Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Testing for the presence of measurement error in Stata

Testing for the presence of measurement error in Stata

Young Jun Lee and Daniel Wilhelm
Cemmap Working Paper CWP47/19

In this paper, we describe how to test for the presence of measurement error in explanatory variables. First, we discuss the test of such hypotheses in parametric models such as linear regressions and then introduce a new Stata command [R] dgmtest for a nonparametric test proposed in Wilhelm (2018). To illustrate the new command, we provide Monte Carlo simulations and an empirical application to testing for measurement error in administrative earnings data.

More on this topic

Cemmap Working Paper CWP09/22
We compare two approaches to using information about the signs of structural shocks at specific dates within a structural vector autoregression (SVAR): imposing ‘narrative restrictions’ (NR) on the shock signs in an otherwise set-identified SVAR; and casting the information about the shock ...
Cemmap Working Paper CWP07/22
Economists are obsessed with rankings of institutions, journals, or scholars according to the value of some feature of interest.
Cemmap Working Paper CWP05/22
We designed a coaching program that focused on one aspect of teacher quality—teacher-child interactions—that researchers in education and psychology have argued is critical for child development and learning.
Cemmap Working Paper CWP04/22
It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighbourhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement.
Cemmap Working Paper CWP44/21
We study a dynamic ordered logit model for panel data with fixed effects.