Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Decentralization estimators for instrumental variable quantile regression models

Decentralization estimators for instrumental variable quantile regression models

Cemmap Working Paper CWP42/19

The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression sub-problems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning-free estimators that do not require the availability of high-level "black box" optimization routines.

More on this topic

Cemmap Working Paper CWP09/22
We compare two approaches to using information about the signs of structural shocks at specific dates within a structural vector autoregression (SVAR): imposing ‘narrative restrictions’ (NR) on the shock signs in an otherwise set-identified SVAR; and casting the information about the shock ...
Cemmap Working Paper CWP07/22
Economists are obsessed with rankings of institutions, journals, or scholars according to the value of some feature of interest.
Cemmap Working Paper CWP05/22
We designed a coaching program that focused on one aspect of teacher quality—teacher-child interactions—that researchers in education and psychology have argued is critical for child development and learning.
Cemmap Working Paper CWP04/22
It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighbourhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement.
Cemmap Working Paper CWP44/21
We study a dynamic ordered logit model for panel data with fixed effects.