Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Robust Bayesian inference for set-identified models

Robust Bayesian inference for set-identified models

Cemmap Working Paper CWP12/20

This paper reconciles the asymptotic disagreement between Bayesian and frequentist inference in set-identified models by adopting a multiple-prior (robust) Bayesian approach. We propose new tools for Bayesian inference in set-identified models and show that they have a well-defined posterior interpretation in finite samples and are asymptotically valid from the frequentist perspective. The main idea is to construct a prior class that removes the source of the disagreement: the need to specify an unrevisable prior for the structural parameter given the reduced-form parameter. The corresponding class of posteriors can be summarized by reporting the ‘posterior lower and upper probabilities’ of a given event and/or the ‘set of posterior means’ and the associated ‘robust credible region’. We show that the set of posterior means is a consistent estimator of the true identified set and the robust credible region has the correct frequentist asymptotic coverage for the true identified set if it is convex. Otherwise, the method provides posterior inference about the convex hull of the identified set. For impulse-response analysis in set-identified Structural Vector Autoregressions, the new tools can be used to overcome or quantify the sensitivity of standard Bayesian inference to the choice of an unrevisable prior.

More on this topic

Cemmap Working Paper CWP09/22
We compare two approaches to using information about the signs of structural shocks at specific dates within a structural vector autoregression (SVAR): imposing ‘narrative restrictions’ (NR) on the shock signs in an otherwise set-identified SVAR; and casting the information about the shock ...
Cemmap Working Paper CWP07/22
Economists are obsessed with rankings of institutions, journals, or scholars according to the value of some feature of interest.
Cemmap Working Paper CWP05/22
We designed a coaching program that focused on one aspect of teacher quality—teacher-child interactions—that researchers in education and psychology have argued is critical for child development and learning.
Cemmap Working Paper CWP04/22
It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighbourhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement.
Cemmap Working Paper CWP44/21
We study a dynamic ordered logit model for panel data with fixed effects.