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Abstract 

This study pairs variation stemming from volcanic eruptions from Kilauea with the cen
sus of Hawai‘i’s public schools student test scores to estimate the impact of particulates 
and sulfur dioxide on student performance. We leverage spatial correlations in pollution 
in conjunction with proximity to Kilauea and wind direction to construct predictions of 
pollution exposure at each school. We precisely estimate that increased particulate pollu
tion leads to a small but statistically significant drop in average test scores. Then, utilizing 
Hawai‘i’s rich diversity across schools in baseline exposure, we estimate sharp nonlinear
ities  schools with higher baseline levels of pollution experience larger decreases in test 
scores than schools with less pollution exposure on average. At levels of particulate pollu
tion higher than six micrograms per cubic meter (µg/m3), we estimate that a one standard 
deviation increase in PM2.5 leads to a decline in test scores of 1.1 percent of a standard 
deviation. Lastly, we find that within schools the drop in test scores is concentrated among 

*We thank seminar participants at the University of Hawaii Applied Micro Workshop for useful comments. We 
are especially indebted to Hawai‘i P20 for allowing us to access the data and for strong support of this research. 
This research is supported by the Institute of Education Sciences, U.S. Department of Education, through Grant 
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Foster, Adriana LlerasMuney, and Hannes Schwandt for valuable feedback. 
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economically disadvantaged students. The effects of PM2.5 on student test scores are larger 
by a factor of ten for the poorest pupils. Similarly, the effects of SO2 are larger by a factor 
of six. We demonstrate that poor air quality disproportionately impacts the human capital 
accumulation of economically disadvantaged children. 

Key Words: Vog, Particulates, Test Scores, Kriging, Environmental Justice 
JEL Classification: I22, I24, Q52 
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1 Introduction 

Researchers and policymakers have increasingly sought to understand the consequences of 

poor air quality. An abundance of evidence suggests pollution can have severe adverse effects 

on health, fertility, and mortality outcomes.1 A smaller yet growing set of studies has identified 

labor productivity losses, where pollution harms workers across both physically demanding (e.g. 

fruit picking (Graff Zivin and Neidell, 2012) and pearpacking (Chang et al., 2016)) and mentally 

demanding (e.g. baseball umpiring (Archsmith et al., 2018)) occupations.2 

However, despite some evidence of air pollution sharply reducing cognitive performance 

(Zhang et al., 2018), there are surprisingly few empirical investigations into how pollution af

fects student test scores. This is a pity as student scores not only are a marker of cognitive 

performance but they also often have long term consequences. A better understanding of this 

topic, therefore, has implications for how air quality impacts human capital acquisition and sub

sequent labor market outcomes. In this study, we investigate how air quality affects student 

performance on standardized tests. 

An important feature of our study is that we pay close attention to how poor air quality 

affects poorer students within schools. It has long been understood that air pollution dispro

portionately impacts the poor and disadvantaged minorities in the United States despite recent 

progress (Currie et al., 2020). In this paper, we will shed light on how air pollution affects hu

man capital acquisition differentially by socioeconomic status which is something that is not 

currently well understood. 

There is a growing number of studies on the effects of specific pollutants (primarily par
1Several studies have found a positive association between pollution and fertility abnormalities (Nieuwenhui

jsen et al., 2014; Slama et al., 2013; Perin et al., 2010). See Carré et al. (2017) for a review of the literature. Burnett 
et al. (1999) and Koken et al. (2003) find increases in air pollution leads to an increase in cardiorespiratory hospi
talizations. Linares et al. (2010) find children who attend schools closer to major air pollution sources were more 
likely to develop respiratory and lung abnormalities. Di et al. (2017) finds increases in pollution (even at levels 
below the national standard) were associated with an increase in mortality for US Medicare beneficiaries, especially 
amongst racial minority groups. 

2Other studies examining labor productivity loss include He et al. (2019) (textile industry workers), Chang et al. 
(2019) (call center workers), and Lichter et al. (2017) (professional soccer players). For a comprehensive review 
of the literature on “nonhealth” effects of air pollution, we refer the reader to AguilarGomez et al. (2022). 
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ticulates) on student test scores during high school.3 Work from Ebenstein et al. (2016) uses 

Israeli data from 2000 to 2002 to find drops in high school exit exam test scores and wors

ened longer run outcomes in response to poor air quality. These effects were especially large 

for those of lower socioeconomic status. Next, Marcotte (2017) found decreased performance 

among kindergartners on testing days with worse pollen and fine airborne particulate matter. 

Similarly, Heissel et al. (2020) identify the effects of traffic pollution on student test scores and 

other shorter run outcomes in Florida. Finally, Carneiro et al. (2021) show that higher concen

trations of particulates result in lower scores on college entry examinations in Brazil.4 Despite 

this, there is still a dearth of studies on the topic, particularly, relative to the volume of research 

on the health impacts of poor air quality. 

Importantly, work that demonstrates disproportionate effects of poor air quality on test scores 

by socioeconomic status is limited. Moreover, the results that we do have often conflict leaving 

the issue still up for debate. Ebenstein et al. (2016) finds that Israeli students of lower socioeco

nomic status experience larger declines in test scores due to higher pollution. They attribute this 

finding to higher rates of asthma among those of lower socioeconomic classes.5 However, sem

inal work by Case et al. (2002) shows that asthma is more prevalent among children with richer 

parents in the United States. On the other hand, Heissel et al. (2020) show that economically 

disadvantaged students (as proxied by eligibility for free or reduced lunch) experience smaller 

impacts on test scores compared to their more advantaged peers. However, they also experience 

more absences and behavioral issues. Accordingly, there is not a clear consensus within the lit

erature suggesting that poor air quality disproportionately impacts learning outcomes of poorer 

students. 

The context of our study is the Hawaiian islands. This is a particularly advantageous setting 

for several reasons. A primary advantage comes from Hawai‘i’s rich, plausibly exogenous vari
3Bedi et al. (2021) also investigate the impacts of PM2.5 on grammatical reasoning tests of university students 

in Brazil. They find evidence of adverse effects. 
4Outside student performance outcomes, related studies from Currie et al. (2009), Liu and Salvo (2018), and 

Chen et al. (2018) find increased student absences in response to poor air quality. 
5Marcotte (2017) also shows that the effects of particulate pollution are largest for asthmatic students. 
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ation in air quality. Despite its reputation for moderate climate, Hawai‘i can claim ten of the 

world’s 14 classifications for climate zones (microclimates)  the only place in the world with 

such diversity in one small area.6 

Hawai‘i provides a unique and powerful opportunity to estimate the effects of two pollutants, 

particulate matter (PM2.5) and sulfur dioxide (SO2), on cognitive performance. We do so using 

SO2 emissions from Kilauea volcano which is located on the island of Hawai’i. These gaseous 

emissions eventually form particulate matter in the form of sulfate aerosols. This pollution is 

called vog and is similar to smog pollution in many cities. Because this species of particulates 

is high in sulfuric acid, they resemble particulates from sources that produce sulfate aerosols 

such as coalfired power plants. Importantly, 8% of the world’s population faces potential risks 

from volcanic eruptions and so, our estimates will have a direct bearing on these other settings 

(ChoumertNkolo et al., 2021). 

The emission of SO2 from the Kilauea volcano represents a rare case of truly unpredictable 

variation in air pollution in the United States. Based on local wind conditions and whether the 

volcano is emitting, the air quality of Hawai‘i can shift from hazardous to pristine in a matter of 

hours across differing parts of the islands. Previous research has leveraged this high frequency 

variation on a daytoday basis to find increased emergency room admissions due to respiratory 

reasons on days with higher pollution levels (Halliday et al., 2019).7 

An additional advantage of our setting is that baseline pollution levels are far below En

vironmental Protection Agency (EPA) ambient air quality standards. Identifying and under

standing the effects of pollution at lower baseline levels is important as this can help to in

form and potentially update EPA standards. Moreover, lower pollution levels also better reflect 

modal households in the US. While prior literature has focused entirely on air quality within 

6Source: Hawai‘i Magazine, https://www.hawaiimagazine.com/content/hawaiihas10worlds14climate
zonesexplorersguideeachthem, (accessed 16 Sep. 2020) 

7Halliday et al. (2019) articulate the numerous advantages of using variation in vog to study the impact of pol
lution. For example, vog is emitted naturally, whereas the majority of the literature relies on variation in human 
activity (e.g. from cars, airplanes, factories) which may plausibly suffer from endogeneity biases. Another advan
tage comes from temporal variation: vog can vary on a daytoday basis, whereas most other types of pollutants 
are highly serially correlated. 
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higherbaseline polluted environments, baseline pollutant levels in our study are comparable to 

pollution within the US. In 2019, the US average populationweighted concentration of partic

ulate matter (PM2.5) pollution was 7.65 micrograms per cubic meter (µg/m3).8,9 In our sample, 

Hawai’i island saw similar baseline PM2.5 levels with an average of 8.27 µg/m3 while baseline 

levels across other islands were in the three to four µg/m3 range. 

We pair this variation in particulates with the census of public school student test scores in the 

State of Hawai‘i. These data were obtained from the Hawai‘i P20 Partnerships for Education 

(Hawai‘i P20) initiative, a partnership between the University of Hawai‘i, the Executive Office 

of Early Learning, and the State of Hawai‘i Department of Education. Because we have a census, 

we will have enough power to detect even small impacts of air pollution. The data track students 

from elementary to middle and highschool from 2015 through 2018. Math and English literacy 

assessments are given in grades three through eight, and again in grade eleven. In total, the 

data include over 350,000 studenttest observations. These data allow us to estimate dayof 

measures of air quality on student performance across varying ages, assessment types, and air 

quality conditions. 

An important feature of this study is that we employ a technique from geostatistics called 

Kriging to predict pollution exposure at each school (Cressie, 1990; Montero et al., 2015). 

Specifically, we leverage information on the spatial correlation in pollution as well as the dis

tance between and the relative locations of the pollution monitoring stations and the schools. We 

also exploit the fact that the presence of northeasterly winds, or trade winds, affects the spatial 

distribution of pollution in Hawaii. In general, trade winds lower pollution levels throughout 

most of the archipelago. One advantage of Kriging in our context is that it does not require that 

predictions are inside the simplex generated by the monitoring stations used in the prediction. 

This is desirable for us as many of the schools in our sample are located far away from the 

monitoring stations. 
8For example, in Ebenstein et al. (2016) the average level of PM2.5 on student test days was 21.05 µg/m3 . 
9Source: US Environmental Protection Agency, https://www.epa.gov/airtrends/particulatematterpm25

trends, (accessed 25 Apr. 2021) 
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For the full sample of student test scores, we estimate a small but statistically significant im

pact of particulates on student test scores. A one standard deviation increase in PM2.5 reduces 

test scores by 0.24 percent of a standard deviation. We then find that the effects are significantly 

tied to particulate levels at baseline. For example, schools with baseline PM2.5 levels between 

three to six µg/m3 see a drop in test scores of about 0.37 to 0.74 percent of a standard devia

tion for every standard deviation increase in PM2.5. When subsetting our regression sample to 

schools with baseline PM2.5 levels above six µg/m3, we see reductions in the neighborhood of 

1.1 percent of a standard deviation with respect to a one standard deviation increase in PM2.5. 

Furthermore, our findings are concentrated amongst schools in south Hawaii, the region of the 

state that sees the highest level of pollution exposure on average. This suggests that the damages 

from pollutants increase precipitously with baseline exposure, yet are still present in relatively 

lower baseline environments. 

The effects of SO2 are more muted and nuanced. For the full sample, we do not find effects. 

However, we do estimate statistically significant effects on south Hawaii. These estimate also 

have a higher magnitude. A one standard deviation increase in SO2 pollution decreases test 

scores in south Hawaii by 2.14 percent of a standard deviation. One important caveat with 

the results in south Hawaii (which includes Kilauea) is that we find that both PM2.5 and SO2 

adversely impact student outcomes. Because both pollutants are highly correlated, we have not 

separately identified the effects on each pollutant.10 

Lastly, and perhaps most importantly, we find that the effects of pollution are particularly 

concentrated among economically disadvantaged students. Students who are economically dis

advantaged experience ten times the effect of PM2.5 and six times the effect of SO2 on exam 

scores when compared to their more advantaged counterparts. Interestingly, we find little dif

ference in the effects of particulates across schools by the fraction of the school’s students who 

10We note that the inability to cleanly identify one pollutant from another is a common issue in the literature. In 
this regard, this paper is no different. Halliday et al. (2019) were able to cleanly identify the effects on particulates 
on emergency medical care. However, their design used data exclusively from Oahu where the only pollutant is 
PM2.5. In the current setting, a large portion of the impacts occur close to Kilauea where SO2 levels are extremely 
high as well. 
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were disadvantaged, suggesting that the economically disadvantaged student gap is not driven 

by differences in school resources (e.g. classroom air conditioning). We also note that this is less 

of an issue in Hawaii as there is one statewide school district in which schools are not funded 

by local property taxes. So, we conclude that disadvantaged students within the same school 

are significantly more harmed by pollution than their more advantaged counterparts. This result 

has obvious implications for environmental justice and our understanding of how environmental 

laws, regulations, and policies may disproportionately harm people from lower income and/or 

minority groups. 

2 Data and Background 

2.1 Student Learning Outcome Measurements 

We measure student learning outcomes using data from the Hawaii P20 Partnerships for 

Education (Hawaii P20). The Hawaii P20 manages student level data collected through the 

Data eXchange Partnership (DXP), a collaboration between five of Hawaii’s state agencies (De

partment of Health, Department of Labor and Industrial Relations, Department of Education, 

Department of Human Services, and University of Hawaii). The data from the DXP consists 

of all students in Hawaii’s public school system spanning elementary through secondary educa

tion. The data includes education performance measures as well as demographic characteristics 

of the student. Test score data come from the Smarter Balanced Assessment (SBA). The SBA 

is an annual assessment of college and career readiness that includes modules on math and En

glish literacy. It has been administered to students in grades three through eight and grade ten 

since 2015.11 We standardize test scores to a mean of zero and a standard deviation of one at the 

grademoduleyear level. 
11Prior to 2015, the DOE administered the Hawaii State Reading and Math Assessment (HSA) to measure student 

performance. The HSA was administered to students in grades three through eight and ten. Though our data 
includes test scores from the HSA, we do not have data on test dates, and thus we strictly focus on utilizing data 
from the SBA. 
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Though the SBA is mandatory for all public school students, test dates are unique at the 

student level. Each school year, the DOE provides a one to three month testing window within 

which schools are required to administer the modules. Each school is then individually respon

sible for determining the exact date that students take their assessments. Importantly, schools 

determine their exam dates at the beginning of the school year, well before the school can fore

cast potential weather conditions or vog levels on the exam date. Schools typically have students 

within the same grade take the same module on the same date. The two modules (math and read

ing) are always taken on separate dates. In some circumstances, school faculty are authorized to 

have some students take the exams earlier or later than their peers. Since students with cognitive 

disabilities are subject to alternative assessments, we drop them from our sample. 

2.2 Air Quality Measurements 

We employ data on particulates (PM2.5) and sulfur dioxide (SO2) obtained from the State 

of Hawaii Department of Health (DOH).12 Particulates are measured in micrograms per cubic 

meter (µg/m3). PM2.5 measures particulates that are 2.5 micrometers in diameter or smaller. 

SO2 is measured in parts per billion (ppb). The DOH reports measures of each pollutant at hourly 

frequencies. For our analysis, we aggregate the pollutant measures from each DOH monitoring 

station to 24hour averages and merge these data with the Hawaii P20 data using the date that 

students took their assessments. 

2.3 Summary Statistics 

Table 1 displays summary statistics from the P20 student data. At the studentyear level, 

the mean month of the math and reading exam is just over four, indicating that students tend 

to take both of their assessments in April. About half of studentyears in the public school 

system come from economically disadvantaged families and around six percent received English 

12We do not use data on PM10 as the state only had three stations monitoring it. 
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Table 1: Summary Statistics (Hawaii P20 Student Measures) 

Mean Std. Dev. 
Panel A: StudentYear Level Statistics 
Month of Math Exam 4.43 0.69 
Month of Reading Exam 4.12 0.66 
Economically Disadvantaged 0.49 0.50 
Received English Language Services 0.06 0.24 
Panel B: Student Level Statistics 
Female 0.50 0.50 
Asian (NonFilipino) 0.16 0.37 
Filipino 0.24 0.43 
Native Hawaiian 0.24 0.43 
Pacific Islander 0.09 0.29 
White 0.18 0.39 
Other Ethnicity 0.08 0.27 
Unique Individuals 153,448 
Schools 282 
Years 2015  2018 

Notes: Data on student summary statistics comes from the Hawaii P20 Partnerships for Education. Econom
ically disadvantaged students refer to those who are enrolled in free lunch programs through the Department 
of Education. Those who received English language services are students who enrolled in the State of Hawaii 
Department of Education’s English Learner Program for the academic school year. 

language services. Table 1 also reveals Hawai‘i’s ethnically diverse population. Nearly a quarter 

of students identify as Native Hawaiian and another quarter identify as Filipino. Another 16% of 

students identify as nonFilipino Asian, 9% as Pacific Islander, 18% as White, and 8% identify 

as another ethnicity. The data include 153,473 unique individuals enrolled across 282 schools. 

Summary statistics for pollution are presented in Table 2. Overall, PM2.5 averages are rel

atively similar across the islands of Oahu, Maui, and Kauai. Hawaii island sees slightly higher 

levels of PM2.5 in certain areas due to Kilauea’s volcanic activity. The Pahala monitoring sta

tion is located less than 20 miles south of the Kilauea volcano. Because of the Pahala monitoring 

station’s close proximity to the volcano, average levels of SO2 in Pahala are about four times the 

state average. For the full sample, the average PM2.5 is 6.14 µg/m3 (with a standard deviation 

of 1.84) and the average SO2 is 8.69 ppb (with a standard deviation of 6.17). 
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Table 2: Summary Statistics (Pollutant Measures) 

PM2.5 SO2 

Station Mean Std. Dev. Mean Std. Dev. 

Hawaii Island 
Hilo 7.86 5.19 3.65 7.41 
Kona 11.25 5.52 3.67 3.32 
Mountain View 3.68 3.23 1.80 2.59 
Ocean View 12.64 4.77 17.38 16.24 
Pahala 4.77 2.59 27.90 21.98 
Hawaii Island Average 8.27 3.35 11.98 8.37 

Oahu 
Honolulu 3.71 2.44 0.38 0.48 
Kapolei 4.95 2.03 0.14 0.32 
Pearl City 4.09 2.05 
Sand Island 4.95 1.93 
Oahu Average 4.39 1.76 0.26 0.34 

Maui 
Kahului 3.23 1.78 
Kihei 4.37 3.60 
Maui Average 4.07 2.53 

Kauai 
Niumalu 3.33 2.67 0.73 0.60 

State Average 6.14 1.84 8.69 6.17 

Notes: Data on pollutant measures come from the State of Hawaii Department of Health. Measures of PM2.5 

and SO2 are reported for each pollutant monitoring station. The particulate PM2.5 is reported in µg/m3 and 
SO2 is reported in ppb. 
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3 Research Design 

3.1 Measuring Pollution at Schools 

We begin by discussing how we use pollution measurements from monitoring stations in con

junction with variation in Hawaii’s trade wind patterns to predict pollution at each of Hawaii’s 

schools. We do this because of the spatial misalignment of the pollution monitoring stations 

and the schools. To do this, we use a Kriging procedure which delivers the best linear unbi

ased predictor (BLUP) of unobserved pollution at each school (Cressie, 1990). While Kriging 

is commonly used in the geosciences as it has superior properties to other predictive techniques, 

it is less commonly used by economists. The only other paper in environmental economics that 

uses Kriging to predict pollution exposure of which we are aware is LlerasMuney (2010). 

Predicted exposure at a given school and on a given day is a weighted average of the available 

measurements on that day within some vicinity of the school (Cressie, 1990). Normally, Kriging 

weights depend solely on the spatial correlations of pollution measurements across monitoring 

stations. However, we extend the procedure so that we can incorporate external variables (wind 

direction in our case) to generate more accurate predictions. 

The weights that we employ depend on the distance between school s and monitoring station 

m (dsm), the relative location of the monitoring station visavis the school (lsm), and the wind 

direction on that day (NEt). We denote the weight given to monitoring station m to predict 

pollution at school s as λ(dsm, lsm, NEt) ≡ λsm(NEt). In the spirit of Halliday et al. (2019), 

we employ the variable NEt, a binary variable indicating that the winds on that day were north

easterly. As previously discussed, such winds are called “trade winds” and tend to improve air 

quality throughout the state. If we denote the measured pollution at monitoring station m on 

day t with Πmt, our prediction of exposure at school s on day t is 

X 
Pb st = λsm(NEt)Πmt (1) 

m∈N(s) 
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where N(s) denotes a neighborhood of school s.13 The weights are constrained to sum to one 

which ensures that the predictor is unbiased. As many predictors can be written in the form 

of equation (1) including nearest neighbor and inverse distance weighting predictors, Kriging 

predictions will have lower prediction errors than many commonly used predictors as it is the 

BLUP. 

While Kriging weights must sum to one, they can be negative or greater than unity. This 

allows the predictions to take on a value outside of the simplex generated by the pollution mea

surements. This is, in fact, a positive feature of Kriging  not a deficiency. To see this, we note 

that the monitoring stations on the island of Oahu are all in urban Honolulu on the southern 

shore of the island. However, many schools on this island are in rural parts of the island and/or 

on the northern facing shores placing them outside of the simplex generated by the monitoring 

stations. Because the weights are not constrained to be between zero and one, the predictions 

at these rural schools can be smaller than all of the Πmt used to construct Pb st. Other common 

predictors used in this literature such as nearest neighbor or inverse distance weighting do not 

share this property. 

To illustrate the relative locations of the schools and the monitoring stations, we present 

Figures 1 and 2. These figures plot each school’s location and each monitoring station’s location 

(denoted by the solid red circles) on the islands of Oahu and Hawaii, respectively. Schools on 

Oahu are empty circles. Schools on south Hawaii are empty triangle whereas those on north 

Hawaii are crosses. These correspond to the three neighborhoods for which we compute the 

Kriging weights. The figure illustrates that the schools in our sample are often located well 

outside of the simplex generated by the monitoring stations. 

We now briefly discuss the GMM procedure that we use to estimate the Kriging weights. A 

13In fact, kriging is a “universal” predictor in that it uses all available measurements to make predictions. How
ever, in nonstationary environments such as this, it is advisable to use more local measures. With this in mind, we 
employ three neighborhoods: Oahu, south Hawaii (includes Kilauea), and north Hawaii (the rest of the island of 
Hawaii). 
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Figure 1: Schools and Monitoring Stations on Oahu 

Notes: This figure displays all pollutant monitoring stations and schools located on the island of Oahu. 
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Figure 2: Schools and Monitoring Stations on Hawaii Island 

Notes: This figure displays all pollutant monitoring stations and schools located on the island of Hawaii. 
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detailed treatment of this can be found in Appendix A.1. Denoting M(s) ≡ #N(s), we define 

λs(b) ≡ (λs1(b), ..., λsM(s)(b), αb) 
′ 

which is a vector that includes the Kriging weights, λsm(b) for b ∈ {0, 1} (b is an indicator 

for northeasterly winds), and the Lagrangian multiplier on the constraint that the weights must 

sum to one denoted by αb for b ∈ {0, 1}. The weights depend on the semivariogram between 

stations m and n on trade wind and nontrade wind days. The semivariogram is one minus 

the spatial correlation between the two locations and equals zero at a given location i.e. We 

denote this measure by γmn(b). when m = n. The Kriging weights can then be derived as 

λs(b) = Γ(b)−1Γs(b) where 

⎤⎡ 
Γ(b) ≡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

γ11(b) . . . γ1M(s)(b) 1 
. . .. . . . . .. . . 

γM (s)1(b) . . . γM(s)M(s)(b) 1 

1 . . . 1 0 

⎥⎥⎥⎥⎥⎥⎥⎦ 
and ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

γ1s(b) 
... 

γM(s)s(b) 

1 

⎥⎥⎥⎥⎥⎥⎥⎦ 
Γs(b) ≡ . 

Hence, the task of computing the Kriging weights hinges on computing the semivariogram for 

NEt = 1 and NEt = 0. We refer the reader to the appendix for details on the derivation and, 

specifically, what optimization problem delivers these weights. 

To compute the semivariograms in Γ(b) and, especially, Γs(b) (which requires outofsample 

prediction), we postulate a parametric model indexed by a vector. To estimate this parameter, 

first, we compute the empirical semivariagrams for trade wind (NEt = 1) and nontrade wind 
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days (NEt = 0). Next, we model the spatial correlation between stations m and n as 

!! X 
1 − γmn(NEt) = exp −dmn × ϕNEt + (δj 1mn(j) + βj × 1mn(j) × NEt) . 

j∈L 

This functional form allows the spatial correlation: (1) to decline with the distance between loca

tions; (2) to decline when trade winds are blowing; (3) to depend on relative locations according 

to wind direction. The semivariogram is zero when dmn = 0. We then note that estimation 

of the parametric model can proceed using a simple Poisson regression or Generalized Linear 

Model (with a log link function) package in Stata or R and is relatively easy to implement. 

3.2 Covariogram Estimates 

We plot the covariograms for PM2.5 and SO2 in Figures 3 and 4. Each figure has four 

plots corresponding to the relative locations of the monitoring stations: NE, SE, SW, and NW. 

For any pair of stations, (m, n), the location corresponds to m relative to n. We also plot the 

covariograms for trade and nonwind days in each plot. Each dot in these plots is a pair of 

stations.14 

14The GMM procedure that we use only employs the bottom triangle of the covariance matrix since the infor
mation in the upper triangle is redundant. This implies, however, that the samples used in the offdiagonal plots 
in the top right and bottom left plots of Figures 3 and 4 are different and so the estimations are also different. For 
example, for a pair of stations (m, n), if m is northeast of n then 1mn(NE) = 1 and 1mn(SW ) = 0. On the other 
hand, for (n, m), we would have 1mn(NE) = 0 and 1mn(SW ) = 1. The same is true for the plots on the diagonal 
of the figure (not the covariance matrix). This is highly technical point but some readers may have wondered why 
these plots are different. This is why. 
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In Figure 3, we see a large degree of spatial correlation in PM2.5. In the diagonal plots 

corresponding to relative locations NE and SW, we see that the spatial correlation remains above 

0.2 for up to a distance of 60 miles. In the offdiagonal plots corresponding to NW and SE, 

the spatial correlations remain well above zero when there are no trade winds, but they are 

substantially smaller when the trade winds are blowing. Overall, this figure strongly indicates 

that trade winds result in lower spatial correlations in PM2.5. 

Figure 4 shows a much more muted degree of spatial correlation for SO2. When the moni

toring stations are either to the northeast or southeast, the figure shows that there is essentially 

no spatial correlation in SO2. When the stations are to the northwest or the southwest, there 

appears to be moderate spatial correlation through about 100 miles and trade winds modestly 

dampen it. The more modest degree of spatial correlation in SO2 makes it more difficult to 

predict SO2 exposure at schools. This might underscore the noisier estimate of the effects of 

SO2 on outcomes that we will present. 

An important feature of Kriging is that it delivers the arithmetic mean within the neighbor

hood of the school when there is no spatial correlation. This implies that the Kriging predictions 

for SO2 will be closer to the neighborhood means than they are for PM2.5. All told, the spatial 

correlations in PM2.5 are more informative than they are in SO2. 

In Table 3, we provide the means and standard deviations of the predictions of pollution 

at each school on days with and without trade winds.15 We provide descriptive statistics for 

the three neighborhoods for which we computed the weights: Oahu, south Hawaii, and north 

Hawaii. The table shows that on trade wind days levels of PM2.5 are lower on Oahu (2.94 vs. 

4.20 µg/m3) as well as on north Hawaii (5.65 vs. 7.07 µg/m3). However, we do not see lower 

particulate levels on trade wind days on south Hawaii. Presumably, the reason for this is that 

many of the schools on south Hawaii are located to the west of Kilauea and, so the trade winds 
15We replaced the prediction with a zero when the Kriging prediction was negative. We also replaced all predic

tions above the 99th percentile with a missing value. In the raw pollution data, 22.10% of PM2.5 predictions were 
negative and 1.08% of SO2 predictions were negative. These numbers might seem large but we note per Halliday 
et al. (2019) many days in those data essentially had very low pollution levels. 
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blow PM2.5 towards those schools. Finally, we see a similar pattern for SO2 with lower levels 

on trade wind days on Oahu and north Hawaii. 

Table 3: Summary Statistics (Pollutant Measures) by Tradewind Status 

Oahu South/Southwest Hawaii North/Northeast Hawaii 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

No Tradewinds 
P M2.5 

SO2 

Tradewinds 
P M2.5 

SO2 

4.20 
0.80 

2.94 
0.60 

3.11 
0.78 

6.12 
0.63 

7.71 
4.95 

8.87 
6.79 

6.79 
4.52 

6.44 
4.94 

7.07 
3.55 

5.65 
1.36 

5.21 
4.03 

4.01 
0.98 

Notes: Data on pollutant measures come from the State of Hawaii Department of Health. Measures of PM2.5 

and SO2 are reported for Oahu, West/Northwest Hawaii island, and East/Southeast Hawaii for days with and 
without tradewinds (northeasterly winds). The particulate PM2.5 is reported in µg/m3 and SO2 is reported 
in ppb. 

3.3 Estimation Equation 

To identify the impact of pollution on student cognitive functioning, we employ Kriging

based measures of pollution exposure at each school and estimate a linear regression via OLS of 

student standardized test scores onto pollution exposure while adjusting for school fixed effects, 

seasonality, and student demographic characteristics. Specifically, we estimate the model: 

Yigset = α + βPb st + γXige + σs + µm + θy + υigset (2) 

where Yigset is the standardized test score (i.e. the raw score minus its means divided by its 

standard deviation) of student i enrolled in grade g at school s taking exam e (math or English) 

on day t. Our main variable of interest, Pb st, is the prediction of exposure to PM2.5 or SO2 

at school s on day t discussed above. We scale all estimates of β up by 100 in order to make 

the estimates more readable by providing more significant figures. This and the fact that the 
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dependent variable is a zscore implies that the interpretation of β is that a one unit increase 

in the pollutant increases test scores by β % of a standard deviation. The vector Xige contains 

timevarying student characteristics such as indicators for economic disadvantage status and 

recipiency of English language services, timeinvariant student characteristics such as indicators 

for gender and ethnicity, and an indicator for the student’s grade and the type of exam.16 We 

include school fixed effects, denoted by σs, in order to control for variation at the school level. 

The terms, µm and θy, are month and academic year fixed effects respectively and υigset is the 

error term. Standard errors are clustered by school. Identification of β in equation (2) comes 

from plausibly exogenous variation in Pb st within schools, across time.17 

We conclude with a few remarks about the calculation of standard errors in the presence of a 

generated regressor (Pb st in our case). With a generated regressor, standard errors should account 

for sampling uncertainty in Pb st. In a standard situation in which the regressor is generated from 

the same sample that is used in the second stage estimation, bootstrapping the generated regres

sor and then bootstrapping the second stage coefficient estimates provides a common solution. 

However, two points make this solution less viable in our scenario. First, the Kriging pro

cedure that is used to generate the regressor takes several hours on a fast machine. This implies 

that a single standard error with 100 replications could take a week to compute using standard 

bootstrapping procedures.18 Second, as is common in the literature on the impacts of pollution, 

the generated regressor comes from a seperate sample with a separate sampling scheme than the 

primary estimation sample. Accordingly, the asymptotic distribution computed in Appendix 

16Controlling for the economic status of each students’ family is particularly important in this specification 
because the DOE grants geographic exceptions (GE) to students who wish to enroll in a school outside of their 
district of residence under several qualifying circumstances (e.g. parents are faculty at the receiving school, a 
program is offered at the receiving school but not at the student’s district school, etc). Because of the GE, students 
who reside in areas with relatively lower average household incomes may attend schools in districts that have higher 
average household incomes and thus better education programs. 

17As an additional robustness check, we replace all timeinvariant student controls with student fixed effects, 
which account for all unobserved timeinvariant differences across students (e.g. innate ability). Our preferred 
model avoids student fixed effects since the time frame of our study is limited to several years (2015 to 2018) 
which, therefore, creates some considerable power issues. 

18We do note, however, that there are faster alternatives for extremum estimations that could be considered 
(Andrews, 2002). 
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6A of Wooldridge (2010) for linear models with generated regressors does not apply as these 

calculations presume a single sample. 

4 Results 

4.1 Balance Test 

Though the Hawai‘i context likely provides exogenous variation for the identification of 

the effects of pollutants on learning outcomes, we can still test whether there are observable 

differences in student characteristics correlated with pollutant exposures. In Appendix Table A1, 

we regress both of our pollution measures on the full vector of student and exam characteristics. 

Overall, we find little to no evidence of correlations between observable characteristics and 

pollutant levels. Excluding the estimates of the grade fixed effects in the second part of the 

table, the only significant coefficient in either column is for receipt of English language services 

which appears to predict PM2.5 levels. However, this is the only significant variable in either 

column. We do see that the grade indicators predict SO2 levels but not PM2.5 levels, but this 

is easily dealt with by the inclusion of grade fixed effects in the estimations. Finally, we note 

that an F test that all of the covariates in the estimates are zero resoundingly fails to reject the 

null. All told, we suspect that this significant estimate in the table is the consequence of Type 

I error. Thus, we conclude that the variation in pollutants has no systematic relationships with 

observable confounders, and the detected statistical significance likely arises from Type I error. 

4.2 Baseline Results 

We report our first set of OLS estimations in Table 4. Column (1) presents our results for 

the effect of standardized PM2.5 levels on student test scores, as estimated in equation (2). With 

moderate precision, we estimate (at the 10% level) a drop in student standardized test scores 

on days with higher PM2.5 levels. This average effect is small; a one unit increase in PM2.5 
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Table 4: Effect of Pollution on Math and Reading Scores, OLS Estimates 

(1) (2) (3) (4) 

P M2.5 

SO2 

–0.132* 
(0.073) 

–0.076 
(0.071) 

–0.211 
(0.174) 

–0.224 
(0.168) 

R2 0.267 0.851 0.267 0.838 
School FE X X X X 
Month FE X X X X 
Year FE X X X X 
Individual FE X X 

Notes: Standard errors are clustered by school. Control variables include gender, economically disadvantaged 
students, English language service recipients, exam subject, grade level and ethnicity. All estimations control 
for school, month and academic year fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01 

leads to a 0.13 percent of a standard deviation drop in student test scores (recall that our pollutant 

effects are scaled up by a factor of 100). With a full sample standard deviation of 1.84 (see Table 

2), a one standard deviation increase in PM2.5 corresponds with a 0.24 percent drop in student 

test scores, on average. In column (2), we replace studentinvariant controls with student fixed 

effects and see that the estimate is no longer significant, but this is likely the result of low power. 

In the final two columns, we do not see any impact of SO2 on test scores. However, we will 

show that these weaker effects mask important underlying heterogeneity by geography, the level 

of baseline pollution, and SES within schools. 

4.3 Impacts by Geographical Region 

In Table 5, we estimate our model stratified by three geographical regions: Oahu, south 

Hawaii, and north Hawaii. The important finding in this table is that we now see much larger 

impacts of both PM2.5 and SO2 on south Hawaii while we see no impacts elsewhere. The point 

estimates of the effects of this pollutants are 0.652 and 0.347 and are significant at the 1% 

and 5%, respectively. These estimates indicate that, on south Hawaii, a one standard deviation 

increase in PM2.5 and SO2 results in test score declines of 1.20 and 2.14 percent of a standard 
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Table 5: Effects of Pollutants on Exam Scores for Students by Region 

P M2.5 

SO2 

R2 

(1) (2) 

Oahu 

–0.070 
(0.0927) 

–0.623 
(1.94) 

0.273 0.273 

(3) (4) 

South/Southwest Hawaii 

–0.652*** 
(0.219) 

–0.347** 
(0.145) 

0.284 0.269 

(5) (6) 

North/Northeast Hawaii 

0.167 
(0.180) 

0.206 
(0.347) 

0.201 0.200 

Notes: Standard errors are clustered by school. Control variables include gender, economically disadvantaged 
students, English language service recipients, exam subject, grade level and ethnicity. All estimations control 
for school, month and academic year fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01 

deviation. 

We note that pollution levels are substantially higher on south Hawaii than on Oahu or north 

Hawaii as shown in Table 3. For example, south Hawaii has substantially worse pollution than 

Oahu regardless of whether or not the trade winds are blowing. In addition, air quality in south 

Hawaii is notably worse than in north Hawaii on trade wind days but not on days in which they 

are not. 

Thus, these effects might indicate that the effects of these pollutants are nonlinear in their 

levels. Small exposure to either particulates or SO2 appears to have no effects on Oahu and, to 

a lesser extent, north Hawaii. However, the effects on south Hawaii, where air quality is notably 

worse, are very large. 

4.4 Impacts by baseline pollutant levels 

Are the effects of PM2.5 on student cognitive performance in fact larger when baseline pol

lution levels are higher? A key advantage to the Hawai‘i context (as indicated by Table 3) comes 

from its rich variation in baseline pollutant levels across schools. This is due to where schools 

are located on each island and their proximity to the Kilauea volcano. This allows us to test 

for possible nonlinear effects in how pollutants affect student performance, particularly across 
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schools with lower baseline levels. In Figure 5 we report coefficients across different samples 

by school, where each subsample progressively focuses on schools with higher baseline PM2.5 

levels.19 

Figure 5: Differential Effects by Baseline PM2.5 Levels 

Notes: The yaxis represents the coefficient for the effect of the pollutant, PM 2.5 on student zscores by the mean 
level of exposure to PM2.5 within each school. The xaxis represents the threshold at which each school’s mean 
exposure is greater than a given level of PM2.5. Standard errors are clustered by school. Control variables include 
female, economically disadvantaged families, nonnative English speaking, math exam, grade level and ethnicity. 
All estimations control for school, month and academic year fixed effects. 

We find that as we focus on schools with higher baseline levels of pollution, the negative 

effects of pollutants sharply increase. When we restrict our regression sample to pollution levels 

between 3 to 6 µg/m3 we see reductions in test scores in the neighborhood of 0.370.74 percent 

of a standard deviation with respect to a one standard deviation increase in PM2.5. However, 
19Baseline PM2.5 levels are calculated by taking the average PM2.5 level across the full sample of days for 

each school. 
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when baseline exposure is greater than 6 µg/m3 , there is a precipitous drop to reductions of 

in the neighborhood of 1.1 percent of a standard deviation (also with respect to a one standard 

deviation increase in PM2.5). Accordingly, the pernicious effects of PM2.5 are largest when 

exposure is the greatest. This result is very much consistent with the results in Table 5 which 

show that the effects of pollutants are largest near Kilauea. 

4.5 Heterogeneity by economic disadvantage status 

Does poor air quality have larger effects on the most disadvantaged pupils within a school? 

Case et al. (2002) show that children from poorer backgrounds are at higher risk of developing 

a host of health problems than better off children. This suggests that more well off children will 

be in better health which could confer more resiliency when combating the pernicious effects of 

air pollution. In this sense, air pollution could exacerbate preexisting inequities within schools. 

To investigate this, in Table 6, we estimate equation (2) while including an interaction term 

between the pollutant level and an indicator for whether the pupil was eligible for the free school 

lunch program  a proxy for student economic disadvantage. In the first column of the table, we 

display the estimates of the effects of particulates and we observe drastically different effects by 

economic status. The interaction between PM2.5 and the disadvantaged indicator is 0.572 and 

significant at the 1% level whereas the direct effect is 0.044 but not significant. This implies that 

the the harmful effects from PM2.5 for disadvantaged students are over ten times the magnitude 

of their effects for their more advantaged counterparts.20 In column (2), we also find that SO2 

harms disadvantaged students substantially more than students who are better off. A similar 

calculation indicates that the effects of SO2 on poorer pupils are larger by sixfold. 

The magnitudes of these effects on cognitive performance of disadvantaged students pupils 

are not trivial. Once again, using the descriptive statistics from Table 2, we calculate that a one 

standard deviation increase in PM2.5 decreases test scores for disadvantaged pupils by 1.13% 

20We compared the sum of the interaction and the direct effect of particulates to the direct effect by itself. 
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Table 6: Effect of Pollution on Exam Scores for Economically Disadvantaged Students 

(1) (2) 

Economically Disadvantaged * P M2.5 –0.572*** 
(0.182) 

P M2.5 –0.044 
(0.083) 

Economically Disadvantaged * SO2 –0.426*** 
(0.153) 

SO2 –0.084 
(0.182) 

Economically Disadvantaged –27.519*** –29.210*** 
(1.255) (1.113) 

R2 0.267 0.264 

Notes: Standard errors are clustered by school. Control variables include gender, English language service 
recipients, exam subject, grade level and ethnicity. All estimations control for school, month and academic 
year fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01 

of a standard deviation. A similar calculation indicates that a one standard deviation increase in 

SO2 decreases test scores for poorer pupils by 3.15% of a standard deviation. 

Could these larger impacts of pollution for disadvantaged students be driven by selection? 

For example, there could be a potential correlation between where disadvantaged students enroll 

and school characteristics including the school’s location, its baseline pollution level, or the 

school’s potential resources to combat the harmful effects of pollutants (e.g. air conditioning). 

We do not believe that this is the case for the simple reason that that estimates in Table 6 all 

include school fixed effects. 

However, we can also offer an alternative test of this possibility to eliminate any lingering 

doubts. In Figure 6 we estimate equation (2) while focusing on subsamples of schools by the 

fraction of the school’s students who were economically disadvantaged. The estimates in the far 

left of the figure correspond to schools with 20% or fewer pupils on the school lunch program 

whereas the far right of the figure includes all schools. As you move from the left to the right 

of the figure, the sample of schools becomes more disadvantaged. 
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Interestingly, we find little difference in how pollutants harm student learning by the school’s 

fraction of economically disadvantaged students. This suggests that the observed disparity by 

student disadvantage status arises from differences across students within each school, and not 

due to differences across schools. In other words, disadvantaged students do not appear to be 

especially harmed by pollutants due to their school’s location or school resources. Rather, it 

appears as if poorer pupils are more adversely impacted by pollution than richer pupils. 

Figure 6: Differential Effects by % of Economically Disadvantaged Students Within Each 
School 

Notes: The yaxis represents the coefficient for the effect of the pollutant, PM2.5 on student zscores by the 
percentage of students who are economically disadvantaged within each school. The xaxis represents the threshold 
at which each school has less than a given percentage of economically disadvantaged students. Standard errors are 
clustered by school. Control variables include female, economically disadvantaged families, nonnative English 
speaking, math exam, grade level and ethnicity. All estimations control for school, month and academic year fixed 
effects. 
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5 Conclusion 

Using variation in air quality in the Hawaiian islands due to volcanic activity, we estimate 

the impacts of PM2.5 and SO2 on student performance. Because of the state’s normally pristine 

air quality conditions, variation in pollutants are primarily determined by wind direction and 

volcanic emissions from Kilauea volcano on the island of Hawai‘i. Exploiting this variation 

in pollution across the state, we find that worsening air quality decreases student exam scores. 

Specifically, we find that a standard deviation increase in PM2.5 decreases test scores by about 

0.24% of a standard deviation on average. 

We also find that schools with higher baseline pollution levels tend to see worse effects of 

air quality on student performance. Specifically, when we focus on schools with pollution levels 

between 3 to 6 µg/m3, we see reductions in test scores of about 0.370.74 percent of a standard 

deviation with respect to a one standard deviation increase in PM2.5. However, schools with 

average PM2.5 exposure above 6 µg/m3 see reductions in test scores of 1.1 percent of a standard 

deviation at the same margin. We also observe these nonlinear effects when estimating our main 

specification by geographic region. The negative, statistically significant effects of pollution on 

test scores are concentrated within south Hawaii, which has notably higher levels of pollution 

than in other areas across the state. These results might reflect the possibility that pupils in 

schools with higher baseline levels of exposure have had more longterm exposure to PM2.5 

and SO2. 

Finally, the negative effects of pollution on student performance are much larger for poorer 

students. Pupils who are economically disadvantaged experience ten times the effect of PM2.5 

and six times the effect of SO2 on exam scores when compared to their more advantaged peers. 

These effects are not driven by school level characteristics but are instead a result of student 

level differences within schools. This is in line with previous literature which shows that poorer 

children are subject to worse health outcomes (Case et al., 2002) which may imply greater sus

ceptibility to environmental insults. 
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All told, the findings from our study have implications for environmental justice. We show 

that poor students face additional obstacles accumulating human capital when air quality is poor 

relative to those who are more financially stable. This suggests that air pollution contributes to 

the strong persistence in socioeconomic status across generations that we observe in the United 

States. 
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A.1 Technical Details of the Kriging Procedure 

To fix ideas, we let s ∈ {1, ..., S} denote the school, and t ∈ {1, ..., T } denote the time peri

ods, and m ∈ N(s) denote the monitoring station where N(s) is the neighborhood of school s. 

We consider three neighborhoods: the island of Oahu, the southwestern part of Hawaii (that is 

most exposed to Kilauea’s emissions), and the remainder of Hawaii. These are depicted in Fig

ures 1 and 2. We denote the pollution measurement at a given monitoring station on a particular 

day as Πmt. The predicted exposure is then 

X bPst = λsm(NEt)Πmt 

m∈N(s) 

where the kriging weights are λsm(NEt) ≡ λ(dsm, lsm, NEt). Once again, bear in mind that 

NEt ∈ {0, 1}. 

The weights are chosen to guarantee that the predictions are unbiased and that the prediction 

error has minimum variance. Unbiasedness requires that the weights sum to unity. If we let Πst 

represent the true pollution measurement at school s, both criteria can formally be written as 

� � 
min V Pb st − Πst 

{λsm(b)}m∈N (s) X 
subject to λsm(b) = 1 

m∈N (s) 

This minimization problem is solved twice: once for trade wind days (b = 1) and once for 

nontrade wind days (b = 0). This delivers two sets of weights which depend on the prevailing 

winds for that day. 

Following Montero et al. (2015) (see p. 86) and making some local stationarity assumptions, 
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the first order conditions that guarantee these criteria are 

X 
λsm(b)γnm(b) + αb = γns(db) for n ∈ N(s) (A.1) 

m∈N(s) X 
λsm(b) = 1 (A.2) 

m∈N(s) 

where both conditions hold for b ∈ {0, 1} and αb is the Lagrangian multiplier on the constraint 

in A.2 which guarantees the unbiasedness of the prediction. The object, γnm(b), is the semi

variogram between locations m and n when NEt = b. For each school in N(s), equations 

A.1 and A.2 constitute a set of #N(s) + 1 equations in as many unknowns. So, we then have 

#N(s) × (#N(s) + 1) equations in total. If we index the monitoring stations in N(s) from one 

to M(s) ≡ #N(s) (with some abuse of notation) and define 

λs(b) ≡ (λs1(b), ..., λsM(s)(b), αb) 
′ 

then the Kriging weights are λs(b) = Γ(b)−1Γs(b) where 

⎤⎡ 
Γ(b) ≡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

γ11(b) . . . γ1M(s)(b) 1 
. . .. . . . . .. . . 

γM (s)1(b) . . . γM(s)M(s)(b) 1 

1 . . . 1 0 

⎥⎥⎥⎥⎥⎥⎥⎦ 
and ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

γ1s(b) 
... 

γM(s)s(b) 

1 

⎥⎥⎥⎥⎥⎥⎥⎦ 
Γs(b) ≡ . 

Hence, the task of computing the Kriging weights is reduced to computing the semivariogram 
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for NEt = 1 and NEt = 0. 

To compute the semivariogram, we postulate a functional form for the semivariogram. We 

assume that 

!! X 
γmn(NEt) = 1 − exp −dmn × ϕNEt + (δj1mn(j) + βj × 1mn(j) × NEt) (A.3) 

j∈L 

where L ≡ {NE, SE, SW, NW } (which collects the relative location variables) and 1mn(j) is 

an indicator for the location of n relative to m where m is held fixed. Note that distance enters 

multiplicatively to ensure that the semivariogram is zero when dmn = 0 and, by construction, 

γmn(NEt) ∈ [0, 1]. This assumption reduces the spatial covariance structure to a smaller num

ber of parameters which allows us to make extrapolations and interpolations needed to construct 

Γs(b). We collect these parameters in the vector θ. 

We estimate these parameters using GMM. We let g(b) denote the empirical semivariγmn 

ogram for the monitoring station pair (m, n) for b ∈ {0, 1}. Similarly, Γ(gb) is the matrix that 

collects the empirical semivariograms. Then for each pair (m, n), we can compare two collec

tions of moment conditions 

� � �� gqb(θ) = vec lower triangle Γ(b) − Γ(b; θ) 

for b ∈ {0, 1}. We further collect these in the (M(s)+1)×M(s)×2 vector q(θ) ≡ (q0(θ) ′ , q1(θ) ′ ) ′ . 

We estimate θ by minimizing q(θ) ′ q(θ). 

Importantly, θ is easy to estimate. First, compute the empirical semivariagrams for trade 

wind (NEt = 1) and nontrade wind days (NEt = 0). Second, we rewrite A.3 as 

!! X 
1 − γmn(NEt) = exp −dmn × ϕNEt + (δj 1mn(j) + βj × 1mn(j) × NEt) 

j∈L 

and we then note that estimation can proceed by using a simple Poisson regression package in 
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Stata or R. Once θ is estimated, we can then estimate the Kriging weights λs(b). 
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A.2 Additional Tables and Figures 

Table A1: Balance Test 

Female 

Economically Disadvantaged 

Received English Language Services 

Math Exam 

Filipino 

Native Hawaiian 

Pacfic Islander 

White 

Other Ethnicity 

(1) 
P M2.5 

0.016 
(0.013) 

0.035 
(0.031) 

0.097∗∗ 

(0.048) 

0.184 
(0.224) 

0.001 
(0.024) 

0.023 
(0.030) 

0.024 
(0.032) 

0.007 
(0.023) 

0.024 
(0.030) 

(2) 
SO2 

0.003 
(0.008) 

0.007 
(0.015) 

0.005 
(0.021) 

0.082 
(0.096) 

0.010 
(0.009) 

0.017 
(0.017) 

0.017 
(0.016) 

0.007 
(0.012) 

0.011 
(0.016) 

∗ ∗∗ ∗∗∗ p < 0.10, p < 0.05, p < 0.01 
Notes: Standard errors clustered by school. Regressors include female, economically disadvantaged families, 
nonnative English speaking, math exam, grade level and ethnicity. All estimations control for school, month 
and academic year fixed effects. The Ftest tests for whether the covariates in each model are jointly equal to 
zero. 
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Table A1: Balance Test Continued 

4th Grade 

(1) 
P M2.5 

0.161 
(0.183) 

(2) 
SO2 

0.012 
(0.050) 

5th Grade 0.038 
(0.134) 

0.062 
(0.068) 

6th Grade 0.086 
(0.189) 

0.198∗∗∗ 

(0.062) 

7th Grade 0.217 
(0.221) 

0.245∗∗∗ 

(0.088) 

8th Grade 0.016 
(0.219) 

0.317∗∗∗ 

(0.095) 

11th Grade 

Month FE 
Academic Year FE 
School FE 
R2 

Ftest 
pvalue 

0.160 
(0.312) 

X 
X 
X 

0.356 
1.337 
0.432 

0.738 
(0.640) 

X 
X 
X 

0.504 
1.186 
0.742 

∗ ∗∗ ∗∗∗ p < 0.10, p < 0.05, p < 0.01 
Notes: Standard errors clustered by school. Regressors include female, economically disadvantaged families, 
nonnative English speaking, math exam, grade level and ethnicity. All estimations control for school, month 
and academic year fixed effects. The Ftest tests for whether the covariates in each model are jointly equal to 
zero. 
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