130 -0.072 -0.061 -0.040 -0.037

(0.061) (0.043) (0.034) (0.029) (0.026)
p val. 0.033 0.093 0.075 0.167 0.161

EAL -0.009 0.040 0.041 0.030 0.020
(0.057) (0.039) (0.032) (0.028) (0.024)

p val. 0.877 0.316 0.203 0.272 0.402
White British 0.074 0.004 -0.013 0.000 0.007

(0.055) (0.037) (0.030) (0.026) (0.023)
p val. 0.183 0.916 0.665 0.994 0.751

Female -0.030 -0.068 -0.047 -0.026 -0.019
(0.075) (0.051) (0.042) (0.036) (0.032)

p val. 0.688 0.178 0.255 0.471 0.555

Obs 6100 12200 18267 24178 29848

Extended selected sample (No. schools=267)

Predicted ability -0.060 -0.077 -0.085 -0.112 -0.115
(0.068) (0.047) (0.038) (0.033) (0.030)

p val. 0.381 0.100 0.024 0.001 0.000
KS2 Maths -0.002 -0.093 -0.085 -0.105 -0.110

(0.091) (0.062) (0.050) (0.043) (0.039)
p val. 0.979 0.136 0.092 0.016 0.005

KS2 English -0.068 -0.093 -0.072 -0.106 -0.092
(0.092) (0.063) (0.051) (0.044) (0.039)

p val. 0.461 0.142 0.156 0.015 0.020
FSM 0.032 0.007 0.020 0.018 0.032

(0.039) (0.027) (0.022) (0.019) (0.017)
p val. 0.413 0.790 0.357 0.336 0.061

EAL -0.058 -0.029 -0.034 -0.034 -0.021
(0.034) (0.024) (0.020) (0.017) (0.015)

p val. 0.087 0.218 0.083 0.044 0.152
White British 0.060 0.042 0.033 0.016 0.013

(0.035) (0.024) (0.020) (0.017) (0.015)
p val. 0.086 0.084 0.098 0.352 0.385

Female 0.020 -0.012 -0.043 -0.050 -0.045
(0.043) (0.030) (0.025) (0.022) (0.020)

p val. 0.650 0.692 0.086 0.020 0.022

Obs 13350 26692 39919 52853 65291

Note: RD bandwidth is based on rank places either side of the cutoff. p values are given in the parentheses. N is the
number of school-year experiments. 36
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